

PBSM5240PFH

40 V, 2 A PNP low V_{CEsat} (BISS) transistor with N-channel Trench MOSFET

Rev. 1 — 20 June 2012

Product data sheet

1. Product profile

1.1 General description

Combination of PNP low V_{CEsat} Breakthrough In Small Signal (BISS) transistor and N-channel Trench Metal-Oxide Semiconductor Field- Effect Transistor (MOSFET). The device is housed in a leadless medium power DFN2020-6 (SOT1118) Surface-Mounted Device (SMD) plastic package.

1.2 Features and benefits

- Very low collector-emitter saturation voltage V_{CEsat}
- High collector current capability I_C and I_{CM}
- High energy efficiency due to less heat generation
- Smaller required Printed-Circuit Board (PCB) area than for conventional transistors

1.3 Applications

- Load switch
- Power management
- Power switches (e.g. motors, fans)
- Battery-driven devices
- Charging circuits

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PNP low	V _{CEsat} (BISS) transistor					
V_{CEO}	collector-emitter voltage	open base	-	-	-40	V
I _C	collector current		<u>[1]</u> _		-1.8	Α
I _{CRM}	repetitive peak collector current		[1][5]	-	-2	Α
I _{CM}	peak collector current	single pulse; $t_p \le 1 \text{ ms}$	<u>[1]</u> _	-	-3	Α
R _{CEsat}	collector-emitter saturation resistance	$I_{\rm C} = -500 \text{ mA};$ $I_{\rm R} = -50 \text{ mA}$	[2] _	240	340	mΩ

Table 1. Quick reference data ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N-chanr	nel Trench MOSFET					
V_{DS}	drain-source voltage	T _{amb} = 25 °C	-	-	30	V
V_{GS}	gate-source voltage	T _{amb} = 25 °C	-	-	±8	V
I _D	drain current	T_{amb} = 25 °C; V_{GS} = 10 V	[3] _	-	0.66	А
R _{DSon}	drain-source on-state resistance	$T_j = 25 ^{\circ}\text{C}; V_{GS} = 4.5 \text{V}; \ I_D = 0.2 \text{A}$	[4] -	370	580	mΩ

- [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6 cm².
- [2] Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$
- [3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for drain 1 cm².
- [4] Pulse test: $t_D \le 300 \ \mu s; \ \delta \le 0.01$.
- [5] Pulse test: $t_p \le 20$ ms; $\delta \le 0.10$.

2. Pinning information

Table 2. Pinning

Pin	Description	Simplified outline	Graphic symbol
1	emitter		0.7. 5. 4
2	base	6 5 4	6, 7 5 4
3	drain		
4	source	7 8	
5	gate		
6	collector	1 2 3	1 2 3,8
7	collector	Transparent top view	017aaa079
8	drain		

3. Ordering information

Table 3. Ordering information

Type number	Package				
	Name	Description	Version		
PBSM5240PFH	DFN2020-6	plastic thermal enhanced ultra thin small outline package; no leads; 6 terminals; body 2 \times 2 \times 0.65 mm	SOT1118		

4. Marking

Table 4. Marking code

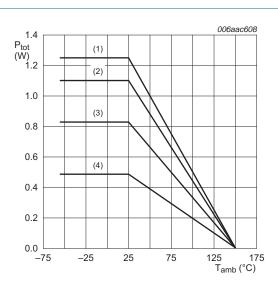
Type number	Marking code
PBSM5240PFH	1T

PBSM5240PFH

5. Limiting values

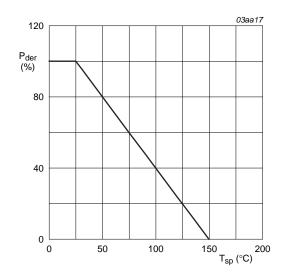
Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit
PNP low V	CEsat (BISS) transistor				
V_{CBO}	collector-base voltage	open emitter	-	-40	V
V_{CEO}	collector-emitter voltage	open base	-	-40	V
V_{EBO}	emitter-base voltage	open collector	-	-5	V
I _C	collector current		<u>[1]</u> -	-1.8	Α
I _{CRM}	repetitive peak collector current		[1][4] -	-2	Α
I _{CM}	peak collector current	single pulse; $t_p \le 1 \text{ ms}$	[1] -	-3	Α
I _B	base current		<u>[1]</u> _	-300	mA
I _{BM}	peak base current	single pulse; $t_p \le 1 \text{ ms}$	<u>[1]</u> _	–1	Α
P _{tot}	total power dissipation	$T_{amb} \le 25 ^{\circ}C$	[1] _	1.1	W
			[2] _	1.25	W
N-channel	Trench MOSFET				
V_{DS}	drain-source voltage	T _{amb} = 25 °C	-	30	V
V_{DG}	drain-gate voltage	T_{amb} = 25 °C; R_{GS} = 20 k Ω	-	30	V
V_{GS}	gate-source voltage	T _{amb} = 25 °C	-	±8	V
I _D	drain current	$V_{GS} = 10 \text{ V}$	<u>[3]</u>		
		T _{amb} = 25 °C	-	660	mA
		T _{amb} = 100 °C	-	420	mA
I _{DM}	peak drain current	T_{amb} = 25 °C; single pulse; $t_p \le 10 \mu s$	-	3.56	A
P _{tot}	total power dissipation	T _{amb} = 25 °C	[3] _	760	mW
Source-dra	in diode				
Is	source current	$T_{amb} = 25 ^{\circ}C$	-	660	mA
Per device	•				
T _j	junction temperature		-	150	°C
T_{amb}	ambient temperature		-55	+150	°C
T_{stg}	storage temperature		-65	+150	°C

^[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6 cm².

^[2] Device mounted on an FR4 PCB, 4-layer copper, tin-plated, mounting pad for collector 1 cm²


^[3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for drain 1 cm².

 $^{[4] \}quad \text{Pulse test: } t_p \leq 20 \text{ ms; } \delta \leq 0.10.$

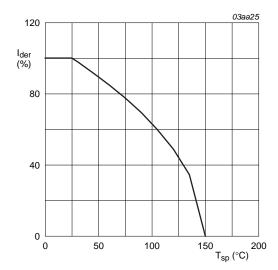

- (1) FR4 PCB, 4-layer copper, mounting pad for collector 1 cm²
- (2) FR4 PCB, single-sided copper, mounting pad for collector 6 cm²
- (3) FR4 PCB, single-sided copper, mounting pad for collector 1 cm²
- (4) FR4 PCB, single-sided copper, standard footprint

Fig 1. BISS transistor: Power derating curves

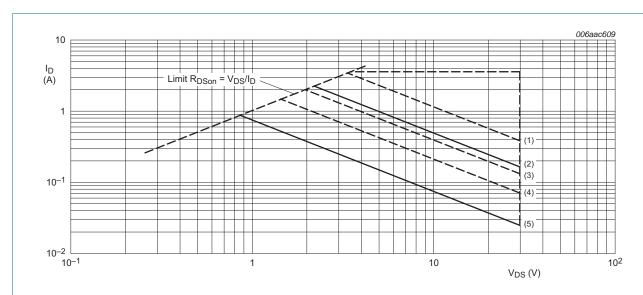

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

Fig 2. MOSFET: Normalized total power dissipation as a function of solder point temperature

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100 \%$$

Fig 3. MOSFET: Normalized continuous drain current as a function of solder point temperature

I_{DM} = single pulse

- (1) $t_p = 1 \text{ ms}$
- (2) DC; $T_{sp} = 25 \, ^{\circ}C$
- (3) $t_p = 10 \text{ ms}$
- (4) $t_p = 100 \text{ ms}$
- (5) DC; $T_{amb} = 25 \, ^{\circ}\text{C}$; drain mounting pad 1 cm²

Fig 4. MOSFET: Safe operating area; junction to ambient; continuous and peak drain currents as a function of drain-source voltage

6. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PNP low \	V _{CEsat} (BISS) transistor					
$R_{th(j-a)}$	thermal resistance from	in free air	<u>[1]</u> -	-	115	K/W
junction to ambient		[2] _	-	100	K/W	
N-channel Trench MOSFET						
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air	[3] _	-	165	K/W

- [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6 cm².
- [2] Device mounted on an FR4 PCB, 4-layer copper, tin-plated, mounting pad for collector 1 cm².
- [3] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for drain 1 cm².

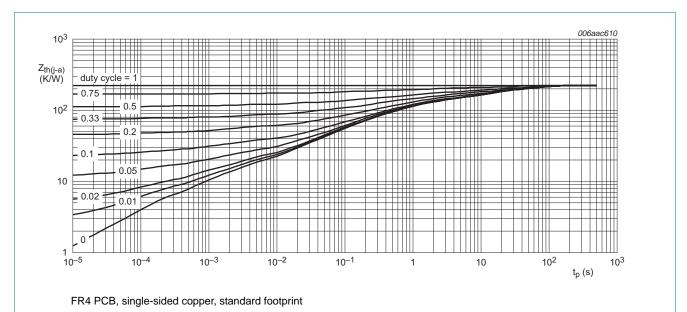
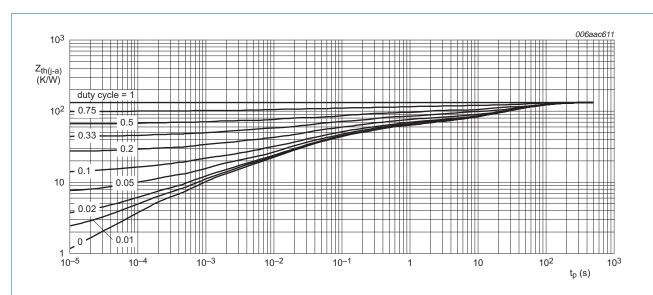
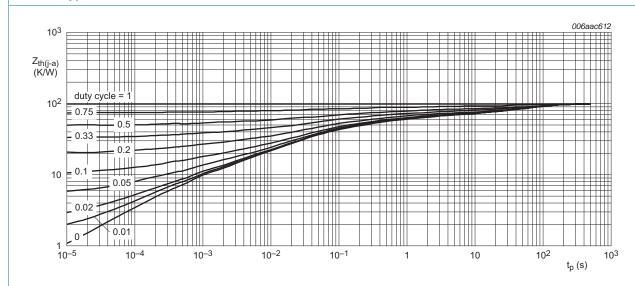




Fig 5. PNP transistor: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

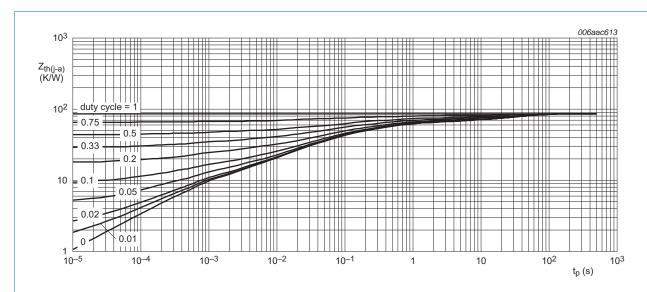

FR4 PCB, single-sided copper, mounting pad for collector 1 cm²

Fig 6. PNP transistor: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

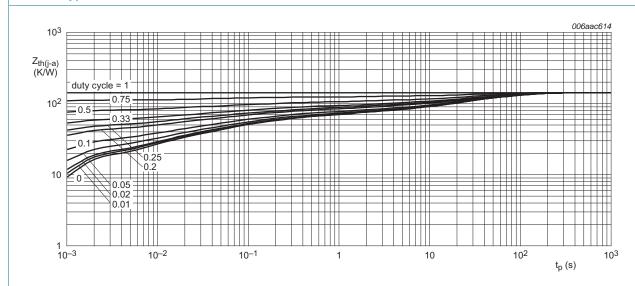

FR4 PCB, single-sided copper, mounting pad for collector 6 cm²

Fig 7. PNP transistor: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

FR4 PCB, 4-layer copper, mounting pad for collector 1 cm²

Fig 8. PNP transistor: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

FR4 PCB, single-sided copper, mounting pad for drain 1 cm²

Fig 9. MOSFET: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

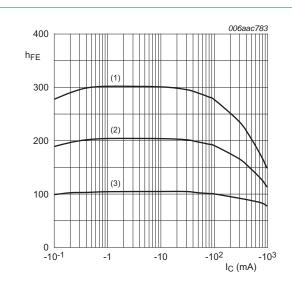

7. Characteristics

Table 7. Characteristics for PNP low V_{CEsat} transistor

 $T_{amb} = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CBO}	collector-base	$V_{CB} = -30 \text{ V}; I_E = 0 \text{ A}$	-	-	-100	nΑ
		$V_{CB} = -30 \text{ V}; I_E = 0 \text{ A};$ $T_j = 150 ^{\circ}\text{C}$	-	-	-50	μА
I _{CES}	collector-emitter cut-off current	$V_{CE} = -30 \text{ V}; I_{B} = 0 \text{ A}$	-	-	-100	nA
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 \text{ V}; I_C = 0 \text{ A}$	-	-	-100	nA
h _{FE}	DC current gain	$V_{CE} = -5 V$	<u>[1]</u>			
		$I_C = -1 \text{ mA}$	100	-	-	
		$I_C = -100 \text{ mA}$	100	-	-	
		I _C = -1 A	75	-	-	
V_{CEsat}	collector-emitter	$I_C = -100 \text{ mA}; I_B = -1 \text{ mA}$	<u>[1]</u> -	-85	-140	mV
	saturation voltage	$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$	<u>[1]</u> -	-120	-170	mV
		$I_C = -1 A$; $I_B = -100 \text{ mA}$	<u>[1]</u> -	-200	-310	mV
R _{CEsat}	collector-emitter saturation resistance	$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$	[1] -	240	340	mΩ
V_{BEsat}	base-emitter saturation voltage	$I_C = -1 A$; $I_B = -100 \text{ mA}$	<u>[1]</u> _	-	-1.1	V
V_{BEon}	base-emitter turn-on voltage	$V_{CE} = -5 \text{ V}; I_{C} = -1 \text{ A}$	[1]	-	-1	V
f _T	transition frequency	$V_{CE} = -10 \text{ V}; I_{C} = -50 \text{ mA};$ f = 100 MHz	100	-	-	MHz
C _c	collector capacitance	$V_{CB} = -10 \text{ V}; I_E = i_e = 0 \text{ A};$ f = 1 MHz	-	-	15	pF


^[1] Pulse test: $t_p \leq 300~\mu s;~\delta \leq 0.02.$

$$V_{CE} = -5 \text{ V}$$

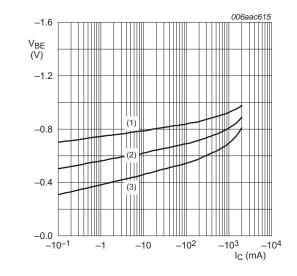
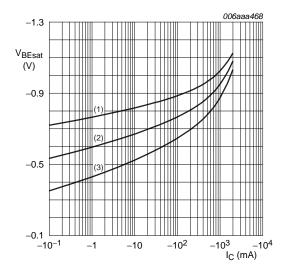
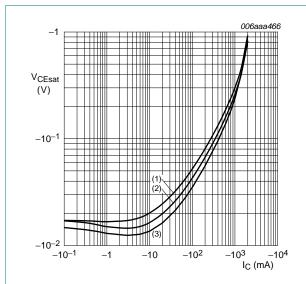

- (1) $T_{amb} = 100 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -55 \, ^{\circ}C$

Fig 10. PNP transistor: DC current gain as a function of collector current; typical values

T_{amb} = 25 °C

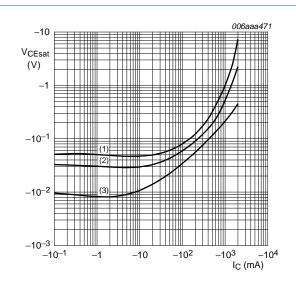

Fig 11. PNP transistor: Collector current as a function of collector-emitter voltage; typical values

- (1) $T_{amb} = -55 \, ^{\circ}C$
- (2) T_{amb} = 25 °C
- (3) $T_{amb} = 100 \, ^{\circ}C$


Fig 12. PNP transistor: Base-emitter voltage as a function of collector current; typical values

 $I_{\rm C}/I_{\rm B} = 20$

- (1) $T_{amb} = -55 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = 100 \, ^{\circ}C$


Fig 13. PNP transistor: Base-emitter saturation voltage as a function of collector current; typical values

$$I_{\rm C}/I_{\rm B} = 20$$

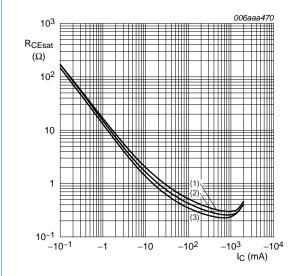
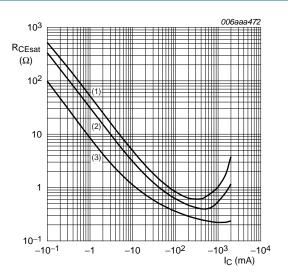

- (1) $T_{amb} = 100 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -55 \, ^{\circ}C$

Fig 14. PNP transistor: Collector-emitter saturation voltage as a function of collector current; typical values

- (1) $I_C/I_B = 100$
- (2) $I_C/I_B = 50$
- (3) $I_C/I_B = 10$


Fig 15. PNP transistor: Collector-emitter saturation voltage as a function of collector current; typical values

$$I_{\rm C}/I_{\rm B}=20$$

- (1) $T_{amb} = 100 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -55 \, ^{\circ}C$

Fig 16. PNP transistor: Collector-emitter saturation resistance as a function of collector current; typical values

- (1) $I_C/I_B = 100$
- (2) $I_C/I_B = 50$
- (3) $I_C/I_B = 10$

Fig 17. PNP transistor: Collector-emitter saturation resistance as a function of collector current; typical values

Table 8. Characteristics for N-channel Trench MOSFET

 $T_i = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
V _{(BR)DSS}	drain-source breakdown	$I_D = 10 \mu A; V_{GS} = 0 V$				
	voltage	T _j = 25 °C	30	-	-	V
		T _j = −55 °C	27	-	-	V
V _{GS(th)}	gate-source threshold	$I_D = 250 \ \mu A; \ V_{DS} = V_{GS}$				
	voltage	T _j = 25 °C	0.45	0.7	0.95	V
		T _j = 150 °C	0.25	-	-	V
		T _j = −55 °C	-	-	1.15	V
I _{DSS}	drain leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	-	1	μΑ
		T _j = 150 °C	-	-	100	μΑ
I _{GSS}	gate leakage current	$V_{GS} = \pm 8 \text{ V}; V_{DS} = 0 \text{ V}$	-	10	±100	nΑ
R _{DSon}	drain-source on-state resistance	$V_{GS} = 4.5 \text{ V}; I_D = 0.2 \text{ A}$	[1]			
		T _j = 25 °C	-	370	580	$m\Omega$
		T _j = 150 °C	-	663	985	$m\Omega$
		$V_{GS} = 2.5 \text{ V}; I_D = 0.1 \text{ A}$	-	440	690	$m\Omega$
		$V_{GS} = 1.8 \text{ V}; I_D = 75 \text{ mA}$	-	540	920	$m\Omega$
Dynamic (characteristics					
Q _{G(tot)}	total gate charge	$I_D = 1 A; V_{DS} = 15 V;$	-	0.89	-	nC
Q_{GS}	gate-source charge	$V_{GS} = 4.5 \text{ V}$	-	0.1	-	nC
Q_{GD}	gate-drain charge		-	0.2	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V};$	-	43	-	pF
Coss	output capacitance	f = 1 MHz	-	7.7	-	pF
C _{rss}	reverse transfer capacitance		-	4.8	-	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 15 \text{ V}; R_L = 15 \Omega;$	-	4.0	-	ns
t _r	rise time	$V_{GS} = 10 \text{ V}; R_G = 6 \Omega$	-	7.5	-	ns
t _{d(off)}	turn-off delay time		-	18	-	ns
t _f	fall time		-	4.5	-	ns
Source-dr	ain diode					
V_{SD}	source-drain voltage	$I_S = 0.3 \text{ A}; V_{GS} = 0 \text{ V}$	-	0.76	1.2	V

^[1] Pulse test: $t_p \leq 300~\mu s;~\delta \leq 0.01.$

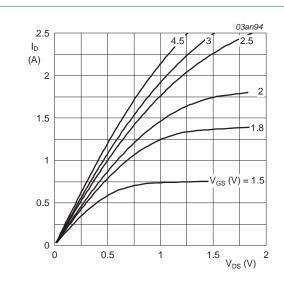
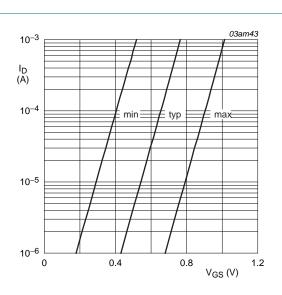
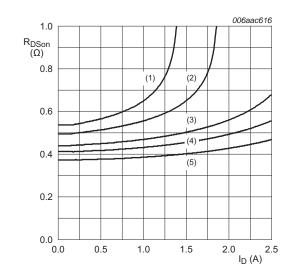




Fig 18. MOSFET: Output characteristics: drain current as a function of drain-source voltage; typical values

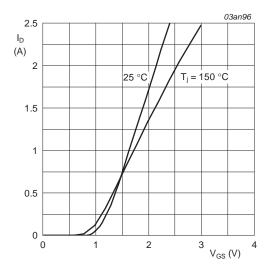
 $T_j = 25 \, ^{\circ}C; \, V_{DS} = 5 \, V$

Fig 19. MOSFET: Subthreshold drain current as a function of gate-source voltage

T_i = 25 °C

 $T_i = 25 \, ^{\circ}C$

(1) $V_{GS} = 1.8 \text{ V}$


(2) $V_{GS} = 2.0 \text{ V}$

(3) $V_{GS} = 2.5 \text{ V}$

(4) $V_{GS} = 3.0 \text{ V}$

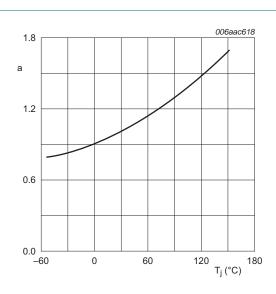

(5) $V_{GS} = 4.5 \text{ V}$

Fig 20. MOSFET: Drain-source on-state resistance as a function of drain current; typical values

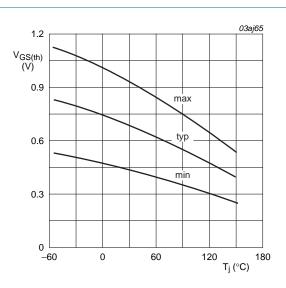

 $V_{DS} > I_{D} \times R_{DSon}$

Fig 21. MOSFET: Transfer characteristics: drain current as a function of gate-source voltage; typical values

$$a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$$

Fig 22. MOSFET: Normalized drain-source on-state resistance as a function of junction temperature; typical values

 $I_D = 1 \text{ mA}; V_{DS} = V_{GS}$

Fig 23. MOSFET: Gate-source threshold voltage as a function of junction temperature

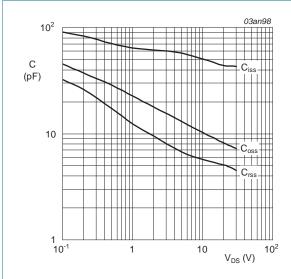


Fig 24. MOSFET: Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

 $f = 1 MHz; V_{GS} = 0 V$

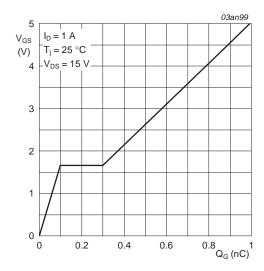


Fig 25. MOSFET: Gate-source voltage as a function of gate charge; typical values

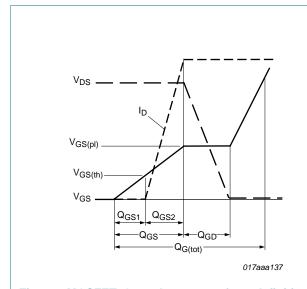


Fig 26. MOSFET: Gate charge waveform definitions

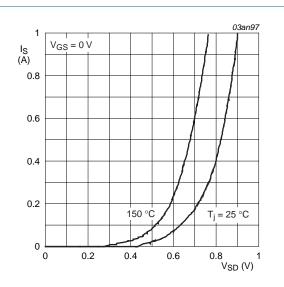
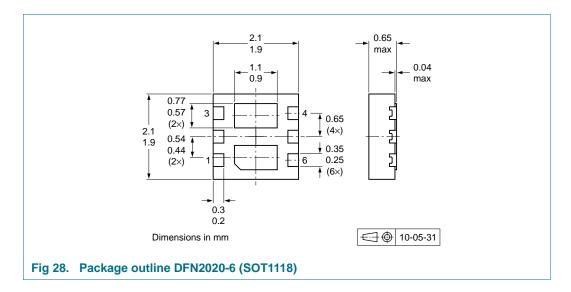



Fig 27. MOSFET: Source current as a function of source-drain voltage; typical values

8. Package outline

9. Packing information

Table 9. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]

Type number	Package	·	Packing quantity
PBSM5240PFH	DFN2020-6 (SOT1118)	4 mm pitch, 8 mm tape and reel	-115

[1] For further information and the availability of packing methods, see <u>Section 13</u>.

PBSM5240PFH

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

10. Soldering

11. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PBSM5240PFH v.1	20120620	Product data sheet	-	-

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PBSM5240PFH

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

PBSM5240PFH

40 V, 2 A PNP BISS/Trench MOSFET module

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

PBSM5240PFH

40 V, 2 A PNP BISS/Trench MOSFET module

14. Contents

1	Product profile	. 1
1.1	General description	. 1
1.2	Features and benefits	. 1
1.3	Applications	. 1
1.4	Quick reference data	. 1
2	Pinning information	. 2
3	Ordering information	. 2
4	Marking	. 2
5	Limiting values	
6	Thermal characteristics	. 6
7	Characteristics	. 9
8	Package outline	15
9	Packing information	15
10	Soldering	16
11	Revision history	17
12	Legal information	18
12.1	Data sheet status	18
12.2	Definitions	18
12.3	Disclaimers	18
12.4	Trademarks	19
13	Contact information	19
4.4	Contents	20

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Nexperia manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF