DESCRIPTION

The MP6411 is a windowed watchdog timer. It is used to reset and monitor the microcontroller. In normal operation, the MCU sends a trigger signal to the MP6411 in a defined time window cyclically. A missing or fault trigger signal causes the watchdog to reset the MCU.

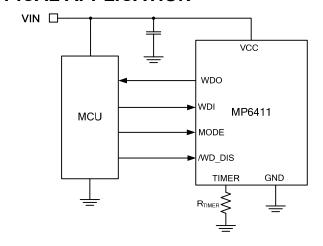
The MP6411 provides a reset signal (low-level voltage) to the MCU during power-up or under voltage. Its power supply (VCC) has 5V and 3.3V options.

By setting MODE to high or low, the watchdog operates in long window mode or short window mode; the window is programmable.

The MP6411 is available in SOIC8 package.

FEATURES

- Windowed Watchdog
- Power-On Reset during Power-Up and Under Voltage
- Programmable Short Window Mode or Long Window Mode
- Watchdog Disable Function
- Low Shutdown Mode Current
- SOIC8 Package


APPLICATIONS


- Automotive Systems
- Industrial Systems

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance.

"MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking
MP6411GS	SOIC-8	0 0 - 1
MP6411GS-33	SOIC-8	See Below

^{*} For Tape & Reel, add suffix –Z (e.g. MP6411GS–Z);

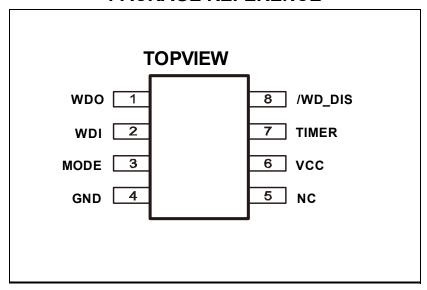
TOP MARKING (MP6411GS)

MP6411 LLLLLLL MPSYWW

MP6411: Product code of MP6411GS

LLLLLLL: Lot number MPS: MPS prefix Y: Year code WW: Week code

TOP MARKING (MP6411GS-33)


M6411-33 LLLLLLLL MPSYWW

M6411-33: Product code of MP6411GS-33

LLLLLLL: Lot number MPS: MPS prefix Y: Year code WW: Week code

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)
All pins0.3V to +6V
Continuous power dissipation $(T_A = +25^{\circ}C)^{(2)}$
SOIC81.3W
Junction temperature150°C
Lead temperature260°C
Storage temperature65°C to +150°C
Recommended Operating Conditions Supply voltage (VCC)
MP64115V
MP6411-333.3V
Operating junction temp. (T _J)40°C to 125°C

Thermal Resistance (3)	$oldsymbol{ heta}_{JA}$	$\boldsymbol{ heta}_{JC}$	
SOIC-8	96	45	.°C/W

Notes:

- Exceeding these ratings may damage the device.
 The maximum allowable power dissipation is a function of the maximum junction temperature T_{J} (MAX), the junction-to-ambient thermal resistance $\theta_{JA},$ and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J) (MAX)-T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation will cause an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent
- 3) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

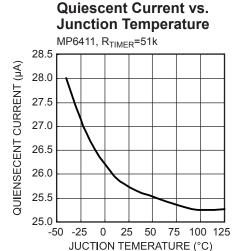
VCC = 5V for MP6411, VCC = 3.3V for MP6411-33, T_J = +25°C, unless otherwise noted.

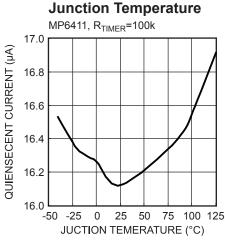
Parameter	Symbol	Condition	Min	Тур	Max	Units
Power Supply			•		•	•
Timer voltage		R _{TIMER} = 51k		0.3		V
	IQ	MP6411, R _{TIMER} = 100k		16	19	μΑ
		MP6411-33, R _{TIMER} = 100k		10	14	
Quiescent current		MP6411, R _{TIMER} = 51k		25	32	
		MP6411-33, R _{TIMER} = 51k		14	18	
	V _{POR-HIGH}	MP6411, WDO goes high with rising VCC	4.4	4.6	4.8	V
Power on reset		MP6411-33, WDO goes high with rising VCC	2.9	3	3.1	
threshold		MP6411, WDO goes low with falling VCC	4.3	4.5	4.7	
	$V_{POR-LOW}$	MP6411-33, WDO goes low with falling VCC	2.8	2.9	3	
Timing						
Single period	Т	R _{TIMER} = 51k	-10%	880	+10%	μs
Power on delay ⁽⁴⁾	t ₀	R _{TIMER} = 51k		10		cycle
Sync signal monitoring time ⁽⁵⁾	t ₁	R _{TIMER} = 51k		450		cycle
Watchdog window close time (short mode) ⁽⁴⁾	t ₂	R _{TIMER} = 51k, mode = low		15		cycle
Watchdog window open time (short mode) (4)	t ₃	R _{TIMER} = 51k, mode = low		10		cycle
Watchdog window close time (long mode) (4)	t ₄	R _{TIMER} = 51k, mode = high		1500		cycle
Watchdog window open time (long mode) (4)	t ₅	R _{TIMER} = 51k, mode = high		1000		cycle
WDO reset pulse width ⁽⁴⁾	t ₆	R _{TIMER} = 51k		4		cycle
WDI_OK pulse width			10		5000	μs
Input and Output						
WDI logic high		MP6411	3.2			V
		MP6411-33	2.1			V
WDI logic low		MP6411			8.0	V
		MP6411-33			0.6	, v
MODE logic high		MP6411	3.2			V
WODE logic fligh		MP6411-33	2.1			V
MODE logic low		MP6411			0.8	V
WODE logic low		MP6411-33			0.6	, v

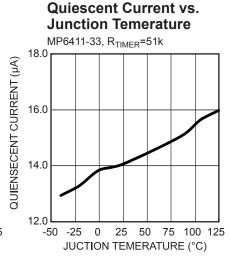
ELECTRICAL CHARACTERISTICS (continued)

VCC = 5V for MP6411, VCC = 3.3V for MP6411-33, $T_J = +25^{\circ}$ C, unless otherwise noted.

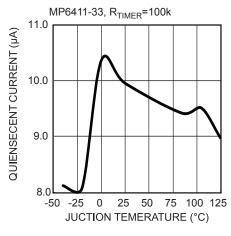
Parameter	Symbol	Condition	Min	Тур	Max	Units
MODE: 10		MP6411, MODE = 5V		0.1	4	μΑ
		MP6411-33, MODE = 3.3V		0.1	1	
MODE input Current		MP6411, MODE = 0V		5	8	
		MP6411-33, MODE = 0V		3.3	6	
/MD_DIC logic high		MP6411	3.2			V
/WD_DIS logic high		MP6411-33	2.1]
/MD_DIC logic low		MP6411			0.8	V
/WD_DIS logic low		MP6411-33			0.6]
		MP6411, WD_DIS = 5V		0.1	1	μΑ - μΑ
AMD DIC inner Commont		MP6411-33, WD_DIS = 3.3V		0.1	1	
/WD_DIS input Current		MP6411, WD_DIS = 0V		5	8	
		MP6411-33, WD_DIS = 0V		3.3	6	
WDO high		MP6411, VCC = 5V, I _{WDO} = 1mA	VCC-0.2			V
		MP6411-33, VCC=3.3V,R _{Pull-Up} =100KΩ	3.29			
WDO low		MP6411, VCC = 5V, I _{WDO} = 1mA			0.2	
		MP6411, VCC = 1V, I _{WDO} = 300μA		0.1	V	
		MP6411-33, Sink 1mA Current			0.1	

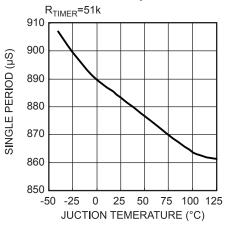

Notes:

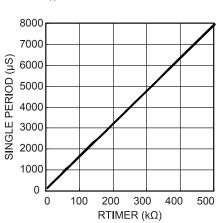

⁴⁾ Derived from bench characterization. Not tested in production.


TYPICAL CHARATERISTICS

VCC=5V for MP6411, VCC=3.3V for MP6411-33, unless otherwise noted.

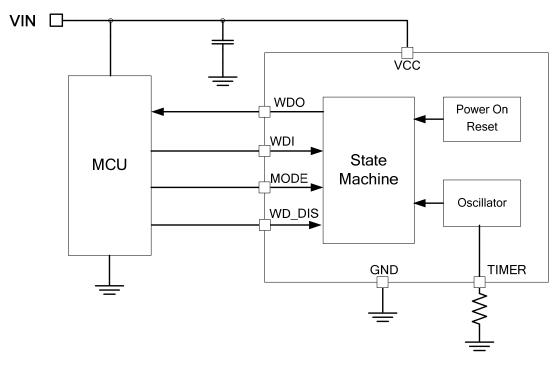



Quiescent Current vs.


Quiescent Current vs. Junction Temerature

Single Period vs. Junction Temperature

Single Period vs. RTIMER $T_A=25~\mathrm{C}$



PIN FUNCTION

Pin#	Name	Description	
1	WDO	Watchdog output. WDO outputs a reset signal to the MCU. MP6411 WDO is the output of a inverter, it is not must to connect WDO to VCC or another voltage source through a resistor. MP6411-33 WDO is the open drain of a MOSFET and should be connected to VCC or another voltage source through a resistor (e.g.100k Ω).	
2	WDI	Watchdog input. WDI receives the trigger signal from the MCU.	
3	MODE	Mode switching pin. Pull MODE high to make the watchdog operate in long wind mode; pull MODE low to make it work in short window mode. MODE has a we internal pull-up.	
4	GND	Ground.	
5	NC	Not connected.	
6	VCC	Power input.	
7	TIMER	Watchdog timer pin. TIMER sets the time-out with an external resistor	
8	/WD_DIS	Watchdog disable pin. Pull /WD_DIS low to disable the watchdog; pull /WD_high to enable the watchdog. It has a weak internal pull-up.	

FUNCTIONAL BLOCK DIAGRAM

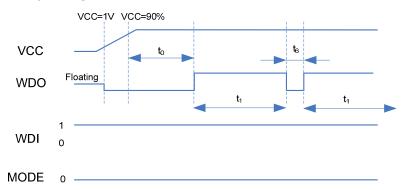
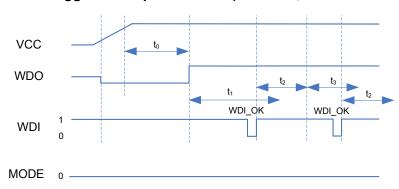
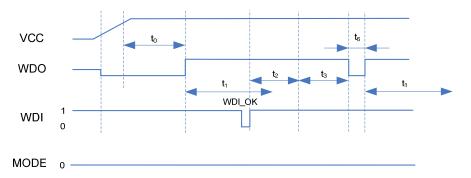


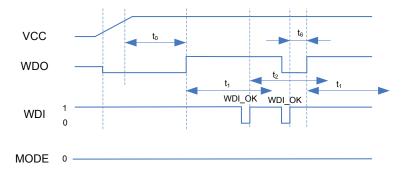
Figure 1: Functional Block Diagram



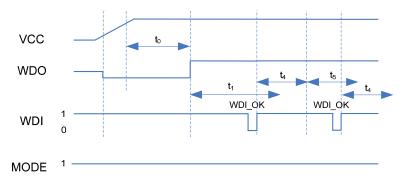
TIMING DIAGRAM


Power-on reset and no sync signal

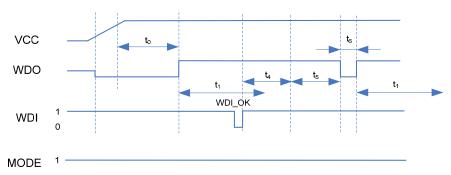
Synchronized by WDI and triggered in open window (MODE=0, short window mode)



Synchronized by WDI and no trigger signal (MODE=0, short window mode)

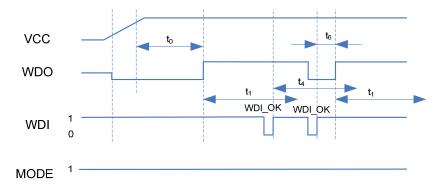


Synchronized by WDI and triggered in closed window (MODE=0, short window mode)



Note: When the WDI_OK rising edge that comes at WDO is low, the t_6 timer will be reset. Therefore, in the situation above, the WDO reset signal maintains a t_6 +WDI_OK time.

Synchronized by WDI and triggered in open window (MODE=1, long window mode)



Synchronized by WDI and no trigger signal (MODE=1, long window mode)


Synchronized by WDI and triggered in closed window (MODE=1, long window mode)

Note: When the WDI_OK rising edge that comes at WDO is low, the t_6 timer will be reset. Therefore, in the situation above, the WDO reset signal maintains a t_6 +WDI_OK time.

STATE DIAGRAM

Note: The state diagram above does not include if a WDI error occurs.

OPERATION

Supply Voltage

VCC= $5V\pm10\%$ is recommended for MP6411 normal operation; while VCC= $3.3V\pm10\%$ is recommended for MP6411-33 normal operation. WDO is pulled low when VCC rises to 1V or above. After VCC rises to 90% (typically), WDO will remain at a low level for t_0 to reset the MCU.

TIMER

Period T (µs):

$$T(\mu s) = 15.75 \times R_{TIMER}(k\Omega) + 73.5$$

 R_{TIMER} ($k\Omega$):

$$R_{\text{TIMER}}(k\Omega) = 0.063 \times T(\mu s) - 4.67$$

For example: R_{TIMER} =51k Ω , T \approx 0.88ms

Monitor MCU Synchronization Signal

When the watchdog is in a "sync signal monitoring state," the following will occur:

- ◆ If the watchdog IC receives a WDI_OK signal from the MCU within t₁ (WDI remains low for 10µs to 5ms), the timer will be reset, and the watchdog works in normal operation.
- ♦ If the watchdog does not receive the WDI_OK signal from the MCU during t₁, it will generate a reset signal and go into "sync signal monitor state" again.

Short Window Mode

If the MCU and watchdog are synchronized correctly and MODE is low, the watchdog will work in short window mode:

- If WDI_OK is received in a window close state (t₂), the watchdog outputs a reset signal and goes into a sync signal monitoring state.
- ◆ If WDI_OK is received in a window open state (t₃), the watchdog goes into a window close state. The MCU works in normal operation in this situation.

- ◆ If no WDI_OK signal is received in t₂+t₃, the watchdog outputs a reset signal and goes into a sync signal monitoring state.
- If MODE is pulled high during short window mode, the watchdog will go into long window mode.

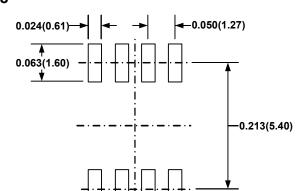
Long Window Mode

If the MCU and watchdog are synchronized correctly and MODE is high, the watchdog will operate in long window mode, and the following will occur:

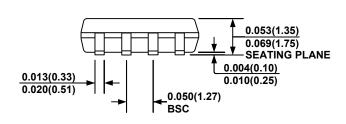
- ◆ If WDI_OK is received in a window close state (t₄), the watchdog outputs a reset signal and goes into a sync signal monitoring state.
- ◆ If WDI_OK is received in a window open state (t₅), the watchdog goes into a window close state. The MCU works in normal operation in this situation.
- ◆ If no WDI_OK signal is received in t₄+t₅, the watchdog outputs a reset signal and goes into a sync signal monitoring state.
- If MODE is pulled low during a long window mode, the watchdog will go into a short window mode.

Watchdog Disable

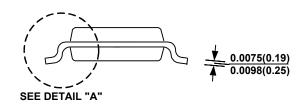
Pull /WD_DIS low to disable the watchdog; pull it high to enable the watchdog. /WD_DIS has a weak internal pull-up, so the watchdog is enabled if /WD_DIS is left open.


WDI Error

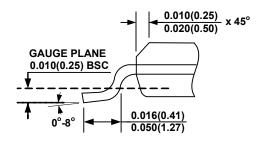
If a WDI signal remains at a low level for longer than the maximum WDI_OK pulse width, it is regarded as an error. When this error occurs, WDO is pulled down until WDI returns to a high level.


PACKAGE INFORMATION

O.189(4.80) 0.197(5.00) 8 5 0.150(3.80) 0.228(5.80) 0.157(4.00) 0.244(6.20)



TOP VIEW


RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

DETAIL "A"

NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by Monolithic Power Systems manufacturer:

Other Similar products are found below:

CAT853STBI-T3 RT9818C-27GU3 DS1232L NCV302HSN45T1G STM6710FWB7F PT7M6127NLTA3EX XC6118C25AGR-G
XC6127C29BNR-G ISL88011IH526Z-TK ISL88013IH529Z-TK ISL88705IP846Z ISL88706IP831Z ISL88708IB844Z ISL88708IP831Z
TCM811MERCTR X40420S14-A X40421S14-C X40430S14-A X40430S14I-A X40430S14I-B X40431S14-A X40431S14-B X40431S14-B X40431S14-C X40431S14I-B X40431S14I-B X40431S14I-B X40431S14I-C X4043P-2.7 X4043PI-2.7 X4043S8-2.7T1 X4043S8IZ-2.7 X4043S8IZT1 X4043S8T1
X4045P X4045PI X4045PI-2.7 X4045S8-2.7T1 X4045S8IZ X4045S8T1 X4163P X4163P-2.7 X4163PI X4163PI-2.7 X4163S8 X4165P
X4165P-2.7 X4165PI X4165PI-2.7 X4165S8I-2.7 X4283S8I X4323S8-2.7