

生命体征检测模组用户手册

1 概述

EPCM001AR100/BR100 生命体征检测模组,可测量 ECG、PPG 信号以及获得心率、QT 间期、心率变异性、疲劳等级、焦虑指数、血压、动脉硬化指数等多种人体参数,可以通过有线(UART)或无线(BLE5.0)连接的方式从模组读取测量数据,可提供蓝牙通讯协议和串口通讯协议。模组 EPCM001BR100 相较于模组 EPCM001AR100 增加了体脂率和体水分率检测功能。

EPCM001AR100/BR100 生命体征检测模组通过 APP 小程序功能配置,具体可实现如下功能,模组中的 EPCML002 为光电传感器模组,用于配合采集 PPG 信号,若不需要 PPG 信号可以不配或不连接。

序号	功能	模组
1	ECG+PPG	EPCMO01AR100/BR100 、EPCML002
2	PPG+SP02	EPCM001AR100/BR100 、EPCML002
3	ECG+PPG+PBF	EPCM001BR100 、EPCML002
4	ECG	EPCM001AR100/BR100

EPCM001AR100/BR100 模组正面图



nanochap.cn 第 1 页 共 33 页

EPCM001AR100 模组反面图

EPCM001BR100 模组反面图

2 特点

- EPCM001AR100/BR100 生命体征检测模组外形尺寸: 28mm X 39.7mm
- EPCML002 模组外形尺寸: 14.5mm X 14.5mm
- **输入电压:** DC5V (注:由于人体信号非常微弱,易受市电干扰,模组采用锂电池供电,USB 口仅用于为电池充电且充电期间模组将会停止工作。)
- **功耗**:取决于主时钟、ECG 时钟、PPG 时钟等相关时钟的设置,用户如需进一步优化功耗,请与我司联系定制,联系电话 4008605922。
- 功能:可测量 ECG、PPG 信号以及获得呼吸速率、心率、左心室射血时间、QT 间期、焦虑指数、脉搏波到达时间、血压、动脉硬化指数、脉搏波传导速度、脉搏波传导时间、射血前期、血氧饱和度、体脂率、体水分率等。

nanochap.cn 第 2 页 共 33 页

以下为 EPCM001AR100/BR100 生命体征检测模组参数测量范围、正常参考范围和测量精度:

表 1 测量参数

测量参数	测量范围	正常参考范围	测量精度
SYS 收缩压	70~215 (mmHg)	收缩压 90~139(mmHg)	±5mmHg
DIA 舒张压	45~180 (mmHg)	舒张压 60 [~] 89 (mmHg)	±5mmHg
Sp02 血氧饱和度	85 [~] 100%	Sp02 正常应不低于 94%, 在 94%以下为供氧不足	±2%
PI 灌注指数	0-20	1. 4–10	±1
HR 心率	30~250bpm(次/分)	安静状态下,成人正常心率为 60~100 次/分钟,理想心率应为 55~70 次/分钟(运动员的心率较普通成人偏慢,一般为 50 次/分钟左右)	±2bpm@30~150bpm
QT 间期	220~500ms	320~440ms	±10ms
PAT 脉搏波到达时间	150~350ms	200~300ms	±5ms
PEP 射血前期	37~225ms	83 [~] 125ms	±5ms
LVET 左心室射血时间	200~400ms	280~340ms	±5ms
PTT 脉搏波传递时间	75~300ms	125~165ms	±5ms
SIS 动脉硬化指数	0. 1~9. 9	SIS < 4.0	±0.5
PWV: 脉搏波传导速度	0.1~9.9	45 岁以下成年人的 PWV 正常值<9m/s, 45 岁 以上<10m/s	±0.5
SNA 焦虑指数	0.1~9.9	4 以下不焦虑、4-6 轻度焦虑、6-8 中度焦虑、8-9.9 重度焦虑	±0.5
RR 呼吸速率	6 [~] 60 次/分	正常成年人每分钟呼吸大约 12-20 次。小 儿呼吸比成人快,每分钟可达 20~30 次; 新生儿的呼吸频率可达每分钟 44 次	±2 次/分
FAG 疲劳等级	1 不疲劳 2 轻度疲劳 3 疲劳	1 不疲劳 2 轻度疲劳	-
ARR 心律不齐	0 : 正常 1: 心律不齐	0 : 正常	-
SDANN: RR 间期平均值标准 差	-	见表 2	-
MSSD: 相邻 RR 间期差值均 方平方根	-	见表 2	-
SDNN: 全部窦性心搏 RR 间期(瞬时心率)的标准差	-	见表 2	_
PNN50: 相邻 RR 间期之 差>50ms 的个数占总 RR 间 期个数的百分比	-	见表 2	-

PBF 体脂率	4 [~] 50%	成年人的体脂率正常范围分别是女性20%~25%, 男性15%~18%, 若体脂率过高,体重超过正常值的20%以上就可视为肥胖。运动员的体脂率可随运动项目而定。一般男运动员为7%~15%, 女运动员为12%~25%	1%
PBW 体水分率	30~85%	男性 50~60%,女性 45~60%	1%

表 2 各年龄组 5min 时域参数

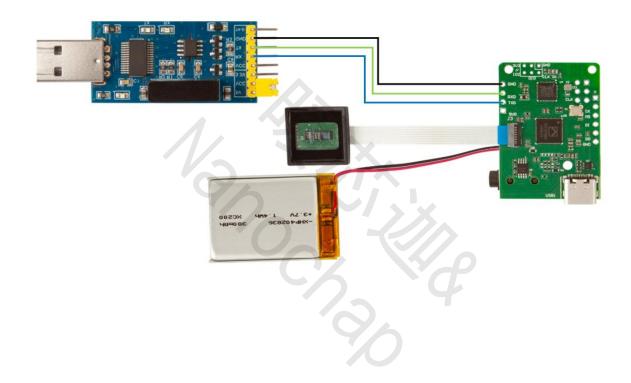
组别	SDANN (ms)	MSSD (ms)	SDNN (ms)	PNN50
小于 20 岁				
男性	158. 68±54. 78	51.35±37.96	71.36±40.99	22. 75±19. 02
女性	116. 39±37. 63	38. 98±14. 64	65. 91 ± 16. 94	15.56±10.45
20-29 岁				
男性	156. 26±40. 99	34. 48±22. 10	53. 77±25. 42	13. 36±15. 38
女性	134. 41 ± 37. 04	39. 29 ± 23. 49	54. 20±25. 71	17. 48±16. 59
30-39 岁				
男性	133. 35±48. 03	29. 60 ± 17.12	51.62±23.82	9. 28±11. 60
女性	122. 60±48. 43	36.03 ± 67.63	49.39±21.11	10.69±13.02
40-49 岁		4, X		
男性	123. 99 ± 33. 82	27. 14±16. 12	48.65±21.13	6.88±9.25
女性	115. 35±32. 22	29. 40 ± 20. 17	44. 27±18. 28	11. 40±32. 05
50-59 岁) X.	
男性	124. 68±58. 38	34. 19±93. 78	44. 23±18. 27	5. 73±7. 79
女性	115.60±84.05	26. 05±16. 11	42.78±19.32	6. 41 ± 8. 93
60-69 岁		4		
男性	114.02±33.78	26. 61 ± 16. 13	40. 31 ± 18. 26	6.83±9.22
女性	108. 12±34. 14	29. 22±21. 23	40. 91 ± 19. 96	5. 70±8. 49
大于 70 岁				
男性	136. 20±28. 03	31.50±19.8	48. 53±32. 27	17. 46±16. 19
女性				

模组通讯方式: 有线 UART; 无线蓝牙 BLE5.0。

nanochap.cn 第 4 页 共 33 页

3 应用范围

家庭医疗管理、健康智能硬件、健康管理平台、车载健康管理等。


4 测试连接

4.1 连接说明

为防止市电干扰,本模组采用锂电池供电,板载 USB 口仅作为锂电池充电使用。用户使用过程中需使用隔离串口模组进行连接,且使用途中禁止对锂电池进行充电。

4.2 连接图示

模组测试连接图示如下:

nanochap.cn 第 5 页 共 33 页

目录

1	概述…		1
2	特点		2
3	应用范		5
4	测试连	接	5
	4. 1	连接说明	5
	4. 2	连接图示	5
5	电气特	针性	8
6	协议架		10
	6. 1	控制命令部分	10
		6.1.1 数据包结构	10
		6.1.2 数据头类型	10
	6. 2	数据回传部分	11
		6.2.1 数据包结构	11
		6.2.2 数据头类型	11
7	串口命	7令定义	12
	7. 1	控制命令部分(下发)	12
	7. 2	数据命令部分(上传)	14
		7. 2. 1 开始采集命名回传	14

7. 2. 2 ECG+PPG(23 数据解析)	16
7. 2. 3 PPG 红外光+PPG 红光(22 数据	解析)
	20
7. 2. 4 ECG(21 数据解析)	22
7. 2. 5 分析结果(26 命令解析)	25
8 蓝牙通讯	26
8.1 广播规则	26
8. 2 蓝牙数据通信	26
9 接口说明	27
10 功能框图	28
11 模组尺寸	29
12 典型应用与使用注意事项	30
13 测试小程序和 UART 使用	31
13.1.1 测试小程序使用说明	31
13.1.2 上位机使用说明	31
14 模组控制流程图	
15 联系方式	33

文档修订记录

序号	版本号	修订日期	修订概述	修订人	审核人	批准人	备注
1	V1. 0	2024-05-27	创建文档				

5 电气特性

■ 环境要求:

环境要求	
工作环境温度	-40°C ∼ +85°C
工作环境湿度	20% ~ 80%
存储环境温度	-40°C ∼ +85°C
存储环境湿度	10% ~ 80%

■ 串口波特率: 115200 (默认)

■ 串口设置: N 8 1

■ 流控:无

■ 数据格式:二进制

符号	参数	测试条件	最小	典型	最大	单位
VIN	工作电压		3. 7	5	5. 5	٧
Ista	工作电流	+	_	_	50	mA
VIL	TX 引脚低电平输入电压	F X	_	_	0.8	V
VIH	TX 引脚高电平输入电压	-(4)	2. 8	_	3. 3	٧
VOL	RX 引脚低电平输出电压	IOL=TBD	>-x	_	0. 4	٧
VOH	RX 引脚高电平输出电压	IOL=TBD	2.9	_	3. 3	٧
tSST	系统启动时间	7/	500)	_	mS
RRVDD	VDD 上升速率	7	TBD	_	_	V/ms
BRPON	上电波特率	-	_	115200	_	Hz

BLE 接收器特性

参数	条件	最小	典型	最大	单位
灵敏度@0.1% BER	_	_	-98	_	dBm
最大接收信号@0.1% BER	_	0	_	_	dBm
共信道 C/I	_	_	10	_	dB
	F = F0 + 1 MHz	_	-5	_	dB
	F = F0 - 1 MHz	_	-5	_	dB
邻道选择性 C/I	F = F0 + 2 MHz	_	-25	_	dB
型型处件注 0/ I	F = F0 - 2 MHz	_	-35	_	dB
	F = F0 + 3 MHz	_	-25	_	dB
	F = F0 - 3 MHz	_	−45	_	dB
	30 MHz - 2000 MHz	-10	_	_	dBm
抗带外阻塞性能	2000MHz - 2400MHz	-27	_	_	dBm
	2500MHz - 3000MHz	-27	_	_	dBm
	3000MHz - 12.5GHz	-10	_	_	dBm
互调性能	-/// 42	-36	_	_	dBm

BLE 发射器特性

参数	条件	最小	典型	最大	单位
射频发射功率	-	-	7.5	10	dBm
射频功率控制范围	-		25	_	dB
	F = F0 + 1 MHz	4	-14. 6	_	dBm
	F = F0 - 1 MHz	-4/	-12. 7	_	dBm
	F = F0 + 2 MHz	_//	-44. 3	_	dBm
你苦华 朝市家	F = F0 - 2 MHz	_	-38. 7	_	dBm
邻道发射功率	F = F0 + 3 MHz	_	-29. 2	_	dBm
	F = F0 - 3 MHz	_	-45	_	dBm
	F = F0 +> 3 MHz	_	-50	_	dBm
	F = F0 -> 3 MHz	_	-50	_	dBm
Δ flavg	_	_	_	265	kHz
Δ f2max	_	247	_	_	dBm
Δ f2avg/Δ f1avg	_	_	-0. 92	_	dBm
ICFT	_	_	-10	_	kHz
频率漂移率	_	_	0. 7	_	kHz/50 μ
频率漂移	_		2	_	kHz

nanochap.cn 第 9 页 共 33 页

6 协议架构

本协议中, 如无特别说明, 所有数值均表示十六进制格式。

6.1 控制命令部分

6.1.1 数据包结构

MSB LSB

数据头	数据功能位	校验和	数据尾
1 字节	1 字节	前面累加取后两位(1字节)	0x0D

6.1.2 数据头类型

数据头	含义
0x14	采集状态
0x17	BS 滤波器设置
0x18	HP 滤波器设置
0x19	LP 滤波器设置
0x24	ECG 放大倍数设置
0x25	体重
0x26	身高
0x27	性别
0x28	年龄

- ■不同的数据头对应不同的数据功能位,详见下一节详述。
- ■相同的数据头的数据功能位赋不同值,也可实现不同的功能,详见下一节描述。

nanochap.cn 第 10 页 共 33 页

6.2 数据回传部分

6.2.1 数据包结构

MSB LSB

	数据头	有效载荷	校验和	数据尾
数据上传	1 字节	根据数据种类变化,不固定	前面累加取后两位(1 字节)	0x0A
命令回传	0x0A 10	收到的头+收到的命令(2 字节)	前面累加取后两位(1 字节)	0x0A

注意: MCU 在接收到的上位机发送的控制命令后会自动回传对应的数据包,这个数据包内包含了命令回传 专用数据头 0x0A 10 和接收到的数据头的部分,经过校验求和后将校验位数据和和数据回传专用的数据尾 0x0A 一起打包发送给上位机。

6.2.2 数据头类型

数据头		含义
0x23		ECG 波形+0x0D+PPG 波形
0x26		Heart_App 数据
0x39	/// 4"	模组异常

nanochap.cn 第 11 页 共 33 页

7 串口命令定义

7.1 控制命令部分(下发)

控制命令的列表如下:

数据头	数据位功能
	采集状态
0x14	0: 停止采集
	1: 开始采集
	模式设置:
	1: 模式一 ECG+PPG
0x15	2: 模式二 PPG+Sp02
UXIS	3: 模式三 ECG+PPG+PBF
	4: 模式四 预留
	5: 模式五 ECG
	BS 滤波器设置:
0x17	0: 关
	1: 开
	HP 滤波器设置:
	0: 0.25Hz
	1: 0.5Hz
	2: 1Hz
010	3: 2.5Hz
0x18	4: 10Hz
	5: 15Hz
	6: 20Hz
	7: 25Hz
	8: 关
	LP 滤波器设置
	0: 9-11Hz
	1: 15-20Hz
	2: 25Hz
010	3: 50Hz
0x19	4: 100Hz
	5: 150Hz
	6: 200Hz
	7: 350Hz
	8: 关

nanochap.cn 第 12 页 共 33 页

	ECG 放大倍数设置
	0: 1x
	1: 2x
	2: 4x
0x24	3: 6x
	4: 8x
	5: 12x
	6: 60x
	7: 120x
0x25	获取体重
0x26	获取身高
0x27	获取性别
0x28	获取年龄

注意: ECG 放大倍数对应的数据功能位模式的是 5 时,对应 12 倍放大。

例:

以 EPCM001AR100/BR100 生命体征检测模组开始采集命令为例,对下发命令进行说明,采集状态的数据功能位可设置为开始采集和停止采集。

发送示例: 14 01 15 0D

数据头	数据功能位	校验和	数据尾
14	01	15	0x0D

- 14表示要对采集状态进行设置。
- 01表示开始采集。
- 15 为校验和,校验和: 0x15 = (0x14 + 0x01) & 0xff。
- 0D 为数据尾。

nanochap.cn 第 13 页 共 33 页

7.2 数据命令部分(上传)

	数据头	有效载荷	校验和	数据尾
命令回传	0A 10	14 01	2F	0x0A

7.2.1 开始采集命名回传

命令回传示例: 0A 10 14 01 2F 0A 用来告诉 MCU 开始采集。

- 0A 10 是数据回传的数据头。
- 14 01 是接收到的头。
- 2F 校验和, 校验和: 0x2F = (0x0A + 0x10 + 0x14 + 0x01) & 0xff。
- 0A 是回传数据的数据尾。

数据回传

			数据凹传		
数据头	数据位	(说明)		校验和	数据尾
0x23	ECG 波形	+0x0D+PPG	波形		
0x22	PPG 红外	波形+0x0D-	+PPG 红光波形		
0x21	ECG 波形		Y X		
	HR	= 0	心率		
	RR	=	呼吸速率		
	QT	=	QT 间期		
	SNA	=	焦虑指数		
	SYS	=	血压收缩压		
	DIA	=	血压舒张压		
	LVET	=	左心室射血时间	前面累加取后两位	0x0a
0x26	PAT	=	脉搏波到达时间		
	PTT	=	脉搏波传递时间		
	SIS	=	动脉硬化指数		
	PWV	=	脉搏波传导速度		
	PEP	=	射血前期		
SDANN	SDANN	=	RR 间期平均值标准差		
	MSSD	=	相邻 RR 间期差值均方平方根		
SDNN	SDNN	=	全部窦性心搏 RR 间期(瞬时心率)的标准差		

nanochap.cn 第 14 页 共 33 页

	PNN50	=	相邻 RR 间期之差>50ms 的个数占总 RR 间期个数的百分比	
	FAG =		疲劳等级	
	SP02	=	血氧饱和度	
	PBF	=	体脂率	
	ARR	=	心律不齐	
	PBW	=	含水率	
	PI	=	灌注指数	
	31 30 30	: 外接电极		
	30: 外接	电极正常		
020	31: 模组	充电中		
0x39	32: 模组:	未充电		
	33: 锂电	池电量低		
	34: 锂电	池电量正常	5	

例:

以 EPCM001AR100/BR100 生命体征检测模组开始采集命令为例,对上传数据解析进行说明。当开始采集命令下发后,模组自动上传数据,第一条为命名回传数据,紧接着为该模式下的采集数据。开始采集的命令回传是固定的,但数据上传与模组设置的模式有关,可以分为 ECG+PPG(23 开头)、PPG 红外光+PPG 红光(22 开头)及 ECG(21 开头)三种。

	数据头	有效载荷	校验和	数据尾
命令回传	0A 10	14 01	2F	0x0A
数据上传(ECG+PPG)	23	38 34 31 36 32 31 33 0D 37 37 39 39 36	AF	0x0A
数据上传 PPG 红外光+PPG 红光	22	31 32 37 32 35 39 31 35 0D 31 33 33 39 32 30 35 38	6E	0x0A
数据上传(ECG)	21	38 34 31 36 32 31 33	8A	OA
数据上传(分析结果)	26	48 52 3D 39 32	68	OA

nanochap.cn 第 15 页 共 33 页

7. 2. 2 ECG+PPG (23 数据解析)

7. 2. 2. 1 ECG+PPG 的 AD 采样值解析

数据回传示例: 23 38 34 31 36 32 31 33 0D 37 37 39 39 36 AF 0A 返回 ECG 和 PPG 的测量值。

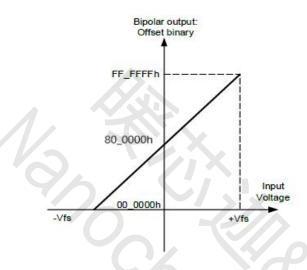
- 23 是数据回传的数据头。
- 38 34 31 36 32 31 33 是 ECG 波形数据,将 16 进制转换成 ASCII 码,对应的 ASCII 码为 8416213。
- 37 37 39 39 36 是 PPG 波形数据,将 16 进制转换成 ASCII 码,对应的 ASCII 码为 77996。
- AF 是校验和,校验和: 0xAF = (0x23 + 0x38 + 0x34 + 0x31 + 0x36 + 0x32 + 0x31 + 0x33 + 0x0D + 0x37 + 0x37 + 0x39 + 0x39 + 0x36) & 0xFF。
- 0A 是回传数据的数据尾。

ASCII 码对照表

16 进制 HEX		符号 Symbol
30		0
31	4/)	
32		2
33		3
34		4
35		5
36		6
37		7
38		8
39		9

nanochap.cn 第 16 页 共 33 页

7. 2. 2. 2 ECG 数据的 AD 采样值单位换算成 mV (增益值)


模组上传的数据为根据 ECG 放大倍数对原始值放大后的 AD 采样值,若需要转换为单位为 mV 的数值,

计算公式如下:

$$value = (ad - dRef) * factor$$

其中,

- ad 为模组上传的 AD 采样值,如 8416213。
- dRef 为参考值, dRef = 2^{23} , 本文中出现的 dRef 如无特别说明, 都参见下图;

■ factor 为转换系数,

factor =
$$\frac{1000 * 1.2}{2^{23}}$$

■ 则转换结果为:

$$value = \left(8416213 - 2^{23}\right) * \frac{1000 * 1.2}{2^{23}} = 3.948927 mV$$

7. 2. 2. 3 ECG 数据的 AD 采样值单位换算成 mV (原始值)

模组上传的数据为根据 ECG 放大倍数对原始值放大后的 AD 采样值,若需要得到实际生理信号值(单位: mV),

计算公式如下:

$$value = \frac{(ad - dRef) * factor}{nGain}$$

其中,

- ad 为模组上传的 AD 采样值,如 8456213。
- dRef 为参考值, dRef = 2²³。
- nGain 为设置的 ECG 放大倍数, 默认设置为 7: 120x, 即放大了 120 倍。
- factor 为转换系数,

factor =
$$\frac{1000 * 1.2}{2^{23}}$$

■ 则转换结果为:

value =
$$\frac{\left(8416213 - 2^{23}\right) * \frac{1000 * 1.2}{2^{23}}}{120} = 0.032907 \text{mV}$$

7. 2. 2. 4 PPG 数据的 AD 采样值单位换算成 mV

模组上传的为 AD 采样值,需要转换为单位为 mV 的数值,

计算公式如下:

$$value = (ad - dRef) * factor$$

其中,

- ad 为模组上传的 AD 采样值,如 77996。
- dRef 为参考值, dRef = 2²³。
- factor 为转换系数,

factor =
$$\frac{1000 * 1.024}{2^{23}}$$

■ 则转换结果为:

value =
$$(77996 - 2^{23}) * \frac{1000 * 1.024}{2^{23}} = -1014.48 \text{mV}$$

横坐标单位换算成 s

模组的采样率为 125Hz, 可将采样点数转化为时间。

7.2.3 PPG 红外光+PPG 红光(22 数据解析)

7. 2. 3. 1 PPG 红外光数据+PPG 红光数据 的 AD 采样值解析

数据回传示例: 22 31 32 37 32 35 39 31 35 0D 31 33 33 39 32 30 35 38 6E 0A 返回 PPG 红外光数据和 PPG 红光的测量值。

- 22 是数据回传的数据头。
- 31 32 37 32 35 39 31 35 是 PPG 红外光波形数据,将 16 进制转换成 ASCII 码,对应的 ASCII 码 为 12725915。
- 31 33 33 39 32 30 35 38 是 PPG 红光波形数据,将 16 进制转换成 ASCII 码,对应的 ASCII 码为 13392058。
- 6E 是校验和,校验和: 0x6E = (0x22 + 0x31 + 0x32 + 0x37 + 0x32 + 0x35 + 0x39 + 0x31 + 0x35 + 0x0D + 0x31 + 0x33 + 0x33 + 0x39 + 0x32 + 0x30 + 0x35 + 0x38) & 0xFF。
- 0A 是回传数据的数据尾。

ASCII 码对照表

16 进制 HEX	符号 Symbol
30	0
31	1
32	2
33	3
34	4
35	5
36	6
37	7
38	8
39	9
	· · · · · · · · · · · · · · · · · · ·

nanochap.cn 第 20 页 共 33 页

7. 2. 3. 2 PPG 红外光数据和红光数据的 AD 采样值单位换算成 mV

模组上传的为 AD 采样值,需要转换为单位为 mV 的数值。

计算公式如下:

$$value = (ad - dRef) * factor$$

其中,

- ad 为模组上传的 AD 采样值,如 12725915。
- dRef 为参考值, dRef = 2²³。
- factor 为转换系数,

$$factor = \ \frac{1000*1.024}{2^{23}}$$

■ 则转换结果为:

value =
$$(12725915 - 2^{23}) * \frac{1000 * 1.024}{2^{23}} = 529.4564 \text{mV}$$

横坐标单位换算成 s

模组的采样率为 100Hz, 可将采样点数转化为时间。

7.2.4 ECG(21 数据解析)

7. 2. 4. 1 ECG 的 AD 采样值解析

命令回传示例: 21 38 34 31 36 32 31 33 8A 0A 返回 ECG 的测量值。

- 21 是数据回传的数据头。
- 38 34 31 36 32 31 33 是接收到的 ECG 数据,将 16 进制转换成 ASCII 码,对应的 ASCII 码为 8416213。
- 8A 校验和,校验和: 0x8A = (0x21 + 0x38 + 0x34 + 0x31 + 0x36 + 0x32 + 0x31 + 0x33) & 0xFF。
- 0A 是回传数据的数据尾。

ASCII 码对照表

16 进制 HEX		符号 Symbol
30		0
31		1
32		2
33		3
34	/// 4	4
35	(A).	5
36	7/)	6
37		7
38	40	8
39	<u> </u>	9

nanochap.cn 第 22 页 共 33 页

7. 2. 4. 2 ECG 数据的 AD 采样值单位换算成 mV (增益值)

模组上传的数据为根据 ECG 放大倍数对原始值放大后的 AD 采样值,若需要转换为单位为 mV 的数值。

计算公式如下:

$$value = (ad - dRef) * factor$$

其中,

- ad 为模组上传的 AD 采样值,如 8456213。
- dRef 为参考值, dRef = 2²³。
- factor 为转换系数,

factor =
$$\frac{1000 * 1.2}{2^{23}}$$

■ 则转换结果为:

value =
$$(8416213 - 2^{23}) * \frac{1000 * 1.2}{2^{23}} = 3.948927 \text{mV}$$

7. 2. 4. 3 ECG 数据的 AD 采样值单位换算成 mV (原始值)

模组上传的数据为根据 ECG 放大倍数对原始值放大后的 AD 采样值,若需要得到实际生理信号值(单位 mV)。

计算公式如下:

$$value = \frac{(ad - dRef) * factor}{nGain}$$

其中,

- ad 为模组上传的 AD 采样值,如 8456213。
- dRef 为参考值, dRef = 2²³。
- nGain 为设置的 ECG 放大倍数, 默认设置为 7: 120x, 即放大了 120 倍。
- factor 为转换系数,

factor =
$$\frac{1000 * 1.2}{2^{23}}$$

■ 则转换结果为:

value =
$$\frac{\left(8416213 - 2^{23}\right) * \frac{1000 * 1.2}{2^{23}}}{120} = 0.032907 \text{mV}$$

横坐标单位换算成 s

模组的采样率为 250Hz, 可将采样点数转化为时间。

7.2.5 分析结果 (26 命令解析)

命令回传示例: 26 48 52 3D 39 32 68 0A 返回的一个 HR 心率计算值。

- 26 是数据回传的数据头。
- 48 52 3D 39 32 是接收到的计算结果数据,对应的 ASCII 码为 HR=92。
- 68 校验和, 校验和: 0x68 = (0x26 + 0x48 + 0x52 + 0x3D + 0x39 + 0x32) & 0xFF。
- 0A 是回传数据的数据尾。

ASCII 码对照表

16 进制 HEX		符号 Symbol
48		н
52	Λ.	R
3D		=
39		9
32		2

nanochap.cn 第 25 页 共 33 页

8 蓝牙通讯

8.1 广播规则

广播规则定义如下:

- 从机正常广播时间间隔设置为 1.25s。
- 从机有充电功能时, 充电状态广播时间间隔设置为 62.5ms。
- 蓝牙服务。

在设计中蓝牙服务使用的自定义属性如下:

类型	UUID	权限
Service	a6ed0201-d344-460a-8075-b9e8ec90d71b	/
Characteristic	a6ed0202-d344-460a-8075-b9e8ec90d71b	Notify
Characteristic	a6ed0203-d344-460a-8075-b9e8ec90d71b	Write

蓝牙广播名为 ECP01Module。

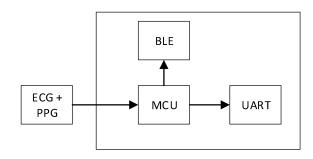
8.2 蓝牙数据通信

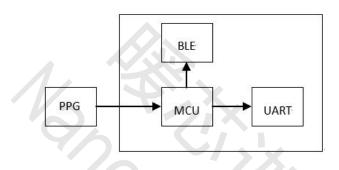
主机和从机处于连接状态时,双方进入数据通信模式,通讯协议同串口命令(请详见第 10 页的 6 串口命令定义)。

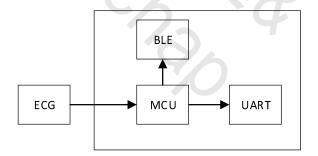
nanochap.cn 第 26 页 共 33 页

9 接口说明

外接电极接口	信号名称	信号类型	备注
1	LA	1N	外接和人体左手接触的电极片
2	RA	IN	外接和人体右手接触的电极片
3	RLD	IN	外接和人体右腿接触的电极片
N 答脚序号(从上到下)	信导复称	信只米刑	冬注

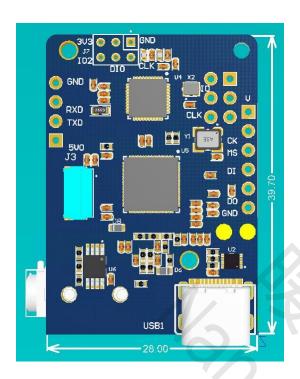

J4 管脚序号(从上到下)	信号名称	信号类型	备注
1	GND	IN	接外部模组的电源地
2	RXD	IN	接外部模组的串口发送信号
3	TXD	OUT	接外部模组的串口接收信号
4	VBAT	IN	模组供电管脚,5V输入


备注: 电极连接口可选择 3.5mm 的专用导联线接口或者焊接到线路板上的对应焊盘上。


J3	连接类型	备注
10 芯 FPC 插座	10 芯 FPC 排线	可连接 EPCML002 灯模组
USB1	连接类型	备注
USB 插座	连接充电器	为锂电池充电
BAT	连接类型	备注
电池插座	连接锂电池	为模组供电

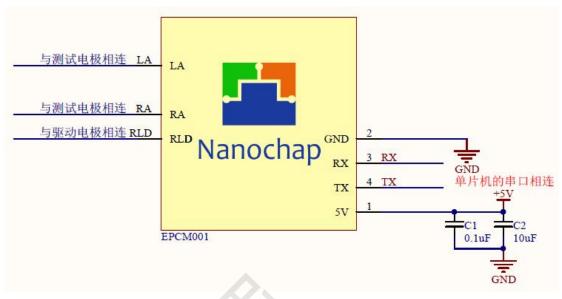
nanochap.cn 第 27 页 共 33 页

10 功能框图



nanochap.cn 第 28 页 共 33 页

11 模组尺寸



模组具体尺寸如上图所示,单位均为毫米,模组有3个直径2.2mm的固定孔。

nanochap.cn 第 29 页 共 33 页

12 典型应用与使用注意事项

典型应用原理图

本模组使用了当前最先进的生物电信号测试原理,通过分析人体的生理信号特征得出人体参数。除测试电极外,连接驱动电极可进一步提升信号质量。如果安装了我司的上位机软件或使用我司小程序,则可看到测量到的 ECG、PPG 信号。为防止市电干扰,模组采用锂电池供电,模组通过 USB 充电期间无法正常使用,请在测量前停止充电。开始测量前,请确保测试电极与模组连接正常,否则模组将会检测到外接电极脱落导致停止测量。开始测量后,保持平静,避免大幅度动作产生,以免影响测量准确度。

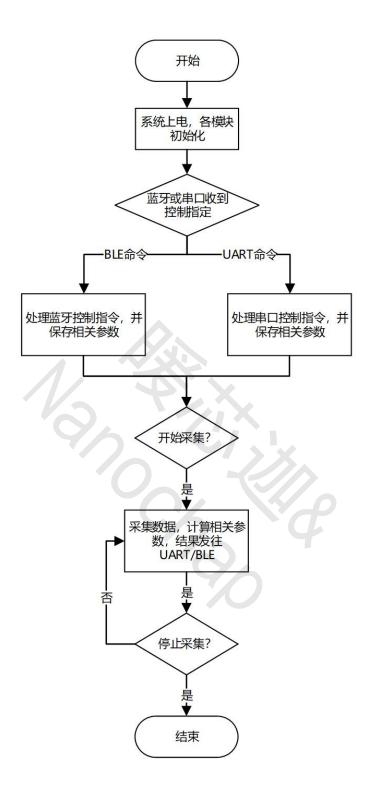
注: 若对 ECG 输入阻抗有要求,可参考芯片数据手册 7.21 Application Schematic 章节的 ECG3 相关电路 进行设计,或与我司联系定制,联系电话 4008605922。

nanochap.cn 第 30 页 共 33 页

13 测试小程序和 UART 使用

13.1.1 测试小程序使用说明

测试小程序请访问杭州暖芯迦电子科技有限公司微信公众号,使用方法见《NNCEPCM001AR100&BR100&AT100模组小程序用户手册 A0》。


13.1.2 上位机使用说明

上位机使用方法见《NNCEPCM001AR100&BR100&AT100 模组软件用户手册 A0》。

nanochap.cn 第 31 页 共 33 页

14 模组控制流程图

nanochap.cn 第 32 页 共 33 页

15 联系方式

可通过以下方式了解更多产品详情:

1) 公司电话: 4008605922; 180 9470 6680

2) 技术人员 QQ: 1708154204

3) 公众号: 暖芯迦电子

4) 扫描二维码进入测试小程序查看数据

Copyright© 2024 by Hangzhou Nanochap Electronics Co., Ltd.

使用指南中所出现的信息在出版当时相信是正确的,然而暖芯迦对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,暖芯迦不保证或表示这些没有进一步修改的应用将是适当的,暖芯迦拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 https://www.nanochap.cn或与我们直接联系(4008605922)。

nanochap.cn 第 33 页 共 33 页

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by Nanochap manufacturer:

Other Similar products are found below:

HGPRDT005A AH1894-FA-7 AH277AZ4-AG1 AV-10448 SS41C AH1894-Z-7 TLE4946-1L TLE4976L SS85CA BU52003GUL-E2
AH277AZ4-BG1 AH3376-P-B TLE4941 AH3382-P-B TLE4945-2L AH3360-FT4-7 TLE4941-1 AH374-P-A SS41-JL AH1913-W-7
AH3373-P-B MA732GQ-Z MA330GQ-Z S-57K1NBL2A-M3T2U S-57P1NBL9S-M3T4U S-576ZNL2B-L3T2U S-576ZNL2B-A6T8U S-57P1NBL0S-M3T4U S-57A1NSL1A-M3T2U S-57K1RBL1A-M3T2U S-57P1NBH9S-M3T4U S-57P1NBH0S-M3T4U S-57A1NSH1A-M3T2U S-57A1NSH2A-M3T2U S-57K1NBH1A-M3T2U S-57A1NNL1A-M3T2U S-5701BC11B-L3T2U5 S-57GNNL3S-A6T8U S-57TZ1L1S-A6T8U S-57GSNL3S-A6T8U S-5716ANDH0-14T1U S-57GSNL5S-L3T2U S-57RBNL9S-L3T2U S-57TZ1L1S-L3T2U S-57TZ1L1S-L3T2U