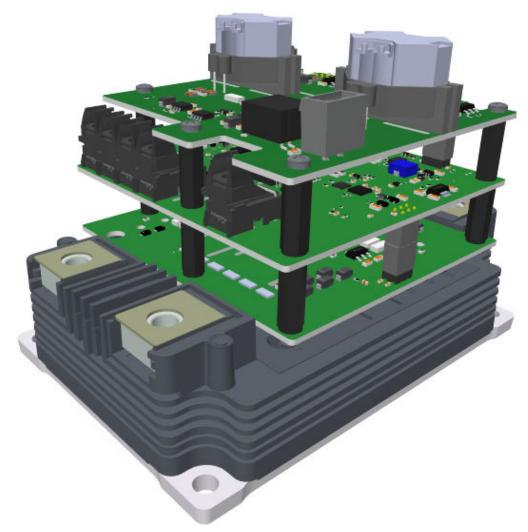
XIFM Intelligent Plug-and-Play 3.3 kV Gate Driver



Product Overview

Microchip XIFM plug-and-play mSiC[™] gate driver is designed to drive 3.3 kV SiC modules in High-Voltage (HV) packages such as HV LinPak, HV100 XHP[™], or equivalent. It features Augmented Switching[™] to enhance the control of the SIC MOSFET-based power systems in normal operation and in fault conditions, such as overcurrent. The driver includes isolated High (HI) and Low (LO) side DC/DC converters and complies with key rail specifications—EN 50155.

The following figure shows a representative stack-up of the gate driver, which is subject to change without notice.

Figure 1. XIFM Gate Driver—3D View

The following figure shows the basic topology of the XIFM gate driver.

Figure 2. Basic Schematic of the XIFM Gate Driver

The following table lists the fiber optic interface for XIFM gate driver.

Table 1. Fiber Optic Interface

Interface	Description	Part Number
HI trigger input—J5	Fiber optic receiver	FR05DVCR
LO trigger input—J4	Fiber optic receiver	HFBR-2531ETZ ¹
Reset input—J1	Fiber optic receiver	
All fault output—J3	Fiber optic transmitter	FT05MVNR
HV/Temp. monitor output—J2	Fiber optic transmitter	HFBR-1531ETZ ¹

Note:

1. This part number is used in the assembly on special request.

The following table lists the electrical connector for XIFM gate driver.

Table 2. Electrical Connector

Interface	Description	Part Number
J1	24V On-board connector	231-132/001-000

Features

1.1

1.2

The following sections describes the features of the XIFM gate driver.

Software Programmable Features

The XIFM gate driver has the following software programmable features:

- · Augmented switching
- Power supply Under-Voltage Lockout (UVLO)
- · Desaturation detection settings
- Fault lockout settings
- · Automatic reset settings
- · Positive and negative gate voltage biasing
- Negative Temperature Coefficient (NTC) based measurement settings

Key Switch Driver Features

The XIFM gate driver has the following key switch driver features:

- Compatible with HV LinPak, HV100 XHP, or any equivalent package
- 10.2 kV primary-to-secondary isolation voltage
- Isolated temperature and DC link monitoring
- 2 × 10W output power
- 15A peak source/sink current
- Configurable gate output voltages
- Compact three boards stack on-board isolated solution
- Soft shutdown time and voltage level

Applications

The XIFM gate driver has the following applications:

- · High-speed trains, traction, and hybrid trains
- Railway/Transportation
- Grid
- DC/DC

Standards Compliance Targets

The XIFM gate driver has the following standards compliance targets:

- Railway application compliant to EN50155
- Electromagnetic Compatibility (EMC) compliant to EN 50121-3-2 and EN 61000-6-4
- Shock and vibration to EN 61373
- Fire hazard level—HL2

1. Electrical Specifications

The following sections describes the electrical specifications of the XIFM intelligent plug-and-play 3.3 kV gate driver.

1.1 Absolute Maximum Ratings

The following table lists the absolute maximum ratings of the XIFM gate driver.

Table 1-1. Absolute Maximum Ratings

Parameter	Description	Min.	Max.	Unit
Supply voltage	V _{CC} to GND	0	28	V
Peak gate current	Peak current allowed only for fast charge C _{GS}	-15	15	Α
Output power per gate	_	_	10	W
Isolation voltage	Primary-to-secondary, V _{AC} RMS, 1 min	_	10200	V
	Secondary-to-secondary, V _{AC} RMS, 1 min	_	6700	
Clearance distance	Primary-to-secondary side	22	_	mm
	Secondary-to-secondary side	12.5	_	
Creepage distance	Primary-to-secondary side	41	_	
	Secondary-to-secondary side	25	_	
Common Mode Transient Immunity (CMTI)	Rate of change from input to output	100	_	kV/μs
Operating temperature	Ambient operating temperature	-40	85	°C
Storage temperature	_	-40	85	
Voltage measurement	Voltage monitoring on drain of the High-Side (HS) switch against source of the Low-Side (LS) switch	0	2500	V
Temperature measurement	NTC thermistor-based monitoring ¹	-40	150	°C

Note:

1. Software configurable parameter.

1.2 Electrical Characteristics

The following table lists the electrical characteristics of the XIFM gate driver. **Note:** Conditions: $V_{SUP} = 24V$ and MOSFET = SiC module 5SFG 0500Z330100.

Table 1-2. Electrical Characteristics

Parameter	Description	Min.	Тур.	Max.	Unit
Power Supply					
Supply voltage	V _{CC} to GND	22	24	27	٧
Supply current	Without load	80	85	90	mA
	With load ¹	_	_	340	
Over-Voltage Lockout (OVLO) threshold	Primary side	_	27.5	28	V
OVLO level—HI and LO	Secondary side high voltage detect fault level	_	26.5	_	٧
UVLO level—HI and LO	Secondary side low voltage detect fault level	_	16.5	_	V
Coupling capacitance	Primary to secondary	_	11	12	pF
Positive biasing V _{GS} voltage ⁴	_	15	_	21	_
Negative biasing V _{GS} voltage ⁴	_	-10	_	0	
Signal I/O					
Gate output voltage low ^{2, 4}	_	_	-10	_	V
Gate output voltage high ^{2, 4}	_	_	20	_	V

continued					
Parameter	Description	Min.	Тур.	Max.	Unit
Fault output (optical signal output)	Open signal output ⁸	-	1 (High on fault)	-	Logic
Turn-on gate resistance	R _{GON} ⁶	_	1.1	_	Ω
Turn-off gate resistance	R _{GOFF} ⁶	_	1.1	_	Ω
Gate-emitter capacitance	C _{GS}	_	0	_	nF
HV/Temperature monitor output	Open signal output ³	0.5	_	10	kHz
Temperature range	-40 °C to 150 °C ²	0.5	_	10	kHz
HV range	0 to 2500V	2.5	_	10	kHz
MOSFET Short Protection					
Desaturation (DSAT) monitor voltage	Between drain and source ²	_	8.7	_	V
Desaturation Time (T _{DSAT})	DSAT blanking time ^{2, 7}	_	1	_	μs
Response time after fault	_	_	_	5000	ns

Notes:

- 1. The preceding SiC MOSFET dependent conditions assume SiC MOSFET module 5SFG 0500Z330100 with C_{iss} = TBD nF; Q_g = 100 nF operating at 20 kHz.
- 2. Software configurable parameter.
- 3. Shared between HV and temperature signals. One of them can be selected.
- 4. Total (+/- V_{GS} voltage threshold must not exceed 27V).
- 5. Recommended to use ferrite core at supply input lines (Wurth Elektronik P/N 74270031 or 742700381) and shielded cable.
- 6. Can be configured as per user requirement or application dependent.
- 7. Hardware blanking time is set to the present value.
- 8. Software configurable output fault can be set as High or Low on fault, as per requirement.

2. Standard Compliance

The following table lists the standard compliance of the XIFM gate driver.

Table 2-1. Standard Compliance

Table 2 1: Standard Com		
Test	Description	Test Standard
Dielectric test	10.2 kV _{RMS} AC, 50 Hz, 1 min, primary to secondary	Type test
	6.7 kV _{RMS} AC, 50 Hz, 1 min secondary to secondary	Type test
Impulse test	18 V _{PK} 1.2/50 μs, primary to secondary	Type test (EN 50124-1)
Partial discharge	<10 pC at 2.6 kV _{RMS} extinction, primary to secondary	Type test
Radiated immunity	20 V/m _(RMS) , 80 MHz to 800 MHz, AM (80%, 1kHz), performance criteria A	EN 61000-4-3
Fast transients immunity	±2 kV, 5/50 ns, 5 kHz, performance criteria A	EN 61000-4-4
Surges immunity	± 2 kV, 42Ω , 0.5 μF, 1.2/50 μs, performance criteria B	EN 61000-4-5
Conducted immunity	10 V _{RMS} , AM (80%, 1kHz), performance criteria A	EN 61000-4-6
Radiated emission	30 MHz to 230 MHz / 52 dB(μV/m) to 52 dB(μV/m) quasi-peak at 3m	EN 61000-6-4
	230 MHz to 1GHz / 52dB quasi-peak at 3m	
Conducted emission	150 kHz to 500 kHz / 99 dBµV quasi-peak	EN 55016-2-1
	500 kHz to 30 MHz/ 93 dBμV quasi-peak	
Cold test	T _{TEST} = -40 °C	Type test (EN 50155)
Dry heat thermal test	T _{TEST} = 85 °C	Type test (EN 50155)
Cycle damp heat test	With relative humidity (90% to 100%)	Type test (EN 50155)
Mechanical vibration	Category 1 Class B (Functional random vibration, simulated long-life)	Type test (EN 50155)
Mechanical shock	Category 1 Class B (Body mounted)	Type test (EN 50155)

3. General Specifications

The following table lists the general specifications of the XIFM gate driver.

Table 3-1. General Specification

Parameter	Description	Min.	Тур.	Max.	Unit
Humidity	Compliant to EN 50155 railways standard ¹	_	85	95	%
Pollution degree	Class 2 — — —				_
Environmental compliance	Reach compliant	_	_	_	_
	RoHS compliant	_	_	_	_
Material flammability rating	UL94V-0 rated	_	_	_	_
Fire hazard level	HL2	_	_	_	_

Note:

1. Device used with conformal coating.

4. Physical Specification

The following table lists the physical specifiactions of the XIFM gate driver.

Table 4-1. Physical Specification

Parameter	Description	Min.	Тур.	Max.	Unit
Length ¹	_	_	_	95.5	mm
Width ¹	_	_	_	95	mm
Height ¹	_	_	_	75	mm
Weight	Total weight of the gate driver (all three boards) ²	_	_	220	g
Screw torque	Torque on the collector, emitter, high and low side gate terminals.	1	_	1.5	Nm

Notes:

- 1. Dimensions have a tolerance of ±0.5 mm.
- 2. Weight can have tolerance of ±10g.

5. Timing Diagrams

The following figures show the timing diagrams of the XIFM gate driver.

Figure 5-1. Signal Input/Output Timing Diagram for Normal Operation

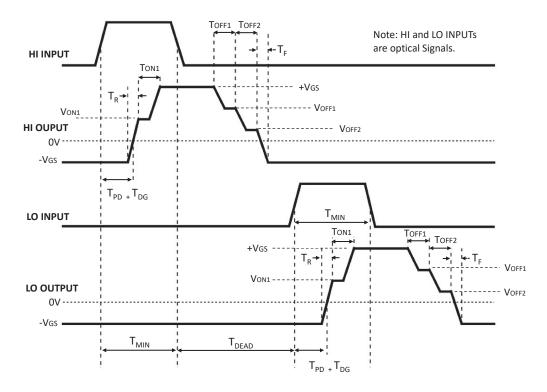
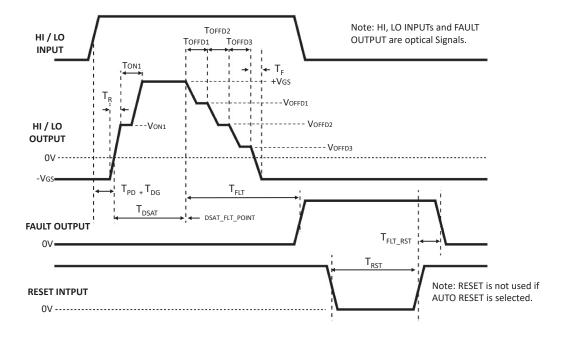



Figure 5-2. Signal Desaturation and Fault Timing Diagram

5.1 Timing Diagram Values

The following table lists the timing diagram values of the XIFM gate driver.

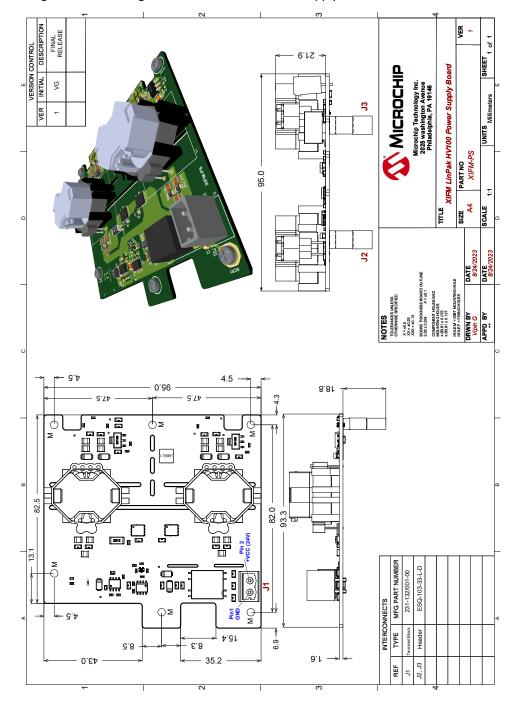
Note: Condition $V_{SUP} = 24V$, Temp. = 0 °C to 85 °C.

Table 5-1. Timing Diagram Values

Parameter		Description	Min.	Тур.	Max.	Unit
Minimum pulse width		T _{MIN} ⁸	_	_	_	ns
Propagation delay		T _{PD} 1, 3	_	_	280	ns
De-glitch time		T _{DG} ⁴	_	200	_	ns
Rise time		T _R ^{2, 3}	_	35	_	ns
Fall time		T _F ^{2, 3}	_	30	_	ns
Two-level turn-on	First step turn-on time	T _{ON1} ⁴	_	200	_	ns
	First step turn-on voltage	V _{TON1} ⁴	_	9.5	_	V
Multi-level turn-off step	First step turn-off time	T _{OFF1} ⁴	_	200	_	ns
	First step turn-off voltage	V _{OFF1} , ⁴	_	9.5	_	V
	Second step turn-off time	T _{OFF2} ⁴	_	200	_	ns
	Second step turn-off voltage	V _{OFF2} ⁴	_	4.5	_	V
DSAT voltage level		V _{DSAT} ⁴	_	8.7	_	V
DSAT blanking time		T _{DSAT} ^{4, 5}	1000	1100	1200	ns
DSAT de-glitch time		T _{DSAT_DG} ⁴	_	0	_	ns
DSAT turn-off steps	First step DSAT turn-off time	T _{OFFD1} ⁴	_	250	_	ns
	First step DSAT turn-off voltage	V _{OFFD1} ⁴	_	9.5	_	V
	Second step DSAT turn-off time	T _{OFFD2} ⁴	_	250	_	ns
	Second step DSAT turn-off voltage	V _{OFFD2} ⁴	_	6.5	_	V
	Third step DSAT turn-off time	T _{OFFD3} ⁴	_	250	-	ns
	Third step DSAT turn-off voltage	V _{OFFD3} ⁴	_	2.5	_	V
Fault time delay		T _{FLT} ⁷	_	5000	_	ns
Fault reset		T _{FLT_RST}	_	1000	_	ns
Dead time-input		T _{DEAD} ⁶	_	500	_	ns
Reset timing		T _{RST,} Minimum reset time	_	1000	_	ns
Automatic reset (optiona	1)	_	_	5	_	ms

Notes:

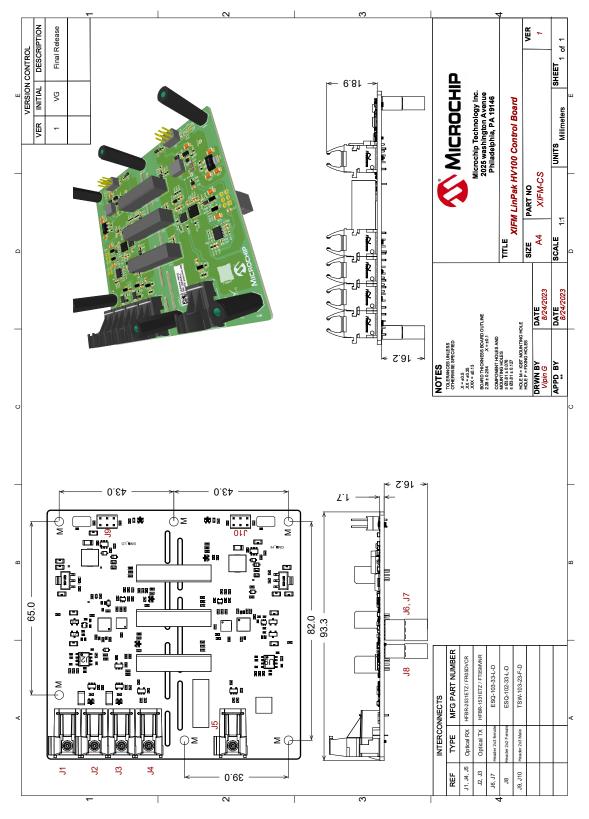
- 1. Measured from 50% to 50% of input trigger and output V_{GS} signal.
- 2. Measured from 10% to 90% of output V_{GS} signal.
- 3. Measured without augmented settings and at no load condition.
- 4. Software configurable depends on user requirements.
- 5. Hardware blanking time is set to the present value in the table.
- 6. Death Time must be configured by the user by the host controller.
- 7. This is fault output delay time, but when DSAT is detected on board gate driver shouts-down trigger within 25 ns.
- 8. The minimum pulse width is a factor of the multi-level turn-off and two-level turn-on time.


6. Package Specifications

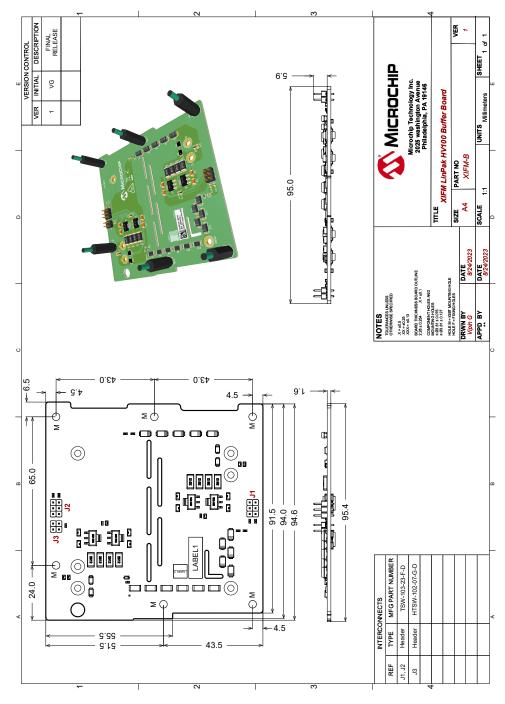
The following section shows the package specification of the XIFM gate driver.

6.1 Package Outline

The following figures show the package outline drawing of the XIFM LinPak HV100 power supply board. The dimensions in the following figure are in millimeters.

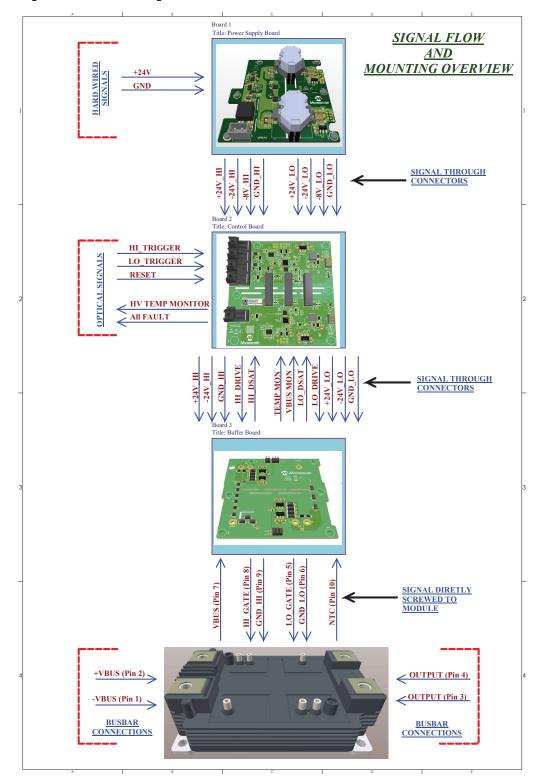

Figure 6-1. Package Outline Drawing—XIFM LinPak HV100 Power Supply Board

The following figure shows the package outline drawing of the XIFM LinPak HV100 control board. The dimensions in the following figure are in millimeters.


Figure 6-2. Package Outline Drawing—XIFM LinPak HV100 Control Board

The following figure shows the package outline drawing of the XIFM LinPak HV100 buffer board. The dimensions in the following figure are in millimeters.

Figure 6-3. Package Outline Drawing—XIFM LinPak HV100 Buffer Board



6.2 Signal Flow and Mounting Overview

The following figure shows the signal flow and mounting overview of the XIFM gate driver.

Figure 6-4. Signal Flow and Mounting Overview

7. Important Precautions

Handling devices with high voltages involves risk to life. It is imperative to comply with all respective precautions and safety regulations.

Microchip assumes that the gate drive board is mounted on the SiC MOSFET prior to start-up testing. It is recommended that the user check that the SiC MOSFET power modules are operating inside the Specified Operating Area (SOA) as specified by the module manufacturer, including short circuit testing under very low load conditions.

8. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Revision	Date	Description
D	11/2023	The following changes are made in this revision of the document:
		• Updated values in Table 1-1 and Table 1-2.
		 Added 2. Standard Compliance, 3. General Specifications, 4. Physical Specification, and 5. Timing Diagrams.
		• Updated Figure 6-1, Figure 6-2, Figure 6-3, and Figure 6-4.
С	02/2023	Updated part numbers in Table 1.
		• Updated values in Table 1-1 and Table 1-2.
		• Updated Figure 6-3, Figure 6-2, Figure 6-1, and Figure 6-4.
В	12/2022	Updated Table 1, Table 1-1, and Table 1-2.
Α	10/2022	Initial revision.

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure

that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3519-2

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

ISLUSBI2CKITIZ ISL2109012EV1Z ISL8002AEVALIZ ISL91108IIA-EVZ DCD48AP480T320A50 AP62250WU-EVM AP61102Z6-EVM SAMPLEBOXILD8150TOBO1 AP61100Z6-EVM AP62300Z6-EVM Si8285_86v2-KIT EVALM7HVIGBTPFCINV4TOBO1 REFSHA35IMD111TSYSTOBO1 TDINV3000W50B-KIT NCP1681CCM1KWGEVB SI83401BAA-KIT SI83402BAA-KIT SI83411BAA-KIT SI83412BAA-KIT MIKROE-5294 MIKROE-5374 EVB81332 MIKROE-5019 BTG70902EPLDAUGHBRDTOBO1 TAB-48017 APEK89307KET-01-T MIKROE-5510 64010 EVAL6EDL04I065PRTOBO1 EVB81340-100W RTKA489EPRDK0010BU DC3107A EVL4248-QV-00A EVQ4371-V-1000-00A EVL28167-B-Q-00A EV6631B-L-00A EVL1608C-TL-00A EVALKITTLE9189QUWTOBO1 EVALKITTLE9189QVWTOBO1 EVINVHPD2SICFS0108TOBO2 NPM2100-EK APEK5932GES-01-T-01 R1810Z015A-EV BD9E203FP4-EVK-001 BTS71202EPADAUGHBRDTOBO1 REF5QR0680BG142W1TOBO1 SPOC2DBBTS710404ESPTOBO1 TLD60982BSEVALTOBO1 BTS70121EPADAUGHBRDTOBO1 BTS70402EPADAUGHBRDTOBO1