Atmel

8-bit Microcontroller with 32KBytes In-System Programmable Flash

ATmega32A

Features

* High-performance, Low-power Atmel®AVR® 8-bit Microcontroller
¢ Advanced RISC Architecture

131 Powerful Instructions — Most Single-clock Cycle Execution
32 x 8 General Purpose Working Registers

Fully Static Operation

Up to 16MIPS Throughput at 16MHz

On-chip 2-cycle Multiplier

* High Endurance Non-volatile Memory segments

32Kbytes of In-System Self-programmable Flash program memory
1024Bytes EEPROM
2Kbytes Internal SRAM
Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
Data retention: 20 years at 85°C/100 years at 25°C
Optional Boot Code Section with Independent Lock Bits
¢ In-System Programming by On-chip Boot Program
* True Read-While-Write Operation
Programming Lock for Software Security

* JTAG (IEEE std. 1149.1 Compliant) Interface

Boundary-scan Capabilities According to the JTAG Standard
Extensive On-chip Debug Support
Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

* Peripheral Features

Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
Real Time Counter with Separate Oscillator
Four PWM Channels
8-channel, 10-bit ADC

* 8 Single-ended Channels

« 7 Differential Channels in TQFP Package Only

« 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
Byte-oriented Two-wire Serial Interface
Programmable Serial USART
Master/Slave SPI Serial Interface
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator

* Special Microcontroller Features

Power-on Reset and Programmable Brown-out Detection

Internal Calibrated RC Oscillator

External and Internal Interrupt Sources

Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and
Extended Standby

* |/O and Packages

32 Programmable 1/0 Lines
40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF

* Operating Voltages

2.7V - 5.5V

* Speed Grades

0 - 16MHz

¢ Power Consumption at 1MHz, 3V, 25°C

Active: 0.6mA
Idle Mode: 0.2mA

Power-down Mode: < 1pA
8155D-AVR-10/2013

8155D-AVR-10/2013




1. Pin Configurations

Figure 1-1.

Atmel

Pinout ATmega32A
PDIP
—/
(XCK/TO) PBO ] 1 40 [ PAO (ADCO)
(T1) PB1 ] 2 39 [ PALl (ADC1)
(INT2/AINO) PB2 ] 3 38 [ PA2 (ADC2)
(OCO/AIN1) PB3 ] 4 37 [ PA3 (ADC3)
(SS) PB4 ] 5 36 [ PA4 (ADC4)
(MOSI) PB5 ] 6 35 [ PA5 (ADC5)
(MISO) PB6 | 7 34 [ PA6 (ADCS)
(SCK) PB7 ] 8 33 [J PA7 (ADCY7)
RESET ]| 9 32 [J AREF
vcc O 10 31 [J GND
GND ] 11 30 [0 Avcc
XTAL2 ] 12 29 [ PC7 (TOSC2)
XTALL | 13 28 [1 PC6 (TOSC1)
(RXD) PDO ]| 14 27 |3 PC5 (TDI)
(TXD) PD1 ] 15 26 [J PC4 (TDO)
(INTO) PD2 ] 16 25 [ PC3 (TMS)
(INT1) PD3 ] 17 24 [ PC2 (TCK)
(OC1B) PD4 ] 18 23 [0 PC1 (SDA)
(OC1A) PD5 (| 19 22 [0 PCO (SCL)
(ICP1) PD6 ]| 20 21 [0 PD7 (OC2)
TQFP/MLF
58
82 8 o
ERER 3003
HhZZS
B2 C8 223%
TRAEB20223%
[N a W e W s W s N & I a M a M A W a
OO
® 44,,42,.,40, 38,36, 34
(MOSI) PB5 ] 1 e e cccccececeeem 33 [ PA4 (ADC4)
(MISO) PB6 ] 2 | 1 32 |71 PA5 (ADC5)
(SCK) PB7 ] 3 ! 1 31 [J PA6 (ADCS)
RESET ] 4 ! ' 30 [J PA7 (ADC7)
vCcC ] 5 ! ' 29 [ AREF
GND |6 128 [1 GND
XTAL2 ] 7 127 [ AVCC
XTALL ] 8 126 [ PC7 (TOSC2)
(RXD) PDO | 9 ' 25 [] PC6 (TOSC1)
(TXD) PD1 ] 10 , i 24 [ PC5 (TDI)
(INTO) PD2 ] 11 /""" """""==""=7=7°-°- © 23 [ Pc4 (TDO)
14"%161718" 902722
/ EjEjEREERERERERERERE
M S W0 O~ O 4N M
Note: E3555828888
Bottom pad should SETSa TECH
be soldered to ground. Eaa0 O 0OQo=
£888¢ LoeE

ATmega32A [DATASHEET]

8155D-AVR-10/2013



2. Overview

The Atmel®AVR® ATmega32A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega32A achieves throughputs
approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing

2.1

speed.

Block Diagram

Figure 2-1.

vcc

Block Diagram

PAO - PA7
A A A A A & A a

PCO - PC7
A A A A A A 4 2

L]
r

GND

| PORTA DRIVERS/BUFFERS

i

L.

PORTC DRIVERS/BUFFERS |

l

REGISTER

| PORTA DIGITAL INTERFACE | | PORTC DIGITAL INTERFACE |
AvCC < | = >
,< MUX & | Abnc i
ADC INTERFACE
AREF e
x TIMERS/
OSCILLATOR
PROGRAM STACK N COUNTERS
COUNTER POINTER
T T
PROGRAM | 1 INTERNAL
‘| FLASH | :| SRAM e OSCILLATOR
I XTALL
. R
INSTRUCTION GENERAL WATCHDOG
REGISTER | | ly| pURPOSE TIMER OSCILLATOR —
REGISTERS i
A >< XTAL2
INSTRUCTION MCU CTRL. —
] z
CONTROL INTERRUPT INTERNAL
LINES o CALIBRATED
OSCILLATOR
AVR CPU STATUS ol EEPROM

COMP.
INTERFACE

>

PROGRAMMING
Sl

USART

A
gl

—

| PORTB DIGITAL INTERFACE

i

| PORTB DRIVERS/BUFFERS

| PORTD DIGITAL INTERFACE |

l

| PORTD DRIVERS/BUFFERS |

YV VvV VYV
PBO - PB7

v v v

Y vV VYV YV VYV V VY

PDO - PD7

The Atmel®AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 regis-
ters are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

3



one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega32A provides the following features: 32Kbytes of In-System Programmable Flash Program memory
with Read-While-Write capabilities, 1024bytes EEPROM, 2Kbyte SRAM, 32 general purpose /O lines, 32 general
purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming,
three flexible Timer/Counters with compare modes, Internal and External Interrupts, a serial programmable
USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage
with programmable gain (TQFP package only), a programmable Watchdog Timer with Internal Oscillator, an SPI
serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the
USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and interrupt system to continue
functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip
functions until the next External Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer con-
tinues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise
Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching
noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the
device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby
mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel’s high density nonvolatile memory technology. The On-chip ISP Flash
allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional non-
volatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use
any interface to download the application program in the Application Flash memory. Software in the Boot Flash
section will continue to run while the Application Flash section is updated, providing true Read-While-Write opera-
tion. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel
ATmega32A is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embed-
ded control applications.

The Atmel AVR ATmega32A is supported with a full suite of program and system development tools including: C
compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

2.2 Pin Descriptions

221 VCC
Digital supply voltage.

2.2.2 GND
Ground.

2.2.3 Port A (PA7:PAQ)
Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-hit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal
pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both
high sink and source capability. When pins PAO to PA7 are used as inputs and are externally pulled low, they will
source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition
becomes active, even if the clock is not running.

224 Port B (PB7:PBO)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Atmel ATmega32A [DATASHEET] 4

8155D-AVR-10/2013



Port B also serves the functions of various special features of the ATmega32A as listed on page 57.

225 Port C (PC7:PCO)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a
reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resis-
tors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

Port C also serves the functions of the JTAG interface and other special features of the ATmega32A as listed on
page 59.

2.2.6 Port D (PD7:PDO)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega32A as listed on page 61.

2.2.7 RESET
Reset Input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock
is not running. The minimum pulse length is given in Table 27-1 on page 280. Shorter pulses are not guaranteed to
generate a reset.

2.2.8 XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.2.9 XTAL2
Output from the inverting Oscillator amplifier.

2.2.10 AVCC
AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to V., even if
the ADC is not used. If the ADC is used, it should be connected to V. through a low-pass filter.

2211 AREF
AREF is the analog reference pin for the A/D Converter.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20
years at 85°C or 100 years at 25°C.

Atmel ATmega32A [DATASHEET] 5

8155D-AVR-10/2013



5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These
code examples assume that the part specific header file is included before compilation. Be aware that not all C
Compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent.
Please confirm with the C Compiler documentation for more details.

Atmel ATmega32A [DATASHEET] 6

8155D-AVR-10/2013



6. AVR CPU Core

6.1 Overview
This section discusses the Atmel®AVR® core architecture in general. The main function of the CPU core is to
ensure correct program execution. The CPU must therefore be able to access memories, perform calculations,
control peripherals, and handle interrupts.

Figure 6-1. Block Diagram of the AVR MCU Architecture

< Data Bus 8-bit
Program Status
Flash 1€
Program Counter and Control
Memory <
l Interrupt
—r G32X8I (<] Unit
nstruction enera >
Register Purpose SP
l— Registrers Nl Unit
Instruction Watchdos
Decoder Timer ¢

l

Control Lines

v Analog
Comparator

<> 1/0 Module1

Direct Addressing
Indirect Addressing

Data le s}« 110 Module 2
SRAM

<> /0 Module n

EEPROM [

I/O Lines [

\/

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate memories
and buses for program and data. Instructions in the program memory are executed with a single level pipelining.
While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable
Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two oper-
ands are output from the Register File, the operation is executed, and the result is stored back in the Register File
—in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing —
enabling efficient address calculations. One of the these address pointers can also be used as an address pointer
for look up tables in Flash Program memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

ATmega32A [DATASHEET] 7
A t m eL 8155D-AVR-10/2013



The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single
register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated
to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address
contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes
into the Application Flash memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total
SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before sub-
routines or interrupts are executed). The Stack Pointer SP is read/write accessible in the 1/0 space. The data
SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in
the Status Register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have
priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the
priority.

The 1/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Reg-
ister File, $20 - $5F.

6.2 ALU - Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an
immediate are executed. The ALU operations are divided into three main categories — arithmetic, logical, and bit-
functions. Some implementations of the architecture also provide a powerful multiplier supporting both
signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description.

6.3  Status Register
The Status Register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the Status
Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.

6.3.1 SREG — AVR Status Register

Bit 7 6 5 4 3 2 1 0

| I H S Y N z c | srec
Read/Write RIW RIW R/W RIW RIW R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

Atmel ATmega32A [DATASHEET] 8

8155D-AVR-10/2013



* Bit 7 —1I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control
is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the inter-
rupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an
interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set
and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference.

» Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the oper-
ated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be
copied into a bit in a register in the Register File by the BLD instruction.

» Bit 5—H: Half Carry Flag
The Half Carry Flag H indicates a half carry in some arithmetic operations. Half Carry is useful in BCD arithmetic.
See the “Instruction Set Description” for detailed information.

* Bit4-S:SignBit,S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See
the “Instruction Set Description” for detailed information.

* Bit 3-V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’'s complement arithmetics. See the “Instruction Set Descrip-
tion” for detailed information.

* Bit 2 - N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

e Bit1l-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

» Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

6.4  General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required perfor-
mance and flexibility, the following input/output schemes are supported by the Register File:
» One 8-bit output operand and one 8-bit result input
» Two 8-bit output operands and one 8-bit result input
» Two 8-bit output operands and one 16-bit result input
» One 16-bit output operand and one 16-bit result input
Figure 6-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 6-2. AVR CPU General Purpose Working Registers

7 0 Addr.

Atmel ATmega32A [DATASHEET] 9

8155D-AVR-10/2013



RO $00
R1 $01
R2 $02
R13 $0D

General R14 $OE

Purpose R15 $OF

Working R16 $10

Registers R17 $11
R26 $1A X-register Low Byte
R27 $1B X-register High Byte
R28 $1C Y-register Low Byte
R29 $1D Y-register High Byte
R30 $1E Z-register Low Byte
R31 $1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and most of them are sin-
gle cycle instructions.

As shown in Figure 6-2, each register is also assigned a data memory address, mapping them directly into the first
32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory
organization provides great flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to
index any register in the file.

Atmel ATmega32A [DATASHEET] 10

8155D-AVR-10/2013



6.4.1 The X-register, Y-register and Z-register
The registers R26:R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y, and Z are
defined as described in Figure 6-3.

Figure 6-3. The X-, Y-, and Z-registers

15 XH XL
X - register |7 o7 o]
R27 ($1B) R26 (S1A)
15 YH YL
Y - register I 7 0 I 7 0 I
R29 ($1D) R28 (51C)
15 ZH ZL 0
Z - register |7 0 |7 0 |
R3L (S1F) R30 (S1E)

In the different addressing modes these address registers have functions as fixed displacement, automatic incre-
ment, and automatic decrement (see the Instruction Set Reference for details).

6.5 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower memory
locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to the data
SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease
the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts
are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack Pointer must be
set to point above start of the SRAM, see Figure 7-2 on page 16.

See Table 6-1 on page 11 for Stack Pointer details.

Table 6-1. Stack Pointer instructions

Instruction | Stack pointer Description

PUSH Decremented by 1 | Data is pushed onto the stack

CALL Return address is pushed onto the stack with a subroutine call or
ICALL Decremented by 2 | interrupt

RCALL

POP Incremented by 1 Data is popped from the stack

RET Incremented by 2 Return address is popped from the stack with return from

RETI subroutine or return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small
that only SPL is needed. In this case, the SPH Register will not be present.

Atmel ATmega32A [DATASHEET] 11

8155D-AVR-10/2013



6.5.1 SPH and SPL - Stack Pointer High and Low Register

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0

6.6 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the
CPU clock clkepy, directly generated from the selected clock source for the chip. No internal clock division is used.

Figure 6-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture
and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with
the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.

Figure 6-4. The Parallel Instruction Fetches and Instruction Executions

Tl T2 T3 T4
| | | |
| | | |
| | | |

S/ S W S W S U A W

CPU
1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

Figure 6-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.

Figure 6-5.  Single Cycle ALU Operation

Tl T2 T3 T4
| | | |
| | | |
| | | |

SV SR W S W S N S W

CPU
Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

Atmel ATmega32A [DATASHEET] 12

8155D-AVR-10/2013



6.7 Reset and Interrupt Handling

The Atmel®AVR® provides several different interrupt sources. These interrupts and the separate reset vector each
have a separate program vector in the program memory space. All interrupts are assigned individual enable bits
which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to
enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when
Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section “Mem-
ory Programming” on page 248 for details.

The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of vectors is shown in “Interrupts” on page 44. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next
is INTO — the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash sec-
tion by setting the IVSEL bit in the General Interrupt Control Register (GICR). Refer to “Interrupts” on page 44 for
more information. The Reset Vector can also be moved to the start of the boot Flash section by programming the
BOOTRST fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page 235.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user soft-
ware can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current
interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writ-
ing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding
interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the
flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit
is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the global interrupt enable bit is
set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not nec-
essarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will
not be triggered.

When the Atmel®AVR® exits from an interrupt, it will always return to the main program and execute one more
instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be
executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example
shows how this can be used to avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

Atmel ATmega32A [DATASHEET] 13

8155D-AVR-10/2013



in rl16, SREG ; Store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; Start EEPROM write

sbi EECR, EEWE

out SREG, rlé ; restore SREG value (I-bit)

C Code Example

char cSREG;
cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();
EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pend-
ing interrupts, as shown in this example.

Assembly Code Example

sei ; set global interrupt enable
sleep,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt (s) */

6.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock
cycles the program vector address for the actual interrupt handling routine is executed. During this four clock cycle
period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and
this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction
is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt exe-
cution response time is increased by four clock cycles. This increase comes in addition to the start-up time from the
selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program
Counter (two bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in SREG
is set.

Atmel ATmega32A [DATASHEET] 14

8155D-AVR-10/2013



7. AVR Memories

7.1 Overview
This section describes the different memories in the ATmega32A. The AVR architecture has two main memory
spaces, the Data Memory and the Program Memory space. In addition, the ATmega32A features an EEPROM
Memory for data storage. All three memory spaces are linear and regular.

7.2 In-System Reprogrammable Flash Program Memory
The ATmega32A contains 32Kbytes On-chip In-System Reprogrammable Flash memory for program storage.
Since all AVR instructions are 16 bits or 32 bits wide, the Flash is organized as 16K x 16. For software security, the
Flash Program memory space is divided into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega32A Program Counter
(PC) is 14 bits wide, thus addressing the 16K program memory locations. The operation of Boot Program section
and associated Boot Lock bits for software protection are described in detail in “Boot Loader Support — Read-
While-Write Self-Programming” on page 235. “Memory Programming” on page 248 contains a detailed description
on Flash Programming in SPI, JTAG, or Parallell Programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM — Load Program
Memory Instruction Description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Timing” on page 12.

Figure 7-1.  Program Memory Map

$0000

Application Flash Section

e

Boot Flash Section

$3FFF

7.3 SRAM Data Memory
Figure 7-2 shows how the Atmel®AVR® ATmega32A SRAM Memory is organized.

Atmel ATmega32A [DATASHEET] 15

8155D-AVR-10/2013



The lower 2144 Data Memory locations address the Register File, the I/O Memory, and the internal data SRAM.
The first 96 locations address the Register File and I/0O Memory, and the next 2048 locations address the internal
data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indi-
rect with Pre-decrement, and Indirect with Post-increment. In the Register File, registers R26 to R31 feature the
indirect Addressing Pointer Registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-
register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address
registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, and the 2048bytes of internal data SRAM in the
ATmega32A are all accessible through all these addressing modes. The Register File is described in “General Pur-
pose Register File” on page 9.

Figure 7-2. Data Memory Map

Register File Data Address Space

RO | T $0000

R1 $0001

R2 $0002

R29 $001D
R30 $001E

R3+ 1| $001F

I/O Registers

$00 $0020

$01 $0021

$02 $0022
$3D $005D
$3E $005E
$3F 1 $005F

Internal SRAM

$0060

$0061

$085E

$085F

7.3.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The internal data SRAM
access is performed in two clksp, cycles as described in Figure 7-3.

Atmel ATmega32A [DATASHEET] 16

8155D-AVR-10/2013



Figure 7-3.  On-chip Data SRAM Access Cycles

Tl T2 T3
| | |
| | |
| | |

P A A N S

CPU \ | |
Address | Compute Address | X__ Address Valid |
| | |
| | T JR—
Data i T | o
| | | 'E
| | |
WR I 1/ N\ =
| | | —
| | }
Data - f | — 5
| | T ©
1 1 [ DG:J
RD ! L/ Al
T T J—
| | |
Memory Access Instruction Next Instruction

7.4 EEPROM Data Memory

The Atmel®AVR® ATmega32A contains 1024bytes of data EEPROM memory. It is organized as a separate data
space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000
write/erase cycles. The access between the EEPROM and the CPU is described in the following, specifying the
EEPROM Address Registers, the EEPROM Data Register, and the EEPROM Control Register.

“Memory Programming” on page 248 contains a detailed description on EEPROM Programming in SPI, JTAG, or
Parallell Programming mode.

74.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the 1/0 space.

The write access time for the EEPROM is given in Table 7-1 on page 21. A self-timing function, however, lets the
user software detect when the next byte can be written. If the user code contains instructions that write the
EEPROM, some precautions must be taken. In heavily filtered power supplies, V. is likely to rise or fall slowly on
Power-up/down. This causes the device for some period of time to run at a voltage lower than specified as mini-
mum for the clock frequency used. See “Preventing EEPROM Corruption” on page 18 for details on how to avoid
problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the
description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When
the EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

7.4.2 EEPROM Write During Power-down Sleep Mode
When entering Power-down Sleep mode while an EEPROM write operation is active, the EEPROM write operation
will continue, and will complete before the Write Access time has passed. However, when the write operation is
completed, the Oscillator continues running, and as a consequence, the device does not enter Power-down
entirely. It is therefore recommended to verify that the EEPROM write operation is completed before entering
Power-down.

Atmel ATmega32A [DATASHEET] 17

8155D-AVR-10/2013



7.4.3 Preventing EEPROM Corruption
During periods of low V. the EEPROM data can be corrupted because the supply voltage is too low for the CPU
and the EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and
the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write
sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute
instructions incorrectly, if the supply voltage is too low.

Atmel ATmega32A [DATASHEET] 18

8155D-AVR-10/2013



EEPROM data corruption can easily be avoided by following this design recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does not match the
needed detection level, an external low V. Reset Protection circuit can be used. If a reset occurs while a write
operation is in progress, the write operation will be completed provided that the power supply voltage is
sufficient.

7.5 1/0O Memory
The 1/0 space definition of the Atmel®AVR® ATmega32A is shown in “Register Summary” on page 315.

All ATmega32A 1/0Os and peripherals are placed in the 1/0 space. The /O locations are accessed by the IN and
OUT instructions, transferring data between the 32 general purpose working registers and the 1/0O space. /0 Reg-
isters within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the Instruction
Set section for more details. When using the 1/0O specific commands IN and OUT, the 1/0 addresses $00 - $3F
must be used. When addressing I/O Registers as data space using LD and ST instructions, $20 must be added to
these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved 1/O memory
addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will
operate on all bits in the 1/0O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI
and SBI instructions work with registers $00 to $1F only.

The I/O and Peripherals Control Registers are explained in later sections.

7.6 Register Description

7.6.1 EEARH and EEARL — EEPROM Address Register

Bit 15 14 13 12 11 10 9 8
- - - - - - EEAR9 EEAR8 EEARH
EEAR7 EEARG6 EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL

7 6 5 4 3 2 1 0
Read/Write R R R R R R R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 X
X X X X X

» Bits [15:10] — Reserved Bits
These bits are reserved bits in the ATmega32A and will always read as zero.

» Bits [9:0] - EEAR9:0: EEPROM Address

The EEPROM Address Registers - EEARH and EEARL - specify the EEPROM address in the 1024bytes
EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 1023. The initial value of EEAR
is undefined. A proper value must be written before the EEPROM may be accessed.

7.6.2 EEDR — EEPROM Data Register

Bit 7 6 5 4 3 2 1 0
| MSB | | | LSB | EEDR
Read/Write R/W RIW R/W RIW R/W R/W RIW R/W

Atmel ATmega32A [DATASHEET] 19

8155D-AVR-10/2013



Initial Value 0 0 0 0 0 0 0 0

» Bits [7:0] - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the EEPROM in the
address given by the EEAR Register. For the EEPROM read operation, the EEDR contains the data read out from
the EEPROM at the address given by EEAR.

7.6.3 EECR — EEPROM Control Register

Bit 7 6 5 4 3 2 1 0

| - | - | - | - EERIE EEMWE EEWE EERE | EECR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 X 0

* Bits [7:4] — Reserved Bits
These bits are reserved bits in the ATmega32A and will always read as zero.

» Bit 3- EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing EERIE to zero dis-
ables the interrupt. The EEPROM Ready interrupt generates a constant interrupt when EEWE is cleared.

* Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. When EEMWE is
set, setting EEWE within four clock cycles will write data to the EEPROM at the selected address If EEMWE is
zero, setting EEWE will have no effect. When EEMWE has been written to one by software, hardware clears the bit
to zero after four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

» Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address and data are cor-
rectly set up, the EEWE bit must be written to one to write the value into the EEPROM. The EEMWE bit must be
written to one before a logical one is written to EEWE, otherwise no EEPROM write takes place. The following pro-
cedure should be followed when writing the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero.

Wait until SPMEN in SPMCR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software must check that the
Flash programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the software con-
tains a Boot Loader allowing the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support — Read-While-Write Self-Programming” on page 235 for details about
boot programming.

a s~ wnN

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM Master Write
Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM Access, the
EEAR or EEDR reGister will be modified, causing the interrupted EEPROM Access to falil. It is recommended to
have the Global Interrupt Flag cleared during all the steps to avoid these problems.

Atmel ATmega32A [DATASHEET] 20

8155D-AVR-10/2013



When the write access time has elapsed, the EEWE bit is cleared by hardware. The user software can poll this bit
and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted for two cycles before
the next instruction is executed.

» Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal — EERE - is the read strobe to the EEPROM. When the correct address is set
up in the EEAR Register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM
read access takes one instruction, and the requested data is available immediately. When the EEPROM is read,
the CPU is halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in progress, it is neither
possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 7-1 lists the typical programming time for
EEPROM access from the CPU.

Table 7-1. EEPROM Programming Time

Number of Calibrated RC Oscillator
Symbol Cycles® Typ Programming Time

EEPROM write (from CPU) 8448 8.5ms

Note: 1. Uses 1MHz clock, independent of CKSEL Fuse setting.

The following code examples show one assembly and one C function for writing to the EEPROM. The examples
assume that interrupts are controlled (for example by disabling interrupts globally) so that no interrupts will occur
during execution of these functions. The examples also assume that no Flash Boot Loader is present in the soft-
ware. If such code is present, the EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

Atmel ATmega32A [DATASHEET] 21

8155D-AVR-10/2013



Atmel

EEPROM write:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM write
; Set up address (rl18:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rlé) to data register
out EEDR,rl6
; Write logical one to EEMWE
sbi EECR, EEMWE
; Start eeprom write by setting EEWE
sbi EECR, EEWE

ret

C Code Example

void EEPROM write (unsigned int uiAddress, unsigned char ucData)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEWE))

/* Set up address and data registers */

EEAR = uiAddress;

EEDR

ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE) ;

/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

}

Assembly Code Example

ATmega32A [DATASHEET]

8155D-AVR-10/2013

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that
interrupts are controlled so that no interrupts will occur during execution of these functions.

22



EEPROM_read:

; Wait for completion of previous write

sbic EECR, EEWE

rjmp EEPROM read

; Set up address (rl18:rl17) in address register
out EEARH, rl8

out EEARL, rl7

; Start eeprom read by writing EERE

sbi EECR, EERE

; Read data from data register

in rl6,EEDR

ret

C Code Example

unsigned char EEPROM read(unsigned int uiAddress)

{

/* Wait for completion of previous write */
while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

23



8. System Clock and Clock Options

8.1 Clock Systems and their Distribution
Figure 8-1 presents the principal clock systems in the AVR and their distribution. All of the clocks need not be
active at a given time. In order to reduce power consumption, the clocks to modules not being used can be halted
by using different sleep modes, as described in ““Power Management and Sleep Modes” on page 32. The clock
systems are detailed Figure 8-1.

Figure 8-1.  Clock Distribution

Asynchronous General /0 Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
A 4 [ 4 A A A 4
clkppc
clkyo AVR Clock clkepy
Control Unit
Clkasy ClKe psp
Y 4
Reset Logic Watchdog Timer
1 :
Source Clock Watchdog Clock
Clock Watchdog
Multiplexer Oscillator
A A A A A

Timer/Counter External RC External Clock Crystal Low-frequency Calibrated RC
Oscillator Oscillator Oscillator Crystal Oscillator Oscillator

8.1.1 CPU Clock — clkepy
The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such mod-
ules are the General Purpose Register File, the Status Register and the data memory holding the Stack Pointer.
Halting the CPU clock inhibits the core from performing general operations and calculations.

8.1.2 I/0 Clock — clkq
The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART. The I/O clock is
also used by the External Interrupt module, but note that some external interrupts are detected by asynchronous
logic, allowing such interrupts to be detected even if the I/O clock is halted. Also note that address recognition in
the TWI module is carried out asynchronously when clk,,5 is halted, enabling TWI address reception in all sleep
modes.

8.1.3 Flash Clock — clkg ash

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously with the
CPU clock.

Atmel ATmega32A [DATASHEET] 24

8155D-AVR-10/2013



8.1.4 Asynchronous Timer Clock — clk,gy
The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly from an external
32kHz clock crystal. The dedicated clock domain allows using this Timer/Counter as a real-time counter even when
the device is in sleep mode.

8.1.5 ADC Clock — clkape
The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce
noise generated by digital circuitry. This gives more accurate ADC conversion results.

8.2 Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown below. The clock from
the selected source is input to the AVR clock generator, and routed to the appropriate modules.

Table 8-1.  Device Clocking Options Select®

Device Clocking Option CKSEL3:0
External Crystal/Ceramic Resonator 1111 - 1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU wakes up from
Power-down or Power-save, the selected clock source is used to time the start-up, ensuring stable Oscillator oper-
ation before instruction execution starts. When the CPU starts from Reset, there is as an additional delay allowing
the power to reach a stable level before commencing normal operation. The Watchdog Oscillator is used for timing
this real-time part of the start-up time. The number of WDT Oscillator cycles used for each time-out is shown in
Table 8-2. The frequency of the Watchdog Oscillator is voltage dependent as shown in “Register Summary” on
page 315.

Table 8-2. Number of Watchdog Oscillator Cycles

Typ Time-out (Ve = 5.0V) Typ Time-out (Ve = 3.0V) Number of Cycles
4.1ms 4.3ms 4K (4,096)
65ms 69ms 64K (65,536)

8.3 Default Clock Source
The device is shipped with CKSEL =“0001" and SUT = “10". The default clock source setting is therefore the 1MHz
Internal RC Oscillator with longest startup time. This default setting ensures that all users can make their desired
clock source setting using an In-System or Parallel Programmer.

8.4  Crystal Oscillator

XTAL1 and XTALZ2 are input and output, respectively, of an inverting amplifier which can be configured for use as
an On-chip Oscillator, as shown in Figure 8-2. Either a quartz crystal or a ceramic resonator may be used. The
CKOPT Fuse selects between two different Oscillator amplifier modes. When CKOPT is programmed, the Oscilla-
tor output will oscillate will a full rail-to-rail swing on the output. This mode is suitable when operating in a very noisy
environment or when the output from XTAL2 drives a second clock buffer. This mode has a wide frequency range.
When CKOPT is unprogrammed, the Oscillator has a smaller output swing. This reduces power consumption con-
siderably. This mode has a limited frequency range and it can not be used to drive other clock buffers.

Atmel ATmega32A [DATASHEET] 25

8155D-AVR-10/2013



For resonators, the maximum frequency is 8MHz with CKOPT unprogrammed and 16 MHz with CKOPT pro-
grammed. C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors
depends on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the
environment. Some initial guidelines for choosing capacitors for use with crystals are given in Table 8-3. For
ceramic resonators, the capacitor values given by the manufacturer should be used.

Figure 8-2.  Crystal Oscillator Connections

s, XTAL2
70 l
c1 T
o St 1 IxTALL
GND

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The operating
mode is selected by the fuses CKSEL3:1 as shown in Table 8-3.

Table 8-3. Crystal Oscillator Operating Modes

Frequency Range Recommended Range for Capacitors C1
CKOPT CKSEL3:1 (MHz) and C2 for Use with Crystals (pF)
1 101® 0.4-0.9 -
1 110 09-3.0 12 - 22
1 111 3.0-8.0 12 -22
0 101, 110, 111 1.0< 12 - 22

Note: 1. This option should not be used with crystals, only with ceramic resonators.
The CKSELO Fuse together with the SUT1:0 fuses select the start-up times as shown in Table 8-4.

Table 8-4. Start-up Times for the Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
CKSELO SUT1:0 Power-save (Vee =5.0V) Recommended Usage

0 00 258 CK® 4.1ms Ceramic resonator, fast rising
power

0 o1 258 CK® 65ms (?gramlc resonator, slowly
rising power

0 10 1K CK®@ _ Ceramic resonator, BOD
enabled

0 11 1K CK® 4.1ms Ceramic resonator, fast rising
power

1 00 1K CK® 65ms (?gramlc resonator, slowly
rising power

Atmel ATmega32A [DATASHEET] 26

8155D-AVR-10/2013



8.5

8.6

Atmel

Table 8-4. Start-up Times for the Crystal Oscillator Clock Selection (Continued)
Start-up Time from Additional Delay
Power-down and from Reset
CKSELO SUT1:0 Power-save (Vec =5.0V) Recommended Usage

1 o1 16K CK B Crystal Oscillator, BOD
enabled

1 10 16K CK 4.1ms Crystal Oscillator, fast rising
power

1 1 16K CK 65ms C_Ir_ystal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and only if

frequency stability at start-up is not important for the application. These options are not suitable for crystals.

These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They can
also be used with crystals when not operating close to the maximum frequency of the device, and if frequency sta-
bility at start-up is not important for the application.

Low-frequency Crystal Oscillator

To use a 32.768kHz watch crystal as the clock source for the device, the Low-frequency Crystal Oscillator must be
selected by setting the CKSEL fuses to “1001". The crystal should be connected as shown in Figure 8-2. By pro-
gramming the CKOPT Fuse, the user can enable internal capacitors on XTAL1 and XTALZ2, thereby removing the

need for external capacitors. The internal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 8-5.

Table 8-5. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vec =5.0v) Recommended Usage
00 1K CKW 4.1ms Fast rising power or BOD enabled
01 1K CK® 65ms Slowly rising power
10 32K CK 65ms Stable frequency at start-up
11 Reserved

Note: 1. These options should only be used if frequency stability at start-up is not important for the application.

External RC Oscillator

For timing insensitive applications, the external RC configuration shown in Figure 8-3 can be used. The frequency
is roughly estimated by the equation f = 1/(3RC). C should be at least 22 pF. By programming the CKOPT Fuse,
the user can enable an internal 36 pF capacitor between XTAL1 and GND, thereby removing the need for an exter-
nal capacitor. For more information on Oscillator operation and details on how to choose R and C, refer to the
External RC Oscillator application note.

ATmega32A [DATASHEET] 27

8155D-AVR-10/2013



Figure 8-3. External RC Configuration

XTAL2

GND

& .
XTAL1

[

1

The Oscillator can operate in four different modes, each optimized for a specific frequency range. The operating
mode is selected by the fuses CKSEL3:0 as shown in Table 8-6.

Table 8-6. External RC Oscillator Operating Modes

CKSEL3:0 Frequency Range (MHz)
0101 0.1-0.9
0110 0.9-3.0
0111 3.0-80
1000 8.0-12.0

When this Oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 8-7.

Table 8-7. Start-up Times for the External RC Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vee =5.0v) Recommended Usage
00 18 CK - BOD enabled
01 18 CK 4.1ms Fast rising power
10 18 CK 65ms Slowly rising power
11 6 CKW 4.1ms Fast rising power or BOD enabled
Note:

1. This option should not be used when operating close to the maximum frequency of the device.

8.7 Calibrated Internal RC Oscillator

The Calibrated Internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. All frequencies are nominal
values at 5V and 25°C. This clock may be selected as the system clock by programming the CKSEL fuses as
shown in Table 8-8. If selected, it will operate with no external components. The CKOPT Fuse should always be
unprogrammed when using this clock option. During Reset, hardware loads the calibration byte for the 1MHz into
the OSCCAL Register and thereby automatically calibrates the RC Oscillator. At 5V, 25°C and 1.0MHz Oscillator
frequency selected, this calibration gives a frequency within 3% of the nominal frequency. Using calibration meth-
ods as described in application notes available at www.atmel.com/avr it is possible to achieve +1% accuracy at any
given V¢ and Temperature. When this Oscillator is used as the Chip Clock, the Watchdog Oscillator will still be

used for the Watchdog Timer and for the reset time-out. For more information on the pre-programmed calibration
value, see the section “Calibration Byte” on page 250.

Atmel ATmega32A [DATASHEET] 28

8155D-AVR-10/2013



8.8

Table 8-8. Internal Calibrated RC Oscillator Operating Modes

CKSEL3:0 Nominal Frequency (MHz)
0001® 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected.
When this Oscillator is selected, start-up times are determined by the SUT fuses as shown in Table 8-9. XTAL1
and XTALZ2 should be left unconnected (NC).

Table 8-9. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vee =5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1ms Fast rising power
10W 6 CK 65ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 8-4 on page 29. To
run the device on an external clock, the CKSEL fuses must be programmed to “0000”. By programming the
CKOPT Fuse, the user can enable an internal 36pF capacitor between XTAL1 and GND.

Figure 8-4.  External Clock Drive Configuration

NC ————— XTAL2
EXTERNAL
cLOcK ————— XTAU
SIGNAL

GND

-

Atmel ATmega32A [DATASHEET] 29

8155D-AVR-10/2013



When this clock source is selected, start-up times are determined by the SUT fuses as shown in Table 8-10.

Table 8-10.  Start-up Times for the External Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vee =5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1ms Fast rising power
10 6 CK 65ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure
stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to
unpredictable behavior. It is required to ensure that the MCU is kept in reset during such changes in the clock
frequency.

8.9 Timer/Counter Oscillator

For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC?2), the crystal is connected directly
between the pins. No external capacitors are needed. The Oscillator is optimized for use with a 32.768kHz watch
crystal. Applying an external clock source to TOSC1 is not recommended.

Note:  The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency Oscillator and the internal
capacitors have the same nominal value of 36pF.

Atmel ATmega32A [DATASHEET] 30

8155D-AVR-10/2013



8.10 Register Description

8.10.1 OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0

| caLz | cae | cas | caa | cALs CAL2 CAL1 cALO | osccaL
Read/Write R/W R/W R/W R/W R/W RIW R/W R/W
Initial Value Device Specific Calibration Value

» Bits 7:0 — CAL7:0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove process variations from the
Oscillator frequency. During Reset, the 1MHz calibration value which is located in the signature row High Byte
(address 0x00) is automatically loaded into the OSCCAL Register. If the internal RC is used at other frequencies,
the calibration values must be loaded manually. This can be done by first reading the signature row by a program-
mer, and then store the calibration values in the Flash or EEPROM. Then the value can be read by software and
loaded into the OSCCAL Register. When OSCCAL is zero, the lowest available frequency is chosen. Writing non-
zero values to this register will increase the frequency of the Internal Oscillator. Writing $FF to the register gives
the highest available frequency. The calibrated Oscillator is used to time EEPROM and Flash access. If EEPROM
or Flash is written, do not calibrate to more than 10% above the nominal frequency. Otherwise, the EEPROM or
Flash write may fail. Note that the Oscillator is intended for calibration to 1.0, 2.0z, 4.0, or 8.0MHz. Tuning to other
values is not guaranteed, as indicated in Table 8-11.

Table 8-11. Internal RC Oscillator Frequency Range.

Min Frequency in Percentage of Max Frequency in Percentage of
OSCCAL Value Nominal Frequency (%) Nominal Frequency (%)
$00 50 100
$7F 75 150
$FF 100 200

Atmel ATmega32A [DATASHEET] 31

8155D-AVR-10/2013



9. Power Management and Sleep Modes

9.1 Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR
provides various sleep modes allowing the user to tailor the power consumption to the application’s requirements.

Figure 8-1 on page 25 presents the different clock systems in the ATmega32A, and their distribution. The figure is
helpful in selecting an appropriate sleep mode. Table 9-1 shows the different clock options and their wake-up

sources.
Table 9-1. Active Clock Domains and Wake Up Sources in the Different Sleep Modes
Active Clock domains Oscillators Wake-up Sources
o] =
=
2 = " 3
~x © = %] @
ST 2 = i
= e]
- B g 5 98 3E ...l %5l s 3 . s
) [ Q < < = > IS [ et = = IS © <
Sleep Mode 5| S| 5| B 3 g(?) F4| 222 Eg Fal G <D£ 58
Idle X | X | X X X@ X X X X | X| X
ADC Noise X| x| x | x@ | xo X | X | x |x
Reduction
Power-down X®
Power-save X® X@ X® X X®
Standby® X X®
Extended
@) 2 ®) (@)
Standby(l) X X X X X X

Notes: 1. External Crystal or resonator selected as clock source.

2. If AS2 bitin ASSR is set.

3. Only INT2 or level interrupt INT1 and INTO.
To enter any of the six sleep modes, the SE bit in MCUCR must be written to logic one and a SLEEP instruction
must be executed. The SM2, SM1, and SMO bits in the MCUCR Register select which sleep mode (Idle, ADC
Noise Reduction, Power-down, Power-save, Standby, or Extended Standby) will be activated by the SLEEP
instruction. See Table 9-2 on page 35 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for
four cycles in addition to the start-up time, it executes the interrupt routine, and resumes execution from the instruc-
tion following SLEEP. The contents of the Register File and SRAM are unaltered when the device wakes up from
sleep. If a Reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.

9.2 Idle Mode
When the SM2:0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU
but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial Interface, Timer/Counters, Watchdog, and
the interrupt system to continue operating. This sleep mode basically halts clkepy and clkg asy, While allowing the
other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the Timer
Overflow and USART Transmit Complete interrupts. If wake-up from the Analog Comparator interrupt is not

ATmega32A [DATASHEET] 32
A t m eL 8155D-AVR-10/2013



required, the Analog Comparator can be powered down by setting the ACD bit in the Analog Comparator Control
and Status Register — ACSR. This will reduce power consumption in Idle mode. If the ADC is enabled, a conver-
sion starts automatically when this mode is entered.

9.3 ADC Noise Reduction Mode

When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC Noise Reduction mode,
stopping the CPU but allowing the ADC, the External Interrupts, the Two-wire Serial Interface address watch,
Timer/Counter2 and the Watchdog to continue operating (if enabled). This sleep mode basically halts clk;,q, Clkcpy,
and clkg asy, While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is
enabled, a conversion starts automatically when this mode is entered. Apart form the ADC Conversion Complete
interrupt, only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface Address
Match Interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an External level interrupt on INTO
or INT1, or an external interrupt on INT2 can wake up the MCU from ADC Noise Reduction mode.

9.4 Power-down Mode

When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-down mode. In this
mode, the External Oscillator is stopped, while the External interrupts, the Two-wire Serial Interface address
watch, and the Watchdog continue operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Two-wire Serial Interface address match interrupt, an External level interrupt on INTO or INT1, or an
External interrupt on INT2 can wake up the MCU. This sleep mode basically halts all generated clocks, allowing
operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level must be held
for some time to wake up the MCU. Refer to “External Interrupts” on page 66 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs until the wake-up
becomes effective. This allows the clock to restart and become stable after having been stopped. The wake-up
period is defined by the same CKSEL fuses that define the reset time-out period, as described in “Clock Sources”
on page 25.

95 Power-save Mode

When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-save mode. This
mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, that is, the AS2 bit in ASSR is set, Timer/Counter2 will run during
sleep. The device can wake up from either Timer Overflow or Output Compare event from Timer/Counter2 if the
corresponding Timer/Counter2 interrupt enable bits are set in TIMSK, and the Global Interrupt Enable bit in SREG
is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is recommended instead of Power-
save mode because the contents of the registers in the Asynchronous Timer should be considered undefined after
wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clk,gy, allowing operation only of asynchronous modules, includ-
ing Timer/Counter2 if clocked asynchronously.

9.6 Standby Mode
When the SM2:0 bits are 110 and an external crystal/resonator clock option is selected, the SLEEP instruction
makes the MCU enter Standby mode. This mode is identical to Power-down with the exception that the Oscillator is
kept running. From Standby mode, the device wakes up in six clock cycles.

Atmel ATmega32A [DATASHEET] 33

8155D-AVR-10/2013



9.7 Extended Standby Mode

When the SM2:0 bits are 111 and an external crystal/resonator clock option is selected, the SLEEP instruction
makes the MCU enter Extended Standby mode. This mode is identical to Power-save mode with the exception that
the Oscillator is kept running. From Extended Standby mode, the device wakes up in six clock cycles.

9.8 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR controlled system.
In general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as
few as possible of the device's functions are operating. All functions not needed should be disabled. In particular,
the following modules may need special consideration when trying to achieve the lowest possible power
consumption.

9.8.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering
any sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion.
Refer to “Analog to Digital Converter” on page 194 for details on ADC operation.

9.8.2 Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering ADC Noise
Reduction mode, the Analog Comparator should be disabled. In the other sleep modes, the Analog Comparator is
automatically disabled. However, if the Analog Comparator is set up to use the Internal Voltage Reference as
input, the Analog Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Reference will
be enabled, independent of sleep mode. Refer to “Analog Comparator” on page 191 for details on how to configure
the Analog Comparator.

9.8.3 Brown-out Detector
If the Brown-out Detector is not needed in the application, this module should be turned off. If the Brown-out Detec-
tor is enabled by the BODEN Fuse, it will be enabled in all sleep modes, and hence, always consume power. In the
deeper sleep modes, this will contribute significantly to the total current consumption. Refer to “Brown-out Detec-
tor” on page 34 for details on how to configure the Brown-out Detector.

9.8.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detector, the Analog Comparator
or the ADC. If these modules are disabled as described in the sections above, the internal voltage reference will be
disabled and it will not be consuming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be used immediately. Refer to
“Internal Voltage Reference” on page 34 for details on the start-up time.

9.8.5 Watchdog Timer
If the Watchdog Timer is not needed in the application, this module should be turned off. If the Watchdog Timer is
enabled, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this
will contribute significantly to the total current consumption. Refer to “Watchdog Timer” on page 34 for details on
how to configure the Watchdog Timer.

9.8.6 Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. The most important thing
is then to ensure that no pins drive resistive loads. In sleep modes where the both the I/O clock (clk;p) and the
ADC clock (clkapc) are stopped, the input buffers of the device will be disabled. This ensures that no power is con-
sumed by the input logic when not needed. In some cases, the input logic is needed for detecting wake-up
conditions, and it will then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 53 for

Atmel ATmega32A [DATASHEET] 34

8155D-AVR-10/2013



details on which pins are enabled. If the input buffer is enabled and the input signal is left floating or have an analog
signal level close to V/2, the input buffer will use excessive power.

9.8.7 JTAG Interface and On-chip Debug System

« If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or Power save
sleep mode, the main clock source remains enabled. In these sleep modes, this will contribute significantly to
the total current consumption. There are three alternative ways to avoid this:

» Disable OCDEN Fuse.
 Disable JTAGEN Fuse.
» Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is not shifting data.
If the hardware connected to the TDO pin does not pull up the logic level, power consumption will increase. Note
that the TDI pin for the next device in the scan chain contains a pull-up that avoids this problem. Writing the JTD bit
in the MCUCSR register to one or leaving the JTAG fuse unprogrammed disables the JTAG interface.

9.9 Register Description

9.9.1 MCUCR — MCU Control Register
The MCU Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0

I s | sv2 | smi | swo | Iscit | Iscio | Iscol | ISC00 | MCUCR
Read/Write R/W RIW RIW RIW RIW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is exe-
cuted. To avoid the MCU entering the sleep mode unless it is the programmers purpose, it is recommended to
write the Sleep Enable (SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately
after waking up.

» Bits 6:4 — SM2:0: Sleep Mode Select Bits 2,1, and 0
These bits select between the six available sleep modes as shown in Table 9-2.

Table 9-2. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved

Atmel ATmega32A [DATASHEET] 35

8155D-AVR-10/2013



Table 9-2. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
1 0 1 Reserved
1 1 0 Standby™®
1 1 1 Extended Standby®

Note: 1. Standby mode and Extended Standby mode are only available with external crystals or resonators.

Atmel ATmega32A [DATASHEET] 36

8155D-AVR-10/2013



10. System Control and Reset

10.1 Resetting the AVR
During Reset, all I/O Registers are set to their initial values, and the program starts execution from the Reset Vec-
tor. The instruction placed at the Reset Vector must be a JMP — absolute jump — instruction to the reset handling
routine. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the Application section while
the Interrupt Vectors are in the Boot section or vice versa. The circuit diagram in Figure 10-1 shows the reset logic.
“System and Reset Characteristics” on page 299 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes active. This does not
require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the Internal Reset. This allows the
power to reach a stable level before normal operation starts. The time-out period of the delay counter is defined by
the user through the CKSEL Fuses. The different selections for the delay period are presented in “Clock Sources”
on page 26.

10.2 Reset Sources
The ATmega32A has five sources of reset:

» Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold (Vpg1).

» External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum
pulse length.

» Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is enabled.

» Brown-out Reset. The MCU is reset when the supply voltage V. is below the Brown-out Reset threshold (Vggr)
and the Brown-out Detector is enabled.

» JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one of the scan chains
of the JTAG system. Refer to the section “IEEE 1149.1 (JTAG) Boundary-scan” on page 233 for details.

Atmel ATmega32A [DATASHEET] 37

8155D-AVR-10/2013



Figure 10-1. Reset Logic

DATA BUS

MCU Control and Status
Register (MCUCSR)
[TRRTRTR TR
SEEEE
vee Power-on ola X =7
Reset Circuit
BODEN Brown-_out_
BODLEVEL Reset Circuit _
[
[H Pull-up Resistor @
SPIKE - \ \ 4
RESET FILTER Reset Circuit - 1| s Q %
t 2 / i}
—R
[ m z
u =
JTAG Reset Watchdog %
Register Timer o
fm}
=
1 E
=)
Watchdog 8
Oscillator
A
Clock CK | Delay Counters —
Generator ¢ TIMEOUT
;T
CKSEL[3:0] —
SUT[1:0]

10.2.1 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level is defined in “Sys-
tem and Reset Characteristics” on page 299. The POR is activated whenever V. is below the detection level. The
POR circuit can be used to trigger the Start-up Reset, as well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on Reset
threshold voltage invokes the delay counter, which determines how long the device is kept in RESET after V. rise.
The RESET signal is activated again, without any delay, when V. decreases below the detection level.

Figure 10-2. MCU Start-up, RESET Tied to V.

1
-~ Veor
Vee J

A,

RESET _/ RST
1
:
1
1,

TIME-OUT < trout ’l
1
1
1
1
1

INTERNAL | |
RESET

Atmel ATmega32A [DATASHEET] 38

8155D-AVR-10/2013



Figure 10-3. MCU Start-up, RESET Extended Externally

1
-7~ Veor
Vee |

RESET

TIME-OUT

INTERNAL |
RESET

10.2.2 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum pulse
width (see “System and Reset Characteristics” on page 299) will generate a reset, even if the clock is not running.
Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the Reset Threshold Volt-
age — Vrs7 — ON its positive edge, the delay counter starts the MCU after the Time-out period t;o has expired.

Figure 10-4. External Reset During Operation

Vee

1
|
| <*— trour _’l
TIME-OUT : !
1
1
1
1
1

INTERNAL | |
RESET

10.2.3 Brown-out Detection
ATmega32A has an On-chip Brown-out Detection (BOD) circuit for monitoring the V. level during operation by
comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the fuse BODLEVEL to be
2.7V (BODLEVEL unprogrammed), or 4.0V (BODLEVEL programmed). The trigger level has a hysteresis to
ensure spike free Brown-out Detection. The hysteresis on the detection level should be interpreted as Vgors = Vgor
+ Viyst/2 and Vgor. = Vior - Viyst/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is enabled (BODEN programmed),
and V. decreases to a value below the trigger level (Vgor. in Figure 10-5), the Brown-out Reset is immediately
activated. When V. increases above the trigger level (Vgor, in Figure 10-5), the delay counter starts the MCU
after the Time-out period t;o 1 has expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level for longer than tgop given
in “System and Reset Characteristics” on page 299.

Atmel ATmega32A [DATASHEET] 39

8155D-AVR-10/2013



Figure 10-5. Brown-out Reset During Operation

Vee
| |
| |
l l
RESET i i
| |
| |
| |
| |
TIME-OUT ! < trout
| |
I I
| |
INTERNAL ‘ l
RESET ‘ |

10.2.4 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge of
this pulse, the delay timer starts counting the Time-out period t;o7. Refer to “Watchdog Timer” on page 42 for
details.

Figure 10-6. Watchdog Reset During Operation

Vee
RESET
WDT —>» l«— 1 CK Cycle
TIME-OUT n
"
1
1
RESET e trour _’l
TIME-OUT |
1

INTERNAL | |
RESET

10.3 Internal Voltage Reference
ATmega32A features an internal bandgap reference. This reference is used for Brown-out Detection, and it can be
used as an input to the Analog Comparator or the ADC. The 2.56V reference to the ADC is generated from the
internal bandgap reference.

10.3.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The start-up time is given
in “System and Reset Characteristics” on page 299. To save power, the reference is not always turned on. The ref-
erence is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the ACBG bit in ACSR).

3. When the ADC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow
the reference to start up before the output from the Analog Comparator or ADC is used. To reduce power con-
sumption in Power-down mode, the user can avoid the three conditions above to ensure that the reference is
turned off before entering Power-down mode.

Atmel ATmega32A [DATASHEET] 40

8155D-AVR-10/2013



10.4

10.5

10.5.1

Watchdog Timer

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1MHz. This is the typical value at
V¢ = 5V. See characterization data for typical values at other V. levels. By controlling the Watchdog Timer pres-
caler, the Watchdog Reset interval can be adjusted as shown in Table 10-1 on page 44. The WDR — Watchdog
Reset — instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is disabled and when a
Chip Reset occurs. Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the ATmega32A resets and executes from the Reset Vector. For
timing details on the Watchdog Reset, refer to page 41.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be followed when the Watch-
dog is disabled. Refer to the description of the Watchdog Timer Control Register for details.

Figure 10-7. Watchdog Timer

WATCHDOG R WATCHDOG
OSCILLATOR (< PRESCALER
I XIX|IX|X|X| XX
R FEIEIENE
olalaol=|9Lel8|R
WATCHDOG 88|8|2|3|3|3|2
RESET 818
YVVYVYVVYYVYY
WDPO N
WDP1 »
WDP2 AN
WDE
MCU RESET

Register Description

MCUCSR — MCU Control and Status Register
The MCU Control and Status Register provides information on which reset source caused an MCU Reset.

Bit 7 6 5 4 3 2 1 0

| oo | 1sc2 | = | JTRF | WDRF | BORF | EXTRF | PORF | MCUCSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 0 See Bit Description

* Bit4-JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by the JTAG instruction
AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

» Bit 3-WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.

» Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.

» Bit 1 - EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

» Bit 0 — PORF: Power-on Reset Flag

Atmel ATmega32A [DATASHEET] 41

8155D-AVR-10/2013



10.5.2

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then reset the MCUCSR as
early as possible in the program. If the register is cleared before another reset occurs, the source of the reset can
be found by examining the Reset Flags.

WDTCR — Watchdog Timer Control Register

Bit 7 6 5 4 3 2 1 0

| - | - | - | WDTOE | WDE WDP2 WDP1 wpPo | wDTCR
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bits 7:5 — Reserved Bits
These bits are reserved bits in the ATmega32A and will always read as zero.

e Bit 4 - WDTOE: Watchdog Turn-off Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not be disabled. Once
written to one, hardware will clear this bit after four clock cycles. Refer to the description of the WDE bit for a
Watchdog disable procedure.

e Bit 3—- WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written to logic zero, the
Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE bit has logic level one. To disable an
enabled Watchdog Timer, the following procedure must be followed:

1. In the same operation, write a logic one to WDTOE and WDE. A logic one must be written to WDE even
though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.

» Bits 2:0 - WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and O
The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the Watchdog Timer is
enabled. The different prescaling values and their corresponding Timeout Periods are shown in Table 10-1.

Table 10-1. Watchdog Timer Prescale Select

Number of WDT Typical Time-out Typical Time-out
WwDP2 | WDP1 | WDPO Oscillator Cycles at Ve = 3.0V at Ve = 5.0V
0 0 0 16K (16,384) 17.1ms 16.3ms
0 0 1 32K (32,768) 34.3ms 32.5ms
0 1 0 64K (65,536) 68.5ms 65ms
0 1 1 128K (131,072) 0.14s 0.13s
1 0 0 256K (262,144) 0.27s 0.26s
1 0 1 512K (524,288) 0.55s 0.52s
1 1 0 1,024K (1,048,576) 1.1s 1.0s
1 1 1 2,048K (2,097,152) 2.2s 2.1s

Atmel ATmega32A [DATASHEET] 42

8155D-AVR-10/2013



The following code example shows one assembly and one C function for turning off the WDT. The example
assumes that interrupts are controlled (for example by disabling interrupts globally) so that no interrupts will occur
during execution of these functions.

Assembly Code Example

WDT off:
; reset WDT
wdr
; Write logical one to WDTOE and WDE
in 1rl6, WDTCR
ori rlé6, (1<<WDTOE) | (1<<WDE)
out WDTCR, rlé6
; Turn off WDT
1di r16, (0<<WDE)
out WDTCR, rlé

ret

C Code Example

void WDT off (void)
{
/* reset WDT */
_WDR () ;
/* Write logical one to WDTOE and WDE */
WDTCR |= (1<<WDTOE) | (1<<WDE);
/* Turn off WDT */
WDTCR = 0x00;

Atmel ATmega32A [DATASHEET] 43

8155D-AVR-10/2013



11. Interrupts

This section describes the specifics of the interrupt handling as performed in ATmega32A. For a general explana-
tion of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on page 13.

11.1

Interrupt Vectors in ATmega32A

Table 11-1. Reset and Interrupt Vectors
Program
Vector No. | Address® Source Interrupt Definition
1 $000® RESET External Pin, Power-on Reset, Brown-out Reset,
Watchdog Reset, and JTAG AVR Reset
2 $002 INTO External Interrupt Request 0
3 $004 INT1 External Interrupt Request 1
4 $006 INT2 External Interrupt Request 2
5 $008 TIMER2 COMP Timer/Counter2 Compare Match
6 $00A TIMER2 OVF Timer/Counter2 Overflow
7 $00C TIMER1 CAPT Timer/Counterl Capture Event
8 $00E TIMER1 COMPA | Timer/Counterl Compare Match A
9 $010 TIMER1 COMPB | Timer/Counterl Compare Match B
10 $012 TIMER1 OVF Timer/Counterl Overflow
11 $014 TIMERO COMP Timer/Counter0 Compare Match
12 $016 TIMERO OVF Timer/Counter0 Overflow
13 $018 SPI, STC Serial Transfer Complete
14 $01A USART, RXC USART, Rx Complete
15 $01C USART, UDRE USART Data Register Empty
16 $01E USART, TXC USART, Tx Complete
17 $020 ADC ADC Conversion Complete
18 $022 EE_RDY EEPROM Ready
19 $024 ANA_COMP Analog Comparator
20 $026 TWI Two-wire Serial Interface
21 $028 SPM_RDY Store Program Memory Ready
Notes: 1. When the BOOTRST fuse is programmed, the device will jump to the Boot Loader address at reset, see “Boot

Loader Support — Read-While-Write Self-Programming” on page 252.
2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the Boot Flash section. The
address of each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash
section.
Table 11-2 shows Reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL
settings. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the Application section while
the Interrupt Vectors are in the Boot section or vice versa.

Atmel

ATmega32A [DATASHEET] 44

8155D-AVR-10/2013



Table 11-2.  Reset and Interrupt Vectors Placement™®

BOOTRST IVSEL Reset address Interrupt Vectors Start Address
1 0 $0000 $0002
1 1 $0000 Boot Reset Address + $0002
0 0 Boot Reset Address $0002
0 1 Boot Reset Address Boot Reset Address + $0002

Note: 1. The Boot Reset Address is shown in Table 25-6 on page 263. For the BOOTRST Fuse “1” means unprogrammed
while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega32A is:

Address Labels Code Comments

$000 jmp RESET ; Reset Handler

$002 jmp EXT INTO ; IRQO Handler

$004 jmp EXT INT1 ; IRQ1 Handler

$006 jmp EXT INT2 ; IRQ2 Handler

$008 jmp TIM2_ COMP ; Timer2 Compare Handler

S00A jmp TIM2 OVF ; Timer2 Overflow Handler

$00C jmp TIM1_CAPT ; Timerl Capture Handler

SO0E jmp TIM1_COMPA ; Timerl CompareA Handler

$010 jmp TIM1 COMPB ; Timerl CompareB Handler

$012 jmp TIM1_OVF ; Timerl Overflow Handler

$014 jmp TIMO_COMP ; Timer0 Compare Handler

$016 jmp TIMO_OVF ; Timer0 Overflow Handler

$018 jmp SPI_STC ; SPI Transfer Complete Handler
S01A jmp USART RXC ; USART RX Complete Handler

$S01C jmp USART UDRE ; UDR Empty Handler

SO01E jmp USART_TXC ; USART TX Complete Handler

$020 jmp ADC ; ADC Conversion Complete Handler
$022 jmp EE_RDY ; EEPROM Ready Handler

$024 jmp ANA_ COMP ; Analog Comparator Handler

$026 jmp TWI ; Two-wire Serial Interface Handler
$028 jmp SPM _RDY ; Store Program Memory Ready Handler
S02A RESET: 1di rlé6,high(RAMEND); Main program start

$S02B out SPH,rlé6 ; Set Stack Pointer to top of RAM
$02C 1di 1rlé6,low (RAMEND)

$02D out SPL,rlé6

S02E sei ; Enable interrupts

SO02F <instr> xxx

Atmel ATmega32A [DATASHEET] 45

8155D-AVR-10/2013



When the BOOTRST Fuse is unprogrammed, the Boot section size set to 4Kbytes and the IVSEL bit in the GICR
Register is set before any interrupts are enabled, the most typical and general program setup for the Reset and
Interrupt Vector Addresses is:

Address Labels Code Comments

$000 RESET: 1di rl16,high(RAMEND); Main program start

$001 out SPH,rlé6 ; Set Stack Pointer to top of RAM
$002 1di rlé,low (RAMEND)

$003 out SPL,rlé6

3004 sei ; Enable interrupts

$005 <instr> xxx

.org $3802

$3802 jmp EXT INTO ; IRQO Handler

$3804 jmp EXT INT1 ; IRQ1 Handler

$3828 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 4Kbytes, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org $002

$002 jmp EXT INTO ; IRQO Handler

3004 jmp EXT INT1 ; IRQ1 Handler

$028 jmp SPM_RDY ; Store Program Memory Ready Handler
.org $3800

$3800 RESET: 1di 1rl6,high(RAMEND); Main program start

$3801 out SPH,rlé6 ; Set Stack Pointer to top of RAM
$3802 1di rl6,low (RAMEND)

$3803 out SPL,rlé6

$3804 sei ; Enable interrupts

$3805 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 4Kbytes and the IVSEL bit in the GICR
Register is set before any interrupts are enabled, the most typical and general program setup for the Reset and
Interrupt Vector Addresses is:

Address Labels Code Comments

.org $3800

$3800 jmp RESET ; Reset handler

$3802 jmp EXT INTO ; IRQO Handler

$3804 jmp EXT INT1 ; IRQ1 Handler

$3828 jmp SPM RDY ; Store Program Memory Ready Handler

I

$382A RESET: 1ldi r16,high(RAMEND); Main program start

$382B out SPH,rlé6 ; Set Stack Pointer to top of RAM
$382C 1di r16,low(RAMEND)
$382D out SPL,rlé6

Atmel ATmega32A [DATASHEET] 46

8155D-AVR-10/2013



$S382E sei ; Enable interrupts

$382F <instr> xxx

11.11 Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

11.2 Register Description

11.21 GICR - General Interrupt Control Register

Bit 7 6 5 4 3 2 1 0

| o~ | NTO | N2 | = | = = IVSEL IVCE | GICR
Read/Write RIW RIW RIW R R R RIW RIW
Initial Value 0 0 0 0 0 0 0 0

» Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash memory. When this
bit is set (one), the interrupt vectors are moved to the beginning of the Boot Loader section of the Flash. The actual
address of the start of the Boot Flash section is determined by the BOOTSZ fuses. Refer to the section “Boot
Loader Support — Read-While-Write Self-Programming” on page 252 for details. To avoid unintentional changes of
Interrupt Vector tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE
is set, and they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, inter-
rupts remain disabled for four cycles. The I-bit in the Status Register is unaffected by the automatic disabling.

Note:  If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed, interrupts are dis-
abled while executing from the Application section. If Interrupt Vectors are placed in the Application section and Boot
Lock bit BLB12 is programed, interrupts are disabled while executing from the Boot Loader section. Refer to the sec-
tion “Boot Loader Support — Read-While-Write Self-Programming” on page 252 for details on Boot Lock bits.

» Bit 0 - IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four
cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the
IVSEL description above. See Code Example below.’

Assembly Code Example

Atmel ATmega32A [DATASHEET] 47

8155D-AVR-10/2013



Move interrupts:
; Enable change of interrupt vectors

1di r16, (1<<IVCE)

out GICR, rle

; Move interrupts to boot Flash section

1di r16, (1<<IVSEL)

out GICR, rle

ret

C Code Example

void Move interrupts (void)

{

/* Enable change of interrupt vectors */
GICR = (1<<IVCE) ;
/* Move interrupts to boot Flash section */

GICR = (1<<IVSEL) ;

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

48



12. I/O Ports

12.1 Overview

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that
the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the
SBI and CBI instructions. The same applies when changing drive value (if configured as output) or enabling/dis-
abling of pull-up resistors (if configured as input). Each output buffer has symmetrical drive characteristics with
both high sink and source capability. The pin driver is strong enough to drive LED displays directly. All port pins
have individually selectable pull-up resistors with a supply-voltage invariant resistance. All /0 pins have protection
diodes to both V. and Ground as indicated in Figure 12-1. Refer to “Electrical Characteristics” on page 296 for a
complete list of parameters.

Figure 12-1. 1/O Pin Equivalent Schematic

pu

Logic

See Figure 23
"General Digital I/0" for
Details

All registers and bit references in this section are written in general form. A lower case “x” represents the number-
ing letter for the port, and a lower case “n” represents the bit number. However, when using the register or bit
defines in a program, the precise form must be used, that is, PORTB3 for bit no. 3 in Port B, here documented gen-
erally as PORTxn. The physical I/O Registers and bit locations are listed in “Register Description” on page 66.

Three 1/0 memory address locations are allocated for each port, one each for the Data Register — PORTX, Data
Direction Register — DDRX, and the Port Input Pins — PINx. The Port Input Pins I/O location is read only, while the
Data Register and the Data Direction Register are read/write. In addition, the Pull-up Disable — PUD bit in SFIOR
disables the pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital 1/0” on page 51. Most port pins
are multiplexed with alternate functions for the peripheral features on the device. How each alternate function inter-
feres with the port pin is described in “Alternate Port Functions” on page 55. Refer to the individual module sections
for a full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port
as general digital I/O.

Atmel ATmega32A [DATASHEET] 49

8155D-AVR-10/2013



12.2 Ports as General Digital /0

The ports are bi-directional 1/0O ports with optional internal pull-ups. Figure 12-2 shows a functional description of
one 1/O-port pin, here generically called Pxn.

Figure 12-2. General Digital I/0®

A

Ve =L PUD
:} /7
Q D :
DDxn
3., S
I _l_ WDx
RESET
RDx
E (9p]
2
/‘ dl
P : Q D
i \I PORTxn h <
Ton <—|_ |<T:
I WPx o
RESET
p———— SLEEP : RRx
SYNCHRONIZER
| —————— RPx
— 7> D a)——D Q _|_| g >
= | PINXn |
| ’7 L q "> 3 |
|_ _____ f clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk, 1/0 CLOCK RRx: READ PORTx REGISTER

Vo RPX: READ PORTX PIN

Note: 1. WPx, WDX, RRx, RPx, and RDx are common to all pins within the same port. clk,5, SLEEP, and PUD are common
to all ports.

12.21 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register Description” on
page 66, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address, and
the PINXxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is configured
as an output pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To switch
the pull-up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output pin. The
port pins are tri-stated when a reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If
PORTxn is written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an inter-
mediate state with either pull-up enabled ({DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} = 0b10) must
occur. Normally, the pull-up enabled state is fully acceptable, as a high-impedant environment will not notice the
difference between a strong high driver and a pull-up. If this is not the case, the PUD bit in the SFIOR Register can
be set to disable all pull-ups in all ports.

Atmel ATmega32A [DATASHEET] 50

8155D-AVR-10/2013



Switching between input with pull-up and output low generates the same problem. The user must use either the tri-
state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = Ob11) as an intermediate step.

Table 12-1 summarizes the control signals for the pin value.

Table 12-1.  Port Pin Configurations
PUD
DDxn PORTxn (in SFIOR) /0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-2)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-2)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

12.2.2 Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit. As
shown in Figure 12-2, the PINxn Register bit and the preceding latch constitute a synchronizer. This is needed to
avoid metastability if the physical pin changes value near the edge of the internal clock, but it also introduces a
delay. Figure 12-3 shows a timing diagram of the synchronization when reading an externally applied pin value.
The maximum and minimum propagation delays are denoted tyg nax and tog min respectively.

Figure 12-3. Synchronization when Reading an Externally Applied Pin Value

SYSTEM CLK
INSTRUCTIONS X

SYNC LATCH

3

XXX

>< X)j‘(X >< in 117, PINX ><

PINxn

r17

000 X oxFF

tpd, max

'
Ll

§ tpd, min

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when
the clock is low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC
LATCH?" signal. The signal value is latched when the system clock goes low. It is clocked into the PINxn Register at
the succeeding positive clock edge. As indicated by the two arrows t,q max and tyg min, @ single signal transition on
the pin will be delayed between %2 and 1%z system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 12-4.
The out instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay t,q
through the synchronizer is one system clock period.

Atmel

ATmega32A [DATASHEET] 51

8155D-AVR-10/2013



Figure 12-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK

r16

OxFF

INSTRUCTIONS X out PORTX, r16 >< nop >< inr17,PINx X

SYNC LATCH
PINxn
17 § 0x00 § X oxFF
tpd
t —>

Atmel

ATmega32A [DATASHEET] 52

8155D-AVR-10/2013



The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins from
4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but as pre-
viously discussed, a nop instruction is included to be able to read back the value recently assigned to some of the
pins.

Assembly Code Example®

; Define pull-ups and set outputs high

; Define directions for port pins

1di 1r16, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PB0)

1di 117, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDRBO)
out PORTB,rlé6

out DDRB,rl7

; Insert nop for synchronization

nop

; Read port pins

in rlé6, PINB

C Code Example®

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDRBO) ;
/* Insert nop for synchronization*/

_NOP() ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins 0,
1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as strong
high drivers.

12.2.3 Digital Input Enable and Sleep Modes
As shown in Figure 12-2, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The
signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-down mode, Power-save mode,
Standby mode, and Extended Standby mode to avoid high power consumption if some input signals are left float-
ing, or have an analog signal level close to V./2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External Interrupt Request is not
enabled, SLEEP is active also for these pins. SLEEP is also overridden by various other alternate functions as
described in “Alternate Port Functions” on page 55.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as “Interrupt on Rising
Edge, Falling Edge, or Any Logic Change on Pin” while the External Interrupt is not enabled, the corresponding
External Interrupt Flag will be set when resuming from the above mentioned sleep modes, as the clamping in these
sleep modes produces the requested logic change.

Atmel ATmega32A [DATASHEET] 53

8155D-AVR-10/2013



12.2.4 Unconnected pins
If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of
the digital inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to
reduce current consumption in all other modes where the digital inputs are enabled (Reset, Active mode and Idle
mode).
The simplest method to ensure a defined level of an unused pin, is to enable the internal pullup. In this case, the
pullup will be disabled during reset. If low power consumption during reset is important, it is recommended to use
an external pullup or pulldown. Connecting unused pins directly to V- or GND is not recommended, since this
may cause excessive currents if the pin is accidentally configured as an output.
12.3 Alternate Port Functions
Most port pins have alternate functions in addition to being General Digital 1/0Os. Figure 12-5 shows how the port
pin control signals from the simplified Figure 12-2 can be overridden by alternate functions. The overriding signals
may not be present in all port pins, but the figure serves as a generic description applicable to all port pins in the
AVR microcontroller family.
Figure 12-5. Alternate Port Functions®
PUOExn A
PUOVxn
PUD
DDOExn
B S f DDOVxn
T WDx
PVOExn RESET
PVOVxn RDx
N NN I
1 3
Pxn
SN ot <
5 2
DIEOExn o Wex a
o<} DIEOVXn RESET
1 RRx
SLEEP [:
SYNCHRONIZER
- » Dixn
<@ AlOxn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE v
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WPx: WRITE PORTx
PVOVxn:  Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE clkyot I/0 CLOCK
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE Dixn: DIGITAL INPUT PIN n ON PORTx
SLEEP: SLEEP CONTROL AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx
Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,o, SLEEP, and PUD are common
to all ports. All other signals are unique for each pin.
ATmega32A [DATASHEET] 54
A t m eL 8155D-AVR-10/2013



Table 12-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 12-5 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the alternate
function.

Table 12-2.  Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description
PUOE Pull-up Override If this signal is set, the pull-up enable is controlled by the
Enable PUOQV signal. If this signal is cleared, the pull-up is enabled
when {DDxn, PORTxn, PUD} = 0b010.
PUOV Pull-up Override Value | If PUOE is set, the pull-up is enabled/disabled when PUOV

is set/cleared, regardless of the setting of the DDxn,
PORTxn, and PUD Register bits.

DDOE Data Direction If this signal is set, the Output Driver Enable is controlled by
Override Enable the DDOV signal. If this signal is cleared, the Output driver
is enabled by the DDxn Register bit.
DDOV Data Direction If DDOE is set, the Output Driver is enabled/disabled when
Override Value DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.
PVOE Port Value Override If this signal is set and the Output Driver is enabled, the port
Enable value is controlled by the PVOV signal. If PVOE is cleared,

and the Output Driver is enabled, the port Value is
controlled by the PORTxn Register bit.

PVOV Port Value Override If PVOE is set, the port value is set to PVOV, regardless of
Value the setting of the PORTxn Register bit.
DIEOE Digital Input Enable If this bit is set, the Digital Input Enable is controlled by the
Override Enable DIEQV signal. If this signal is cleared, the Digital Input
Enable is determined by MCU-state (Normal Mode, sleep
modes).
DIEOV Digital Input Enable If DIEOE is set, the Digital Input is enabled/disabled when
Override Value DIEQV is set/cleared, regardless of the MCU state (Normal

Mode, sleep modes).

DI Digital Input This is the Digital Input to alternate functions. In the figure,
the signal is connected to the output of the schmitt trigger
but before the synchronizer. Unless the Digital Input is used
as a clock source, the module with the alternate function will
use its own synchronizer.

AIO Analog Input/ output This is the Analog Input/output to/from alternate functions.
The signal is connected directly to the pad, and can be used
bi-directionally.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals to
the alternate function. Refer to the alternate function description for further details.

12.3.1 Alternate Functions of Port A
Port A has an alternate function as analog input for the ADC as shown in Table 12-3. If some Port A pins are con-
figured as outputs, it is essential that these do not switch when a conversion is in progress. This might corrupt the
result of the conversion.

Atmel ATmega32A [DATASHEET] 55

8155D-AVR-10/2013



Table 12-3. Port A Pins Alternate Functions

Port Pin Alternate Function
PA7 ADCY7 (ADC input channel 7)
PAG6 ADCS6 (ADC input channel 6)
PA5 ADCS5 (ADC input channel 5)
PA4 ADC4 (ADC input channel 4)
PA3 ADC3 (ADC input channel 3)
PA2 ADC2 (ADC input channel 2)
PA1 ADC1 (ADC input channel 1)
PAO ADCO (ADC input channel 0)

Table 12-4 and Table 12-5 relate the alternate functions of Port A to the overriding signals shown in Figure 12-5 on
page 56.

Table 12-4.  Overriding Signals for Alternate Functions in PA7:PA4

Signal Name PA7/ADC7 PAG/ADC6 PA5/ADC5 PA4/ADCA4
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AlIO ADC7 INPUT ADCG6 INPUT ADCS5 INPUT ADC4 INPUT

Table 12-5.  Overriding Signals for Alternate Functions in PA3:PAQ

Signal Name PA3/ADC3 PA2/ADC2 PA1/ADC1 PAO/ADCO
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AlIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADCO INPUT

Atmel ATmega32A [DATASHEET] 56

8155D-AVR-10/2013



12.3.2 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 12-6.

Table 12-6. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7 SCK (SPI Bus Serial Clock)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB4 SS (SPI Slave Select Input)

PB3 AIN1 (Analog Comparator Negative Input)
OCO (Timer/Counter0 Output Compare Match Output)

PE2 AINO (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)

PB1 T1 (Timer/Counterl External Counter Input)

PBO TO (Timer/Counter0O External Counter Input)

XCK (USART External Clock Input/Output)

The alternate pin configuration is as follows:

*+ SCK -Port B, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a Slave, this pin is configured
as an input regardless of the setting of DDB7. When the SPI is enabled as a Master, the data direction of this pin is
controlled by DDB7. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the
PORTB?7 bit.

* MISO - Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI. When the SPI is enabled as a Master, this pin is config-
ured as an input regardless of the setting of DDB6. When the SPI is enabled as a Slave, the data direction of this
pin is controlled by DDB6. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the
PORTBS® bit.

* MOSI - Port B, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a Slave, this pin is configured
as an input regardless of the setting of DDB5. When the SPI is enabled as a Master, the data direction of this pin is
controlled by DDB5. When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the
PORTBS bit.

. SS-—Port B, Bit 4

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input regardless of the set-
ting of DDB4. As a Slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a Master, the
data direction of this pin is controlled by DDB4. When the pin is forced by the SPI to be an input, the pull-up can still
be controlled by the PORTBA4 bit.

* AIN1/OCO - Port B, Bit 3
AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up switched off to
avoid the digital port function from interfering with the function of the analog comparator.

Atmel ATmega32A [DATASHEET] 57

8155D-AVR-10/2013



OCO0, Output Compare Match output: The PB3 pin can serve as an external output for the Timer/Counter0 Com-
pare Match. The PB3 pin has to be configured as an output (DDB3 set (one)) to serve this function. The OCO pin is
also the output pin for the PWM mode timer function.

* AINO/INT2 — Port B, Bit 2
AINO, Analog Comparator Positive input. Configure the port pin as input with the internal pull-up switched off to
avoid the digital port function from interfering with the function of the Analog Comparator.

INT2, External Interrupt Source 2: The PB2 pin can serve as an external interrupt source to the MCU.

e T1-PortB,Bit1l
T1, Timer/Counterl Counter Source.

* TO/XCK — Port B, Bit 0
TO, Timer/CounterO Counter Source.

XCK, USART External Clock. The Data Direction Register (DDBO) controls whether the clock is output (DDBO set)
or input (DDBO cleared). The XCK pin is active only when the USART operates in Synchronous mode.

Table 12-7 and Table 12-8 relate the alternate functions of Port B to the overriding signals shown in Figure 12-5 on
page 56. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal, while MOSI is divided into SPI
MSTR OUTPUT and SPI SLAVE INPUT.

Table 12-7.  Overriding Signals for Alternate Functions in PB7:PB4
Signal _
Name | PB7/SCK PB6/MISO PB5/MOSI PB4/SS
PUOE | SPE-MSTR SPE » MSTR SPE « MSTR SPE « MSTR
PUOV | PORTB7+PUD | PORTB6 « PUD PORTB5 « PUD PORTB4 « PUD
DDOE | SPE«MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV | 0 0 0 0
PVOE | SPE+MSTR SPE « MSTR SPE « MSTR 0
PVOV | SCK OUTPUT SPI SLAVE OUTPUT SPI MSTR OUTPUT 0
DIECE | 0 0 0 0
DIEOV | 0 0 0 0
DI SCK INPUT SPI MSTR INPUT SPI SLAVE INPUT SPI SS
AIO - - - -

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

58



Table 12-8.  Overriding Signals for Alternate Functions in PB3:PB0

ilgmnzl PB3/OCO/AIN1 PB2/INT2/AINO PB1/T1 PBO/TO/XCK
PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OCO ENABLE 0 0 UMSEL
PVOV 0ocCo 0 0 XCK OUTPUT
DIEOE 0 INT2 ENABLE 0 0

DIEOV 0 1 0 0

DI - INT2 INPUT T1INPUT XCK INPUT/TO INPUT
AlIO AIN1 INPUT AINO INPUT - -

12.3.3 Alternate Functions of Port C
The Port C pins with alternate functions are shown in Table 12-9. If the JTAG interface is enabled, the pull-up resis-
tors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

Table 12-9. Port C Pins Alternate Functions

Port Pin Alternate Function
PC7 TOSC2 (Timer Oscillator Pin 2)
PC6 TOSC1 (Timer Oscillator Pin 1)
PC5 TDI (JTAG Test Data In)
PC4 TDO (JTAG Test Data Out)
PC3 TMS (JTAG Test Mode Select)
PC2 TCK (JTAG Test Clock)
PC1 SDA (Two-wire Serial Bus Data Input/Output Line)
PCO SCL (Two-wire Serial Bus Clock Line)

The alternate pin configuration is as follows:

e TOSC2 -Port C,Bit7

TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asynchronous clocking of
Timer/Counter2, pin PC7 is disconnected from the port, and becomes the inverting output of the Oscillator ampli-
fier. In this mode, a Crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

+ TOSC1-Port C, Bit6

TOSC1, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asynchronous clocking of
Timer/Counter2, pin PC6 is disconnected from the port, and becomes the input of the inverting Oscillator amplifier.
In this mode, a Crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

* TDI-Port C, Bit5
TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Register (scan chains).
When the JTAG interface is enabled, this pin can not be used as an 1/O pin.

Atmel ATmega32A [DATASHEET] 59

8155D-AVR-10/2013



+ TDO -Port C, Bit 4
TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When the JTAG interface
is enabled, this pin can not be used as an 1/O pin.

The TDO pin is tri-stated unless TAP states that shifts out data are entered.

+ TMS-Port C, Bit 3
TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller state machine. When the
JTAG interface is enabled, this pin can not be used as an I/O pin.

» TCK —-Port C, Bit 2
TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is enabled, this pin can
not be used as an I/O pin.

+ SDA -PortC, Bit1

SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the Two-wire Serial Inter-
face, pin PC1 is disconnected from the port and becomes the Serial Data I/O pin for the Two-wire Serial Interface.
In this mode, there is a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the pin
is driven by an open drain driver with slew-rate limitation. When this pin is used by the Two-wire Serial Interface,
the pull-up can still be controlled by the PORTC1 bit.

* SCL—PortC,Bit0

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the Two-wire Serial
Interface, pin PCO is disconnected from the port and becomes the Serial Clock 1/O pin for the Two-wire Serial Inter-
face. In this mode, there is a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and
the pin is driven by an open drain driver with slew-rate limitation. When this pin is used by the Two-wire Serial Inter-
face, the pull-up can still be controlled by the PORTCO bit.

Table 12-10 and Table 12-11 relate the alternate functions of Port C to the overriding signals shown in Figure 12-5

on page 56.

Table 12-10. Overriding Signals for Alternate Functions in PC7:PC4
Signal
Name PC7/TOSC2 PC6/TOSC1 PC5/TDI PC4/TDO
PUOE AS2 AS2 JTAGEN JTAGEN
PUOV 0 0 1 0
DDOE AS2 AS2 JTAGEN JTAGEN
DDOV 0 0 0 SHIFT_IR + SHIFT_DR
PVOE 0 0 0 JTAGEN
PVOV 0 0 0 TDO
DIEOE AS2 AS2 JTAGEN JTAGEN
DIEOV 0 0 0 0
DI - - - -
AIO T/C2 OSC OUTPUT T/C2 OSC INPUT TDI -

Atmel

ATmega32A [DATASHEET] 60

8155D-AVR-10/2013



Table 12-11. Overriding Signals for Alternate Functions in PC3:PC0®

ﬁfmni' PC3/TMS PC2/TCK PC1/SDA PCO/SCL
PUOE JTAGEN JTAGEN TWEN TWEN
PUOV 1 1 PORTC1 * PUD PORTCO » PUD
DDOE JTAGEN JTAGEN TWEN TWEN
DDOV 0 0 SDA_OUT SCL_OUT
PVOE 0 0 TWEN TWEN
PVOV 0 0 0 0

DIEOE JTAGEN JTAGEN 0 0

DIEOV 0 0 0 0

DI - - - -

AIO T™S TCK SDA INPUT SCL INPUT

Note: 1. When enabled, the Two-wire Serial Interface enables slew-rate controls on the output pins PCO and PC1. This is
not shown in the figure. In addition, spike filters are connected between the AlO outputs shown in the port figure
and the digital logic of the TWI module.

12.3.4  Alternate Functions of Port D
The Port D pins with alternate functions are shown in Table 12-12.

Table 12-12. Port D Pins Alternate Functions

Port Pin Alternate Function
PD7 OC2 (Timer/Counter2 Output Compare Match Output)
PD6 ICP1 (Timer/Counterl Input Capture Pin)
PD5 OC1A (Timer/Counterl Output Compare A Match Output)
PD4 OC1B (Timer/Counterl Output Compare B Match Output)
PD3 INT1 (External Interrupt 1 Input)
PD2 INTO (External Interrupt O Input)
PD1 TXD (USART Output Pin)
PDO RXD (USART Input Pin)

The alternate pin configuration is as follows:

+ OC2-PortD,Bit7

OC2, Timer/Counter2 Output Compare Match output: The PD7 pin can serve as an external output for the
Timer/Counter2 Output Compare. The pin has to be configured as an output (DDD7 set (one)) to serve this func-
tion. The OC2 pin is also the output pin for the PWM mode timer function.

» ICP1-Port D, Bit 6
ICP1 — Input Capture Pin: The PD6 pin can act as an Input Capture pin for Timer/Counterl.

* OCl1A —Port D, Bit5

Atmel ATmega32A [DATASHEET] 61

8155D-AVR-10/2013



OC1A, Output Compare Match A output: The PD5 pin can serve as an external output for the Timer/Counterl Out-
put Compare A. The pin has to be configured as an output (DDDS5 set (one)) to serve this function. The OC1A pin
is also the output pin for the PWM mode timer function.

 OC1B - Port D, Bit 4

OC1B, Output Compare Match B output: The PD4 pin can serve as an external output for the Timer/Counterl Out-
put Compare B. The pin has to be configured as an output (DDD4 set (one)) to serve this function. The OC1B pin
is also the output pin for the PWM mode timer function.

e INT1-Port D, Bit3
INT1, External Interrupt Source 1: The PD3 pin can serve as an external interrupt source.

* INTO - Port D, Bit 2
INTO, External Interrupt Source 0: The PD2 pin can serve as an external interrupt source.

e TXD-PortD,Bit1l
TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled, this pin is config-
ured as an output regardless of the value of DDD1.

e RXD -Port D, Bit0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this pin is configured as
an input regardless of the value of DDD0O. When the USART forces this pin to be an input, the pull-up can still be
controlled by the PORTDO bit.

Table 12-13 and Table 12-14 relate the alternate functions of Port D to the overriding signals shown in Figure 12-5

on page 56.
Table 12-13. Overriding Signals for Alternate Functions PD7:PD4
Signal Name PD7/0C2 PD6/ICP1 PD5/OC1A PD4/0C1B
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE OC2 ENABLE 0 OC1A ENABLE OC1B ENABLE
PVOV OC2 0 OC1A OC1B
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - ICP1 INPUT - -
AlO - - - -

Atmel ATmega32A [DATASHEET] 62

8155D-AVR-10/2013



Table 12-14. Overriding Signals for Alternate Functions in PD3:PDO

Signal Name PD3/INT1 PD2/INTO PD1/TXD PDO/RXD
PUOE 0 0 TXEN RXEN
PUOV 0 0 0 PORTDO «» PUD
DDOE 0 0 TXEN RXEN
DDOV 0 0 1 0
PVOE 0 0 TXEN 0
PVOV 0 0 TXD 0
DIEOE INT1 ENABLE INTO ENABLE 0 0
DIEOV 1 1 0 0
DI INT1 INPUT INTO INPUT - RXD
AIO - - - -
12.4 Register Description
124.1 SFIOR - Special Function I/O Register
Bit 7 6 5 4 3 2 1 o
| Aots2 | ADTsi | ADTso | - ACME PUD PSR2 PSR10 | SFIOR
Read/Write RIW RIW RIW R RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

» Bit 2 - PUD: Pull-up disable

When this bit is written to one, the pull-ups in the 1/O ports are disabled even if the DDxn and PORTxn Registers
are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Configuring the Pin” on page 51 for more
details about this feature.

12.4.2 PORTA — Port A Data Register

Bit 7 6 5 4 3 2 1 0

I PORTA? | PORTA6 | PORTAS PORTA4 PORTA3 PORTA2 PORTA1L PORTAO I PORTA
Read/Write R/IW R/IW RIW R/IW R/IW R/IW R/IW R/IW
Initial Value 0 0 0 0 0 0 0 0

12.4.3 DDRA - Port A Data Direction Register

Bit 7 6 5 4 3 2 1 0
| ppa7 | Dpas | DDA5 | DDA4 DDA3 DDA2 DDAL1 DDAO | DDRA

Read/Write RIW R/W RIW R/W RIW R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

12.4.4 PINA — Port A Input Pins Address

Bit 7 6 5 4 3 2 1 0

| PiNa7 | PINA6 | PINA5S | PINA4 PINA3 PINA2 PINAL PINAO | PINA
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

ATmega32A [DATASHEET] 63

8155D-AVR-10/2013

Atmel



12.45

PORTB - Port B Data Register

Bit 7 6 5 4 3 2 1 0
I PORTB7 | PORTB6 | PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.6 DDRB - Port B Data Direction Register
Bit 7 6 5 4 3 2 1 0
| DDB7 | DDB6 | DDB5 | DDB4 DDB3 DDB2 DDB1 DDBO | DDRB
Read/Write R/W R/W R/W RIW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.7 PINB — Port B Input Pins Address
Bit 7 6 5 4 3 2 1 0
| pnNB7 | PNB6 | PINB5 | PINB4 PINB3 PINB2 PINB1 PINBO | PINB
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
12.4.8 PORTC - Port C Data Register
Bit 7 6 5 4 3 2 1 0
I PORTC7 | PORTC6 | PORTCS PORTC4 PORTC3 PORTC2 PORTC1 PORTCO I PORTC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.9 DDRC - Port C Data Direction Register
Bit 7 6 5 4 3 2 1 0
| DDC7 | DDC6 | DDC5 | DDC4 DDC3 DDC2 DDC1 DDCO | DDRC
Read/Write R/W R/W R/W RIW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.10 PINC - Port C Input Pins Address
Bit 7 6 5 4 3 2 1 0
| pnc7 | Pince | PINC5 | PINC4 PINC3 PINC2 PINC1 PINCO | PINC
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
12.4.11 PORTD - Port D Data Register
Bit 7 6 5 4 3 2 1 0
I PORTD7 | PORTD6 | PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO I PORTD
Read/Write R/W R/W R/W R/W RIW R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0
12.4.12 DDRD - Port D Data Direction Register
Bit 7 6 5 4 3 2 1 0
| DDD7 | DDD6 | DDD5 | DDD4 DDD3 DDD2 DDD1 DDDO | DDRD
Read/Write R/W R/W R/W R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
AtmeL ATmega32A [DATASHEET] 64

8155D-AVR-10/2013



12.4.13 PIND — Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0
| PIND7 | PIND6 | PIND5 | PIND4 PIND3 PIND2 PIND1 PINDO | PIND
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
AtmeL ATmega32A [DATASHEET] 65

8155D-AVR-10/2013



13. External Interrupts

The External Interrupts are triggered by the INTO, INT1, and INT2 pins. Observe that, if enabled, the interrupts will
trigger even if the INTO:2 pins are configured as outputs. This feature provides a way of generating a software
interrupt. The external interrupts can be triggered by a falling or rising edge or a low level (INT2 is only an edge trig-
gered interrupt). This is set up as indicated in the specification for the MCU Control Register - MCUCR — and MCU
Control and Status Register — MCUCSR. When the external interrupt is enabled and is configured as level trig-
gered (only INTO/INT1), the interrupt will trigger as long as the pin is held low. Note that recognition of falling or
rising edge interrupts on INTO and INT1 requires the presence of an I/O clock, described in “Clock Systems and
their Distribution” on page 25. Low level interrupts on INTO/INT1 and the edge interrupt on INT2 are detected asyn-
chronously. This implies that these interrupts can be used for waking the part also from sleep modes other than
Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level must be held
for some time to wake up the MCU. This makes the MCU less sensitive to noise. The changed level is sampled
twice by the Watchdog Oscillator clock. The period of the Watchdog Oscillator is 1 pus (nominal) at 5.0V and 25°C.
The frequency of the Watchdog Oscillator is voltage dependent as shown in “Electrical Characteristics” on page
296. The MCU will wake up if the input has the required level during this sampling or if it is held until the end of the
start-up time. The start-up time is defined by the SUT fuses as described in “System Clock and Clock Options” on
page 25. If the level is sampled twice by the Watchdog Oscillator clock but disappears before the end of the start-
up time, the MCU wiill still wake up, but no interrupt will be generated. The required level must be held long enough
for the MCU to complete the wake up to trigger the level interrupt.

13.1 Register Description

13.1.1 MCUCR — MCU Control Register
The MCU Control Register contains control bits for interrupt sense control and general MCU functions.

Bit 7 6 5 4 3 2 1 0

I s | sw2 | sv1i | swvo | iscit | iscio | iscor | 1scoo | MCUCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 3, 2-1SC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-bit and the corresponding interrupt
mask in the GICR are set. The level and edges on the external INT1 pin that activate the interrupt are defined in
Table 13-1. The value on the INT1 pin is sampled before detecting edges. If edge or toggle interrupt is selected,
pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to gener-
ate an interrupt. If low level interrupt is selected, the low level must be held until the completion of the currently
executing instruction to generate an interrupt.

Table 13-1.  Interrupt 1 Sense Control

ISC11 ISC10 Description
0 0 The low level of INT1 generates an interrupt request.
0 1 Any logical change on INT1 generates an interrupt request.
1 0 The falling edge of INT1 generates an interrupt request.
1 1 The rising edge of INT1 generates an interrupt request.

e Bit1, 0-1SCO01, ISCO0O0: Interrupt Sense Control 0 Bit 1 and Bit 0

Atmel ATmega32A [DATASHEET] 66

8155D-AVR-10/2013



The External Interrupt O is activated by the external pin INTO if the SREG I-flag and the corresponding interrupt
mask are set. The level and edges on the external INTO pin that activate the interrupt are defined in Table 13-2.
The value on the INTO pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last
longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt.
If low level interrupt is selected, the low level must be held until the completion of the currently executing instruction
to generate an interrupt.

Table 13-2. Interrupt O Sense Control

ISCO1 ISC00 Description
0 0 The low level of INTO generates an interrupt request.
0 1 Any logical change on INTO generates an interrupt request.
1 0 The falling edge of INTO generates an interrupt request.
1 1 The rising edge of INTO generates an interrupt request.

13.1.2 MCUCSR — MCU Control and Status Register

Bit 7 6 5 4 3 2 1 0

| oo [ sc2 | = | JTRF | WDRF BORF EXTRF PORF | mMcucsr
Read/Write R/W RIW R R/W R/W R/W RIW R/W
Initial Value 0 0 0 See Bit Description

» Bit 6 — ISC2: Interrupt Sense Control 2

The Asynchronous External Interrupt 2 is activated by the external pin INT2 if the SREG I-bit and the correspond-
ing interrupt mask in GICR are set. If ISC2 is written to zero, a falling edge on INT2 activates the interrupt. If ISC2
is written to one, a rising edge on INT2 activates the interrupt. Edges on INT2 are registered asynchronously.
Pulses on INT2 wider than the minimum pulse width given in Table 13-3 will generate an interrupt. Shorter pulses
are not guaranteed to generate an interrupt. When changing the ISC2 bit, an interrupt can occur. Therefore, it is
recommended to first disable INT2 by clearing its Interrupt Enable bit in the GICR Register. Then, the ISC2 bit can
be changed. Finally, the INT2 Interrupt Flag should be cleared by writing a logical one to its Interrupt Flag bit
(INTF2) in the GIFR Register before the interrupt is re-enabled.

Table 13-3.  Asynchronous External Interrupt Characteristics

Symbol | Parameter Condition Min Typ Max Units

Minimum pulse width for asynchronous
tUNT . 50 ns
external interrupt
13.1.3 GICR - General Interrupt Control Register

Bit 7 6 5 4 3 2 1 0
| Nt | NTO ] N2 | - | - - IVSEL IVCE ]| ocIcr

Read/Write R/W R/W R/W R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is
enabled. The Interrupt Sense Controll bits 1/0 (ISC11 and ISC10) in the MCU General Control Register (MCUCR)
define whether the External Interrupt is activated on rising and/or falling edge of the INT1 pin or level sensed. Activ-
ity on the pin will cause an interrupt request even if INT1 is configured as an output. The corresponding interrupt of
External Interrupt Request 1 is executed from the INT1 interrupt Vector.

Atmel ATmega32A [DATASHEET] 67

8155D-AVR-10/2013



» Bit 6 — INTO: External Interrupt Request 0 Enable

When the INTO bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is
enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISCO00) in the MCU General Control Register (MCUCR)
define whether the External Interrupt is activated on rising and/or falling edge of the INTO pin or level sensed. Activ-
ity on the pin will cause an interrupt request even if INTO is configured as an output. The corresponding interrupt of
External Interrupt Request 0 is executed from the INTO interrupt vector.

* Bit 5—INT2: External Interrupt Request 2 Enable

When the INT2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is
enabled. The Interrupt Sense Control2 bit (ISC2) in the MCU Control and Status Register (MCUCSR) defines
whether the External Interrupt is activated on rising or falling edge of the INT2 pin. Activity on the pin will cause an
interrupt request even if INT2 is configured as an output. The corresponding interrupt of External Interrupt Request
2 is executed from the INT2 Interrupt Vector.

13.1.4 GIFR — General Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

| TR | NTFO | INTR2 | = = = = = | crr
Read/Write R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in
SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is
cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
This flag is always cleared when INT1 is configured as a level interrupt.

» Bit 6 — INTFO: External Interrupt Flag O

When an edge or logic change on the INTO pin triggers an interrupt request, INTFO becomes set (one). If the I-bit in
SREG and the INTO bit in GICR are set (one), the MCU will jump to the corresponding interrupt vector. The flag is
cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
This flag is always cleared when INTO is configured as a level interrupt.

* Bit 5—-INTF2: External Interrupt Flag 2

When an event on the INT2 pin triggers an interrupt request, INTF2 becomes set (one). If the I-bit in SREG and the
INT2 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when
the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. Note that when
entering some sleep modes with the INT2 interrupt disabled, the input buffer on this pin will be disabled. This may
cause a logic change in internal signals which will set the INTF2 Flag. See “Digital Input Enable and Sleep Modes”
on page 54 for more information.

Atmel ATmega32A [DATASHEET] 68

8155D-AVR-10/2013



14. 8-bit Timer/Counter0 with PWM

14.1 Features
* Single Compare Unit Counter
* Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* External Event Counter
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOVO and OCFO)

14.2 Overview
Timer/Counter0 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simplified block diagram
of the 8-bit Timer/Counter is shown in Figure 14-1. For the actual placement of I1/O pins, refer to “Pinout
ATmega32A” on page 2. CPU accessible I/O Registers, including 1/0O bits and 1/O pins, are shown in bold. The
device-specific I/O Register and bit locations are listed in the “Register Description” on page 84.

Figure 14-1. 8-bit Timer/Counter Block Diagram

< > TCCRn
Y
count . TOVn
clear G | Loai " (Int.Req.)
ontrol Logic
direction 9 clky Clock Select
Edge
A y Detector [ Tn
BOTTOM TOP
' ' A _X ( From Prescaler)
% Timer/Counter A
M TCNTn |
< [=0] [=oxFF > ocn
g % $ (Int.Req.)
Y
_ Waveform »| ocn
I Generation
A
<->| OCRn

14.2.1 Registers
The Timer/Counter (TCNTO) and Output Compare Register (OCRO) are 8-bit registers. Interrupt request (abbrevi-
ated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are
individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure
since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the TO pin. The
Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement)

Atmel ATmega32A [DATASHEET] 69

8155D-AVR-10/2013



its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is
referred to as the timer clock (clkqg).

The double buffered Output Compare Register (OCRO0) is compared with the Timer/Counter value at all times. The
result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on
the Output Compare Pin (OCO0). See “Output Compare Unit” on page 75. for details. The compare match event will
also set the Compare Flag (OCFO0) which can be used to generate an output compare interrupt request.

14.2.2 Definitions
Many register and bit references in this document are written in general form. A lower case “n” replaces the
Timer/Counter number, in this case 0. However, when using the register or bit defines in a program, the precise
form must be used, that is, TCNTO for accessing Timer/CounterQO counter value and so on.

The definitions in Table 14-1 are also used extensively throughout the document.

Table 14-1. Definitions

BOTTOM | The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCRO Register. The assignment is dependent
on the mode of operation.

14.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the
clock select logic which is controlled by the clock select (CS02:0) bits located in the Timer/Counter Control Regis-
ter (TCCRO). For details on clock sources and prescaler, see “Timer/Counter0 and Timer/Counterl Prescalers” on
page 88.

14.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 14-2 shows a
block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

___, Tovn
< DATA BUS > (Int. Req.)
t Clock Select
TCNTn - CCT::: Control Logic |« Yy Dggifor ) "
__ direction
( From Prescaler )
BO‘I‘I’OMT TTOP
Signal description (internal signals):
count Increment or decrement TCNTO by 1.
direction Select between increment and decrement.
clear Clear TCNTO (set all bits to zero).
clkq, Timer/Counter clock, referred to as clky, in the following.

Atmel ATmega32A [DATASHEET] 70

8155D-AVR-10/2013



TOP Signalize that TCNTO has reached maximum value.
BOTTOM Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock
(clkyg). clkyq can be generated from an external or internal clock source, selected by the Clock Select bits
(CS02:0). When no clock source is selected (CS02:0 = 0) the timer is stopped. However, the TCNTO value can be
accessed by the CPU, regardless of whether clk;, is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in the Timer/Counter
Control Register (TCCRO). There are close connections between how the counter behaves (counts) and how
waveforms are generated on the Output Compare output OCO. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 78.

The Timer/Counter Overflow (TOVO0) Flag is set according to the mode of operation selected by the WGMO01.:0 bits.
TOVO can be used for generating a CPU interrupt.

14.5 Output Compare Unit

The 8-bit comparator continuously compares TCNTO with the Output Compare Register (OCRO0). Whenever
TCNTO equals OCRO, the comparator signals a match. A match will set the Output Compare Flag (OCFO) at the
next timer clock cycle. If enabled (OCIEO = 1 and Global Interrupt Flag in SREG is set), the Output Compare Flag
generates an output compare interrupt. The OCFO Flag is automatically cleared when the interrupt is executed.
Alternatively, the OCFO Flag can be cleared by software by writing a logical one to its I/O bit location. The wave-
form generator uses the match signal to generate an output according to operating mode set by the WGMO01:0 bits
and Compare Output mode (COMO01:0) bits. The max and bottom signals are used by the waveform generator for
handling the special cases of the extreme values in some modes of operation (See “Modes of Operation” on page
78.).

Figure 14-3 shows a block diagram of the output compare unit.

Figure 14-3. Output Compare Unit, Block Diagram
-< ¢ DATA BUS i
| |

OCRn TCNTn

I = (8-bit Comparator ) I

OCFJ (Int.Req.)

P

bottom ] Waveform Generator

P

WGMn1:0 COMn1:0

Y

OCn

FOCn E—

Atmel ATmega32A [DATASHEET] 71

8155D-AVR-10/2013



The OCRO Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the nor-
mal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering
synchronizes the update of the OCRO Compare Register to either top or bottom of the counting sequence. The
synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output
glitch-free.

The OCRO Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCRO Buffer Register, and if double buffering is disabled the CPU will access the OCRO
directly.

145.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOCO) bit. Forcing compare match will not set the OCFO Flag or reload/clear the timer,
but the OCO pin will be updated as if a real compare match had occurred (the COMO[1:0] bits settings define
whether the OCO pin is set, cleared or toggled).

14.5.2 Compare Match Blocking by TCNTO Write
All CPU write operations to the TCNTO Register will block any compare match that occur in the next timer clock
cycle, even when the timer is stopped. This feature allows OCRO to be initialized to the same value as TCNTO with-
out triggering an interrupt when the Timer/Counter clock is enabled.

145.3 Using the Output Compare Unit
Since writing TCNTO in any mode of operation will block all compare matches for one timer clock cycle, there are
risks involved when changing TCNTO when using the output compare unit, independently of whether the
Timer/Counter is running or not. If the value written to TCNTO equals the OCRO value, the compare match will be
missed, resulting in incorrect waveform generation. Similarly, do not write the TCNTO value equal to BOTTOM
when the counter is downcounting.

The setup of the OCO should be performed before setting the Data Direction Register for the port pin to output. The
easiest way of setting the OCO value is to use the Force Output Compare (FOCO) strobe bits in Normal mode. The
OCO Register keeps its value even when changing between waveform generation modes.

Be aware that the COMOJ[1:0] bits are not double buffered together with the compare value. Changing the
COMOI[1:0] bits will take effect immediately.

14.6 Compare Match Output Unit

The Compare Output mode (COMOJ[1:0]) bits have two functions. The Waveform Generator uses the COMO[1:0]
bits for defining the Output Compare (OCO) state at the next compare match. Also, the COMO[1:0] bits control the
OCO pin output source. Figure 14-4 shows a simplified schematic of the logic affected by the COMO[1:0] bit setting.
The I/O Registers, 1/O bits, and 1/O pins in the figure are shown in bold. Only the parts of the general 1/0 port Con-
trol Registers (DDR and PORT) that are affected by the COMO[1:0] bits are shown. When referring to the OCO
state, the reference is for the internal OCO Register, not the OCO pin. If a System Reset occur, the OCO Register is
reset to “0".

Atmel ATmega32A [DATASHEET] 72

8155D-AVR-10/2013



Figure 14-4. Compare Match Output Unit, Schematic

—

COMn1
COMnO Waveform
D Q
FOCn Generator
— 1
OCn
OCn o > Pin
A
»D Q
% [
o PORT
<
2
a »D Q
\ DDR
clkyo

The general 1/0O port function is overridden by the Output Compare (OCO0) from the Waveform Generator if either of
the COMO[1:0] bits are set. However, the OCO pin direction (input or output) is still controlled by the Data Direction
Register (DDR) for the port pin. The Data Direction Register bit for the OCO pin (DDR_OCO0) must be set as output
before the OCO value is visible on the pin. The port override function is independent of the Waveform Generation
mode.

The design of the output compare pin logic allows initialization of the OCO state before the output is enabled. Note
that some COMOL1:0 bit settings are reserved for certain modes of operation. See “Register Description” on page
84.

14.6.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COMO[1:0] bits differently in normal, CTC, and PWM modes. For all modes,
setting the COMO[1:0] = 0 tells the waveform generator that no action on the OCO Register is to be performed on
the next compare match. For compare output actions in the non-PWM modes refer to Table 14-3 on page 85. For
fast PWM mode, refer to Table 14-4 on page 85, and for phase correct PWM refer to Table 14-5 on page 86.

A change of the COMO[1:0] bits state will have effect at the first compare match after the bits are written. For non-
PWM modes, the action can be forced to have immediate effect by using the FOCO strobe bits.

14.7 Modes of Operation
The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the
combination of the Waveform Generation mode (WGMO01:0) and Compare Output mode (COMOJ[1:0]) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do.
The COMO[1:0] bits control whether the PWM output generated should be inverted or not (inverted or non-inverted
PWM). For non-PWM modes the COMO[1:0] bits control whether the output should be set, cleared, or toggled at a
compare match (See “Compare Match Output Unit” on page 77.).

For detailed timing information refer to Figure 14-8, Figure 14-9, Figure 14-10 and Figure 14-11 in “Timer/Counter
Timing Diagrams” on page 82.

1471 Normal Mode
The simplest mode of operation is the normal mode (WGMO01:0 = 0). In this mode the counting direction is always
up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-
bit value (TOP = OxFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow

Atmel ATmega32A [DATASHEET] 73

8155D-AVR-10/2013



Flag (TOVO) will be set in the same timer clock cycle as the TCNTO becomes zero. The TOVO Flag in this case
behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOVO Flag, the timer resolution can be increased by software. There are no special
cases to consider in the normal mode, a new counter value can be written anytime.

The output compare unit can be used to generate interrupts at some given time. Using the output compare to gen-
erate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

14.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGMO01:0 = 2), the OCRO Register is used to manipulate the counter
resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTO) matches the OCRO. The
OCRO defines the top value for the counter, hence also its resolution. This mode allows greater control of the com-
pare match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-5. The counter value (TCNTO) increases until a com-
pare match occurs between TCNTO and OCRO, and then counter (TCNTO) is cleared.

Figure 14-5. CTC Mode, Timing Diagram

ey -/ OCn Interrupt Flag Set

i | i oo v
v v
TCNTn
?rgggle) (COMn1:0 = 1)
Period I: 1 =I=

An interrupt can be generated each time the counter value reaches the TOP value by using the OCFO Flag. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP
to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with
care since the CTC mode does not have the double buffering feature. If the new value written to OCRO is lower
than the current value of TCNTO, the counter will miss the compare match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OCO output can be set to toggle its logical level on each com-
pare match by setting the Compare Output mode bits to toggle mode (COMO01:0 = 1). The OCO value will not be
visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a
maximum frequency of foco = fok 11o/2 when OCRO is set to zero (0x00). The waveform frequency is defined by the
following equation: -

f _ fe o
OCn = 37N- (1 +OCRn)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x00.

Atmel ATmega32A [DATASHEET] 74

8155D-AVR-10/2013



14.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter
counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OCO) is cleared on the compare match between TCNTO and OCRO, and set at BOTTOM. In inverting
Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope oper-
ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that
use dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectifi-
cation, and DAC applications. High frequency allows physically small sized external components (coils,
capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The counter is then
cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 14-6. The
TCNTO value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent
compare matches between OCRO and TCNTO.

Figure 14-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

OCRn Update and
TOVn Interrupt Flag Set

TCNTn /
OCn _J (COMN1:0 = 2)
OCn m (COMN1:0 = 3)

e S R S S

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches MAX. If the interrupt is enabled, the
interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCO pin. Setting the COMO01:0
bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COMO01:0
to 3 (See Table 14-4 on page 85). The actual OCO value will only be visible on the port pin if the data direction for
the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OCO Register at the com-
pare match between OCRO and TCNTO, and clearing (or setting) the OCO Register at the timer clock cycle the
counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

f - fcIk_I/O
OCnPWM N - 256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCRO Register represents special cases when generating a PWM waveform output in
the fast PWM mode. If the OCRO is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer

Atmel ATmega32A [DATASHEET] 75

8155D-AVR-10/2013



clock cycle. Setting the OCRO equal to MAX will result in a constantly high or low output (depending on the polarity
of the output set by the COMO01.:0 bits.)

14.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGMO[1:0] = 1) provides a high resolution phase correct PWM waveform genera-
tion option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from
BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OCO) is cleared on the compare match between TCNTO and OCRO while upcounting, and set on the compare
match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct PWM mode the coun-
ter is incremented until the counter value matches MAX. When the counter reaches MAX, it changes the count
direction. The TCNTO value will be equal to MAX for one timer clock cycle. The timing diagram for the phase cor-
rect PWM mode is shown on Figure 14-7. The TCNTO value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small hor-
izontal line marks on the TCNTO slopes represent compare matches between OCRO0 and TCNTO.

Figure 14-7. Phase Correct PWM Mode, Timing Diagram

OCn Interrupt Flag Set

OCRn Update

TOVn Interrupt Flag Set

TCNTn v

(COMn1:0 =2)

ocr LT L
oo i

]
F
Period ‘47144472444734»‘

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOTTOM. The Interrupt Flag can
be used to generate an interrupt each time the counter reaches the BOTTOM value.

(COMn1:0 = 3)

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OCO pin. Setting the
COMO01.:0 bits to 2 will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COMO01:0 to 3 (see Table 14-5 on page 86). The actual OCO value will only be visible on the port pin if the data
direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OCO Regis-
ter at the compare match between OCRO and TCNTO when the counter increments, and setting (or clearing) the

Atmel ATmega32A [DATASHEET] 76

8155D-AVR-10/2013



14.8

Atmel

OCO Register at compare match between OCRO and TCNTO when the counter decrements. The PWM frequency
for the output when using phase correct PWM can be calculated by the following equation:

f — fclk_I/O
OCnPCPWM N - 510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCRO Register represent special cases when generating a PWM waveform output in
the phase correct PWM mode. If the OCRO is set equal to BOTTOM, the output will be continuously low and if set
equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will
have the opposite logic values.

At the very start of period 2 in Figure 14-7 OCn has a transition from high to low even though there is no Compare
Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a
transition without Compare Match:

» OCROA changes its value from MAX, like in Figure 14-7. When the OCROA value is MAX the OCn pin value is
the same as the result of a down-counting Compare Match. To ensure symmetry around BOTTOM the OCn
value at MAX must correspond to the result of an up-counting Compare Match.

 The timer starts counting from a value higher than the one in OCROA, and for that reason misses the Compare
Match and hence the OCn change that would have happened on the way up.

Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a clock enable signal
in the following figures. The figures include information on when Interrupt Flags are set. Figure 14-8 contains timing
data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.

Figure 14-8. Timer/Counter Timing Diagram, no Prescaling

clk

1/0

clkq,

(clk,o/1)

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 14-9 shows the same timing data, but with the prescaler enabled.

ATmega32A [DATASHEET] 77

8155D-AVR-10/2013



Figure 14-9. Timer/Counter Timing Diagram, with Prescaler (f. ,,0/8)

e [
s T I T

—

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 14-10 shows the setting of OCFO in all modes except CTC mode.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCFO, with Prescaler (f ,0/8)

e VUL U
o I N

TCNTn OCRn -1 OCRn OCRn + 1 OCRn + 2
—

OCRn OCRn Value

OCFn

Figure 14-11 shows the setting of OCFO and the clearing of TCNTO in CTC mode.

Atmel ATmega32A [DATASHEET] 78

8155D-AVR-10/2013



14.9

14.9.1

Figure 14-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler (fy ,0/8)

o A A A AT AT
Co | I I

TCNTn
(CTC)

TOP -1 TOP BOTTOM BOTTOM + 1

OCRn TOP

OCFn

Register Description

TCCRO - Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0

| Foco | wcmoo | comor | comoo | wGwmol CS02 Cso1 €soo | TCCRoO
Read/Write W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - FOCO: Force Output Compare

The FOCO bit is only active when the WGMOO bit specifies a non-PWM mode. However, for ensuring compatibility
with future devices, this bit must be set to zero when TCCRO is written when operating in PWM mode. When writ-
ing a logical one to the FOCO bit, an immediate compare match is forced on the Waveform Generation unit. The
OCO output is changed according to its COMO[1:0] bits setting. Note that the FOCO bit is implemented as a strobe.
Therefore it is the value present in the COMO[1:0] bits that determines the effect of the forced compare.

A FOCO strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCRO as TOP.

The FOCO bit is always read as zero.

e Bit 6, 3—-WGMO[1:0]: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP) counter value, and
what type of Waveform Generation to be used. Modes of operation supported by the Timer/Counter unit are: Nor-

mal mode, Clear Timer on Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes.
See Table 14-2 and “Modes of Operation” on page 78.

Table 14-2. Waveform Generation Mode Bit Description®

WGMO01 WGMO0O | Timer/Counter Mode of Update of TOVO Flag
Mode (CTCO) (PWMO0) | Operation TOP OCRO Set-on
0 0 0 Normal OxFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCRO Immediate MAX
3 1 1 Fast PWM OxXFF BOTTOM MAX

Atmel ATmega32A [DATASHEET] 79

8155D-AVR-10/2013



1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 definitions. However, the function-
ality and location of these bits are compatible with previous versions of the timer.

Note:

e Bit 5:4 — COMO[1:0]: Compare Match Output Mode

These bits control the Output Compare pin (OCO) behavior. If one or both of the COMO01.:0 bits are set, the OCO
output overrides the normal port functionality of the 1/O pin it is connected to. However, note that the Data Direction
Register (DDR) bit corresponding to the OCO pin must be set in order to enable the output driver.

When OCO is connected to the pin, the function of the COMO01:0 bits depends on the WGMO01:0 bit setting. Table
14-3 shows the COMO01.:0 bit functionality when the WGMO0L1:0 bits are set to a normal or CTC mode (non-PWM).

Table 14-3. Compare Output Mode, non-PWM Mode
COoMO01 COMO00 Description
0 0 Normal port operation, OCO disconnected.
0 1 Toggle OCO on compare match
1 0 Clear OCO on compare match
1 1 Set OCO on compare match

Table 14-4 shows the COMOL1:0 bit functionality when the WGMO0L1.:0 bits are set to fast PWM mode.

Table 14-4. Compare Output Mode, Fast PWM Mode®
CcOoMO01 COMO00 Description
0 0 Normal port operation, OCO disconnected.
0 1 Reserved
1 0 Clear OCO on compare match, set OC0O at BOTTOM,
(nin-inverting mode)
1 1 Set OCO on compare match, clear OC0 at BOTTOM,
(inverting mode)
Note: 1. A special case occurs when OCRO equals TOP and COMO01 is set. In this case, the compare match is ignored, but

the set or clear is done at BOTTOM. See “Fast PWM Mode” on page 79 for more details.
Table 14-5 shows the COMO[1:0] bit functionality when the WGMOL1:0 bits are set to phase correct PWM mode.

Table 14-5. Compare Output Mode, Phase Correct PWM Mode™®
COMO01 | COMOO | Description
0 0 Normal port operation, OCO disconnected.
0 1 Reserved
1 0 Clear OCO on compare match when up-counting. Set OCO on compare match
when downcounting.
1 1 Set OCO on compare match when up-counting. Clear OC0 on compare match
when downcounting.
Note: 1. A special case occurs when OCRO equals TOP and COMOL1 is set. In this case, the compare match is ignored, but

the set or clear is done at TOP. See “Phase Correct PWM Mode” on page 80 for more details.

* Bit 2:0 - CS02:0: Clock Select

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013




The three Clock Select bits select the clock source to be used by the Timer/Counter.
Table 14-6.  Clock Select Bit Description

CS02 Cso01 CS00 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,o/(No prescaling)
0 1 0 clk,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clk,5/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/CounterO0, transitions on the TO pin will clock the counter even if the
pin is configured as an output. This feature allows software control of the counting.

14.9.2 TCNTO — Timer/Counter Register

Bit 7 6 5 4 3 2 1 0

| TCNTO[7:0] | Townto
Read/Write R/W RIW R/W RIW R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit
counter. Writing to the TCNTO Register blocks (removes) the compare match on the following timer clock. Modify-
ing the counter (TCNTO) while the counter is running, introduces a risk of missing a compare match between
TCNTO and the OCRO Regjister.

14.9.3 OCRO — Output Compare Register

Bit 7 6 5 4 3 2 1 0

| OCRO[7:0] | ocro
Read/Write RIW RIW R/W RIW R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register contains an 8-bit value that is continuously compared with the counter value
(TCNTO). A match can be used to generate an output compare interrupt, or to generate a waveform output on the
OCO pin.

14.9.4 TIMSK — Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

| ocie2 | Toie2 | TiCIEL | OCIE1IA | OCIE1B TOIE1 OCIEO TOIEO | TIMSK
Read/Write RIW R/W R/W R/W R/W RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 1 - OCIEO: Timer/CounterO Output Compare Match Interrupt Enable

When the OCIEOQ bit is written to one, and the I-bit in the Status Register is set (one), the Timer/Counter0O Compare
Match interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter0 occurs,
that is, when the OCFO bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

e Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

Atmel ATmega32A [DATASHEET] 81

8155D-AVR-10/2013



1495

When the TOIEO bit is written to one, and the I-bit in the Status Register is set (one), the Timer/Counter0 Overflow
interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0O occurs, that is, when
the TOVO bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

TIFR — Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
| ocr2 | TOV2 | IcF1 | OCF1A | OCFiB TOV1 OCF0 TOV0 | TIFR

Read/Write R/W RIW R/W RIW RIW R/W RIW RIW

Initial Value 0 0 0 0 0 0 0 0

» Bit 1 — OCFO: Output Compare Flag 0

The OCFO bit is set (one) when a compare match occurs between the Timer/Counter0 and the data in OCRO —
Output Compare Register0. OCFO is cleared by hardware when executing the corresponding interrupt handling
vector. Alternatively, OCFO is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEO
(Timer/Counter0 Compare Match Interrupt Enable), and OCFO are set (one), the Timer/Counter0 Compare Match
Interrupt is executed.

* Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, TOVO is cleared by writing a logic one to the flag.
When the SREG I-bit, TOIEO (Timer/Counter0 Overflow Interrupt Enable), and TOVO are set (one), the
Timer/Counter0 Overflow interrupt is executed. In phase correct PWM mode, this bit is set when Timer/CounterO
changes counting direction at $00.

Atmel ATmega32A [DATASHEET] 82

8155D-AVR-10/2013



15. Timer/Counter0O and Timer/Counterl Prescalers

15.1 Overview

Timer/Counterl and Timer/CounterO share the same prescaler module, but the Timer/Counters can have different
prescaler settings. The description below applies to both Timer/Counterl and Timer/CounterQ.

15.2 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides the fast-
est operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fo k 110)-
Alternatively, one of four taps from the prescaler can be used as a clock source. The prescaled clock has a fre-
quency of either fo k 10/8, feik 16/64, Teik 16/256, or fo k 10/1024.

15.3 Prescaler Reset

The prescaler is free running, that is, operates independently of the clock select logic of the Timer/Counter, and it is
shared by Timer/Counterl and Timer/Counter0. Since the prescaler is not affected by the Timer/Counter’s clock
select, the state of the prescaler will have implications for situations where a prescaled clock is used. One example
of prescaling artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number
of system clock cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock
cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program execution. However, care
must be taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset
will affect the prescaler period for all Timer/Counters it is connected to.

15.4 External Clock Source

An external clock source applied to the T1/TO pin can be used as Timer/Counter clock (clky,/clk). The T1/TO pin
is sampled once every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is
then passed through the edge detector. Figure 15-1 shows a functional equivalent block diagram of the T1/TO syn-
chronization and edge detector logic. The registers are clocked at the positive edge of the internal system clock
(clk,0)- The latch is transparent in the high period of the internal system clock.

The edge detector generates one clk,/clky, pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it
detects.

Figure 15-1. T1/TO Pin Sampling

™| —p a1 Qa > s P -

Select Logic)

(=T |
clk,

1/0
Synchronization Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has
been applied to the T1/TO pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least one system clock
cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Atmel ATmega32A [DATASHEET] 83

8155D-AVR-10/2013



Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sam-
pling. The external clock must be guaranteed to have less than half the system clock frequency (feyci < fok 10/2)
given a 50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it
can detect is half the sampling frequency (Nyquist sampling theorem). However, due to variation of the system
clock frequency and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is rec-
ommended that maximum frequency of an external clock source is less than f, ,0/2.5.

An external clock source can not be prescaled.

Figure 15-2. Prescaler for Timer/Counter0 and Timer/Counter1®

clkyo > 10-BIT T/C PRESCALER
Clear

CK/8
CK/64
CK/256
CK/1024

PSR10

T0

CSs10 ;A Cso0
cs11 r\ Cso01
Cs12 ;\ Cs02

TIMER/COUNTER1 CLOCK SOURCE TIMER/COUNTERO CLOCK SOURCE

clkyy clkpg

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 15-1.

Atmel ATmega32A [DATASHEET] 84

8155D-AVR-10/2013



15.5 Register Description

155.1 SFIOR - Special Function 10 Register

Bit 7 6 5 4 3 2 1 0

| apts2 | Abtsi | ADTSO | = ACME PUD PSR2 PSR10 | SFIOR
Read/Write RIW R/W R/W R RIW RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 0 — PSR10: Prescaler Reset Timer/Counterl and Timer/CounterO

When this bit is written to one, the Timer/Counterl and Timer/CounterQ prescaler will be reset. The bit will be
cleared by hardware after the operation is performed. Writing a zero to this bit will have no effect. Note that
Timer/Counterl and Timer/CounterO share the same prescaler and a reset of this prescaler will affect both timers.
This bit will always be read as zero.

Atmel ATmega32A [DATASHEET] 85

8155D-AVR-10/2013



16. 16-bit Timer/Counterl

16.1

16.2

Features

* True 16-bit Design (that is, allows 16-bit PWM)

* Two Independent Output Compare Units

* Double Buffered Output Compare Registers

* One Input Capture Unit

* Input Capture Noise Canceler

* Clear Timer on Compare Match (Auto Reload)

* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Variable PWM Period

* Frequency Generator

* External Event Counter

* Four Independent Interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation,
and signal timing measurement. Most register and bit references in this section are written in general form. A lower
case "n" replaces the Timer/Counter number, and a lower case "x" replaces the output compare unit. However,
when using the register or bit defines in a program, the precise form must be used, that is, TCNT1 for accessing
Timer/Counterl counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 16-1. For the actual placement of I/O
pins, refer to Figure 1-1 on page 2. CPU accessible 1/0 Registers, including 1/O bits and I/O pins, are shown in
bold. The device-specific I/O Register and bit locations are listed in the “Register Description” on page 112.

Atmel ATmega32A [DATASHEET] 86

8155D-AVR-10/2013



Figure 16-1. 16-bit Timer/Counter Block Diagram®

Count TOVn
F—»
Clear c (Int.Req.)
| Logi
Direction ontrol Logle clky, Clock Select
Edge
J J Detector [ Tn
TOP | BOTTOM
' vV V 4 Y o ( From Prescaler )
A Timer/Counter T
TCNTn |
L = Al [ =0 |
OCnA
* . ﬁ ™ (IntReq.)
I
— | > Wavefor_m OCnA
[ Generation
OCRnA g ;
=] '
| [ Fed ocnB
| TOP (Int.Req.)
% | Values Wavef
o = | - aveform »locnB
< | Generation
= I
< |
o OCRnB | ( From Analog
i | Comparator Ouput )
| ICFn (Int.Req.)
i I
I )
N Edge Noise
IC‘Rn | Detector [ Canceler
| | ICPn
| TCCRnA | | TCCRnB |

Note: 1. Referto Figure 1-1 on page 2, Table 12-6 on page 59, and Table 12-12 on page 64 for Timer/Counterl pin place-
ment and description.

16.2.1 Registers

The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Register (ICR1) are all
16-bit registers. Special procedures must be followed when accessing the 16-bit registers. These procedures are
described in the section “Accessing 16-bit Registers” on page 94. The Timer/Counter Control Registers
(TCCR1A/B) are 8-bit registers and have no CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in
the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are individually masked
with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure since these registers
are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T1 pin. The
Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement)
its value. The Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is
referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Counter value at all time.
The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency out-
put on the Output Compare pin (OC1A/B). See “Output Compare Units” on page 100. The compare match event
will also set the Compare Match Flag (OCF1A/B) which can be used to generate an output compare interrupt
request.

Atmel ATmega32A [DATASHEET] 87

8155D-AVR-10/2013



The Input Capture Register can capture the Timer/Counter value at a given external (edge triggered) event on
either the Input Capture Pin (ICP1) or on the Analog Comparator pins (See “Analog Comparator” on page 205.)
The Input Capture unit includes a digital filtering unit (Noise Canceler) for reducing the chance of capturing noise
spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the
OCRI1A Register, the ICR1 Register, or by a set of fixed values. When using OCR1A as TOP value in a PWM
mode, the OCR1A Register can not be used for generating a PWM output. However, the TOP value will in this
case be double buffered allowing the TOP value to be changed in run time. If a fixed TOP value is required, the
ICR1 Register can be used as an alternative, freeing the OCR1A to be used as PWM output.

16.2.2 Definitions
The following definitions are used extensively throughout the document:

Table 16-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes OxXFFFF (decimal 65535).

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0xO0FF,
0x01FF, or 0xO3FF, or to the value stored in the OCR1A or ICR1 Register. The assign-
ment is dependent of the mode of operation.

TOP

16.2.3 Compatibility
The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit AVR Timer/Coun-

ter. This 16-bit Timer/Counter is fully compatible with the earlier version regarding:
« All 16-bit Timer/Counter related 1/0 Register address locations, including Timer Interrupt Registers.
* Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.
* Interrupt Vectors.

The following control bits have changed name, but have same functionality and register location:

 PWM10 is changed to WGM10.
* PWM11 is changed to WGM11.
* CTC1 is changed to WGM12.
The following bits are added to the 16-bit Timer/Counter Control Registers:

* FOC1A and FOC1B are added to TCCR1A.
* WGM13 is added to TCCR1B.
The 16-bit Timer/Counter has improvements that will affect the compatibility in some special cases.

16.3 Accessing 16-bit Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-bit data bus.
The 16-bit register must be byte accessed using two read or write operations. Each 16-bit timer has a single 8-bit
register for temporary storing of the high byte of the 16-bit access. The same temporary register is shared between
all 16-bit registers within each 16-bit timer. Accessing the low byte triggers the 16-bit read or write operation. When
the low byte of a 16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit register is
read by the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock cycle as
the low byte is read.

Atmel ATmega32A [DATASHEET] 88

8155D-AVR-10/2013



Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-bit registers does

not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read

before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts updates
the temporary register. The same principle can be used directly for accessing the OCR1A/B and ICR1 Registers.

Note that when using “C”, the compiler handles the 16-bit access.

Assembly Code Example®

; Set TCNT1 to O0x01FF
1dirl7,0x01

1di rl6, OXFF

out TCNT1H, r17

out TCNT1L, rl6

; Read TCNT1 into rl7:rlé
in rlé,TCNT1L

in r17,TCNT1H

C Code Example®™

unsigned int i;

/* Set TCNT1 to Ox01FF */
TCNT1 = Ox1FF;

/* Read TCNT1 into i */

i = TCNT1;

Note: 1. See “About Code Examples” on page 6.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two
instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the
same or any other of the 16-bit Timer Registers, then the result of the access outside the interrupt will be corrupted.
Therefore, when both the main code and the interrupt code update the temporary register, the main code must dis-

able the interrupts during the 16-bit access.

Atmel

ATmega32A [DATASHEET] 89

8155D-AVR-10/2013



The following code examples show how to do an atomic read of the TCNT1 Register contents. Reading any of the
OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example®

TIM16_ ReadTCNT1:
; Save global interrupt flag
in rl18,SREG
; Disable interrupts
cli
; Read TCNT1 into rl7:rlé
in rle,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag
out SREG, rl8

ret

C Code Example®

unsigned int TIM16_ ReadTCNT1( void )
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */
SREG = sreg;

return i;

Note: 1. See “About Code Examples” on page 6.
The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Atmel ATmega32A [DATASHEET] 90

8155D-AVR-10/2013



The following code examples show how to do an atomic write of the TCNT1 Register contents. Writing any of the
OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example®

TIM16_WriteTCNT1:
; Save global interrupt flag
in r18,SREG
; Disable interrupts
cli
; Set TCNT1 to rl7:rlé6
out TCNT1H, r17
out TCNT1L, rl6
; Restore global interrupt flag
out SREG, rl8

ret

C Code Example®™

void TIM16 WriteTCNT1l ( unsigned int i )
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();
/* Set TCNT1 to i */
TCNT1 = i;

/* Restore global interrupt flag */
SREG = sreg;

Note: 1. See “About Code Examples” on page 6.
The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNT1.

16.3.1 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte
only needs to be written once. However, note that the same rule of atomic operation described previously also
applies in this case.

16.4 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the
Clock Select logic which is controlled by the Clock Select (CS12:0) bits located in the Timer/Counter Control Reg-
ister B (TCCR1B). For details on clock sources and prescaler, see “Timer/Counter0 and Timer/Counterl
Prescalers” on page 88.

16.5 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 16-2 shows
a block diagram of the counter and its surroundings.

Atmel ATmega32A [DATASHEET] 91

8155D-AVR-10/2013



Figure 16-2. Counter Unit Block Diagram

- DATA BUS (s-bit) - N
n
(Int.Req.)
Clock Select
P Count Edge ™
[ ToNTnH(sbity | TONTaL(8bit) || Clear | ek, Detector [
- Control Logic [
TCNTR (16-bit Counter) ¢ 2rection
( From Prescaler )
TTOF‘ TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNT1 by 1.
Direction Select between increment and decrement.
Clear Clear TCNT1 (set all bits to zero).
clks, Timer/Counter clock.
TOP Signalize that TCNT1 has reached maximum value.
BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) containing the upper
eight bits of the counter, and Counter Low (TCNT1L) containing the lower 8 bits. The TCNT1H Register can only
be indirectly accessed by the CPU. When the CPU does an access to the TCNT1H I/O location, the CPU accesses
the high byte temporary register (TEMP). The temporary register is updated with the TCNT1H value when the
TCNTLL is read, and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows
the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is important
to notice that there are special cases of writing to the TCNT1 Register when the counter is counting that will give
unpredictable results. The special cases are described in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clks,). The clk, can be generated from an external or internal clock source, selected by the Clock Select bits
(CS12:0). When no clock source is selected (CS12:0 = 0) the timer is stopped. However, the TCNT1 value can be
accessed by the CPU, independent of whether clk, is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation Mode bits (WGM13:0) located in
the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B). There are close connections between how
the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OC1x. For more
details about advanced counting sequences and waveform generation, see “Modes of Operation” on page 103.

The Timer/Counter Overflow (TOV1) Flag is set according to the mode of operation selected by the WGM13:0 bits.
TOV1 can be used for generating a CPU interrupt.

16.6 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a time-
stamp indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via
the ICP1 pin or alternatively, via the Analog Comparator unit. The time-stamps can then be used to calculate fre-
quency, duty-cycle, and other features of the signal applied. Alternatively the time-stamps can be used for creating
a log of the events.

Atmel ATmega32A [DATASHEET] 92

8155D-AVR-10/2013



The Input Capture unit is illustrated by the block diagram shown in Figure 16-3. The elements of the block diagram
that are not directly a part of the Input Capture unit are gray shaded. The small “n” in register and bit names indi-
cates the Timer/Counter number.

Figure 16-3. Input Capture Unit Block Diagram

- t : DATA BUS (8-bit) -

| TEMP(8-bit) |

}

ICRnH (8-bit) | ICRnL (8-bit) | [ TONTnH(8-bit) | TCNTnL(s-bi) |
»| WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
e |
i ACO* AcCIC* ICNC ICES
_C Analog > ¢ ¢
omparator !
C’:r?(l:se?er > Dsti%(teor »ICFn (Int.Req)
ICPn >

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively on the Analog
Comparator output (ACO), and this change confirms to the setting of the edge detector, a capture will be triggered.
When a capture is triggered, the 16-bit value of the counter (TCNT1) is written to the Input Capture Register
(ICR1). The Input Capture Flag (ICF1) is set at the same system clock as the TCNT1 value is copied into ICR1
Register. If enabled (TICIE1 = 1), the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is
automatically cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software by
writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low byte (ICR1L) and
then the high byte (ICR1H). When the low byte is read the high byte is copied into the high byte temporary register
(TEMP). When the CPU reads the ICR1H I/O location it will access the TEMP Register.

The ICRL1 Register can only be written when using a Waveform Generation mode that utilizes the ICR1 Register for
defining the counter’s TOP value. In these cases the Waveform Generation mode (WGM1[3:0]) bits must be set
before the TOP value can be written to the ICR1 Register. When writing the ICR1 Register the high byte must be
written to the ICR1H I/O location before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers” on page 94.

16.6.1 Input Capture Pin Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICP1). Timer/Counterl can alternatively
use the Analog Comparator output as trigger source for the Input Capture unit. The Analog Comparator is selected
as trigger source by setting the Analog Comparator Input Capture (ACIC) bit in the Analog Comparator Control and
Status Register (ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag must
therefore be cleared after the change.

Atmel ATmega32A [DATASHEET] 93

8155D-AVR-10/2013



Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled using the same
technique as for the T1 pin (Figure 15-1 on page 89). The edge detector is also identical. However, when the noise
canceler is enabled, additional logic is inserted before the edge detector, which increases the delay by four system
clock cycles. Note that the input of the noise canceler and edge detector is always enabled unless the Timer/Coun-
ter is set in a waveform generation mode that uses ICRL1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

16.6.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is
monitored over four samples, and all four must be equal for changing the output that in turn is used by the edge
detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in Timer/Counter Control
Register B (TCCR1B). When enabled the noise canceler introduces additional four system clock cycles of delay
from a change applied to the input, to the update of the ICR1 Register. The noise canceler uses the system clock
and is therefore not affected by the prescaler.

16.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity for handling the
incoming events. The time between two events is critical. If the processor has not read the captured value in the
ICR1 Register before the next event occurs, the ICR1 will be overwritten with a new value. In this case the result of
the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the interrupt handler routine
as possible. Even though the Input Capture interrupt has relatively high priority, the maximum interrupt response
time is dependent on the maximum number of clock cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is actively changed during
operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each capture.
Changing the edge sensing must be done as early as possible after the ICR1 Register has been read. After a
change of the edge, the Input Capture Flag (ICF1) must be cleared by software (writing a logical one to the I/O bit
location). For measuring frequency only, the clearing of the ICF1 Flag is not required (if an interrupt handler is
used).

16.6.4 Output Compare Units

The 16-bit comparator continuously compares TCNT1 with the Output Compare Register (OCR1x). If TCNT equals
OCR1x the comparator signals a match. A match will set the Output Compare Flag (OCF1x) at the next timer clock
cycle. If enabled (OCIE1x = 1), the Output Compare Flag generates an output compare interrupt. The OCF1x Flag
is automatically cleared when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software
by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output
according to operating mode set by the Waveform Generation mode (WGMZ13:0) bits and Compare Output mode
(COM1x1:0) bits. The TOP and BOTTOM signals are used by the Waveform Generator for handling the special
cases of the extreme values in some modes of operation (See “Modes of Operation” on page 103.)

A special feature of output compare unit A allows it to define the Timer/Counter TOP value (that is, counter resolu-
tion). In addition to the counter resolution, the TOP value defines the period time for waveforms generated by the
Waveform Generator.

Figure 16-4 shows a block diagram of the output compare unit. The small “n” in the register and bit names indicates
the device number (n = 1 for Timer/Counterl), and the “x” indicates output compare unit (A/B). The elements of the
block diagram that are not directly a part of the output compare unit are gray shaded.

Atmel ATmega32A [DATASHEET] 94

8155D-AVR-10/2013



Figure 16-4. Output Compare Unit, Block Diagram

DATA BUS (s-bit)
“1F i t >

\ TEMP (8-bit) \

— }

[ oCRnxH But. (8-bit) | OCRnxL Buf. (8-bit) | [ TonTnH (8bity | TCNTnL 8-bit) |
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
*
—¥
[ ocRnxH (8-bity | OCRnxL (8-bit) |

OCRnNXx (16-bit Register)

| = (16-bit Comparator ) |
——» OCFnx (Int.Req.)
A
TOP b
Waveform Generator »| OCnx
BOTTOM ——p»

WGMn3:0 COMnx1:0

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation (PWM) modes. For
the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double
buffering synchronizes the update of the OCR1x Compare Register to either TOP or BOTTOM of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby
making the output glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCR1x Buffer Register, and if double buffering is disabled the CPU will access the OCR1x
directly. The content of the OCR1x (Buffer or Compare) Register is only changed by a write operation (the
Timer/Counter does not update this register automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is
not read via the high byte temporary register (TEMP). However, it is a good practice to read the low byte first as
when accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Register since the
compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be written first. When the high byte 1/O
location is written by the CPU, the TEMP Register will be updated by the value written. Then when the low byte
(OCR1xL) is written to the lower eight bits, the high byte will be copied into the upper 8-bits of either the OCR1x
buffer or OCR1x Compare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers” on page 94.

16.6.5 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOC1x) bit. Forcing compare match will not set the OCF1x Flag or reload/clear the
timer, but the OC1x pin will be updated as if a real compare match had occurred (the COM1x1:0 bits settings
define whether the OC1x pin is set, cleared or toggled).

16.6.6 Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer clock cycle, even
when the timer is stopped. This feature allows OCR1x to be initialized to the same value as TCNT1 without trigger-
ing an interrupt when the Timer/Counter clock is enabled.

Atmel ATmega32A [DATASHEET] 95

8155D-AVR-10/2013



16.6.7 Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock cycle, there are
risks involved when changing TCNT1 when using any of the output compare units, independent of whether the
Timer/Counter is running or not. If the value written to TCNT1 equals the OCR1x value, the compare match will be
missed, resulting in incorrect waveform generation. Do not write the TCNT1 equal to TOP in PWM modes with vari-
able TOP values. The compare match for the TOP will be ignored and the counter will continue to OXFFFF.
Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the port pin to output.
The easiest way of setting the OC1x value is to use the force output compare (FOC1x) strobe bits in Normal mode.
The OC1x Register keeps its value even when changing between waveform generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value. Changing the
COM1x1:0 bits will take effect immediately.

16.7 Compare Match Output Unit

The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses the COM1x1:0
bits for defining the Output Compare (OC1x) state at the next compare match. Secondly the COM1x1:0 bits control
the OC1x pin output source. Figure 16-5 shows a simplified schematic of the logic affected by the COM1x1:0 bit
setting. The 1/0 Registers, 1/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general 1/0
Port Control Registers (DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring to the
OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a System Reset occur, the OC1x
Register is reset to “0".

Figure 16-5. Compare Match Output Unit, Schematic

—D

COMnx1
COMnx0 Waveform D Q
FOCnx Generator
P 1
OCnx
OCnx :> Pin
0
A
»D Q
° [
2 PORT
<
<
e =D Q
\ DDR
clk,o

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform Generator if either
of the COM1x1.:0 bits are set. However, the OC1x pin direction (input or output) is still controlled by the Data Direc-
tion Register (DDR) for the port pin. The Data Direction Register bit for the OC1x pin (DDR_OC1x) must be set as
output before the OC1x value is visible on the pin. The port override function is generally independent of the Wave-
form Generation mode, but there are some exceptions. Refer to Table 16-2, Table 16-3 and Table 16-4 for details.

Atmel ATmega32A [DATASHEET] 96

8155D-AVR-10/2013



The design of the output compare pin logic allows initialization of the OC1x state before the output is enabled. Note
that some COM1x1:0 bit settings are reserved for certain modes of operation. See “Register Description” on page
112.

The COM1x1:0 bits have no effect on the Input Capture unit.

16.7.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes. For all modes,
setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the OC1x Register is to be performed on
the next compare match. For compare output actions in the non-PWM modes refer to Table 16-2 on page 112. For
fast PWM mode refer to Table 16-3 on page 113, and for phase correct and phase and frequency correct PWM
refer to Table 16-4 on page 113.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are written. For non-
PWM modes, the action can be forced to have immediate effect by using the FOC1x strobe bits.

16.8 Modes of Operation
The mode of operation, that is, the behavior of the Timer/Counter and the output compare pins, is defined by the
combination of the Waveform Generation mode (WGM13:0) and Compare Output mode (COM1x1:0) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do.
The COM1x1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted
PWM). For non-PWM modes the COM1x1:0 bits control whether the output should be set, cleared or toggle at a
compare match (See “Compare Match Output Unit” on page 102.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 110.

16.8.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting direction is always
up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum
16-bit value (MAX = OxFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Coun-
ter Overflow Flag (TOV1) will be set in the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in
this case behaves like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by software. There are no
special cases to consider in the Normal mode, a new counter value can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum interval between the
external events must not exceed the resolution of the counter. If the interval between events are too long, the timer
overflow interrupt or the prescaler must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the output compare to gen-
erate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

16.8.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM13:0 =4 or 12), the OCR1A or ICR1 Register are used to manipu-
late the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT1) matches
either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 = 12). The OCR1A or ICR1 define the top value for the
counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also
simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 16-6. The counter value (TCNT1) increases until a com-
pare match occurs with either OCR1A or ICR1, and then counter (TCNT1) is cleared.

Atmel ATmega32A [DATASHEET] 97

8155D-AVR-10/2013



Figure 16-6. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set
T ¢ or ICFn Interrupt Flag Set
i i (Interrupt on TOP)

TCNTn
?ngse) (COMNA1:0 = 1)
Period I: 1 :I:

An interrupt can be generated at each time the counter value reaches the TOP value by either using the OCF1A or
ICF1 Flag according to the register used to define the TOP value. If the interrupt is enabled, the interrupt handler
routine can be used for updating the TOP value. However, changing the TOP to a value close to BOTTOM when
the counter is running with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR1A or ICRL1 is lower than the current value of
TCNTL, the counter will miss the compare match. The counter will then have to count to its maximum value
(OxFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many cases this feature is
not desirable. An alternative will then be to use the fast PWM mode using OCR1A for defining TOP (WGM13:0 =
15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical level on each
compare match by setting the compare output mode bits to toggle mode (COM1A1:0 = 1). The OC1A value will not
be visible on the port pin unless the data direction for the pin is set to output (DDR_OC1A = 1). The waveform gen-
erated will have a maximum frequency of focia = fok 1o/2 when OCR1A is set to zero (0x0000). The waveform
frequency is defined by the following equation: -

. _ fei o
OCnA ™ 2.N.(1+OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x0000.

16.8.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM options by its single-slope operation.
The counter counts from BOTTOM to TOP then restarts from BOTTOM. In non-inverting Compare Output mode,
the Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x, and set at BOTTOM.
In inverting Compare Output mode output is set on compare match and cleared at BOTTOM. Due to the single-
slope operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct and
phase and frequency correct PWM modes that use dual-slope operation. This high frequency makes the fast PWM
mode well suited for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), hence reduces total system cost.

Atmel ATmega32A [DATASHEET] 98

8155D-AVR-10/2013



The PWM resolution for fast PWM can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICR1 or OCR1A. The
minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or
OCRI1A set to MAX). The PWM resolution in bits can be calculated by using the following equation:

R _ log(TOP +1)
FPWM Iog(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values
Ox00FF, Ox01FF, or OX03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 = 14), or the value in OCR1A
(WGM13:0 = 15). The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 16-7. The figure shows fast PWM mode when OCR1A or ICR1 is used to define
TOP. The TCNT1 value is in the timing diagram shown as a histogram for illustrating the single-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a com-
pare match occurs.

Figure 16-7. Fast PWM Mode, Timing Diagram

OCRnx / TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
OCnA Interrupt Flag Set
(Interrupt on TOP)

TCNTn

OCnx

OCnx F 1T UUL | ] (COMnX1:0 = 3)
Period ‘%1 —+—2—+—3—+—4—+5+6+77—+78—>‘

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition the OC1A or ICF1
Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A or ICR1 is used for defining the TOP
value. If one of the interrupts are enabled, the interrupt handler routine can be used for updating the TOP and com-
pare values.

(COMNx1:0 =2)

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of
all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will
never occur between the TCNT1 and the OCR1x. Note that when using fixed TOP values the unused bits are
masked to zero when any of the OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP value. The ICR1
Register is not double buffered. This means that if ICR1 is changed to a low value when the counter is running with
none or a low prescaler value, there is a risk that the new ICR1 value written is lower than the current value of
TCNTL1. The result will then be that the counter will miss the compare match at the TOP value. The counter will
then have to count to the MAX value (OxFFFF) and wrap around starting at 0x0000 before the compare match can
occur. The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location to be written
anytime. When the OCR1A I/O location is written the value written will be put into the OCR1A Buffer Register. The
OCR1A Compare Register will then be updated with the value in the Buffer Register at the next timer clock cycle

Atmel ATmega32A [DATASHEET] 99

8155D-AVR-10/2013



the TCNT1 matches TOP. The update is done at the same timer clock cycle as the TCNT1 is cleared and the
TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A
Register is free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively
changed (by changing the TOP value), using the OCR1A as TOP is clearly a better choice due to its double buffer
feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the
COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting the
COM1x1:0 to 3 (See Table 16-2 on page 112). The actual OC1x value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by seting (or clearing) the
OC1x Register at the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

f - fclk_l/O
OCnxPWM N-(1+TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM waveform output in
the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the output will be a narrow spike for each
TOP+1 timer clock cycle. Setting the OCR1x equal to TOP will result in a constant high or low output (depending
on the polarity of the output set by the COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC1A to toggle
its logical level on each compare match (COM1A1:0 = 1). This applies only if OCR1A is used to define the TOP
value (WGM13:0 = 15). The waveform generated will have a maximum frequency of focia = fok 10/2 When OCR1A
is set to zero (0x0000). This feature is similar to the OC1A toggle in CTC mode, except the double buffer feature of
the output compare unit is enabled in the fast PWM mode.

16.8.4 Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 =1, 2, 3, 10, or 11) provides a
high resolution phase correct PWM waveform generation option. The phase correct PWM mode is, like the phase
and frequency correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOT-
TOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope
operation has lower maximum operation frequency than single slope operation. However, due to the symmetric
feature of the dual-slope PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum res-
olution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated by using the following
equation:

R _ log(TOP +1)
PCPWM — Iog(2)

In phase correct PWM mode the counter is incremented until the counter value matches either one of the fixed val-
ues OxXO00FF, OxO1FF, or Ox03FF (WGM13:0 = 1, 2, or 3), the value in ICR1 (WGM13:0 = 10), or the value in
OCR1A (WGM13:0 = 11). The counter has then reached the TOP and changes the count direction. The TCNT1
value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 16-8. The figure shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The

AT 32A [DATASHEET 100
Atmel megas2A [ ]

8155D-AVR-10/2013



TCNT1 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes represent
compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a compare match
occurs.

Figure 16-8. Phase Correct PWM Mode, Timing Diagram

OCRNnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

(COMnx1:0 = 2)
(COMnx1:0 = 3)

Period ]

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When either OCR1A or
ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accordingly at the same timer clock cycle as
the OCR1x Registers are updated with the double buffer value (at TOP). The Interrupt Flags can be used to gener-
ate an interrupt each time the counter reaches the TOP or BOTTOM value.

OCnx

—L
I

OCnx

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of
all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will
never occur between the TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits are
masked to zero when any of the OCR1x Registers are written. As the third period shown in Figure 16-8 illustrates,
changing the TOP actively while the Timer/Counter is running in the phase correct mode can result in an unsym-
metrical output. The reason for this can be found in the time of update of the OCR1x Register. Since the OCR1x
update occurs at TOP, the PWM period starts and ends at TOP. This implies that the length of the falling slope is
determined by the previous TOP value, while the length of the rising slope is determined by the new TOP value.
When these two values differ the two slopes of the period will differ in length. The difference in length gives the
unsymmetrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when chang-
ing the TOP value while the Timer/Counter is running. When using a static TOP value there are practically no
differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting
the COM1x1.:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting
the COM1x1:0 to 3 (See Table 16-2 on page 112). The actual OC1x value will only be visible on the port pin if the
data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clear-
ing) the OC1x Register at the compare match between OCR1x and TCNT1 when the counter increments, and
clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when the counter decre-

AT 32A [DATASHEET 101
Atmel megas2A [ ]

8155D-AVR-10/2013



ments. The PWM frequency for the output when using phase correct PWM can be calculated by the following
equation:

f _ fclk_I/O
OCnxPCPWM — 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM waveform output in
the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set
equal to TOP the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will
have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the
OC1A output will toggle with a 50% duty cycle.

16.8.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM mode (WGM13:0
= 8 or 9) provides a high resolution phase and frequency correct PWM waveform generation option. The phase
and frequency correct PWM mode is, like the phase correct PWM mode, based on a dual-slope operation. The
counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Com-
pare Output mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x
while upcounting, and set on the compare match while downcounting. In inverting Compare Output mode, the
operation is inverted. The dual-slope operation gives a lower maximum operation frequency compared to the sin-
gle-slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are
preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM mode is the time the
OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 16-8 and Figure 16-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICR1 or OCR1A.
The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit
(ICR1 or OCRI1A set to MAX). The PWM resolution in bits can be calculated using the following equation:

R _ log(TOP + 1)
PFCPWM ~ T og(2)

In phase and frequency correct PWM mode the counter is incremented until the counter value matches either the
value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The counter has then reached the TOP and
changes the count direction. The TCNT1 value will be equal to TOP for one timer clock cycle. The timing diagram
for the phase correct and frequency correct PWM mode is shown on Figure 16-9. The figure shows phase and fre-
guency correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing
diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes represent compare matches between
OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a compare match occurs.

AT 32A [DATASHEET 102
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 16-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRnx / TOP Update
and

TOVn Interrupt Flag Set
(Interrupt on Bottom)

Y
OCnx (COMNx1:0 = 2)
OCnx (COMnNx1:0 = 3)

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x Registers are updated
with the double buffer value (at BOTTOM). When either OCR1A or ICR1 is used for defining the TOP value, the
OC1A or ICF1 Flag set when TCNT1 has reached TOP. The Interrupt Flags can then be used to generate an inter-
rupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of
all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will
never occur between the TCNT1 and the OCR1x.

As Figure 16-9 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods.
Since the OCR1x Registers are updated at BOTTOM, the length of the rising and the falling slopes will always be
equal. This gives symmetrical output pulses and is therefore frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A
Register is free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively
changed by changing the TOP value, using the OCR1A as TOP is clearly a better choice due to its double buffer
feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x
pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be gener-
ated by setting the COM1x1:0 to 3 (See Table on page 113). The actual OC1x value will only be visible on the port
pin if the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting
(or clearing) the OC1x Register at the compare match between OCR1x and TCNT1 when the counter increments,
and clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when the counter dec-
rements. The PWM frequency for the output when using phase and frequency correct PWM can be calculated by
the following equation:

. _ Tk wo

OCnxPFCPWM 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM waveform output in
the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set
equal to TOP the output will be set to high for non-inverted PWM mode. For inverted PWM the output will have the

AT 32A [DATASHEET 103
Atmel megas2A [ ]

8155D-AVR-10/2013



opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A
output will toggle with a 50% duty cycle.

16.9

Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky;) is therefore shown as a clock enable signal
in the following figures. The figures include information on when Interrupt Flags are set, and when the OCR1x Reg-
ister is updated with the OCR1x buffer value (only for modes utilizing double buffering). Figure 16-10 shows a

timing diagram for the setting of OCF1x.

Figure 16-10. Timer/Counter Timing Diagram, Setting of OCF1x, No Prescaling

clkyo

clk;,

clk,o/1

( )

TCNTn

OCRnx - 1

OCRnNx

OCRnx + 1

OCRnx + 2

OCRnNx

OCRnx Value

OCFnx

Figure 16-11 shows the same timing data, but with the prescaler enabled.

Figure 16-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fg ;,0/8)

cIkVo H

JRTRAR

JM TR

UUUILTL

QBT

sl 0 T
(clk,o/8)

TCNTn B OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
OCRnx OCRnx Value

OCFnx

Figure 16-12 shows the count sequence close to TOP in various modes. When using phase and frequency correct
PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams will be the same, but TOP should
be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on. The same renaming applies for modes that set the

TOV1 Flag at BOTTOM.

Atmel

ATmega32A [DATASHEET]

104

8155D-AVR-10/2013



Figure 16-12. Timer/Counter Timing Diagram, no Prescaling

clk,q

clkq,
(clk,o/1)

TCNTn
(CTC and FPWM) TOP -1 TOP BOTTOM BOTTOM + 1

TCNTn
(PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP -2

TOVn (FPWM)

and ICFn (if used
as TOP)

(Upgtcél:;?;-(op) Old OCRnx Value New OCRnx Value

Figure 16-13 shows the same timing data, but with the prescaler enabled.

Figure 16-13. Timer/Counter Timing Diagram, with Prescaler (f. ,,0/8)

R AT TR
S || i 1 1

TCNTn
(CTC and FPWM) TOP -1 TOP BOTTOM BOTTOM + 1

TCNTn
(PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP -2

TOVn (FPWM)

and ICFn (if used
as TOP)

(Upc(I?ang?'l)'(OP) Old OCRnx Value New OCRnx Value

16.10 Register Description

16.10.1 TCCR1A - Timer/Counterl Control Register A

Bit 7 6 5 4 3 2 1 0

| COM1A1 | COM1A0 | COM1B1 | COM1BO | FOC1A FOC1B WGM11 WGM10 | TCCR1A
Read/Write R/W R/W R/W R/W W W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — COM1A1:0: Compare Output Mode for Compare unit A

e Bit5:4 — COM1B1:0: Compare Output Mode for Compare unit B

AT 32A [DATASHEET 105
Atmel megas2A [ ]

8155D-AVR-10/2013



The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respectively) behavior. If one
or both of the COM1A1:0 bits are written to one, the OC1A output overrides the normal port functionality of the I/O
pin it is connected to. If one or both of the COM1B1:0 bit are written to one, the OC1B output overrides the normal
port functionality of the 1/0 pin it is connected to. However, note that the Data Direction Register (DDR) bit corre-
sponding to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is dependent of the WGM13:0
bits setting. Table 16-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to a normal or a CTC
mode (non-PWM).

Table 16-2. Compare Output Mode, non-PWM

COM1A1l/COM1B1 COM1A0/COM1BO Description
0 0 Normal port operation, OC1A/OC1B disconnected.
0 1 Toggle OC1A/OC1B on compare match
1 0 Clear OC1A/OC1B on compare match (Set output
to low level)
1 1 Set OC1A/OC1B on compare match (Set output to
high level)

Table 16-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast PWM mode.

Table 16-3. Compare Output Mode, Fast PWM®
COM1Al/COM1B1 COM1AO0/COM1BO Description

0 0 Normal port operation, OC1A/OC1B
disconnected.

0 1 WGM13:0 = 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port
operation).

For all other WGM13:0 settings, normal port
operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on compare match, set
OC1A/OC1B at BOTTOM,

(non-inverting mode)

1 1 Set OC1A/OC1B on compare match, clear

OC1A/OC1B at BOTTOM,
(inverting mode)

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1BL1 is set. In this case the compare
match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on page 104. for more details.

AT 32A [DATASHEET 106
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 16-4 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase correct or the phase
and frequency correct, PWM mode.

Table 16-4. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM &)
COM1Al/COM1B1 COM1A0/COM1BO

0 0

Description

Normal port operation, OC1A/OC1B
disconnected.

WGM13:0 = 9 or 14: Toggle OC1A on
Compare Match, OC1B disconnected (normal
port operation).

For all other WGM13:0 settings, normal port
operation, OC1A/OC1B disconnected.

Clear OC1A/OC1B on compare match when
up-counting. Set OC1A/OC1B on compare
match when downcounting.

Set OC1A/OC1B on compare match when up-
counting. Clear OC1A/OC1B on compare
match when downcounting.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1BL1 is set. See “Phase Correct PWM

Mode” on page 106. for more details.
» Bit 3—- FOCI1A: Force Output Compare for Compare unit A

e Bit 2 - FOCI1B: Force Output Compare for Compare unit B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. However, for ensur-
ing compatibility with future devices, these bits must be set to zero when TCCR1A is written when operating in a
PWM mode. When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on the
Waveform Generation unit. The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that
the FOC1A/FOCI1B bits are implemented as strobes. Therefore it is the value present in the COM1x1:0 bits that
determine the effect of the forced compare.

A FOC1A/FOCI1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on Compare match
(CTC) mode using OCR1A as TOP.

The FOC1A/FOCI1B bits are always read as zero.

* Bit 1:.0 - WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting sequence of the
counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see
Table 16-5. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on
Compare match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. (See “Modes of Opera-
tion” on page 103.)

Table 16-5. Waveform Generation Mode Bit Description®
WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation TOP OCRI1x Set on
0 0 0 0 0 Normal OxFFFF | Immediate MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit OX00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF | TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit Ox03FF | TOP BOTTOM

ATmega32A [DATASHEET]

8155D-AVR-10/2013

107



Table 16-5. Waveform Generation Mode Bit Description*

WGM12 | WGM11 WGM10 | Timer/Counter Mode of Update of TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM1l) | (PWM10) | Operation TOP OCRI1x Set on

4 0 1 0 0 CTC OCR1A | Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit O0xO0FF | BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0xO01FF | BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit O0xO3FF | BOTTOM TOP

8 1 0 0 0 PWM, Phase and Frequency Correct | ICR1 BOTTOM BOTTOM
9 1 0 0 1 PWM, Phase and Frequency Correct | OCR1A | BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCR1A | TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 Reserved - - -

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A | BOTTOM TOP

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

16.10.2 TCCR1B - Timer/Counterl Control Register B

Bit 7 6 5 4 3 2 1 0

| recne1 | oicest | - | WGM13 | WGM12 CS12 csi1 csio | Tccrie
Read/Write R/W R/W R RIW R/W R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise Canceler is activated, the
input from the Input Capture Pin (ICP1) is filtered. The filter function requires four successive equal valued samples
of the ICP1 pin for changing its output. The Input Capture is therefore delayed by four Oscillator cycles when the
Noise Canceler is enabled.

» Bit 6 — ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICP1) that is used to trigger a capture event. When the
ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and when the ICES1 bit is written to one, a
rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the Input Capture Reg-
ister (ICR1). The event will also set the Input Capture Flag (ICF1), and this can be used to cause an Input Capture
Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the TCCR1A and the
TCCR1B Register), the ICP1 is disconnected and consequently the Input Capture function is disabled.

* Bit 5 - Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be written to zero
when TCCR1B is written.

e Bit 4:3 - WGM13:2: Waveform Generation Mode
See TCCR1A Register description.

AT 32A [DATASHEET 108
Atmel megas2A [ ]

8155D-AVR-10/2013



* Bit 2:0 — CS12:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure 16-10 and Figure

16-11.
Table 16-6. Clock Select Bit Description
CS12 Cs11 CSs10 Description

0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,o/1 (No prescaling)
0 1 0 clk,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clk,o/1024 (From prescaler)
1 1 0 External clock source on T1 pin. Clock on falling edge.
1 1 1 External clock source on T1 pin. Clock on rising edge.

If external pin modes are used for the Timer/Counterl, transitions on the T1 pin will clock the counter even if the
pin is configured as an output. This feature allows software control of the counting.

16.10.3 TCNT1H and TCNT1L — Timer/Counterl

Bit 7 6 5 4 3 2 1 0
TCNT1[15:8] TCNT1H
TCNT1[7:0] TCNTI1L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both for read
and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low bytes are
read and written simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See
“Accessing 16-bit Registers” on page 94.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match between
TCNTL1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock for all compare
units.

16.10.4 OCRI1AH and OCR1AL — Output Compare Register 1 A

Bit 7 6 5 4 3 2 1 0
OCR1A[15:8] OCRI1AH
OCR1A[7:0] OCRIAL
Read/Write R/IW R/IW RIW R/IW R/IW R/IW R/IW RIW
Initial Value 0 0 0 0 0 0 0 0

16.10.5 OCR1BH and OCR1BL — Output Compare Register 1 B

Bit 7 6 5 4 3 2 1 0
| OCR1B[15:8] | ocrisH

AT 32A [DATASHEET 109
Atmel megas2A [ ]

8155D-AVR-10/2013



| OCR1BJ[7:0] | ocrieL
Read/Write R/W RIW R/W RIW RIW R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the counter value
(TCNT1). A match can be used to generate an output compare interrupt, or to generate a waveform output on the
OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are written simultane-
ously when the CPU writes to these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on
page 94.

16.10.6 ICR1H and ICR1L — Input Capture Register 1

Bit 7 6 5 4 3 2 1 0
ICR1[15:8] ICR1H
ICR1[7:0] ICR1L
Read/Write R/W R/W R/W R/W R/IW R/W R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the ICP1 pin (or
optionally on the analog comparator output for Timer/Counterl). The Input Capture can be used for defining the
counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on
page 94.

16.10.7 TIMSK — Timer/Counter Interrupt Mask Register®

Bit 7 6 5 4 3 2 1 0

| ocie2 | 7olE2 | TICIEL | OCIE1IA | OCIE1B | TOIEL OCIEO TOIEO | TIMSK
Read/Write RIW RIW R/W R/W RIW R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

Note: 1. This register contains interrupt control bits for several Timer/Counters, but only Timerl bits are described in this
section. The remaining bits are described in their respective timer sections.

» Bit5-TICIEL: Timer/Counterl, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counterl Input Capture Interrupt is enabled. The corresponding Interrupt Vector (See “Interrupts” on page
45)) is executed when the ICF1 Flag, located in TIFR, is set.

» Bit 4 — OCIE1A: Timer/Counterl, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counterl Output Compare A match interrupt is enabled. The corresponding Interrupt Vector (See “Inter-
rupts” on page 45.) is executed when the OCF1A Flag, located in TIFR, is set.

» Bit 3— OCIE1B: Timer/Counterl, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counterl Output Compare B match interrupt is enabled. The corresponding Interrupt Vector (See “Inter-
rupts” on page 45.) is executed when the OCF1B Flag, located in TIFR, is set.

* Bit 2-TOIEL: Timer/Counterl, Overflow Interrupt Enable

AT 32A [DATASHEET 110
Atmel megas2A [ ]

8155D-AVR-10/2013



When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counterl Overflow Interrupt is enabled. The corresponding Interrupt Vector (See “Interrupts” on page 45.) is
executed when the TOV1 Flag, located in TIFR, is set.

16.10.8 TIFR — Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
| ocr2 | TOv2 | cF1 | OCF1A | OCF1B TOV1 OCF0 TOV0O | TIFR

Read/Write RIW RIW RIW RIW R/W RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

Note: 1. This register contains flag bits for several Timer/Counters, but only Timer1 bits are described in this section. The
remaining bits are described in their respective timer sections.

e Bit 5-ICF1: Timer/Counterl, Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register (ICR1) is set by the
WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, ICF1 can be
cleared by writing a logic one to its bit location.

e Bit 4 — OCF1A: Timer/Counterl, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register A
(OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is executed. Alternatively,
OCF1A can be cleared by writing a logic one to its bit location.

e Bit 3—- OCF1B: Timer/Counterl, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register B
(OCR1B).

Note that a forced output compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is executed. Alternatively,
OCF1B can be cleared by writing a logic one to its bit location.

e Bit 2-TOVL1: Timer/Counterl, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In normal and CTC modes, the TOV1 Flag is set
when the timer overflows. Refer to Table 16-5 on page 114 for the TOV1 Flag behavior when using another
WGM13:0 bit setting.

TOVL1 is automatically cleared when the Timer/Counterl Overflow interrupt vector is executed. Alternatively, TOV1
can be cleared by writing a logic one to its bit location.

AT 32A [DATASHEET 111
Atmel megas2A [ ]

8155D-AVR-10/2013



17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

17.1 Features
* Single Compare unit Counter
* Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)
* Allows clocking from External 32kHz Watch Crystal Independent of the I/O Clock

17.2 Overview

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simplified block diagram
of the 8-bit Timer/Counter is shown in Figure 17-1. For the actual placement of I1/O pins, refer to “Pinout
ATmega32A” on page 2. CPU accessible I/O Registers, including 1/0O bits and 1/O pins, are shown in bold. The
device-specific I/O Register and bit locations are listed in the “Register Description” on page 132.

Figure 17-1. 8-bit Timer/Counter Block Diagram

A
-t - TCCRn
N
count > TOVn
clear (Int.Req.)
Control Logic
direction clky,
-t TOSC1

A
BOTTOM

T/IC

Prescaler Oscillator

y vV Y

Timer/Counter
TCNTn
| =0
f * ocn olko
r (Int.Req.)

o | Waveform
Generation

- TOSC2

»-| OCn

DATABUS
il
N

| OCRn | e
l———————
Synchronized Status flags vo

; Synchronization Unit

[—clk,gy

Status flags }
J I~ ASSRn A

asynchronous mode
select (ASn)

A

)
i

17.2.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers. Interrupt request (shorten
as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are individually masked

AT 32A [DATASHEET 112
Atmel megas2A [ ]

8155D-AVR-10/2013



with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure since these registers
are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2 pins,
as detailed later in this section. The asynchronous operation is controlled by the Asynchronous Status Register
(ASSR). The Clock Select logic block controls which clock source the Timer/Counter uses to increment (or decre-
ment) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select
logic is referred to as the timer clock (clky,).

The double buffered Output Compare Register (OCR2) is compared with the Timer/Counter value at all times. The
result of the compare can be used by the waveform generator to generate a PWM or variable frequency output on
the Output Compare Pin (OC2). See “Output Compare Unit” on page 121. for details. The compare match event
will also set the Compare Flag (OCF2) which can be used to generate an output compare interrupt request.

17.2.2 Definitions
Many register and bit references in this document are written in general form. A lower case “n” replaces the
Timer/Counter number, in this case 2. However, when using the register or bit defines in a program, the precise
form must be used (that is, TCNT2 for accessing Timer/Counter2 counter value and so on). The definitions in Table
17-1 are also used extensively throughout the document.

Table 17-1.  Definitions
BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in
the count sequence. The TOP value can be assigned to be the fixed value
OxFF (MAX) or the value stored in the OCR2 Register. The assignment is
dependent on the mode of operation.

17.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The
clock source clky, is by default equal to the MCU clock, clk,o. When the AS2 bit in the ASSR Register is written to
logic one, the clock source is taken from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For
details on asynchronous operation, see “ASSR — Asynchronous Status Register” on page 135. For details on clock
sources and prescaler, see “Timer/Counter Prescaler” on page 132.

17.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 17-2 shows a
block diagram of the counter and its surrounding environment.

Figure 17-2. Counter Unit Block Diagram

TOVn

—»
DATA BUS (intReq)
-t TOSsC1
count
| ok T/IC
clear )
TCNTn - Control Logic ~ |<¢——"— Prescaler Oscillator
direction
g » TOSC2
bottom T Ttop C|k]/o

Signal description (internal signals):

AT 32A [DATASHEET 113
Atmel megas2A [ ]

8155D-AVR-10/2013



count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clky, Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.
bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clky,). clky, can be generated from an external or internal clock source, selected by the Clock Select bits
(CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be
accessed by the CPU, regardless of whether clk;, is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the Timer/Counter
Control Register (TCCR2). There are close connections between how the counter behaves (counts) and how
waveforms are generated on the Output Compare output OC2. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 124.

The Timer/Counter Overflow (TOV2) Flag is set according to the mode of operation selected by the WGM21.:0 bits.
TOV2 can be used for generating a CPU interrupt.

17.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2). Whenever
TCNT2 equals OCR2, the comparator signals a match. A match will set the Output Compare Flag (OCF2) at the
next timer clock cycle. If enabled (OCIE2 = 1), the Output Compare Flag generates an output compare interrupt.
The OCF2 Flag is automatically cleared when the interrupt is executed. Alternatively, the OCF2 Flag can be
cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the match signal to
generate an output according to operating mode set by the WGM21:0 bits and Compare Output mode (COM21:0)
bits. The max and bottom signals are used by the waveform generator for handling the special cases of the
extreme values in some modes of operation (“Modes of Operation” on page 124). Figure 17-3 shows a block dia-
gram of the output compare unit.

AT 32A [DATASHEET 114
Atmel megas2A [ 1

8155D-AVR-10/2013



Figure 17-3. Output Compare Unit, Block Diagram
DATA BUS

| = (8-bit Comparator ) |

OCIin (Int.Req.)

4

top »

bottom 1 Waveform Generator »| ocxy

P

WGMn1:0 COMnN1:0

FOCn >

The OCR2 Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the nor-
mal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering
synchronizes the update of the OCR2 Compare Register to either top or bottom of the counting sequence. The
synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output
glitch-free.

The OCR2 Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCR2 Buffer Register, and if double buffering is disabled the CPU will access the OCR2
directly.

17.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOC2) bit. Forcing compare match will not set the OCF2 Flag or reload/clear the timer,
but the OC2 pin will be updated as if a real compare match had occurred (the COM21:0 bits settings define
whether the OC2 pin is set, cleared or toggled).

17.5.2 Compare Match Blocking by TCNT2 Write
All CPU write operations to the TCNT2 Register will block any compare match that occurs in the next timer clock
cycle, even when the timer is stopped. This feature allows OCR2 to be initialized to the same value as TCNT2 with-
out triggering an interrupt when the Timer/Counter clock is enabled.

17.5.3 Using the Output Compare Unit
Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there are
risks involved when changing TCNT2 when using the output compare unit, independently of whether the
Timer/Counter is running or not. If the value written to TCNT2 equals the OCR2 value, the compare match will be
missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value equal to BOTTOM
when the counter is downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for the port pin to output. The
easiest way of setting the OC2 value is to use the Force Output Compare (FOC2) strobe bit in Normal mode. The
OC2 Register keeps its value even when changing between Waveform Generation modes.

AT 32A [DATASHEET 115
Atmel megas2A [ ]

8155D-AVR-10/2013



Be aware that the COM2[1:0] bits are not double buffered together with the compare value. Changing the
COM2[1:0] bits will take effect immediately.

17.6 Compare Match Output Unit
The Compare Output mode (COM21:0) bits have two functions. The Waveform Generator uses the COM2[1:0] bits
for defining the Output Compare (OC2) state at the next compare match. Also, the COM2[1:0] bits control the OC2
pin output source. Figure 17-4 shows a simplified schematic of the logic affected by the COM2[1:0] bit setting. The
I/O Registers, I/O bits, and 1/O pins in the figure are shown in bold. Only the parts of the general 1/0 Port Control
Registers (DDR and PORT) that are affected by the COM2[1:0] bits are shown. When referring to the OC2 state,
the reference is for the internal OC2 Register, not the OC2 pin.

Figure 17-4. Compare Match Output Unit, Schematic

—D

COMn1
COMnO Waveform
D Q
FOCn Generator
— 1
OCn
OCn 0 > Pin
f 3
»D Q
% L
m PORT
<
&
o »D Q
DDR
clkyo

The general I/O port function is overridden by the Output Compare (OC2) from the waveform generator if either of
the COM2[1:0] bits are set. However, the OC2 pin direction (input or output) is still controlled by the Data Direction
Register (DDR) for the port pin. The Data Direction Register bit for the OC2 pin (DDR_OC?2) must be set as output
before the OC2 value is visible on the pin. The port override function is independent of the Waveform Generation
mode.

The design of the output compare pin logic allows initialization of the OC2 state before the output is enabled. Note
that some COM2[1:0] bit settings are reserved for certain modes of operation. “Register Description” on page 132

17.6.1 Compare Output Mode and Waveform Generation
The waveform generator uses the COM2[1:0] bits differently in Normal, CTC, and PWM modes. For all modes, set-
ting the COM2[1:0] = 0 tells the Waveform Generator that no action on the OC2 Register is to be performed on the
next compare match. For compare output actions in the non-PWM modes refer to Table 17-3 on page 133. For fast
PWM mode, refer to Table 17-4 on page 134, and for phase correct PWM refer to Table 17-5 on page 134.

A change of the COM21:0 bits state will have effect at the first compare match after the bits are written. For non-
PWM modes, the action can be forced to have immediate effect by using the FOC2 strobe bits.

17.7 Modes of Operation
The mode of operation, that is, the behavior of the Timer/Counter and the output compare pins, is defined by the
combination of the Waveform Generation mode (WGM2[1:0]) and Compare Output mode (COM2[1:0]) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do.
The COMZ2[1:0] bits control whether the PWM output generated should be inverted or not (inverted or non-inverted

AT 32A [DATASHEET 116
Atmel megas2A [ ]

8155D-AVR-10/2013



PWM). For non-PWM modes the COM2[1:0] bits control whether the output should be set, cleared, or toggled at a
compare match (See “Compare Match Output Unit” on page 123.).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 128.

17.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM2[1:0] = 0). In this mode the counting direction is always
up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-
bit value (TOP = OxFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow
Flag (TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case
behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 Flag, the timer resolution can be increased by software. There are no special
cases to consider in the normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the output compare to gen-
erate waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

17.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGMZ2[1:0] = 2), the OCR2 Register is used to manipulate the counter
resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2. The
OCRZ2 defines the top value for the counter, hence also its resolution. This mode allows greater control of the com-
pare match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 17-5. The counter value (TCNT2) increases until a com-
pare match occurs between TCNT2 and OCR2, and then counter (TCNT2) is cleared.

Figure 17-5. CTC Mode, Timing Diagram

r T ! I ! OCn Interrupt Flag Set

i i P v

v v
TCNTn
OoCn !

COMn1:0 =1

(Toggle) ( " )
Period I~ 1 =I~

An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2 Flag. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing the
TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done
with care since the CTC mode does not have the double buffering feature. If the new value written to OCR2 is
lower than the current value of TCNTZ2, the counter will miss the compare match. The counter will then have to
count to its maximum value (OxFF) and wrap around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC2 output can be set to toggle its logical level on each com-
pare match by setting the Compare Output mode bits to toggle mode (COM2[1:0] = 1). The OC2 value will not be
visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a

AT 32A [DATASHEET 117
Atmel megas2A [ ]

8155D-AVR-10/2013



maximum frequency of foc, = fo ,0/2 when OCR2 is set to zero (0x00). The waveform frequency is defined by the
following equation:

f - fclk_I/O
OCn = 2.N-(1+OCRn)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x00.

17.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMZ2[1:0] = 3) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter
counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OC2) is cleared on the compare match between TCNT2 and OCR2, and set at BOTTOM. In inverting
Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope oper-
ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that
uses dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectifi-
cation, and DAC applications. High frequency allows physically small sized external components (coils,
capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The counter is then
cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 17-6. The
TCNT2 value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent
compare matches between OCR2 and TCNT2.

Figure 17-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

OCRn Update and
TOVn Interrupt Flag Set

TCNTn /W/l//l////y
R |

OoCn L L] || (COMN1:0 = 2)

‘ocn 17 U [ (COMn1:0 = 3)

e S N A S A

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the interrupt is enabled, the
interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting the COM2[1:0]
bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM2[1:0]
to 3 (see Table 17-4 on page 134). The actual OC2 value will only be visible on the port pin if the data direction for
the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2 Register at the com-
pare match between OCR2 and TCNTZ2, and clearing (or setting) the OC2 Register at the timer clock cycle the
counter is cleared (changes from MAX to BOTTOM).

AT 32A [DATASHEET 118
Atmel megas2A [ ]

8155D-AVR-10/2013



The PWM frequency for the output can be calculated by the following equation:

f - fCIk_I/O
OCnPWM N - 256

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform output in
the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer
clock cycle. Setting the OCR2 equal to MAX will result in a constantly high or low output (depending on the polarity
of the output set by the COM21.:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2 to toggle
its logical level on each compare match (COM2[1:0] = 1). The waveform generated will have a maximum frequency
of foeo = fu 11o/2 when OCR2 is set to zero. This feature is similar to the OC2 toggle in CTC mode, except the dou-
ble buffer feature of the output compare unit is enabled in the fast PWM mode.

17.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM2[1:0] = 1) provides a high resolution phase correct PWM waveform genera-
tion option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from
BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OC2) is cleared on the compare match between TCNT2 and OCR2 while upcounting, and set on the compare
match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to 8 bits. In phase correct PWM mode the counter is
incremented until the counter value matches MAX. When the counter reaches MAX, it changes the count direction.
The TCNT2 value will be equal to MAX for one timer clock cycle. The timing diagram for the phase correct PWM
mode is shown on Figure 17-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the
dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line
marks on the TCNT2 slopes represent compare matches between OCR2 and TCNT2.

Figure 17-7. Phase Correct PWM Mode, Timing Diagram

OCn Interrupt Flag Set

OCRn Update

TOVn Interrupt Flag Set

\ v Vv Yy vy \A

o NN

OCn ‘u L (COMn1:0 = 2)
OCn ﬁ ﬁ F (COMN1:0 = 3)
Period }<71 4+724+734>‘

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The Interrupt Flag can be
used to generate an interrupt each time the counter reaches the BOTTOM value.

AT 32A [DATASHEET 119
Atmel megas2A [ ]

8155D-AVR-10/2013



In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting the
COMZ21:0 bits to 2 will produce a non-inverted PWM. An inverted PWM output can be generated by setting the
COM21:0 to 3 (see Table 17-5 on page 134). The actual OC2 value will only be visible on the port pin if the data
direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2 Regis-
ter at the compare match between OCR2 and TCNT2 when the counter increments, and setting (or clearing) the
OC2 Register at compare match between OCR2 and TCNT2 when the counter decrements. The PWM frequency
for the output when using phase correct PWM can be calculated by the following equation:

f _ fo o
OCnPCPWM N-510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform output in
the phase correct PWM mode. If the OCR2 is set equal to BOTTOM, the output will be continuously low and if set
equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will
have the opposite logic values.

At the very start of period 2 in Figure 17-7 OCn has a transition from high to low even though there is no Compare
Match. The point of this transition is to guarantee symmetry around BOTTOM. THere are two cases that give a
transition without Compare Match.

» OCR2A chages its value from MAX, like in Figure 17-7. When the OCR2A value is MAX the OCn pin value is
the same as the result of a down-counting Compare Match. To ensure symmetry around BOTTOM the OCn
value at MAX must correspond to the result of an up-counting Compare Match.

» The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the Compare
Match and hence the OCn change that would have happened on the way up.

17.8 Timer/Counter Timing Diagrams
The following figures show the Timer/Counter in Synchronous mode, and the timer clock (clky,) is therefore shown
as a clock enable signal. In Asynchronous mode, clk,5 should be replaced by the Timer/Counter Oscillator clock.
The figures include information on when Interrupt Flags are set. Figure 17-8 contains timing data for basic
Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than
phase correct PWM mode.

Figure 17-8. Timer/Counter Timing Diagram, no Prescaling

clk, 0

clk,.
(clk,o/1)

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 17-9 shows the same timing data, but with the prescaler enabled.

AT 32A [DATASHEET 120
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 17-9. Timer/Counter Timing Diagram, with Prescaler (f. ,,0/8)

R R
S | i ! !

—

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 17-10 shows the setting of OCF2 in all modes except CTC mode.

Figure 17-10. Timer/Counter Timing Diagram, Setting of OCF2, with Prescaler (f ,0/8)

S A A A ATATIAAT
E I I

-

TCNTn OCRn - 1 OCRn OCRn + 1 OCRn + 2

OCRn OCRn Value

OCFn

Figure 17-11 shows the setting of OCF2 and the clearing of TCNT2 in CTC mode.

AT 32A [DATASHEET 121
Atmel megas2A | 1

8155D-AVR-10/2013



Figure 17-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler (f ,0/8)

e IR R
o N N

TCNTn

(CTC) TOP -1 TOP BOTTOM BOTTOM + 1

OCRn TOP

OCFn

17.9 Asynchronous Operation of the Timer/Counter
When Timer/Counter2 operates asynchronously, some considerations must be taken.

» Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the Timer
Registers TCNT2, OCR2, and TCCR2 might be corrupted. A safe procedure for switching clock source is:

Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIEZ2.

Select clock source by setting AS2 as appropriate.

Write new values to TCNT2, OCR2, and TCCR2.

To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.

Clear the Timer/Counter2 Interrupt Flags.
. Enable interrupts, if needed.
» The Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external clock to the TOSC1 pin
may result in incorrect Timer/Counter2 operation. The CPU main clock frequency must be more than four times
the Oscillator frequency.
When writing to one of the registers TCNT2, OCR2, or TCCR2, the value is transferred to a temporary register,
and latched after two positive edges on TOSCL1. The user should not write a new value before the contents of
the temporary register have been transferred to its destination. Each of the three mentioned registers have their
individual temporary register, which means for example that writing to TCNT2 does not disturb an OCR2 write in
progress. To detect that a transfer to the destination register has taken place, the Asynchronous Status Register
— ASSR has been implemented.
When entering Power-save or Extended Standby mode after having written to TCNT2, OCR2, or TCCR2, the
user must wait until the written register has been updated if Timer/Counter2 is used to wake up the device.
Otherwise, the MCU will enter sleep mode before the changes are effective. This is particularly important if the
Output Compare?2 interrupt is used to wake up the device, since the output compare function is disabled during
writing to OCR2 or TCNT?2. If the write cycle is not finished, and the MCU enters sleep mode before the
OCR2UB bit returns to zero, the device will never receive a compare match interrupt, and the MCU will not
wake up.
If Timer/Counter2 is used to wake the device up from Power-save or Extended Standby mode, precautions
must be taken if the user wants to re-enter one of these modes: The interrupt logic needs one TOSC1 cycle to
be reset. If the time between wake-up and re-entering sleep mode is less than one TOSC1 cycle, the interrupt
will not occur, and the device will fail to wake up. If the user is in doubt whether the time before re-entering

° o0k wbdE

AT 32A [DATASHEET 122
Atmel megas2A [ ]

8155D-AVR-10/2013



Power-save or Extended Standby mode is sufficient, the following algorithm can be used to ensure that one
TOSCL1 cycle has elapsed:

1. Write a value to TCCR2, TCNT2, or OCR2.

2. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

3. Enter Power-save or Extended Standby mode.

» When the asynchronous operation is selected, the 32.768kHz Oscillator for Timer/Counter2 is always running,
except in Power-down and Standby modes. After a Power-up Reset or wake-up from Power-down or Standby
mode, the user should be aware of the fact that this Oscillator might take as long as one second to stabilize.
The user is advised to wait for at least one second before using Timer/Counter2 after power-up or wake-up from
Power-down or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after a
wake-up from Power-down or Standby mode due to unstable clock signal upon start-up, no matter whether the
Oscillator is in use or a clock signal is applied to the TOSC1 pin.

Description of wake up from Power-save or Extended Standby mode when the timer is clocked asynchronously:
When the interrupt condition is met, the wake up process is started on the following cycle of the timer clock, that
is, the timer is always advanced by at least one before the processor can read the counter value. After wake-up,
the MCU is halted for four cycles, it executes the interrupt routine, and resumes execution from the instruction
following SLEEP.

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect result. Since
TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a register
synchronized to the internal I/O clock domain. Synchronization takes place for every rising TOSC1 edge. When
waking up from Power-save mode, and the 1/O clock (clk,) again becomes active, TCNT2 will read as the
previous value (before entering sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after
waking up from Power-save mode is essentially unpredictable, as it depends on the wake-up time. The
recommended procedure for reading TCNT2 is thus as follows:

1. Write any value to either of the registers OCR2 or TCCR2.
2. Wait for the corresponding Update Busy Flag to be cleared.
3. Read TCNT2.

* During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous timer takes
three processor cycles plus one timer cycle. The timer is therefore advanced by at least one before the
processor can read the timer value causing the setting of the Interrupt Flag. The output compare pin is changed
on the timer clock and is not synchronized to the processor clock.

AT 32A [DATASHEET 123
Atmel megas2A [ ]

8155D-AVR-10/2013



17.10 Timer/Counter Prescaler

Figure 17-12. Prescaler for Timer/Counter2

clk,o — Olkypg
Clear 10-BIT T/C PRESCALER

TOSC1 —»] A © o 3 @ ] S
4 S 1S |9 a S
| A IR A %
5} E 4 = N N I

AS2 ) o > 5 %I—

PSR2 0
l Y Vv  YVVY

CS20 ;X

CSs21 r&

CS22

TIMER/COUNTER2 CLOCK SOURCE
clky,

The clock source for Timer/Counter2 is named clk;,s. Clky,g is by default connected to the main system I/O clock
clk,o. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin. This
enables use of Timer/Counter2 as a Real Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC?2 are dis-
connected from Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an
independent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz crystal. Apply-
ing an external clock source to TOSC1 is not recommended.

For Timer/Counter2, the possible prescaled selections are: clky,5/8, Clky,5/32, clky,5/64, clky,5/128, clk;,5/256, and
clky,s/1024. Additionally, clk;,g as well as 0 (stop) may be selected. Setting the PSR2 bit in SFIOR resets the pres-
caler. This allows the user to operate with a predictable prescaler.

17.11 Register Description

TCCR2 — Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0

| rFoc2 | wem2o | com2i | com20 | wGMm21 CS22 cs21 €S20 | TCCR2
Read/Write w R/W RIW RIW R/W RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

» Bit 7-FOC2: Force Output Compare

The FOC2 bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with
future devices, this bit must be set to zero when TCCR2 is written when operating in PWM mode. When writing a
logical one to the FOC2 bit, an immediate compare match is forced on the waveform generation unit. The OC2 out-
put is changed according to its COM21.:0 bits setting. Note that the FOC2 bit is implemented as a strobe. Therefore
it is the value present in the COM21.:0 bits that determines the effect of the forced compare.

A FOC2 strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2 as TOP.

The FOC2 bit is always read as zero.

AT 32A [DATASHEET 124
Atmel megas2A [ ]

8155D-AVR-10/2013



» Bit 6, 3-WGM2[1:0]: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the Timer/Counter unit are: Normal
mode, Clear Timer on Compare match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See
Table 17-2 and “Modes of Operation” on page 124.

Table 17-2.  Waveform Generation Mode Bit Description®
WGM21 | WGM20 | Timer/Counter Mode of Update of TOV2 Flag
Mode (CTC2) (PWM2) | Operation TOP OCR2 Set on
0 0 0 Normal OXFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2 Immediate MAX
3 1 1 Fast PWM OxFF BOTTOM MAX
Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions. However, the function-

ality and location of these bits are compatible with previous versions of the timer.

e Bit 5:4 — COM2[1:0]: Compare Match Output Mode

These bits control the Output Compare pin (OC2) behavior. If one or both of the COM21:0 bits are set, the OC2
output overrides the normal port functionality of the 1/O pin it is connected to. However, note that the Data Direction
Register (DDR) bit corresponding to OC2 pin must be set in order to enable the output driver.

When OC2 is connected to the pin, the function of the COM21:0 bits depends on the WGM21.:0 bit setting. Table
17-3 shows the COM21.:0 bit functionality when the WGM21:0 bits are set to a normal or CTC mode (non-PWM).

Table 17-3. Compare Output Mode, non-PWM Mode
COomM21 COM20 Description
0 0 Normal port operation, OC2 disconnected.
0 1 Toggle OC2 on compare match
1 0 Clear OC2 on compare match
1 1 Set OC2 on compare match

Table 17-4 shows the COM2[1:0] bit functionality when the WGM21.:0 bits are set to fast PWM mode.

Table 17-4. Compare Output Mode, Fast PWM Mode®™
COM21 COM20 Description

0 0 Normal port operation, OC2 disconnected.

0 1 Reserved

1 0 Clear OC2 on compare match, set OC2 at BOTTOM,
(non-inverting mode)

1 1 Set OC2 on compare match, clear OC2 at BOTTOM,
(inverting mode)

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the compare match is ignored, but
the set or clear is done at TOP. See “Fast PWM Mode” on page 125 for more details.

Table 17-5 shows the COM2[1:0] bit functionality when the WGM21.:0 bits are set to phase correct PWM mode

ATmega32A [DATASHEET] 125

8155D-AVR-10/2013

Atmel



Table 17-5. Compare Output Mode, Phase Correct PWM Mode™™
COM21 COM20 | Description

0 0 Normal port operation, OC2 disconnected.
0 1 Reserved
1 0 Clear OC2 on compare match when up-counting. Set OC2 on compare match

when downcounting.

1 1 Set OC2 on compare match when up-counting. Clear OC2 on compare match
when downcounting.

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the compare match is ignored, but
the set or clear is done at TOP. See “Phase Correct PWM Mode” on page 127 for more details.

e Bit 2:0 — CS2[2:0]: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table 17-6.

Table 17-6.  Clock Select Bit Description

CS22 CS21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clky,5/(No prescaling)
0 1 0 clky,4/8 (From prescaler)
0 1 1 clky,4/32 (From prescaler)
1 0 0 Cclky,5/64 (From prescaler)
1 0 1 Clky,5/128 (From prescaler)
1 1 0 clky,5/256 (From prescaler)
1 1 1 clky,5/1024 (From prescaler)

17.11.2 TCNT2 - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0
| TCNT2[7:0] ] Ttenm2

Read/Write RIW R/W RIW RIW R/W RIW RIW R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit
counter. Writing to the TCNT2 Register blocks (removes) the compare match on the following timer clock. Modify-
ing the counter (TCNTZ2) while the counter is running, introduces a risk of missing a compare match between
TCNT2 and the OCR2 Regjister.

17.11.3 OCR2 - Output Compare Register

Bit 7 6 5 4 3 2 1 0

| OCR2[7:0] | ocr2
Read/Write RIW RIW R/W RIW R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register contains an 8-bit value that is continuously compared with the counter value
(TCNTZ2). A match can be used to generate an output compare interrupt, or to generate a waveform output on the
OC2 pin.

AT 32A [DATASHEET 126
Atmel megas2A [ ]

8155D-AVR-10/2013



17.11.4 ‘ASSR - Asynchronous Status Register

Bit 7 6 5 4 3 2 1 0
| - | - - | - | As2 TCN2UB | OCR2UB | TCR2UB |  AsSSR

Read/Write R R R R R/W R R R

Initial Value 0 0 0 0 0 0 0 0

e Bit 3—- AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter 2 is clocked from the I/O clock, clk;,o. When AS2 is written to one,
Timer/Counter?2 is clocked from a Crystal Oscillator connected to the Timer Oscillator 1 (TOSC1) pin. When the
value of AS2 is changed, the contents of TCNT2, OCR2, and TCCR2 might be corrupted.

» Bit 2 - TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When TCNT2 has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates
that TCNT2 is ready to be updated with a new value.

* Bit 1 - OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR?2 is written, this bit becomes set. When OCR2 has been
updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that
OCR2 is ready to be updated with a new value.

* Bit 0 — TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes set. When TCCR2 has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates
that TCCR2 is ready to be updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is set, the updated
value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2, and TCCR2 are different. When reading TCNT2, the actual timer
value is read. When reading OCR2 or TCCR2, the value in the temporary storage register is read.

17.11.5 TIMSK — Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
| ocie2 | ToIE2 | TICIEL | OCIEIA | OCIE1B TOIEL OCIEQ TOEO | TiMsK

Read/Write RIW R/W R/W RIW R/W R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable

When the OCIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare
Match interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs,
that is, when the OCF2 bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

» Bit 6 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Overflow
interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2 occurs, that is, when
the TOV2 bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

17.11.6 TIFR — Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
| OCF2 | TOV2 | ICF1 | OCF1A | OCF1B TOV1 OCFO0 | TOVO | TIFR

AT 32A [DATASHEET 127
Atmel megas2A [ ]

8155D-AVR-10/2013



Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 — OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2 —
Output Compare Register2. OCF2 is cleared by hardware when executing the corresponding interrupt handling
vector. Alternatively, OCF2 is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2
(Timer/Counter2 Compare match Interrupt Enable), and OCF2 are set (one), the Timer/Counter2 Compare match
Interrupt is executed.

* Bit 6 - TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic one to the flag.
When the SREG I-bit, TOIE2 (Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 changes count-
ing direction at $00.

17.11.7 SFIOR - Special Function 10 Register

Bit 7 6 5 4 3 2 1 0

| Apts2 | aAbtsi | ADTsO | = ACME PUD PSR2 PSR10 | SFIOR
Read/Write RIW R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 1 - PSR2: Prescaler Reset Timer/Counter2

When this bit is written to one, the Timer/Counter2 prescaler will be reset. The bit will be cleared by hardware after
the operation is performed. Writing a zero to this bit will have no effect. This bit will always be read as zero if
Timer/Counter2 is clocked by the internal CPU clock. If this bit is written when Timer/Counter2 is operating in asyn-
chronous mode, the bit will remain one until the prescaler has been reset.

AT 32A [DATASHEET 128
Atmel megas2A [ ]

8155D-AVR-10/2013



18. SPI — Serial Peripheral Interface

18.1 Features
* Full-duplex, Three-wire Synchronous Data Transfer
* Master or Slave Operation
* LSB First or MSB First Data Transfer
e Seven Programmable Bit Rates
* End of Transmission Interrupt Flag
* Write Collision Flag Protection
* Wake-up from Idle Mode
* Double Speed (CK/2) Master SPI Mode

18.2 Overview
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the ATmega32A and
peripheral devices or between several AVR devices.

Figure 18-1. SPI Block Diagram®

MISO
y =
M MOSI
XTAL MSB LSB o -
-] e < s O
l 8 BIT SHIFT REGISTER 9
READ DATA BUFFER 6‘
DIVIDER X
/2/4/8/16/32/64/128 E
o
(@]
Yy vV VvV Vv C =z
SPI CLOCK (MASTER) CLOCK T
SELECT CLOCK S SCK
LOGIC NEY)
><“_ S 'y 'y 'y —
o x| SS
HE =]
v a
=l owl X
25 8
<MSTR
SPI CONTROL +SPE
! Ql x d < | o
o)
e 3 ol £ ¢ 85 2 & EE
(/)'3'““‘% n|l v A = O O un n
| SPI STATUS REGISTER | [ SPI CONTROL REGISTER
8 8,
v

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Referto Figure 1-1 on page 2, and Table 12-6 on page 59 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 18-2. The system consists of two
Shift Registers, and a Master clock generator. The SPI Master initiates the communication cycle when pulling low
the Slave Select SS pin of the desired Slave. Master and Slave prepare the data to be sent in their respective Shift

AT 32A [DATASHEET 129
Atmel megas2A [ ]

8155D-AVR-10/2013



Registers, and the Master generates the required clock pulses on the SCK line to interchange data. Data is always
shifted from Master to Slave on the Master Out — Slave In, MOSI, line, and from Slave to Master on the Master In —
Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling high the Slave
Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled by
user software before communication can start. When this is done, writing a byte to the SPI Data Register starts the
SPI clock generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock gen-
erator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR
Register is set, an interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be kept in the Buffer
Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is
driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the data will not
be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been com-
pletely shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR
Register is set, an interrupt is requested. The Slave may continue to place new data to be sent into SPDR before
reading the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 18-2. SPI Master-slave Interconnection

MSB  MASTER LSB ! ' MSB SLAVE LSB

' MISO MISO!
T 8 BIT SHIFT REGISTER ‘ ‘ 8 BIT SHIFT REGISTER
A 1 \
> :MOSI MOSI: > A
SHIFT
SPI »o_p SCK SCK | ENABLE

» p— —
CLOCK GENERATOR ‘ 55 s,
L] [l

The system is single buffered in the transmit direction and double buffered in the receive direction. This means that
bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When
receiving data, however, a received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of
the clock signal, the minimum low and high periods should be:

Low periods: longer than 2 CPU clock cycles.
High periods: longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to
Table 18-1. For more details on automatic port overrides, refer to “Alternate Port Functions” on page 55.

Table 18-1. SPI Pin Overrides

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

ss User Defined Input

AT 32A [DATASHEET 130
Atmel megas2A [ ]

8155D-AVR-10/2013



Note:  See “Alternate Functions of Port B” on page 59 for a detailed description of how to define the direction of the user
defined SPI pins.

The following code examples show how to initialize the SPI as a master and how to perform a simple transmission.

DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins.

DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. For example

if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

Assembly Code Example®

AT 32A [DATASHEET 131
Atmel megas2A [ ]

8155D-AVR-10/2013



SPI MasterInit:
; Set MOSI and SCK output, all others input
1di 1rl17, (1<<DD_MOSI) | (1<<DD_SCK)
out DDR_SPI,rl7
; Enable SPI, Master, set clock rate fck/16
1di 1rl17, (1<<SPE) | (1<<MSTR) | (1<<SPRO)
out SPCR,rl7

ret

SPI MasterTransmit:
; Start transmission of data (rle6)
out SPDR,rl6

Wait Transmit:
; Wait for transmission complete
sbis SPSR, SPIF
rjmp Wait Transmit

ret

C Code Example®

void SPI MasterInit (void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

void SPI MasterTransmit (char cData)

{

/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */

while (! (SPSR & (1<<SPIF)))

7

Note: 1. See “About Code Examples” on page 6.

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

132



The following code examples show how to initialize the SPI as a Slave and how to perform a simple reception.

Assembly Code Example®

SPI_SlaveInit:
; Set MISO output, all others input
1ldi rl17, (1<<DD_MISO)
out DDR_SPI,rl7
; Enable SPI
1di rl17, (1<<SPE)
out SPCR,rl7

ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR, SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in rl6, SPDR

ret

C Code Example®

void SPI SlavelInit (void)

{
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO);
/* Enable SPI */
SPCR = (1<<SPE);
}

char SPI_SlaveReceive (void)

{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))
/* Return data register */

return SPDR;

Note: 1. See “About Code Examples” on page 6.

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

133



18.3 SS Pin Functionality

18.3.1 Slave Mode
When the SPI is configured as a Slave, the Slave Select (S_S) pin is always input. When SS is held low, the SPI is
activated, and MISO becomes an output if configured so by the user. All other pins are inputs. When SS is driven
high, all pins are inputs except MISO which can be user configured as an output, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the master
clock generator. When the SS pin is driven high, the SPI Slave will immediately reset the send and receive logic,
and drop any partially received data in the Shift Register.

18.3.2 Master Mode
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically, the
pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin is driven low by
peripheral circuitry when the SPI is configured as a Master with the sSS pin defined as an input, the SPI system
interprets this as another master selecting the SPI as a slave and starting to send data to it. To avoid bus conten-
tion, the SPI system takes the following actions:

1. The MSTR bitin SPCR is cleared and the SPI system becomes a slave. As a result of the SPI becoming
a slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt
routine will be executed.
Thus, when interrupt-driven SPI transmission is used in master mode, and there exists a possibility that SSis
driven low, the interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by a
slave select, it must be set by the user to re-enable SPI master mode.

18.3.3 SPCR — SPI Control Register

Bit 7 6 5 4 3 2 1 0
| see | spE | DORD MSTR CPOL CPHA SPR1 SPRO | SPCR

Read/Write R/W R/W RIW RIW RIW RIW R/W R/W

Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if the global interrupt
enable bit in SREG is set.

* Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.

* Bit 5—- DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

* Bit 4 — MSTR: Master/Slave Select

AT 32A [DATASHEET 134
Atmel megas2A [ ]

8155D-AVR-10/2013



This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic zero. If SSis config-
ured as an input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR will become set.
The user will then have to set MSTR to re-enable SPI Master mode.

» Bit 3—- CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when idle. Refer
to Figure 18-3 and Figure 18-4 for an example. The CPOL functionality is summarized below:

Table 18-2. CPOL Functionality

CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

* Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last) edge
of SCK. Refer to Figure 18-3 and Figure 18-4 for an example. The CPHA functionality is summarized below:

Table 18-3. CPHA Functionality

CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

* Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have no effect on the
Slave. The relationship between SCK and the Oscillator Clock frequency f,. is shown in the following table:

Table 18-4.  Relationship Between SCK and the Oscillator Frequency

SPI2ZX SPR1 SPRO SCK Frequency

0 0 0 foscl4

0 0 1 fos/16

0 1 0 f.s/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fos/64

18.3.4 SPSR — SPI Status Register

Bit 7 6 5 4 3 2 1 0

| spF | wcoL | - - - - - spi2x |  SPsR
Read/Write R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in SPCR is set and global
interrupts are enabled. If SSisan input and is driven low when the SPI is in Master mode, this will also set the SPIF
Flag. SPIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the

AT 32A [DATASHEET 135
Atmel megas2A [ ]

8155D-AVR-10/2013



SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing the SPI Data Register
(SPDR).

» Bit 6 — WCOL: Write COLIlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF
bit) are cleared by first reading the SPI Status Register with WCOL set, and then accessing the SPI Data Register.

* Bit 5:1 — Reserved Bits
These bits are reserved bits in the ATmega32A and will always read as zero.

» Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI is in Master mode
(see Table 18-4). This means that the minimum SCK period will be two CPU clock periods. When the SPI is config-
ured as Slave, the SPI is only guaranteed to work at f,../4 or lower.

The SPI interface on the ATmega32A is also used for program memory and EEPROM downloading or uploading.
See page 279 for SPI Serial Programming and Verification.

18.3.5 SPDR - SPI Data Register

Bit 7 6 5 4 3 2 1 0
| wmsB | | Lse | sPDR

Read/Write RIW R/W RIW R/W RIW R/W R/W RIW

Initial Value X X X X X X X X Undefined

The SPI Data Register is a read/write register used for data transfer between the Register File and the SPI Shift
Register. Writing to the register initiates data transmission. Reading the register causes the Shift Register Receive
buffer to be read.

18.4 Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control
bits CPHA and CPOL. The SPI data transfer formats are shown in Figure 18-3 and Figure 18-4. Data bits are
shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize.
This is clearly seen by summarizing Table 18-2 and Table 18-3, as done below:

Table 18-5. CPOL and CPHA Functionality

Leading Edge Trailing Edge SPI Mode
CPOL=0,CPHA=0 Sample (Rising) Setup (Falling) 0
CPOL=0,CPHA=1 Setup (Rising) Sample (Falling) 1
CPOL=1,CPHA=0 Sample (Falling) Setup (Rising) 2
CPOL=1,CPHA=1 Setup (Falling) Sample (Rising) 3

AT 32A [DATASHEET 136
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 18-3. SPI Transfer Format with CPHA =0

[~ sck (cPoL=0)

mode 0

SCK (CPOL=1)""|
mode 2

L
[

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

=

MSB first (DORD = 0) MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD =1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 MSB

H LA
H G

L] L] L
SENEEN
H K
A A

A
3

//L‘/

Figure 18-4. SPI Transfer Format with CPHA =1

sy [ [
Eaninl
DC

X

SAMPLE |
MOSI/MISO

i
H

CHANGE 0
MISO PIN

L L L L
JEREREENEE
LN H_ A
H_H H_ X

CHANGE 0 \<
MOSI PIN

\\l/\‘

=

MSB first (DORD = 0) MSB Bit 6 Bit5 Bit4 Bit3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 MSB

A

AT 32A [DATASHEET 137
Atmel megas2A [ ]

8155D-AVR-10/2013



19. USART

19.1 Features
¢ Full Duplex Operation (Independent Serial Receive and Transmit Registers)
* Asynchronous or Synchronous Operation
* Master or Slave Clocked Synchronous Operation
* High Resolution Baud Rate Generator
* Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
* Odd or Even Parity Generation and Parity Check Supported by Hardware
* Data OverRun Detection
* Framing Error Detection
* Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
* Three Separate Interrupts on TX Complete, TX Data Register Empty, and RX Complete
* Multi-processor Communication Mode
* Double Speed Asynchronous Communication Mode

19.2 Overview
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly flexible serial
communication device. A simplified block diagram of the USART transmitter is shown in Figure 19-1. CPU accessi-
ble 1/0 Registers and I/O pins are shown in bold.

AT 32A [DATASHEET 138
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 19-1. USART Block Diagram®

;:D_» RECEIVE SHIFT REGISTER RECOVERY CONTROL

PARITY
CHECKER

UDR (Receive)

C *77777777777775I&:(G§n§ra?or7
| UBRRIH:L] ‘
\ osc |
\ 7 \
\
| BAUD RATE GENERATOR |« }
\ |
y
| SYNC LOGIC PIN \
‘ Y »| conTROL [*1 XCK
| \
}7 - 0T - — — — — — & - T T T T T T = e
| Transmltteﬁ‘
) >
} UDR (Transmit) CONTROL \
" PARITY ‘
" \ GENERATOR \
=] I PIN \
3| | TRANSMIT SHIFT REGISTER controL [ TxD
< »
ooy e
[m) Receiver |
cLOCK RX \
RECOVERY CONTROL | |
L \
\
pATA | PIN < | R0
\
\
\
\

Note: 1. Refer to Figure 1-1 on page 2, Table 12-14 on page 66, and Table 12-8 on page 61 for USART pin placement.
The dashed boxes in the block diagram separate the three main parts of the USART (listed from the top): Clock
Generator, Transmitter and Receiver. Control Registers are shared by all units. The clock generation logic consists
of synchronization logic for external clock input used by synchronous slave operation, and the baud rate generator.
The XCK (Transfer Clock) pin is only used by Synchronous Transfer mode. The Transmitter consists of a single
write buffer, a serial Shift Register, parity generator and control logic for handling different serial frame formats.
The write buffer allows a continuous transfer of data without any delay between frames. The Receiver is the most
complex part of the USART module due to its clock and data recovery units. The recovery units are used for asyn-
chronous data reception. In addition to the recovery units, the receiver includes a parity checker, control logic, a
Shift Register and a two level receive buffer (UDR). The receiver supports the same frame formats as the transmit-
ter, and can detect frame error, data overrun and parity errors.

19.2.1  AVR USART vs. AVR UART - Compatibility
The USART is fully compatible with the AVR UART regarding:

» Bit locations inside all USART Registers
» Baud Rate Generation

AT 32A [DATASHEET 139
Atmel megas2A | 1

8155D-AVR-10/2013



» Transmitter Operation
 Transmit Buffer Functionality
* Receiver Operation
However, the receive buffering has two improvements that will affect the compatibility in some special cases:

A second Buffer Register has been added. The two Buffer Registers operate as a circular FIFO buffer.
Therefore the UDR must only be read once for each incoming data! More important is the fact that the Error
Flags (FE and DOR) and the 9th data bit (RXB8) are buffered with the data in the receive buffer. Therefore the
status bits must always be read before the UDR Register is read. Otherwise the error status will be lost since
the buffer state is lost.

» The receiver Shift Register can now act as a third buffer level. This is done by allowing the received data to
remain in the serial Shift Register (see Figure 19-1) if the Buffer Registers are full, until a new start bit is
detected. The USART is therefore more resistant to Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register location:

* CHR9 is changed to UCSZ2
* OR is changed to DOR

19.3 Clock Generation

The clock generation logic generates the base clock for the Transmitter and Receiver. The USART supports four
modes of clock operation: Normal Asynchronous, Double Speed Asynchronous, Master Synchronous and Slave
Synchronous mode. The UMSEL bit in USART Control and Status Register C (UCSRC) selects between asyn-
chronous and synchronous operation. Double Speed (Asynchronous mode only) is controlled by the U2X found in
the UCSRA Register. When using Synchronous mode (UMSEL = 1), the Data Direction Register for the XCK pin
(DDR_XCK) controls whether the clock source is internal (Master mode) or external (Slave mode). The XCK pin is
only active when using Synchronous mode.

Figure 19-2 shows a block diagram of the clock generation logic.

Figure 19-2. Clock Generation Logic, Block Diagram

UBRR
u2x
fosc

: UBRR+1
Prescaling »l /2 > /4 > /2 Lt
Down-Counter 0
X !
0osC — txclk
DDR_XCK
y 3
Sync . Edge >
ki |_> Register | Detector 1o
o I UMSEL
Pin =xcko Y > !
DDR_XCK ucPoL
rxclk

Signal description:
txclk  Transmitter clock (Internal Signal).
rxclk  Receiver base clock (Internal Signal).

xcki  Input from XCK pin (Internal Signal). Used for synchronous slave operation.

AT 32A [DATASHEET 140
Atmel megas2A [ ]

8155D-AVR-10/2013



xcko  Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

fosc  XTAL pin frequency (System Clock).

19.31 Internal Clock Generation — The Baud Rate Generator
Internal clock generation is used for the asynchronous and the synchronous master modes of operation. The
description in this section refers to Figure 19-2.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function as a programmable pres-
caler or baud rate generator. The down-counter, running at system clock (fosc), is loaded with the UBRR value
each time the counter has counted down to zero or when the UBRRL Register is written. A clock is generated each
time the counter reaches zero. This clock is the baud rate generator clock output (= fosc/(UBRR+1)). The Trans-
mitter divides the baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator
output is used directly by the receiver’s clock and data recovery units. However, the recovery units use a state
machine that uses 2, 8 or 16 states depending on mode set by the state of the UMSEL, U2X and DDR_XCK hbits.

Table 19-1 contains equations for calculating the baud rate (in bits per second) and for calculating the UBRR value
for each mode of operation using an internally generated clock source.

Table 19-1. Equations for Calculating Baud Rate Register Setting

Equation for Calculating Equation for Calculating
Operating Mode Baud Rate® UBRR Value
Asynchronous Normal Mode fosc fosc
(U2x=0) BAUD = t5uerr+1) | "BRR = TeBAUD -
Asynchronous Double Speed Mode (U2X fOSC fOSC
=D BAUD = gUBrr+1) | “BRR = ggaup !
Synchronous Master Mode
’ BAUD = ——19C__ | gpR = _OSC__
2(UBRR +1) 2BAUD
Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).
BAUD Baud rate (in bits per second, bps)
fosc System Oscillator clock frequency
UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)

Some examples of UBRR values for some system clock frequencies are found in Table 19-9 (see page 172).

19.3.2 Double Speed Operation (U2X)
The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only has effect for the asynchro-
nous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer rate for
asynchronous communication. Note however that the receiver will in this case only use half the number of samples
(reduced from 16 to 8) for data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the Transmitter, there are no downsides.

19.3.3 External Clock
External clocking is used by the synchronous slave modes of operation. The description in this section refers to
Figure 19-2 for details.

External clock input from the XCK pin is sampled by a synchronization register to minimize the chance of meta-sta-
bility. The output from the synchronization register must then pass through an edge detector before it can be used

AT 32A [DATASHEET 141
Atmel megas2A [ ]

8155D-AVR-10/2013



by the Transmitter and receiver. This process introduces a two CPU clock period delay and therefore the maximum
external XCK clock frequency is limited by the following equation:

fOSC

fxck < _4
Note that f,. depends on the stability of the system clock source. It is therefore recommended to add some margin
to avoid possible loss of data due to frequency variations.

19.3.4 Synchronous Clock Operation
When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock input (Slave) or clock out-
put (Master). The dependency between the clock edges and data sampling or data change is the same. The basic
principle is that data input (on RxD) is sampled at the opposite XCK clock edge of the edge the data output (TxD) is
changed.

Figure 19-3. Synchronous Mode XCK Timing.

UCPOL=1  XCK \—/—®—/—m

RxD / TxD N
r Sample
UCPOL=0  XCK /—\_@—\_/—\J
RxD / TxD \*
r Sample

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and which is used for data
change. As Figure 19-3 shows, when UCPOL is zero the data will be changed at rising XCK edge and sampled at
falling XCK edge. If UCPOL is set, the data will be changed at falling XCK edge and sampled at rising XCK edge.

19.4 Frame Formats
A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and option-
ally a parity bit for error checking. The USART accepts all 30 combinations of the following as valid frame formats:
* 1 start bit
* 5,6, 7,8, or 9 data bits
* no, even or odd parity bit
1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits, up to a total of
nine, are succeeding, ending with the most significant bit. If enabled, the parity bit is inserted after the data bits,
before the stop bits. When a complete frame is transmitted, it can be directly followed by a new frame, or the com-
munication line can be set to an idle (high) state. Figure 19-4 illustrates the possible combinations of the frame
formats. Bits inside brackets are optional.

Figure 19-4. Frame Formats
% FRAME >}

(IDLE) \ St/ 0 >< 1 >< 2 >< 3 >< 4 ><[5]>< [6]>< [7]>< [8]><[P]/Sp1 [Sp2], (St/IDLE)

AT 32A [DATASHEET 142
Atmel megas2A [ ]

8155D-AVR-10/2013




St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be
high.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0, and USBS bits in UCSRB and UCSRC. The
Receiver and Transmitter use the same setting. Note that changing the setting of any of these bits will corrupt all
ongoing communication for both the Receiver and Transmitter.

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame. The USART Parity mode
(UPM1.:0) bits enable and set the type of parity bit. The selection between one or two stop bits is done by the
USART Stop Bit Select (USBS) bit. The receiver ignores the second stop bit. An FE (Frame Error) will therefore
only be detected in the cases where the first stop bit is zero.

1941 Parity Bit Calculation
The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the exclu-
sive or is inverted. The relation between the parity bit and data bits is as follows::
Peven = Uy _1®...®d;®d,®d, ®d,®0

Pogg = 0y 1@ ... 0d,@d, ®d; ®dy®1

Peven Parity bit using even parity
Podd Parity bit using odd parity
d Data bit n of the character

n

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

19.5 USART Initialization

The USART has to be initialized before any communication can take place. The initialization process normally con-
sists of setting the baud rate, setting frame format and enabling the Transmitter or the Receiver depending on the
usage. For interrupt driven USART operation, the Global Interrupt Flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no ongoing transmis-
sions during the period the registers are changed. The TXC Flag can be used to check that the Transmitter has
completed all transfers, and the RXC Flag can be used to check that there are no unread data in the receive buffer.
Note that the TXC Flag must be cleared before each transmission (before UDR is written) if it is used for this
purpose.

The following simple USART initialization code examples show one assembly and one C function that are equal in
functionality. The examples assume asynchronous operation using polling (no interrupts enabled) and a fixed
frame format. The baud rate is given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 registers. When the function writes to the UCSRC Register, the URSEL bit
(MSB) must be set due to the sharing of 1/0 location by UBRRH and UCSRC.

AT 32A [DATASHEET 143
Atmel megas2A [ ]

8155D-AVR-10/2013



Assembly Code Example®

USART Init:
; Set baud rate
out UBRRH, rl7
out UBRRL, rlé6
; Enable receiver and transmitter
1di 116, (1<<RXEN) | (1<<TXEN)
out UCSRB,rlé6
; Set frame format: 8data, 2stop bit
1di 1r16, (1<<URSEL) | (1<<USBS) | (3<<UCSZ0)
out UCSRC,rlé6

ret

C Code Example®™

void USART Init( unsigned int baud )

{

/* Set baud rate */

UBRRH = (unsigned char) (baud>>8) ;

UBRRL = (unsigned char)baud;

/* Enable receiver and transmitter */
UCSRB = (1<<RXEN) | (1<<TXEN) ;

/* Set frame format: 8data, 2stop bit */
UCSRC = (1<<URSEL) | (1<<USBS) | (3<<UCSZ0) ;

Note: 1. See “About Code Examples” on page 6.

More advanced initialization routines can be made that include frame format as parameters, disable interrupts and
so on. However, many applications use a fixed setting of the Baud and Control Registers, and for these types of
applications the initialization code can be placed directly in the main routine, or be combined with initialization code
for other 1/0O modules.

19.6 Data Transmission — The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRB Register. When the
Transmitter is enabled, the normal port operation of the TxD pin is overridden by the USART and given the function
as the transmitter’'s serial output. The baud rate, mode of operation and frame format must be set up once before
doing any transmissions. If synchronous operation is used, the clock on the XCK pin will be overridden and used
as transmission clock.

19.6.1 Sending Frames with 5 to 8 Data Bit
A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU can load the
transmit buffer by writing to the UDR 1/O location. The buffered data in the transmit buffer will be moved to the Shift
Register when the Shift Register is ready to send a new frame. The Shift Register is loaded with new data if it is in
idle state (no ongoing transmission) or immediately after the last stop bit of the previous frame is transmitted. When
the Shift Register is loaded with new data, it will transfer one complete frame at the rate given by the Baud Regis-
ter, U2X bit or by XCK depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the Data Register Empty
(UDRE) Flag. When using frames with less than eight bits, the most significant bits written to the UDR are ignored.

AT 32A [DATASHEET 144
Atmel megas2A [ ]

8155D-AVR-10/2013



The USART has to be initialized before the function can be used. For the assembly code, the data to be sent is
assumed to be stored in Register R16

Assembly Code Example®

USART Transmit:
; Wait for empty transmit buffer

sbis UCSRA, UDRE

rjmp USART Transmit

; Put data (rl6) into buffer, sends the data

out TUDR,rlé6

ret

C Code Example®

void USART Transmit ( unsigned char data )
{
/* Wait for empty transmit buffer */
while ( ! ( UCSRA & (1<<UDRE)) )
/* Put data into buffer, sends the data */
UDR = data;

Note: 1. See “About Code Examples” on page 6.

The function simply waits for the transmit buffer to be empty by checking the UDRE Flag, before loading it with new
data to be transmitted. If the Data Register Empty Interrupt is utilized, the interrupt routine writes the data into the
buffer.

19.6.2 Sending Frames with 9 Data Bit
If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in UCSRB before the low byte
of the character is written to UDR. The following code examples show a transmit function that handles 9-bit charac-
ters. For the assembly code, the data to be sent is assumed to be stored in Registers R17:R16.

Assembly Code Example®

ATmega32A [DATASHEET] 145
A t m eL 8155D-AVR-10/2013



USART Transmit:
; Wait for empty transmit buffer
sbis UCSRA, UDRE
rjmp USART Transmit
; Copy 9th bit from rl7 to TXBS8
cbi UCSRB, TXBS8
sbrc rl17,0
sbi UCSRB, TXB8
; Put LSB data (rlé6) into buffer, sends the data
out UDR,rlé6

ret

C Code Example®

void USART Transmit ( unsigned int data )
{
/* Wait for empty transmit buffer */
while ( ! ( UCSRA & (1<<UDRE))) )

/* Copy 9th bit to TXB8 */

UCSRB &= ~(1<<TXB8) ;
if ( data & 0x0100 )
UCSRB |= (1<<TXB8);

/* Put data into buffer, sends the data */
UDR = data;

Note: 1. These transmit functions are written to be general functions. They can be optimized if the contents of the UCSRB is
static (that is, only the TXB8 bit of the UCSRB Register is used after initialization).

The ninth bit can be used for indicating an address frame when using multi processor communication mode or for

other protocol handling as for example synchronization.

19.6.3 Transmitter Flags and Interrupts
The USART transmitter has two flags that indicate its state: USART Data Register Empty (UDRE) and Transmit
Complete (TXC). Both flags can be used for generating interrupts.

The Data Register Empty (UDRE) Flag indicates whether the transmit buffer is ready to receive new data. This bit
is set when the transmit buffer is empty, and cleared when the transmit buffer contains data to be transmitted that
has not yet been moved into the Shift Register. For compatibility with future devices, always write this bit to zero
when writing the UCSRA Register.

When the Data Register empty Interrupt Enable (UDRIE) bit in UCSRB is written to one, the USART Data Register
Empty Interrupt will be executed as long as UDRE is set (provided that global interrupts are enabled). UDRE is
cleared by writing UDR. When interrupt-driven data transmission is used, the Data Register Empty Interrupt routine
must either write new data to UDR in order to clear UDRE or disable the Data Register empty Interrupt, otherwise
a new interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXC) Flag bit is set one when the entire frame in the transmit Shift Register has been
shifted out and there are no new data currently present in the transmit buffer. The TXC Flag bit is automatically
cleared when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location. The
TXC Flag is useful in half-duplex communication interfaces (like the RS485 standard), where a transmitting
application must enter receive mode and free the communication bus immediately after completing the
transmission.

AT 32A [DATASHEET 146
Atmel megas2A [ ]

8155D-AVR-10/2013



When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRB is set, the USART Transmit Complete Inter-
rupt will be executed when the TXC Flag becomes set (provided that global interrupts are enabled). When the
transmit complete interrupt is used, the interrupt handling routine does not have to clear the TXC Flag, this is done
automatically when the interrupt is executed.

19.6.4 Parity Generator
The parity generator calculates the parity bit for the serial frame data. When parity bit is enabled (UPM1 = 1), the
transmitter control logic inserts the parity bit between the last data bit and the first stop bit of the frame that is sent.

19.6.5 Disabling the Transmitter
The disabling of the transmitter (setting the TXEN to zero) will not become effective until ongoing and pending
transmissions are completed, that is, when the transmit Shift Register and transmit Buffer Register do not contain
data to be transmitted. When disabled, the transmitter will no longer override the TxD pin.

19.7 Data Reception — The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the UCSRB Register to one. When
the receiver is enabled, the normal pin operation of the RxD pin is overridden by the USART and given the function
as the receiver’s serial input. The baud rate, mode of operation and frame format must be set up once before any
serial reception can be done. If synchronous operation is used, the clock on the XCK pin will be used as transfer
clock.

19.7.1 Receiving Frames with 5 to 8 Data Bits
The receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be sampled
at the baud rate or XCK clock, and shifted into the receive Shift Register until the first stop bit of a frame is
received. A second stop bit will be ignored by the receiver. When the first stop bit is received, that is, a complete
serial frame is present in the receive Shift Register, the contents of the Shift Register will be moved into the receive
buffer. The receive buffer can then be read by reading the UDR 1/O location.

The following code example shows a simple USART receive function based on polling of the Receive Complete
(RXC) Flag. When using frames with less than eight bits the most significant bits of the data read from the UDR will
be masked to zero. The USART has to be initialized before the function can be used.

Assembly Code Example™®

USART_ Receive:
; Wait for data to be received
sbis UCSRA, RXC
rjmp USART Receive
; Get and return received data from buffer
in rl6, UDR

ret

C Code Example®

unsigned char USART Receive( void )
{
/* Wait for data to be received */
while ( ! (UCSRA & (1<<RXC)) )
/* Get and return received data from buffer */

return UDR;

}

AT 32A [DATASHEET 147
Atmel megas2A [ ]

8155D-AVR-10/2013



Note: 1. See “About Code Examples” on page 6.
The function simply waits for data to be present in the receive buffer by checking the RXC Flag, before reading the
buffer and returning the value.

19.7.2 Receiving Frames with 9 Databits
If 9 bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in UCSRB before reading the
low bits from the UDR. This rule applies to the FE, DOR and PE Status Flags as well. Read status from UCSRA,
then data from UDR. Reading the UDR 1/O location will change the state of the receive buffer FIFO and conse-
quently the TXB8, FE, DOR and PE bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both 9-bit characters and the
status bits.

Assembly Code Example®

ATmega32A [DATASHEET] 148
A t m eL 8155D-AVR-10/2013



USART_ Receive:

; Wait for data to be received
sbis UCSRA, RXC
rjmp USART Receive
; Get status and 9th bit, then data from buffer
in r1l8, UCSRA
in rl7, UCSRB
in rlé6, UDR
; If error, return -1
andi rl18, (1<<FE) | (1<<DOR) | (1<<PE)
breq USART ReceiveNoError
1di rl17, HIGH(-1)
1di rle, LOW(-1)
USART ReceiveNoError:
; Filter the 9th bit, then return
1lsr rl7
andi rl7, 0x01

ret

C Code Example®™

unsigned int USART Receive( void )
{
unsigned char status, resh, resl;
/* Wait for data to be received */
while ( ! (UCSRA & (1<<RXC)) )
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRA;
resh = UCSRB;
resl = UDR;
/* If error, return -1 */
if ( status & (1<<FE)|(1<<DOR)|(1<<PE) )
return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

Note: 1. See “About Code Examples” on page 6.

The receive function example reads all the 1/0 Registers into the Register File before any computation is done.
This gives an optimal receive buffer utilization since the buffer location read will be free to accept new data as early
as possible.

19.7.3 Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the receive buffer. This flag is one
when unread data exist in the receive buffer, and zero when the receive buffer is empty (that is, does not contain

AT 32A [DATASHEET 149
Atmel megas2A [ ]

8155D-AVR-10/2013



any unread data). If the receiver is disabled (RXEN = 0), the receive buffer will be flushed and consequently the
RXC bit will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART Receive Complete Interrupt
will be executed as long as the RXC Flag is set (provided that global interrupts are enabled). When interrupt-driven
data reception is used, the receive complete routine must read the received data from UDR in order to clear the
RXC Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

19.7.4 Receiver Error Flags

The USART Receiver has three Error Flags: Frame Error (FE), Data OverRun (DOR) and Parity Error (PE). All can
be accessed by reading UCSRA. Common for the Error Flags is that they are located in the receive buffer together
with the frame for which they indicate the error status. Due to the buffering of the Error Flags, the UCSRA must be
read before the receive buffer (UDR), since reading the UDR 1I/O location changes the buffer read location. Another
equality for the Error Flags is that they can not be altered by software doing a write to the flag location. However, all
flags must be set to zero when the UCSRA is written for upward compatibility of future USART implementations.
None of the Error Flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable frame stored in the receive
buffer. The FE Flag is zero when the stop bit was correctly read (as one), and the FE Flag will be one when the
stop bit was incorrect (zero). This flag can be used for detecting out-of-sync conditions, detecting break conditions
and protocol handling. The FE Flag is not affected by the setting of the USBS bit in UCSRC since the receiver
ignores all, except for the first, stop bits. For compatibility with future devices, always set this bit to zero when writ-
ing to UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a receiver buffer full condition. A Data OverRun occurs
when the receive buffer is full (two characters), it is a new character waiting in the receive Shift Register, and a new
start bit is detected. If the DOR Flag is set there was one or more serial frame lost between the frame last read
from UDR, and the next frame read from UDR. For compatibility with future devices, always write this bit to zero
when writing to UCSRA. The DOR Flag is cleared when the frame received was successfully moved from the Shift
Register to the receive buffer.

The Parity Error (PE) Flag indicates that the next frame in the receive buffer had a parity error when received. If
parity check is not enabled the PE bit will always be read zero. For compatibility with future devices, always set this
bit to zero when writing to UCSRA. For more details see “Parity Bit Calculation” on page 153 and “Parity Checker”
on page 160.

19.7.5 Parity Checker
The Parity Checker is active when the high USART Parity mode (UPMZ1) bit is set. Type of parity check to be per-
formed (odd or even) is selected by the UPMO bit. When enabled, the parity checker calculates the parity of the
data bits in incoming frames and compares the result with the parity bit from the serial frame. The result of the
check is stored in the receive buffer together with the received data and stop bits. The Parity Error (PE) Flag can
then be read by software to check if the frame had a parity error.

The PE bit is set if the next character that can be read from the receive buffer had a parity error when received and
the parity checking was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is read.

19.7.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions will there-
fore be lost. When disabled (that is, the RXEN is set to zero) the Receiver will no longer override the normal
function of the RxD port pin. The receiver buffer FIFO will be flushed when the receiver is disabled. Remaining data
in the buffer will be lost.

AT 32A [DATASHEET 150
Atmel megas2A [ ]

8155D-AVR-10/2013



19.7.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be emptied of its con-
tents. Unread data will be lost. If the buffer has to be flushed during normal operation, due to for instance an error
condition, read the UDR 1/O location until the RXC Flag is cleared. The following code example shows how to flush
the receive buffer.

Assembly Code Example®

USART Flush:
sbis UCSRA, RXC
ret
in rlé, UDR
rjmp USART Flush

C Code Example®

void USART Flush( void )

{

unsigned char dummy;

while ( UCSRA & (1<<RXC) ) dummy = UDR;

Note: 1. See “About Code Examples” on page 6.

19.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The
clock recovery logic is used for synchronizing the internally generated baud rate clock to the incoming asynchro-
nous serial frames at the RxD pin. The data recovery logic samples and low pass filters each incoming bit, thereby
improving the noise immunity of the receiver. The asynchronous reception operational range depends on the accu-
racy of the internal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

19.8.1 Asynchronous Clock Recovery
The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 19-5 illustrates the sam-
pling process of the start bit of an incoming frame. The sample rate is 16 times the baud rate for Normal mode, and
8 times the baud rate for Double Speed mode. The horizontal arrows illustrate the synchronization variation due to
the sampling process. Note the larger time variation when using the double speed mode (U2X = 1) of operation.
Samples denoted zero are samples done when the RxD line is idle (that is, no communication activity).

Figure 19-5. Start Bit Sampling

e DIWRDETOPTLELEIOLLITN
el B e B S NS GRS EE E A AR

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the start bit detection
sequence is initiated. Let sample 1 denote the first zero-sample as shown in the figure. The clock recovery logic
then uses samples 8, 9, and 10 for Normal mode, and samples 4, 5, and 6 for Double Speed mode (indicated with
sample numbers inside boxes on the figure), to decide if a valid start bit is received. If two or more of these three
samples have logical high levels (the majority wins), the start bit is rejected as a noise spike and the receiver starts

AT 32A [DATASHEET 151
Atmel megas2A [ ]

8155D-AVR-10/2013



looking for the next high to low-transition. If however, a valid start bit is detected, the clock recovery logic is syn-
chronized and the data recovery can begin. The synchronization process is repeated for each start bit.

19.8.2 Asynchronous Data Recovery
When the receiver clock is synchronized to the start bit, the data recovery can begin. The data recovery unit uses a
state machine that has 16 states for each bit in normal mode and 8 states for each bit in Double Speed mode. Fig-

ure 19-6 shows the sampling of the data bits and the parity bit. Each of the samples is given a number that is equal
to the state of the recovery unit.

Figure 19-6. Sampling of Data and Parity Bit

e WRDETODELELETLLLL
I B N S SRS TS ES A

The decision of the logic level of the received bit is taken by doing a majority voting of the logic value to the three
samples in the center of the received bit. The center samples are emphasized on the figure by having the sample
number inside boxes. The majority voting process is done as follows: If two or all three samples have high levels,
the received bit is registered to be a logic 1. If two or all three samples have low levels, the received bit is regis-
tered to be a logic 0. This majority voting process acts as a low pass filter for the incoming signal on the RxD pin.
The recovery process is then repeated until a complete frame is received. Including the first stop bit. Note that the
receiver only uses the first stop bit of a frame.

Figure 19-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit of the next frame.

Figure 19-7. Stop Bit Sampling and Next Start Bit Sampling

RxD STOP 1 A ®) ©)

Sample PL( T
(U2X = 0) 1 3
2

N —

Sample F—t—ﬂ

(U2x = 1)

5 6 “n 10 ] o1 o1 o1
3

L

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop bit is registered to
have a logic 0 value, the Frame Error (FE) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of the bits used for
majority voting. For Normal Speed mode, the first low level sample can be at point marked (A) in Figure 19-7. For
Double Speed mode the first low level must be delayed to (B). (C) marks a stop bit of full length. The early start bit
detection influences the operational range of the receiver.

19.8.3 Asynchronous Operational Range

The operational range of the receiver is dependent on the mismatch between the received bit rate and the inter-
nally generated baud rate. If the Transmitter is sending frames at too fast or too slow bit rates, or the internally
generated baud rate of the receiver does not have a similar (see Table 19-2) base frequency, the receiver will not
be able to synchronize the frames to the start bit.

AT 32A [DATASHEET 152
Atmel megas2A [ ]

8155D-AVR-10/2013



The following equations can be used to calculate the ratio of the incoming data rate and internal receiver baud rate.

(D +1)S

Rstow = 5713 D s+,

R = _(D+2)S
fast = (D+1)S+Sy,

Sum of character size and parity size (D = 5 to 10 bit)

Samples per bit. S = 16 for Normal Speed mode and S = 8 for
Double Speed mode.

S First sample number used for majority voting. S = 8 for Normal Speed and
Sg = 4 for Double Speed mode.

Swu Middle sample number used for majority voting. Sy, = 9 for Normal Speed and
Sy = 5 for Double Speed mode.

Raiow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. R, is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 19-2 and Table 19-3 list the maximum receiver baud rate error that can be tolerated. Note that Normal
Speed mode has higher toleration of baud rate variations.

Table 19-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode (U2X = 0)

D Max Total Error | Recommended Max Receiver
# (Data+Parity Bit) Rgjow (%0) Ri.s1(%0) (%) Error (%)
5 93.20 106.67 +6.67/-6.8 +3.0
6 94.12 105.79 +5.79/-5.88 2.5
7 94.81 105.11 +5.11/-5.19 +2.0
8 95.36 104.58 +4.58/-4.54 2.0
9 95.81 104.14 +4.14/-4.19 +1.5
10 96.17 103.78 +3.78/-3.83 1.5

Table 19-3.  Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2X = 1)

D Max Total Error Recommended Max Receiver
# (Data+Parity Bit) Rqiow (%0) Riast (%0) (%) Error (%)
5 94.12 105.66 +5.66/-5.88 2.5
6 94.92 104.92 +4.92/-5.08 2.0
7 95.52 104.35 +4.35/-4.48 1.5
8 96.00 103.90 +3.90/-4.00 1.5
9 96.39 103.53 +3.53/-3.61 1.5
10 96.70 103.23 +3.23/-3.30 +1.0

The recommendations of the maximum receiver baud rate error was made under the assumption that the receiver
and transmitter equally divides the maximum total error.

AT 32A [DATASHEET 153
Atmel megas2A [ ]

8155D-AVR-10/2013



There are two possible sources for the receivers baud rate error. The receiver’s system clock (XTAL) will always
have some minor instability over the supply voltage range and the temperature range. When using a crystal to gen-
erate the system clock, this is rarely a problem, but for a resonator the system clock may differ more than 2%
depending of the resonators tolerance. The second source for the error is more controllable. The baud rate gener-
ator can not always do an exact division of the system frequency to get the baud rate wanted. In this case an
UBRR value that gives an acceptable low error can be used if possible.

19.9 Multi-processor Communication Mode
Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a filtering function of incoming
frames received by the USART Receiver. Frames that do not contain address information will be ignored and not
put into the receive buffer. This effectively reduces the number of incoming frames that has to be handled by the
CPU, in a system with multiple MCUs that communicate via the same serial bus. The Transmitter is unaffected by
the MPCM setting, but has to be used differently when it is a part of a system utilizing the Multi-processor Commu-
nication mode.

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indicates if the frame
contains data or address information. If the receiver is set up for frames with nine data bits, then the ninth bit
(RXB8) is used for identifying address and data frames. When the frame type bit (the first stop or the ninth bit) is
one, the frame contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a master MCU. This
is done by first decoding an address frame to find out which MCU has been addressed. If a particular Slave MCU
has been addressed, it will receive the following data frames as normal, while the other slave MCUs will ignore the
received frames until another address frame is received.

19.9.1 Using MPCM
For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZ = 7). The ninth bit (TXB8)
must be set when an address frame (TXB8 = 1) or cleared when a data frame (TXB = 0) is being transmitted. The
slave MCUs must in this case be set to use a 9-bit character frame format.

The following procedure should be used to exchange data in Multi-processor Communication mode:

1. All slave MCUs are in Multi-processor Communication mode (MPCM in UCSRA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In the Slave MCUs,
the RXC Flag in UCSRA will be set as normal.
3. Each Slave MCU reads the UDR Register and determines if it has been selected. If so, it clears the
MPCM bit in UCSRA, otherwise it waits for the next address byte and keeps the MPCM setting.
4. The addressed MCU will receive all data frames until a new address frame is received. The other slave
MCUs, which still have the MPCM bit set, will ignore the data frames.
5. When the last data frame is received by the addressed MCU, the addressed MCU sets the MPCM bit and
waits for a new address frame from Master. The process then repeats from 2.
Using any of the 5-bit to 8-bit character frame formats is possible, but impractical since the receiver must change
between using n and n+1 character frame formats. This makes full-duplex operation difficult since the transmitter
and receiver uses the same character size setting. If 5-bit to 8-bit character frames are used, the transmitter must
be set to use two stop bit (USBS = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit. The MPCM bit shares the
same /O location as the TXC Flag and this might accidentally be cleared when using SBI or CBI instructions.

19.10 Accessing UBRRH/ UCSRC Registers

The UBRRH Register shares the same 1/O location as the UCSRC Register. Therefore some special consideration
must be taken when accessing this 1/0O location.

AT 32A [DATASHEET 154
Atmel megas2A [ ]

8155D-AVR-10/2013



19.10.1 Write Access
When doing a write access of this 1/0O location, the high bit of the value written, the USART Register Select
(URSEL) bit, controls which one of the two registers that will be written. If URSEL is zero during a write operation,
the UBRRH value will be updated. If URSEL is one, the UCSRC setting will be updated.

The following code examples show how to access the two registers.

Assembly Code Example®

; Set UBRRH to 2
1dirle6,0x02
out UBRRH, rl6

; Set the USBS and the UCSZ1 bit to one, and
; the remaining bits to zero.

1di r16, (1<<URSEL) | (1<<USBS) | (1<<UCSZ1)

out UCSRC, rlé6

C Code Example®™

/* Set UBRRH to 2 */
UBRRH = 0x02;

/* Set the USBS and the UCSZ1 bit to one, and */
/* the remaining bits to zero. */
UCSRC = (1<<URSEL) | (1<<USBS) | (1<<UCSZ1) ;

Note: 1. See “About Code Examples” on page 6.
As the code examples illustrate, write accesses of the two registers are relatively unaffected of the sharing of 1/0
location.

19.10.2 Read Access
Doing a read access to the UBRRH or the UCSRC Register is a more complex operation. However, in most appli-
cations, it is rarely necessary to read any of these registers.

The read access is controlled by a timed sequence. Reading the I/O location once returns the UBRRH Register
contents. If the register location was read in previous system clock cycle, reading the register in the current clock
cycle will return the UCSRC contents. Note that the timed sequence for reading the UCSRC is an atomic operation.
Interrupts must therefore be controlled (for example by disabling interrupts globally) during the read operation.

AT 32A [DATASHEET 155
Atmel megas2A [ ]

8155D-AVR-10/2013



The following code example shows how to read the UCSRC Register contents.

Assembly Code Example®

USART ReadUCSRC:
; Read UCSRC
in rl6,UBRRH
in rlé6,UCSRC

ret

C Code Example®

unsigned char USART ReadUCSRC( void )
{

unsigned char ucsrc;

/* Read UCSRC */

ucsrc = UBRRH;

ucsrc = UCSRC;

return ucsrc;

Note: 1. See “About Code Examples” on page 6.
The assembly code example returns the UCSRC value in r16.

Reading the UBRRH contents is not an atomic operation and therefore it can be read as an ordinary register, as
long as the previous instruction did not access the register location.

19.11 Register Description

19.11.1 UDR — USART I/O Data Register

Bit 7 6 5 4 3 2 1 0
RXB[7:0] UDR (Read)
TXB[7:0] UDR (Write)

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same 1/0O address
referred to as USART Data Register or UDR. The Transmit Data Buffer Register (TXB) will be the destination for
data written to the UDR Register location. Reading the UDR Register location will return the contents of the
Receive Data Buffer Register (RXB).

For 5-bit, 6-bit, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to zero by the
Receiver.

The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is set. Data written to UDR
when the UDRE Flag is not set, will be ignored by the USART Transmitter. When data is written to the transmit buf-
fer, and the Transmitter is enabled, the Transmitter will load the data into the transmit Shift Register when the Shift
Register is empty. Then the data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the receive buffer is
accessed. Due to this behavior of the receive buffer, do not use read modify write instructions (SBI and CBI) on this
location. Be careful when using bit test instructions (SBIC and SBIS), since these also will change the state of the
FIFO.

AT 32A [DATASHEET 156
Atmel megas2A [ ]

8155D-AVR-10/2013



19.11.2 UCSRA - USART Control and Status Register A

Bit 7 6 5 4 3 2 1 0

| rxc | t™c | ubre | FE | DOR | PE u2x MpcM | ucsrA
Read/Write R RIW R R R R RIW R/W
Initial Value 0 0 1 0 0 0 0 0

* Bit 7 - RXC: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty
(that is, does not contain any unread data). If the receiver is disabled, the receive buffer will be flushed and conse-
guently the RXC bit will become zero. The RXC Flag can be used to generate a Receive Complete interrupt (see
description of the RXCIE bit).

* Bit 6 — TXC: USART Transmit Complete

This flag bit is set when the entire frame in the transmit Shift Register has been shifted out and there are no new
data currently present in the transmit buffer (UDR). The TXC Flag bit is automatically cleared when a transmit com-
plete interrupt is executed, or it can be cleared by writing a one to its bit location. The TXC Flag can generate a
Transmit Complete interrupt (see description of the TXCIE bit).

e Bit 5 - UDRE: USART Data Register Empty

The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new data. If UDRE is one, the buffer is
empty, and therefore ready to be written. The UDRE Flag can generate a Data Register empty Interrupt (see
description of the UDRIE bit).

UDRE is set after a reset to indicate that the transmitter is ready.

* Bit4 - FE: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received, that is, when the first stop
bit of the next character in the receive buffer is zero. This bit is valid until the receive buffer (UDR) is read. The FE
bit is zero when the stop bit of received data is one. Always set this bit to zero when writing to UCSRA.

» Bit 3—- DOR: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive buffer is full (two
characters), it is a new character waiting in the receive Shift Register, and a new start bit is detected. This bit is
valid until the receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.

* Bit 2 — PE: Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the parity checking
was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is read. Always set this bit to
zero when writing to UCSRA.

* Bit 1 - U2X: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively doubling the transfer
rate for asynchronous communication.

e Bit 0 — MPCM: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM bit is written to one, all the incoming
frames received by the USART receiver that do not contain address information will be ignored. The transmitter is
unaffected by the MPCM setting. For more detailed information see “Multi-processor Communication Mode” on
page 164.

AT 32A [DATASHEET 157
Atmel megas2A [ ]

8155D-AVR-10/2013



19.11.3 UCSRB - USART Control and Status Register B

Bit 7 6 5 4 3 2 1 0

| rRxcie | TxciE | UDRIE | RXEN | TXEN | uCsz2 RXB8 TxB8 | UCSRB
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - RXCIE: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete Interrupt will be generated
only if the RXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the RXC bit in
UCSRA is set.

» Bit 6 — TXCIE: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete Interrupt will be generated
only if the TXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the TXC bit in UCSRA
is set.

» Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty Interrupt will be generated only
if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the UDRE bit in UCSRA is
set.

» Bit 4 — RXEN: Receiver Enable
Writing this bit to one enables the USART Receiver. The Receiver will override normal port operation for the RxD
pin when enabled. Disabling the Receiver will flush the receive buffer invalidating the FE, DOR, and PE Flags.

+ Bit 3 - TXEN: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port operation for the
TxD pin when enabled. The disabling of the Transmitter (writing TXEN to zero) will not become effective until ongo-
ing and pending transmissions are completed, that is, when the transmit Shift Register and transmit Buffer Register
do not contain data to be transmitted. When disabled, the transmitter will no longer override the TxD port.

* Bit 2 - UCSZ2: Character Size
The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits (Character Size) in a frame
the receiver and transmitter use.

» Bit 1 - RXB8: Receive Data Bit 8
RXB8 is the ninth data bit of the received character when operating with serial frames with nine data bits. Must be
read before reading the low bits from UDR.

» Bit 0 — TXB8: Transmit Data Bit 8
TXBS8 is the ninth data bit in the character to be transmitted when operating with serial frames with nine data bits.
Must be written before writing the low bits to UDR.

19.11.4 UCSRC - USART Control and Status Register C

Bit 7 6 5 4 3 2 1 0
| urseL | uwseL | upmi | upmo | USBS | ucCszi UCSZ0 ucPOL | UCSRC
Read/Write R/W R/W RIW RIW R/W RIW R/W RIW

AT 32A [DATASHEET 158
Atmel megas2A [ ]

8155D-AVR-10/2013



Initial Value 1 0 0 0 0 1 1 0

The UCSRC Register shares the same I/O location as the UBRRH Register. See the “Accessing UBRRH/ UCSRC
Registers” on page 165 section which describes how to access this register.

» Bit 7 - URSEL: Register Select
This bit selects between accessing the UCSRC or the UBRRH Register. It is read as one when reading UCSRC.
The URSEL must be one when writing the UCSRC.

e Bit 6 — UMSEL: USART Mode Select
This bit selects between Asynchronous and Synchronous mode of operation.

Table 19-4. UMSEL Bit Settings

UMSEL Mode
0 Asynchronous Operation
1 Synchronous Operation

* Bit 5:4 — UPML1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the transmitter will automatically gener-
ate and send the parity of the transmitted data bits within each frame. The Receiver will generate a parity value for
the incoming data and compare it to the UPMO setting. If a mismatch is detected, the PE Flag in UCSRA will be set.

Table 19-5. UPM Bits Settings

UPM1 UPMO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

» Bit 3-USBS: Stop Bit Select
This bit selects the number of Stop Bits to be inserted by the Transmitter. The Receiver ignores this setting.

Table 19-6. USBS Bit Settings

USBS Stop Bit(s)
0 1-bit
1 2-hit

* Bit 2:1 — UCSZ1:0: Character Size
The UCSZ1.:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits (Character Size) in a frame
the Receiver and Transmitter use.

AT 32A [DATASHEET 159
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 19-7. UCSZ Bits Settings
uCsz2 ucCsz1 UCsz0 Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

» Bit 0 — UCPOL: Clock Polarity
This bit is used for Synchronous mode only. Write this bit to zero when Asynchronous mode is used. The UCPOL
bit sets the relationship between data output change and data input sample, and the synchronous clock (XCK).

Table 19-8. UCPOL Bit Settings
Transmitted Data Changed (Output of TxD Received Data Sampled (Input on RxD
UCPOL | Pin) Pin)
0 Rising XCK Edge Falling XCK Edge
1 Falling XCK Edge Rising XCK Edge

19.11.5 UBRRL and UBRRH — USART Baud Rate Registers
Bit 15 14 13 12 11 10 9 8
URSEL | - | - | - | UBRR[11:8] UBRRH
UBRR[7:0] UBRRL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W
R/W RIW R/W RIW R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The UBRRH Register shares the same 1/O location as the UCSRC Register. See the “Accessing UBRRH/ UCSRC
Registers” on page 165 section which describes how to access this register.

e Bit 15 - URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC Register. It is read as zero when reading UBRRH.
The URSEL must be zero when writing the UBRRH.

e Bit 14:12 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be written to zero when
UBRRH is written.

* Bit 11:.0 - UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four most significant bits,
and the UBRRL contains the 8 least significant bits of the USART baud rate. Ongoing transmissions by the trans-
mitter and receiver will be corrupted if the baud rate is changed. Writing UBRRL will trigger an immediate update of
the baud rate prescaler.

ATmega32A [DATASHEET] 160

8155D-AVR-10/2013

Atmel



19.12 Examples of Baud Rate Setting
For standard crystal and resonator frequencies, the most commonly used baud rates for asynchronous operation
can be generated by using the UBRR settings in Table 19-9. UBRR values which yield an actual baud rate differing
less than 0.5% from the target baud rate, are bold in the table. Higher error ratings are acceptable, but the receiver
will have less noise resistance when the error ratings are high, especially for large serial frames (see “Asynchro-
nous Operational Range” on page 163). The error values are calculated using the following equation:

BaUdRateClosest Match
BaudRate

Error[%] = ( 1) ¢ 100%

Table 19-9. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

fosc = 1.0000MHz fosc = 1.8432MHz fysc = 2.0000MHz
g:ﬁ: uz2x=0 uz2x=1 uUz2x=0 Uz2x=1 Uz2x=0 Uz2x =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - 0 0.0%
Max @ 62.5Kbps 125Kbps 115.2Kbps 230.4Kbps 125Kbps 250Kbps

1. UBRR =0, Error = 0.0%

AT 32A [DATASHEET 161
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 19-10. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 3.6864MHz fosc = 4.0000MHz fosc = 7.3728MHz
FB{Z;‘ed U2X=0 u2x=1 U2X=0 u2x =1 U2X =0 U2x =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 1 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 1 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
0.5M - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
1M - - - - - - - - - - 0 -7.8%
Max @ 230.4Kbps 460.8Kbps 250Kbps 0.5Mbps 460.8Kbps 921.6Kbps
1. UBRR =0, Error = 0.0%

AT 32A [DATASHEET 162
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 19-11. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

fysc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz
ﬁg;‘ed U2X=0 u2x=1 U2X=0 u2x =1 U2X =0 u2x =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%
4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%
9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%
14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%
19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%
28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%
38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%
57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%
76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%
115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%
230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 -7.8% 1 -7.8% 3 -7.8%
1M - - 0 0.0% - - - - 0 -7.8% 1 -7.8%
Max @ 0.5Mbps 1Mbps 691.2Kbps 1.3824Mbps 921.6Kbps 1.8432Mbps
1. UBRR =0, Error = 0.0%

AT 32A [DATASHEET 163
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 19-12. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 16.0000MHz
uz2x=0 uzx=1
Baud Rate (bps) UBRR Error UBRR Error
2400 416 -0.1% 832 0.0%
4800 207 0.2% 416 -0.1%
9600 103 0.2% 207 0.2%
14.4k 68 0.6% 138 -0.1%
19.2k 51 0.2% 103 0.2%
28.8k 34 -0.8% 68 0.6%
38.4k 25 0.2% 51 0.2%
57.6k 16 2.1% 34 -0.8%
76.8k 12 0.2% 25 0.2%
115.2k 8 -3.5% 16 2.1%
230.4k 3 8.5% 8 -3.5%
250k 3 0.0% 7 0.0%
0.5M 1 0.0% 3 0.0%
1M 0 0.0% 1 0.0%
Max @ 1Mbps 2Mbps
1. UBRR =0, Error = 0.0%

AT 32A [DATASHEET 164
Atmel megas2A [ ]

8155D-AVR-10/2013



20. Two-wire Serial Interface

20.1 Features
* Simple Yet Powerful and Flexible Communication Interface, Only Two Bus Lines Needed
* Both Master and Slave Operation Supported
* Device Can Operate as Transmitter or Receiver
* 7-bit Address Space allows up to 128 Different Slave Addresses
* Multi-master Arbitration Support
* Up to 400kHz Data Transfer Speed
* Slew-rate Limited Output Drivers
* Noise Suppression Circuitry Rejects Spikes on Bus Lines
* Fully Programmable Slave Address with General Call Support
* Address Recognition causes Wake-up when AVR is in Sleep Mode

20.2 Two-wire Serial Interface Bus Definition

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The TWI protocol
allows the systems designer to interconnect up to 128 different devices using only two bi-directional bus lines, one
for clock (SCL) and one for data (SDA). The only external hardware needed to implement the bus is a single pull-
up resistor for each of the TWI bus lines. All devices connected to the bus have individual addresses, and mecha-
nisms for resolving bus contention are inherent in the TWI protocol.

Figure 20-1. TWI Bus Interconnection

CcC
Device 1 Device 2 Device 3 | ........ Device n R1 R2
SDA = -
SCL - >
20.2.1 TWI Terminology
The following definitions are frequently encountered in this section.
Table 20-1. TWI Terminology
Term Description
Master The device that initiates and terminates a transmission. The master also generates the
SCL clock.

AT 32A [DATASHEET 165
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 20-1. TWI Terminology

Term Description

Slave The device addressed by a master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

20.2.2 Electrical Interconnection
As depicted in Figure 20-1, both bus lines are connected to the positive supply voltage through pull-up resistors.
The bus drivers of all TWI-compliant devices are open-drain or open-collector. This implements a wired-AND func-
tion which is essential to the operation of the interface. A low level on a TWI bus line is generated when one or
more TWI devices output a zero. A high level is output when all TWI devices tri-state their outputs, allowing the
pull-up resistors to pull the line high. Note that all AVR devices connected to the TWI bus must be powered in order
to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance limit of 400 pF and
the 7-bit slave address space. A detailed specification of the electrical characteristics of the TWI is given in “Two-
wire Serial Interface Characteristics” on page 300. Two different sets of specifications are presented there, one rel-
evant for bus speeds below 100kHz, and one valid for bus speeds up to 400kHz.

20.3 Data Transfer and Frame Format

20.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level of the data line
must be stable when the clock line is high. The only exception to this rule is for generating start and stop
conditions.

Figure 20-2. Data Validity

SDA

SCL
Data Stable Data Stable

Data Change

20.3.2 START and STOP Conditions

The master initiates and terminates a data transmission. The transmission is initiated when the master issues a
START condition on the bus, and it is terminated when the master issues a STOP condition. Between a START
and a STOP condition, the bus is considered busy, and no other master should try to seize control of the bus. A
special case occurs when a new START condition is issued between a START and STOP condition. This is
referred to as a REPEATED START condition, and is used when the master wishes to initiate a new transfer with-
out releasing control of the bus. After a REPEATED START, the bus is considered busy until the next STOP. This
is identical to the START behavior, and therefore START is used to describe both START and REPEATED START
for the remainder of this datasheet, unless otherwise noted. As depicted below, START and STOP conditions are
signalled by changing the level of the SDA line when the SCL line is high.

AT 32A [DATASHEET 166
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 20-3. START, REPEATED START, and STOP Conditions

START STOP START REPEATED START STOP

20.3.3 Address Packet Format
All address packets transmitted on the TWI bus are nine bits long, consisting of seven address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read operation is to be per-
formed, otherwise a write operation should be performed. When a slave recognizes that it is being addressed, it
should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle. If the addressed slave is busy, or for some
other reason can not service the master’s request, the SDA line should be left high in the ACK clock cycle. The
master can then transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the designer, but the
address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK cycle. A general
call is used when a master wishes to transmit the same message to several slaves in the system. When the gen-
eral call address followed by a Write bit is transmitted on the bus, all slaves set up to acknowledge the general call
will pull the SDA line low in the ack cycle. The following data packets will then be received by all the slaves that
acknowledged the general call. Note that transmitting the general call address followed by a Read bit is meaning-
less, as this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 20-4. Address Packet Format

] Addr MSB % Addr LSB R/W ACK
XX
aAVAVAN

START

20.3.4 Data Packet Format
All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and an acknowledge bit.
During a data transfer, the master generates the clock and the START and STOP conditions, while the receiver is
responsible for acknowledging the reception. An Acknowledge (ACK) is signalled by the receiver pulling the SDA
line low during the ninth SCL cycle. If the receiver leaves the SDA line high, a NACK is signalled. When the
receiver has received the last byte, or for some reason cannot receive any more bytes, it should inform the trans-
mitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

AT 32A [DATASHEET 167
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 20-5. Data Packet Format

Data MSB Data LSB ACK

Aggregate  \
SDA N

I
I
|
! 5
3 «
SDA from ~ \ i <§ e
Transmitter "\ | ‘ |
| |
T
I
|
I
I
I
I
I
|

SDAfrom

/

receiverR

SCL from
Master SS o

Data Byte

STOP, REPEATED
START or Next
Data Byte

20.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP con-
dition. An empty message, consisting of a START followed by a STOP condition, is illegal. Note that the wired-
ANDing of the SCL line can be used to implement handshaking between the master and the slave. The slave can
extend the SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the master is too
fast for the slave, or the slave needs extra time for processing between the data transmissions. The slave extend-
ing the SCL low period will not affect the SCL high period, which is determined by the master. As a consequence,
the slave can reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Figure 20-6 shows a typical data transmission. Note that several data bytes can be transmitted between the
SLA+R/W and the STOP condition, depending on the software protocol implemented by the application software.

Figure 20-6. Typical Data Transmission

Addr MSB Addr LSB  R/W ACK Data MSB Data LSB ACK

SDA

S §

N AVANAVAVANE BV AVANAVAVAN IS
i 1 2 f 7 8 9 1 2 § 7 8 9 3

START SLA+R/W Data Byte STOP

20.4 Multi-master Bus Systems, Arbitration and Synchronization
The TWI protocol allows bus systems with several masters. Special concerns have been taken in order to ensure
that transmissions will proceed as normal, even if two or more masters initiate a transmission at the same time.
Two problems arise in multi-master systems:

» An algorithm must be implemented allowing only one of the masters to complete the transmission. All other
masters should cease transmission when they discover that they have lost the selection process. This selection
process is called arbitration. When a contending master discovers that it has lost the arbitration process, it
should immediately switch to slave mode to check whether it is being addressed by the winning master. The
fact that multiple masters have started transmission at the same time should not be detectable to the slaves,
that is, the data being transferred on the bus must not be corrupted.

« Different masters may use different SCL frequencies. A scheme must be devised to synchronize the serial
clocks from all masters, in order to let the transmission proceed in a lockstep fashion. This will facilitate the
arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from all masters will be
wired-ANDed, yielding a combined clock with a high period equal to the one from the master with the shortest high
period. The low period of the combined clock is equal to the low period of the master with the longest low period.

AT 32A [DATASHEET 168
Atmel megas2A [ ]

8155D-AVR-10/2013



Note that all masters listen to the SCL line, effectively starting to count their SCL high and low time-out periods
when the combined SCL line goes high or low, respectively.

Figure 20-7. SCL Synchronization between Multiple Masters

low | high
| | | |
\ \ \ \
| I | |
SCL from [ [ \ \
Master A ‘ v | |
| |
[ [
,,,,,, | L
SCL from | s L/ | N
Master B \ ) V| | I
l I I
\ | | \
\ Iy | \
SCL bus | L | !
Line \ & | |
I 1 | I
[ [ [
I TBIow | } TBhigh |
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting data. If the value read
from the SDA line does not match the value the master had output, it has lost the arbitration. Note that a master
can only lose arbitration when it outputs a high SDA value while another master outputs a low value. The losing
master should immediately go to slave mode, checking if it is being addressed by the winning master. The SDA
line should be left high, but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one master remains, and this may take many bits. If several
masters are trying to address the same slave, arbitration will continue into the data packet.

Figure 20-8. Arbitration between Two Masters

START Master A Loses

| | | Arbitration, SDA,# SDA
SDA from

Master A |l

SDA from
Master B \ / \ / \

Synchronized

Note that arbitration is not allowed between:

» A REPEATED START condition and a data bit
» A STOP condition and a data bit

AT 32A [DATASHEET 169
Atmel megas2A [ ]

8155D-AVR-10/2013



« A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never occur. This implies
that in multi-master systems, all data transfers must use the same composition of SLA+R/W and data packets. In
other words: All transmissions must contain the same number of data packets, otherwise the result of the arbitra-
tion is undefined.

20.5 Overview of the TWI Module

The TWI module is comprised of several submodules, as shown in Figure 20-9. All registers drawn in a thick line
are accessible through the AVR data bus.

Figure 20-9. Overview of the TWI Module

SCL SDA
Slew-rate Spike Slew-rate Spike
Control Filter Control Filter
Y Y
4 A
Bus Interface Unit Bit Rate Generator
START / STOP . .
Control Spike Suppression Prescaler
I . Address/Data Shift Bit Rate Register
Arbitration detection Register (TWDR) Ack (TWBR)
A A A
A A A
Address Match Unit Control Unit
Address Register | Status Register Control Register
(TWAR) i (TWSR) (TWCR)
TWI Unit
State Machine and
Address Comparator Status control

20.5.1 SCL and SDA Pins
These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a slew-rate limiter in
order to conform to the TWI specification. The input stages contain a spike suppression unit removing spikes
shorter than 50 ns. Note that the internal pullups in the AVR pads can be enabled by setting the PORT bits corre-
sponding to the SCL and SDA pins, as explained in the /O Port section. The internal pull-ups can in some systems
eliminate the need for external ones.

20.5.2 Bit Rate Generator Unit
This unit controls the period of SCL when operating in a Master mode. The SCL period is controlled by settings in
the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status Register (TWSR). Slave operation
does not depend on Bit Rate or Prescaler settings, but the CPU clock frequency in the slave must be at least 16
times higher than the SCL frequency. Note that slaves may prolong the SCL low period, thereby reducing the aver-
age TWI bus clock period. The SCL frequency is generated according to the following equation:

CPU Clock frequency

16 + 2(TWBR) - 4" VPS

SCL frequency =

AT 32A [DATASHEET 170
Atmel megas2A [ ]

8155D-AVR-10/2013



« TWBR = Value of the TWI Bit Rate Register
» TWPS = Value of the prescaler bits in the TWI Status Register

Note:  Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus line load. See Table
27-2 on page 300 for value of pull-up resistor.

20.5.3 Bus Interface Unit
This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and Arbitration detec-
tion hardware. The TWDR contains the address or data bytes to be transmitted, or the address or data bytes
received. In addition to the 8-bit TWDR, the Bus Interface Unit also contains a register containing the (N)ACK bit to
be transmitted or received. This (N)ACK Register is not directly accessible by the application software. However,
when receiving, it can be set or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter
mode, the value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED START, and
STOP conditions. The START/STOP controller is able to detect START and STOP conditions even when the AVR
MCU is in one of the sleep modes, enabling the MCU to wake up if addressed by a master.

If the TWI has initiated a transmission as master, the Arbitration Detection hardware continuously monitors the
transmission trying to determine if arbitration is in process. If the TWI has lost an arbitration, the Control Unit is
informed. Correct action can then be taken and appropriate status codes generated.

20.5.4 Address Match Unit

The Address Match unit checks if received address bytes match the 7-bit address in the TWI Address Register
(TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the TWAR is written to one, all incoming
address bits will also be compared against the General Call address. Upon an address match, the Control Unit is
informed, allowing correct action to be taken. The TWI may or may not acknowledge its address, depending on set-
tings in the TWCR. The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a master.

20.5.5 Control Unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the TWI Control Reg-
ister (TWCR). When an event requiring the attention of the application occurs on the TWI bus, the TWI Interrupt
Flag (TWINT) is asserted. In the next clock cycle, the TWI Status Register (TWSR) is updated with a status code
identifying the event. The TWSR only contains relevant status information when the TWI Interrupt Flag is asserted.
At all other times, the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application software to complete its
tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

« After the TWI has transmitted a START/REPEATED START condition

* After the TWI has transmitted SLA+R/W

« After the TWI has transmitted an address byte

« After the TWI has lost arbitration

« After the TWI has been addressed by own slave address or general call

« After the TWI has received a data byte

» After a STOP or REPEATED START has been received while still addressed as a slave
* When a bus error has occurred due to an illegal START or STOP condition

AT 32A [DATASHEET 171
Atmel megas2A [ ]

8155D-AVR-10/2013



20.6

Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like reception of a
byte or transmission of a START condition. Because the TWI is interrupt-based, the application software is free to
carry on other operations during a TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR
together with the Global Interrupt Enable bit in SREG allow the application to decide whether or not assertion of the
TWINT Flag should generate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT
Flag in order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application response. In this
case, the TWI Status Register (TWSR) contains a value indicating the current state of the TWI bus. The application
software can then decide how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and
TWDR Registers.

Figure 20-10 is a simple example of how the application can interface to the TWI hardware. In this example, a mas-
ter wishes to transmit a single data byte to a slave. This description is quite abstract, a more detailed explanation
follows later in this section. A simple code example implementing the desired behaviour is also presented.

Figure 20-10. Interfacing the Application to the TWI in a Typical Transmission

1. Application 3. Check TWSR to see if START was 5. Check TWSR to see if SLA+W was .
writes to TWCR sendt. Application loads SLA+W into sent and ACK received. 7.Check TWSR to see 'f. data was sent
- L . - . and ACK received.
Application to initiate TWDR, and loads appropriate control Application loads data into TWDR, and - )
: . h ) - : . . Application loads appropriate control
Action transmission of signals into TWCR, making sure that loads appropriate control signals into B :
START TWINT is written to one, and TWSTA TWCR, making sure that TWINT is signals to send STOP into TWCR,
) ; ’ ’ ) making sure that TWINT is written to one
is written to zero written to one
Y
TWI bus START SLA+W A Data A STOP ‘
Indicates
2. TWINT set. 4. TWINT set. 6. TWINT set. . TWINT set
L Status code indicates L
TWI Status code indicates SLA+W sent. ACK Status code indicates
Hardware START condition sent S data sent, ACK received
Action received

1. The first step in a TWI transmission is to transmit a START condition. This is done by writing a specific
value into TWCR, instructing the TWI hardware to transmit a START condition. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the Flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission of the START
condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated
with a status code indicating that the START condition has successfully been sent.

3. The application software should now examine the value of TWSR, to make sure that the START condition
was successfully transmitted. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected, the application must
load SLA+W into TWDR. Remember that TWDR is used both for address and data. After TWDR has been
loaded with the desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on. However, it is impor-
tant that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will not
start any operation as long as the TWINT bit in TWCR is set. Immediately after the application has cleared
TWINT, the TWI will initiate transmission of the address packet.

ATmega32A [DATASHEET] 172

/4 t meL 8155D-AVR-10/2013



4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated
with a status code indicating that the address packet has successfully been sent. The status code will also
reflect whether a slave acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure that the address packet
was successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates other-
wise, the application software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load a data packet into TWDR. Subsequently, a spe-
cific value must be written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the
TWINT bitin TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate trans-
mission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated with
a status code indicating that the data packet has successfully been sent. The status code will also reflect
whether a slave acknowledged the packet or not.

7. The application software should how examine the value of TWSR, to make sure that the data packet was
successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise,
the application software might take some special action, like calling an error routine. Assuming that the
status code is as expected, the application must write a specific value to TWCR, instructing the TWI hard-
ware to transmit a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will not start any
operation as long as the TWINT bit in TWCR is set. Immediately after the application has cleared TWINT,
the TWI will initiate transmission of the STOP condition. Note that TWINT is NOT set after a STOP condi-
tion has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can be sum-
marized as follows:

» When the TWI has finished an operation and expects application response, the TWINT Flag is set. The SCL
line is pulled low until TWINT is cleared.

* When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for the next TWI
bus cycle. As an example, TWDR must be loaded with the value to be transmitted in the next bus cycle.

« After all TWI Register updates and other pending application software tasks have been completed, TWCR is
written. When writing TWCR, the TWINT bit should be set. Writing a one to TWINT clears the flag. The TWI will
then commence executing whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code below assumes that
several definitions have been made, for example by using include-files.

Assembly code example C example Comments
1 1di rl6, (1<<TWINT) | (1<<TWSTA) | TWCR = (1<<TWINT) | (1<<TWSTA) | Send START condition
(1<<TWEN) (1<<TWEN)

out TWCR, rlé6

2 waitl: while (!(TWCR & (1<<TWINT))) Wait for TWINT Flag set. This indicates
in r16, THCR ; that the START condition has been
sbrs rl6, TWINT transmitted
rjmp waitl

AT 32A [DATASHEET 173
Atmel megas2A [ ]

8155D-AVR-10/2013



Assembly code example C example Comments

3 in  rl6, TWSR if ((TWSR & OxF8) != START) Check value of TWI Status Register. Mask
andi rl6, OxF8 ERROR () ; prescaler bits. If status different from
cpi rl6, START START go to ERROR
brne ERROR
ldi  rlé, SLA W TWDR = SLA W; Load SLA_W into TWDR Register. Clear
out TWDR, rlé TWCR = (1<<TWINT) | (1<<TWEN); TWINT bit in TWCR to start transmission
1di rle6, (1<<TWINT) | (1<<TWEN) of address
out TWCR, rlé6

4 wait2: while (!(TWCR & (1<<TWINT))) Wait for TWINT Flag set. This indicates
in rl6, TWCR ; that the SLA+W has been transmitted,
sbrs rlé6, TWINT and ACK/NACK has been received.
rjmp wait2

5 in  rl6, TWSR if ((TWSR & O0xF8) != MT_SLA ACK) |Check value of TWI Status Register. Mask
andi rlé6, OxF8 ERROR () ; prescaler bits. If status different from
cpi rlé, MT_SLA ACK MT_SLA_ACK go to ERROR
brne ERROR
ldi  rlé, DATA TWDR = DATA; Load DATA into TWDR Register. Clear
out TWDR, rlé TWCR = (1<<TWINT) | (1<<TWEN) ; TWINT bit in TWCR to start transmission
1di r16, (1<<TWINT) | (1<<TWEN) of data
out TWCR, rlé6

6 wait3: while (!(TWCR & (1<<TWINT))) Wait for TWINT Flag set. This indicates
in rl6, TWCR ; that the DATA has been transmitted, and
sbrs rl6, TWINT ACK/NACK has been received.
rjmp wait3

7 in  rl6, TWSR if ((TWSR & O0xF8) != MT_DATA ACK)|Check value of TWI Status Register. Mask
andi rl6, OxF8 ERROR () ; prescaler bits. If status different from
cpi rlé, MT_DATA ACK MT_DATA_ACK go to ERROR
brne ERROR
1di  rl6, (1<<TWINT) | (1<<TWEN) | TWCR = (1<<TWINT) | (L<<TWEN) | Transmit STOP condition

(1<<TWSTO) (1<<TWSTO) ;

out TWCR, rl6

20.7 Transmission Modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT), Master Receiver
(MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these modes can be used in the same applica-
tion. As an example, the TWI can use MT mode to write data into a TWI EEPROM, MR mode to read the data back
from the EEPROM. If other masters are present in the system, some of these might transmit data to the TWI, and
then SR mode would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described along with figures
detailing data transmission in each of the modes. These figures contain the following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

ATmega32A [DATASHEET]

8155D-AVR-10/2013

174

Atmel



20.7.1

Data: 8-bit data byte

P: STOP condition
SLA: Slave Address

In Figure 20-12 to Figure 20-18, circles are used to indicate that the TWINT Flag is set. The numbers in the circles
show the status code held in TWSR, with the prescaler bits masked to zero. At these points, actions must be taken
by the application to continue or complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag is
cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate software action. For
each status code, the required software action and details of the following serial transfer are given in Table 20-2 to
Table 20-5. Note that the prescaler bits are masked to zero in these tables.

Master Transmitter Mode
In the Master Transmitter mode, a number of data bytes are transmitted to a slave receiver (see Figure 20-11). In
order to enter a Master mode, a START condition must be transmitted. The format of the following address packet
determines whether Master Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

Figure 20-11. Data Transfer in Master Transmitter Mode

cC

Device 1 Device 2 . .
MASTER SLAVE Device3 | ... Device n R1 R2
TRANSMITTER RECEIVER

SDA

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to transmit a START
condition and TWINT must be written to one to clear the TWINT Flag. The TWI will then test the Two-wire Serial
Bus and generate a START condition as soon as the bus becomes free. After a START condition has been trans-
mitted, the TWINT Flag is set by hardware, and the status code in TWSR will be $08 (See Table 20-2). In order to
enter MT mode, SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing the following value
to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is set again and a
number of status codes in TWSR are possible. Possible status codes in master mode are $18, $20, or $38. The
appropriate action to be taken for each of these status codes is detailed in Table 20-2.

AT 32A [DATASHEET 175
Atmel megas2A [ ]

8155D-AVR-10/2013



When SLA+W has been successfully transmitted, a data packet should be transmitted. This is done by writing the
data byte to TWDR. TWDR must only be written when TWINT is high. If not, the access will be discarded, and the
Write Collision bit (TWWC) will be set in the TWCR Register. After updating TWDR, the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the following value to TWCR:

TWCR
Value

TWINT TWEA

TWSTA TWSTO TWWC

TWEN

- TWIE

1 X

0 0 X

1

0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by generating a STOP condi-
tion or a repeated START condition. A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

Value 1 X 0 1 X 1 0 X
A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

Value 1 X 1 0 X 1 0 X

After a repeated START condition (state $10) the Two-wire Serial Interface can access the same slave again, or a
new slave without transmitting a STOP condition. Repeated START enables the master to switch between slaves,
master transmitter mode and master receiver mode without losing control of the bus.

Table 20-2.  Status Codes for Master Transmitter Mode
Status Code Application Software Response
(TWSR) Status of the Two-wire Serial To TWCR
Prescaler Bits Bus and Two-wire Serial Inter- To/from TWDR
are 0 face Hardware STA | STO | TWINT | TWEA | Next Action Taken by TWI Hardware
$08 A START condition has been | Load SLA+W 0 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
$10 A repeated START condition | Load SLA+W or 0 0 1 X SLA+W will be transmitted,;
has been transmitted ACK or NOT ACK will be received
Load SLA+R 0 0 1 X SLA+R will be transmitted;
Logic will switch to Master Receiver mode
$18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be Reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset
$20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$28 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$30 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$38 Avrbitration lost in SLA+W or data | No TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not addressed
bytes slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus be-
comes free

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

176



20.7.2

Atmel

Figure 20-12. Formats and States in the Master Transmitter Mode

MT

DATA A

Successfull i
transmission | S | SLA W
to a slave *

receiver

»|

$08 $18 $28

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

R
x| e |
Not acknowledge

received after a data A

byte

AorA |

MR

al

Arbitration lost in slave
address or data byte

Other master
continues

Other master
continues

AorA |

$38 $38

Arbitration lost and
addressed as slave

A Other master
continues

To corresponding
states in slave mode

Any number of data bytes

[ ]
[ ]

From master to slave

From slave to master

DATA

| A

and their associated acknowledge bits

This number (contained in TWSR) corresponds

O,

to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

Master Receiver Mode
In the Master Receiver mode, a number of data bytes are received from a slave transmitter (see Figure 20-13). In
order to enter a Master mode, a START condition must be transmitted. The format of the following address packet
determines whether Master Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

ATmega32A [DATASHEET]

8155D-AVR-10/2013

177



Figure 20-13. Data Transfer in Master Receiver Mode

ccC

Device 1 Device 2 . .
MASTER SLAVE Device3 | ... Device n R1 R2
RECEIVER TRANSMITTER

SDA y

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN = TWIE
Value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be written to one to transmit a
START condition and TWINT must be set to clear the TWINT Flag. The TWI will then test the Two-wire Serial Bus
and generate a START condition as soon as the bus becomes free. After a START condition has been transmitted,
the TWINT Flag is set by hardware, and the status code in TWSR will be $08 (See Table 20-2). In order to enter
MR mode, SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should
be cleared (by writing it to one) to continue the transfer. This is accomplished by writing the following value to

TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWwC TWEN - TWIE
Value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is set again and a
number of status codes in TWSR are possible. Possible status codes in master mode are $38, $40, or $48. The
appropriate action to be taken for each of these status codes is detailed in Table 20-3. Received data can be read
from the TWDR Register when the TWINT Flag is set high by hardware. This scheme is repeated until the last byte
has been received. After the last byte has been received, the MR should inform the ST by sending a NACK after
the last received data byte. The transfer is ended by generating a STOP condition or a repeated START condition.
A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

After a repeated START condition (state $10) the Two-wire Serial Interface can access the same slave again, or a
new slave without transmitting a STOP condition. Repeated START enables the master to switch between slaves,
Master Transmitter mode and Master Receiver mode without losing control over the bus.

Table 20-3.  Status Codes for Master Receiver Mode

Status Code Application Software Response

(TWSR) Status of the Two-wire Serial To TWCR

Prescaler Bits Bus and Two-wire Serial Inter- | vo60m TWDR

are 0 face Hardware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware

$08 A START condition has been | Load SLA+R 0 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received

AT 32A [DATASHEET 178
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 20-3.

Status Codes for Master Receiver Mode (Continued)

$10 A repeated START condition | Load SLA+R or 0 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W 0 0 1 X SLA+W will be transmitted
Logic will switch to masTer Transmitter mode
$38 Arbitration lost in SLA+R or NOT | No TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not addressed
ACK bit slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
$40 SLA+R has been transmitted; No TWDR action or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
$48 SLA+R has been transmitted; No TWDR action or 1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR action or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
$58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
Figure 20-14. Formats and States in the Master Receiver Mode
MR
o s | SLA ! R A | DATA A | DATA | = P |
from a slave -
receiver
$08 $40 @ $58
Next ti f H
Strtecwitsa Rs | s i R
repeated start
condition
Not ack led w
e one e e
slave address
$48
Atbitration lost in sl Mt
rbitration lost in slave r r r r
address or data byte AorA | O‘cr;ﬁr:::;e A | 0::’::%\:‘::;&
$38 $38
Arbitration lost and Other master
addressed as slave continues
To corresponding
states in slave mode
oo Al ber of data by
[ ] rommserosne DATA o s oo
I:I From slave to master @ This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero
20.7.3 Slave Receiver Mode

In the Slave Receiver mode, a number of data bytes are received from a master transmitter (see Figure 20-15). All
the status codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Atmel

ATmega32A [DATASHEET] 179

8155D-AVR-10/2013



Figure 20-15. Data Transfer in Slave Receiver Mode

CcC

Device 1 Device 2 . .
SLAVE MASTER Device3 | ... Device n R1 R2
RECEIVER TRANSMITTER

SDA y

scL Y

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR TWAG | TWAS \ TWA4 \ TWA3 \ TWA2 \ TWA1 \ TWAO TWGCE
Value Device's Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when addressed by a
master. If the LSB is set, the TWI will respond to the general call address ($00), otherwise it will ignore the general
call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledge-
ment of the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the
general call address if enabled) followed by the data direction bit. If the direction bit is “0” (write), the TWI will oper-
ate in SR mode, otherwise ST mode is entered. After its own slave address and the write bit have been received,
the TWINT Flag is set and a valid status code can be read from TWSR. The status code is used to determine the
appropriate software action. The appropriate action to be taken for each status code is detailed in Table 20-4. The
Slave Receiver mode may also be entered if arbitration is lost while the TWI is in the Master mode (see states $68
and $78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA after the next
received data byte. This can be used to indicate that the slave is not able to receive any more bytes. While TWEA
is zero, the TWI does not acknowledge its own slave address. However, the Two-wire Serial Bus is still monitored
and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit may be used to
temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle Mode, the clock system to the TWI is turned off. If the TWEA bit is set, the inter-
face can still acknowledge its own slave address or the general call address by using the Two-wire Serial Bus clock
as a clock source. The part will then wake up from sleep and the TWI will hold the SCL clock low during the wake
up and until the TWINT Flag is cleared (by writing it to one). Further data reception will be carried out as normal,
with the AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line
may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte present on the bus
when waking up from these sleep modes.

AT 32A [DATASHEET 180
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 20-4.

Status Codes for Slave Receiver Mode

Status Code Application Software Response
(TWSR) Status of the Two-wire Serial Bus To TWCR
Prescaler Bits and Two-wire Serial Interface Tolfrom TWDR
are 0 Hardware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
$60 Own SLA+W has been received; No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 Data byte will be received and ACK will be returned
$68 Arbitration lost in SLA+R/W as | No TWDR action or X 0 Data byte will be received and NOT ACK will be
master; own SLA+W has been returned
received; ACK has been returned | No TWDR action X 0 Data byte will be received and ACK will be returned
$70 General call address has been No TWDR action or X 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 Data byte will be received and ACK will be returned
$78 Arbitration lost in SLA+R/W as | No TWDR action or X 0 Data byte will be received and NOT ACK will be
master; General call address has returned
been received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
$80 Previously addressed with own | Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 Data byte will be received and ACK will be returned
$88 Previously addressed with own | Read data byte or 0 0 Switched to the not addressed Slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized,;
GCA will be recognized if TWGCE = “1";
a START condition will be transmitted when the bus
becomes free
$90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 Data byte will be received and ACK will be returned
$98 Previously addressed with Read data byte or 0 0 Switched to the not addressed Slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1"
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17%;
a START condition will be transmitted when the bus
becomes free
$A0 A STOP condition or repeated | No action 0 0 1 0 Switched to the not addressed Slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as 0 0 1 1 Switched to the not addressed Slave mode;
slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1";
a START condition will be transmitted when the bus
becomes free

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

181



Figure 20-16. Formats and States in the Slave Receiver Mode

Reception of the own T -
slave address and one or S SLA " A DATA | A | DATA A | PorS |
more data bytes. All are -
acknowledged
$60 $80 $80 $A0
Last data byte received
is not acknowledged A
$88
Arbitration lost as master
and addressed as slave A
$68
Reception of the general call o
addrepss and onegor more data General Call A DATA | A | DATA A | PorS |
bytes I
$90 $90 $A0
Last data byte received is
not acknowledged A
$98

Arbitration lost as master and
addressed as slave by general call

$78

DATA

| A

Any number of data bytes
and their associated acknowledge bits

From slave to master

I:I From master to slave

20.7.4 Slave Transmitter Mode
In the Slave Transmitter mode, a number of data bytes are transmitted to a master receiver (see Figure 20-17). All
the status codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

O,

Figure 20-17. Data Transfer in Slave Transmitter Mode

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

Vee
Device 1 Device 2
SLAVE MASTER Device3 | ... Device n R1 R2
TRANSMITTER RECEIVER
A A
SDA y
scL Y

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR
Value

Atmel

TWAG | TWAS ’ TWA4 ’

TWA3

TWA2

TWAL ‘ TWAO TWGCE

Device's Own Slave Address

ATmega32A [DATASHEET] 182

8155D-AVR-10/2013



The upper seven bits are the address to which the Two-wire Serial Interface will respond when addressed by a
master. If the LSB is set, the TWI will respond to the general call address ($00), otherwise it will ignore the general

call address.
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the acknowledge-
ment of the device’s own slave address or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave address (or the
general call address if enabled) followed by the data direction bit. If the direction bit is “1” (read), the TWI will oper-
ate in ST mode, otherwise SR mode is entered. After its own slave address and the write bit have been received,
the TWINT Flag is set and a valid status code can be read from TWSR. The status code is used to determine the
appropriate software action. The appropriate action to be taken for each status code is detailed in Table 20-5. The
slave transmitter mode may also be entered if arbitration is lost while the TWI is in the Master mode (see state
$B0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the transfer. State $CO or
state $C8 will be entered, depending on whether the master receiver transmits a NACK or ACK after the final byte.
The TWI is switched to the not addressed Slave mode, and will ignore the master if it continues the transfer. Thus
the master receiver receives all “1” as serial data. State $C8 is entered if the master demands additional data bytes
(by transmitting ACK), even though the slave has transmitted the last byte (TWEA zero and expecting NACK from
the master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the Two-wire Serial Bus is still
monitored and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit may
be used to temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the inter-
face can still acknowledge its own slave address or the general call address by using the Two-wire Serial Bus clock
as a clock source. The part will then wake up from sleep and the TWI will hold the SCL clock will low during the
wake up and until the TWINT Flag is cleared (by writing it to one). Further data transmission will be carried out as
normal, with the AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the SCL
line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte present on the bus
when waking up from these sleep modes.

AT 32A [DATASHEET 183
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 20-5.

Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

To/from TWDR

To TWCR

STA

STO

TWINT

TWEA | Next Action Taken by TWI Hardware

$A8

Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

0

1

1

0 Last data byte will be transmitted and NOT ACK should
be received

1 Data byte will be transmitted and ACK should be re-
ceived

$BO

Arbitration lost in SLA+R/W as
master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

0 Last data byte will be transmitted and NOT ACK should
be received

1 Data byte will be transmitted and ACK should be re-
ceived

$B8

Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

0 Last data byte will be transmitted and NOT ACK should
be received

1 Data byte will be transmitted and ACK should be re-
ceived

$COo

Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0 Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

1 Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1"

0 Switched to the not addressed Slave mode;

no recognition of own SLA or GCA,;

a START condition will be transmitted when the bus
becomes free

1 Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17%;

a START condition will be transmitted when the bus
becomes free

$C8

Last data byte in TWDR has been
transmitted (TWEA = “0"); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0 Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

1 Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

0 Switched to the not addressed Slave mode;

no recognition of own SLA or GCA,;

a START condition will be transmitted when the bus
becomes free

1 Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17%;

a START condition will be transmitted when the bus
becomes free

Figure 20-18. Formats and States in the Slave Transmitter Mode

Atmel

Reception of the own H -
slave address and one or S | SLA i R A DATA | A | DATA A | Por$§ |
more data bytes -

$A8 $B8 (s00)
Arbitration lost as master
and addressed as slave A

$BO
Last data byte transmitted. o T
Switched to not addressed A All1's
slave (TWEA ="'0") S

$C8
- Any number of data bytes
From master to slave DATA A

[ ]
L]

From slave to master

O,

and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

ATmega32A [DATASHEET] 184

8155D-AVR-10/2013



20.7.5 Miscellaneous States
There are two status codes that do not correspond to a defined TWI state, see Table 20-6.

Status $F8 indicates that no relevant information is available because the TWINT Flag is not set. This occurs
between other states, and when the TWI is not involved in a serial transfer.

Status $00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus error occurs when
a START or STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are
during the serial transfer of an address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT
is set. To recover from a bus error, the TWSTO Flag must set and TWINT must be cleared by writing a logic one to
it. This causes the TWI to enter the not addressed slave mode and to clear the TWSTO Flag (no other bits in
TWCR are affected). The SDA and SCL lines are released, and no STOP condition is transmitted.

Table 20-6. Miscellaneous States

Status Code Application Software Response

(TWSR) Status of the Two-wire Serial To TWCR

Prescaler Bits Bus and Two-wire Serial Inter- To/from TWDR

are 0 face Hardware STA | STO | TWINT ‘ TWEA | Next Action Taken by TWI Hardware

$F8 No relevant state information | No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0”

$00 Bus error due to an illegal | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
START or STOP condition tion is sent on the bus. In all cases, the bus is released

and TWSTO is cleared.

20.7.6 Combining Several TWI Modes
In some cases, several TWI modes must be combined in order to complete the desired action. Consider for exam-
ple reading data from a serial EEPROM. Typically, such a transfer involves the following steps:

1. The transfer must be initiated

2. The EEPROM must be instructed what location should be read

3. The reading must be performed

4. The transfer must be finished

Note that data is transmitted both from master to slave and vice versa. The master must instruct the slave what
location it wants to read, requiring the use of the MT mode. Subsequently, data must be read from the slave, imply-
ing the use of the MR mode. Thus, the transfer direction must be changed. The master must keep control of the
bus during all these steps, and the steps should be carried out as an atomical operation. If this principle is violated
in a multimaster system, another master can alter the data pointer in the EEPROM between steps 2 and 3, and the
master will read the wrong data location. Such a change in transfer direction is accomplished by transmitting a
REPEATED START between the transmission of the address byte and reception of the data. After a REPEATED
START, the master keeps ownership of the bus. The following figure shows the flow in this transfer.

Figure 20-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver
/—\/\\ /—\/\—\
S SLA+W A ADDRESS A | Rs SLA+R A DATA X P
S = START Rs = REPEATED START P = STOP
Transmitted from Master to Slave Transmitted from Slave to Master

20.8 Multi-master Systems and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simultaneously by one or more
of them. The TWI standard ensures that such situations are handled in such a way that one of the masters will be

AT 32A [DATASHEET 185
Atmel megas2A [ ]

8155D-AVR-10/2013



allowed to proceed with the transfer, and that no data will be lost in the process. An example of an arbitration situ-
ation is depicted below, where two masters are trying to transmit data to a slave receiver.

Figure 20-20. An Arbitration Example

Vee
Device 1 Device 2 Device 3
MASTER MASTER SLAVE [ e Device n R1 R2

TRANSMITTER TRANSMITTER RECEIVER
A A

SDA = y Y >

SCL e Y A >

Atmel ATmega32A [DATASHEET] 186

8155D-AVR-10/2013



Several different scenarios may arise during arbitration, as described below:

» Two or more masters are performing identical communication with the same slave. In this case, neither the
slave nor any of the masters will know about the bus contention.

» Two or more masters are accessing the same slave with different data or direction bit. In this case, arbitration
will occur, either in the READ/WRITE bit or in the data bits. The masters trying to output a one on SDA while
another master outputs a zero will lose the arbitration. Losing masters will switch to not addressed slave mode
or wait until the bus is free and transmit a new START condition, depending on application software action.

» Two or more masters are accessing different slaves. In this case, arbitration will occur in the SLA bits. Masters
trying to output a one on SDA while another master outputs a zero will lose the arbitration. Masters losing
arbitration in SLA will switch to slave mode to check if they are being addressed by the winning master. If
addressed, they will switch to SR or ST mode, depending on the value of the READ/WRITE bit. If they are not
being addressed, they will switch to not addressed slave mode or wait until the bus is free and transmit a new
START condition, depending on application software action.

This is summarized in Figure 20-21. Possible status values are given in circles.

Figure 20-21. Possible Status Codes Caused by Arbitration

START SLA Data STOP

Arbitration lost in SLA Arbitration lost in Data

Own
Address / General Call
received

No 38 ‘| TWI bus will be released and not addressed slave mode will be entered
'\LSTART condition will be transmitted when the bus becomes free

Yes

Write 68/78 ‘ﬁa byte will be received and NOT ACK will be returned

Direction \/ '@a byte will be received and ACK will be returned

Read Jrast data byte will be transmitted and NOT ACK should be received
@'@a byte will be transmitted and ACK should be received

20.9 Register Description

20.9.1 TWBR — TWI Bit Rate Register

Bit 7 6 5 4 3 2 1 0
| Twer7 | TwBR6 | TWBR5 | TWBR4 | TWBR3 | TWBR2 | TWBR1 | TWBRO | TWBR

Read/Write RIW R/W RIW RIW R/W RIW RIW R/W

Initial Value 0 0 0 0 0 0 0 0

» Bits 7:0 — TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency divider which gen-
erates the SCL clock frequency in the Master modes. See “Bit Rate Generator Unit” on page 182 for calculating bit
rates.

20.9.2 TWCR — TWI Control Register
The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a master access by
applying a START condition to the bus, to generate a receiver acknowledge, to generate a stop condition, and to

AT 32A [DATASHEET 187
Atmel megas2A [ ]

8155D-AVR-10/2013



control halting of the bus while the data to be written to the bus are written to the TWDR. It also indicates a write
collision if data is attempted written to TWDR while the register is inaccessible.

Bit 7 6 5 4 3 2 1 0

| rwint | Twea | TwsTA | TwsTO | TwwC | TWEN | - | Twie | Twcr
Read/Write R/W RIW RIW R/W R RIW R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7—TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application software response. If
the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the TWI Interrupt Vector. While the TWINT Flag
is set, the SCL low period is stretched.

The TWINT Flag must be cleared by software by writing a logic one to it. Note that this flag is not automatically
cleared by hardware when executing the interrupt routine. Also note that clearing this flag starts the operation of
the TWI, so all accesses to the TWI Address Register (TWAR), TWI Status Register (TWSR), and TWI Data Reg-
ister (TWDR) must be complete before clearing this flag.

» Bit 6 —- TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to one, the ACK pulse is
generated on the TWI bus if the following conditions are met:

1. The device's own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is set.
3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire Serial Bus temporarily.
Address recognition can then be resumed by writing the TWEA bit to one again.

* Bit 5 - TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a master on the Two-wire Serial Bus. The
TWI hardware checks if the bus is available, and generates a START condition on the bus if it is free. However, if
the bus is not free, the TWI waits until a STOP condition is detected, and then generates a new START condition to
claim the bus Master status. TWSTA must be cleared by software when the START condition has been
transmitted.

* Bit4-TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the Two-wire Serial Bus. When
the STOP condition is executed on the bus, the TWSTO bit is cleared automatically. In slave mode, setting the
TWSTO bit can be used to recover from an error condition. This will not generate a STOP condition, but the TWI
returns to a well-defined unaddressed slave mode and releases the SCL and SDA lines to a high impedance state.

* Bit 3—- TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register —- TWDR when TWINT is low. This flag is
cleared by writing the TWDR Register when TWINT is high.

* Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to one, the TWI
takes control over the 1/0 pins connected to the SCL and SDA pins, enabling the slew-rate limiters and spike filters.
If this bit is written to zero, the TWI is switched off and all TWI transmissions are terminated, regardless of any
ongoing operation.

* Bit 1 - Reserved Bit

AT 32A [DATASHEET 188
Atmel megas2A [ ]

8155D-AVR-10/2013



This bit is a reserved bit and will always read as zero.

* Bit 0 — TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be activated for as long as
the TWINT Flag is high.

20.9.3 TWSR — TWI Status Register

Bit 7 6 5 4 3 2 1 0
| rws7 | Ttwse | Twss TWS4 TWS3 - TWPS1 | TwPSO | TWSR

Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

* Bits 7:3 - TWS: TWI Status

These five bits reflect the status of the TWI logic and the Two-wire Serial Bus. The different status codes are
described later in this section. Note that the value read from TWSR contains both the 5-bit status value and the 2-
bit prescaler value. The application designer should mask the prescaler bits to zero when checking the Status bits.
This makes status checking independent of prescaler setting. This approach is used in this datasheet, unless oth-
erwise noted.

* Bit 2 - Reserved Bit
This bit is reserved and will always read as zero.

» Bits 1:0 - TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

Table 20-7. TWI Bit Rate Prescaler

TWPS1 TWPSO Prescaler Value
0 0 1
0 1 4
1 0 16
1 1 64

To calculate bit rates, see “Bit Rate Generator Unit” on page 182. The value of TWPS1:0 is used in the equation.

20.9.4 TWDR — TWI Data Register

Bit 7 6 5 4 3 2 1 0
| rwo7 | Ttwbps | TwD5 TWD4 TWD3 TWD2 TWD1 Twpo | TwDR

Read/Write R/W RIW R/W RIW R/W R/W RIW R/W

Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR contains the last
byte received. It is writable while the TWI is not in the process of shifting a byte. This occurs when the TWI Interrupt
Flag (TWINT) is set by hardware. Note that the Data Register cannot be initialized by the user before the first inter-
rupt occurs. The data in TWDR remains stable as long as TWINT is set. While data is shifted out, data on the bus
is simultaneously shifted in. TWDR always contains the last byte present on the bus, except after a wake up from a
sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case of a lost bus arbitra-
tion, no data is lost in the transition from Master to Slave. Handling of the ACK bit is controlled automatically by the
TWI logic, the CPU cannot access the ACK bit directly.

AT 32A [DATASHEET 189
Atmel megas2A [ ]

8155D-AVR-10/2013



20.9.5

» Bits 7:0 - TWD: TWI Data Register

These eight bits contin the next data byte to be transmitted, or the latest data byte received on the Two-wire Serial
Bus.

TWAR — TWI (Slave) Address Register

Bit 7 6 5 4 3 2 1 0

| rwas | Twas | Twa4 | TwA3 TWA2 TWAL TWAO TWGCE |  TwaAR
Read/Write R/W R/W R/W RIW RIW RIW R/W RIW
Initial Value 1 1 1 1 1 1 1 0

The TWAR should be loaded with the 7-bit slave address (in the seven most significant bits of TWAR) to which the
TWI will respond when programmed as a slave transmitter or receiver. In multimaster systems, TWAR must be set
in masters which can be addressed as slaves by other masters.

The LSB of TWAR is used to enable recognition of the general call address ($00). There is an associated address
comparator that looks for the slave address (or general call address if enabled) in the received serial address. If a
match is found, an interrupt request is generated.

* Bits 7:1 - TWA: TWI (Slave) Address Register
These seven bits constitute the slave address of the TWI unit.

e Bit 0 —- TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the Two-wire Serial Bus.

AT 32A [DATASHEET 190
Atmel megas2A [ ]

8155D-AVR-10/2013



21. Analog Comparator

21.1 Overview
The Analog Comparator compares the input values on the positive pin AINO and negative pin AIN1. When the volt-
age on the positive pin AINO is higher than the voltage on the negative pin AIN1, the Analog Comparator Output,
ACO, is set. The comparator’s output can be set to trigger the Timer/Counterl Input Capture function. In addition,
the comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The user can select Interrupt
triggering on comparator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 21-1.

Figure 21-1. Analog Comparator Block Diagram®

BANDGAP
REFERENCE VCC
ACB l
ACD —»
ACIE
AINO

A L | ANALOG
| INTERRUPT _)—» COMPARATOR
/ SELECT IRQ
T T L » ACI

ACIS1 ACISO ACIC

ACME
TO T/C1 CAPTURE

TRIGGER MUX

»
>»

AIN1 _Bg_‘

ADC MULTIPLEXER ACO

1
OUTPUT® > a

Notes: 1. See Table 21-1 on page 206.
2. Refer to Figure 1-1 on page 2 and Table 12-6 on page 59 for Analog Comparator pin placement.

21.2 Analog Comparator Multiplexed Input
It is possible to select any of the ADC7:0 pins to replace the negative input to the Analog Comparator. The ADC
multiplexer is used to select this input, and consequently, the ADC must be switched off to utilize this feature. If the
Analog Comparator Multiplexer Enable bit (ACME in SFIOR) is set and the ADC is switched off (ADEN in ADCSRA
is zero), MUX2:0 in ADMUX select the input pin to replace the negative input to the Analog Comparator, as shown
in Table 21-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog Comparator.

Table 21-1.  Analog Comparator Multiplexed Input

ACME ADEN MUX2:0 Analog Comparator Negative Input
0 X XXX AIN1
1 1 XXX AIN1
1 0 000 ADCO
1 0 001 ADC1
1 0 010 ADC2

AT 32A [DATASHEET 191
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 21-1. Analog Comparator Multiplexed Input (Continued)

ACME ADEN MUX2:0 Analog Comparator Negative Input
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADCG6
1 0 111 ADC7

21.3 Register Description

21.3.1 SFIOR — Special Function 10 Register

Bit 7 6 5 4 3 2 1 0

| Apts2 | ADTs1 | ADTSO | - ACME PUD PSR2 PSR10 | SFIOR
Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 3— ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the ADC multiplexer
selects the negative input to the Analog Comparator. When this bit is written logic zero, AIN1 is applied to the neg-
ative input of the Analog Comparator. For a detailed description of this bit, see “Analog Comparator Multiplexed
Input” on page 205.

21.3.2 ACSR - Analog Comparator Control and Status Register

Bit 7 6 5 4 3 2 1 0

| Aco | Aacec | Aco | Act | AcEE | AciC | Acisl Aciso | Acsr
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 N/A 0 0 0 0 0

» Bit 7 - ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit can be set at any
time to turn off the Analog Comparator. This will reduce power consumption in active and Idle mode. When chang-
ing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an
interrupt can occur when the bit is changed.

» Bit 6 — ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog Comparator. When
this bit is cleared, AINO is applied to the positive input of the Analog Comparator. See “Internal Voltage Reference”
on page 41.

* Bit5- ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The synchronization
introduces a delay of 1 - 2 clock cycles.

» Bit 4 — ACI: Analog Comparator Interrupt Flag

AT 32A [DATASHEET 192
Atmel megas2A [ ]

8155D-AVR-10/2013



This bit is set by hardware when a comparator output event triggers the interrupt mode defined by ACIS1 and
ACISO. The Analog Comparator Interrupt routine is executed if the ACIE bit is set and the I-bit in SREG is set. ACI
is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ACl is cleared by
writing a logic one to the flag.

e Bit 3— ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Comparator Interrupt is
activated. When written logic zero, the interrupt is disabled.

* Bit 2 - ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the Input Capture function in Timer/Counterl to be triggered by the Analog
Comparator. The comparator output is in this case directly connected to the Input Capture front-end logic, making
the comparator utilize the noise canceler and edge select features of the Timer/Counterl Input Capture interrupt.
When written logic zero, no connection between the Analog Comparator and the Input Capture function exists. To
make the comparator trigger the Timer/Counterl Input Capture interrupt, the TICIEL bit in the Timer Interrupt Mask
Register (TIMSK) must be set.

e Bits 1:0 — ACIS[1:0]: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The different settings
are shown in Table 21-2.

Table 21-2. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge
1 1 Comparator Interrupt on Rising Output Edge

When changing the ACIS1/ACISO bits, the Analog Comparator Interrupt must be disabled by clearing its Interrupt
Enable bit in the ACSR Register. Otherwise an interrupt can occur when the bits are changed.

AT 32A [DATASHEET 193
Atmel megas2A [ ]

8155D-AVR-10/2013



22. Analog to Digital Converter

22.1 Features
* 10-bit Resolution
* 0.5 LSB Integral Non-linearity
* +2 LSB Absolute Accuracy
e 13- 260 ps Conversion Time
* Up to 15kSPS at Maximum Resolution
* 8 Multiplexed Single Ended Input Channels
» 7 Differential Input Channels
» 2 Differential Input Channels with Optional Gain of 10x and 200x
* Optional Left adjustment for ADC Result Readout
* 0-Vcc ADC Input Voltage Range
* Selectable 2.56V ADC Reference Voltage
* Free Running or Single Conversion Mode
* ADC Start Conversion by Auto Triggering on Interrupt Sources
* Interrupt on ADC Conversion Complete
» Sleep Mode Noise Canceler

22.2 Overview

The ATmega32A features a 10-bit successive approximation ADC. The ADC is connected to an 8-channel Analog
Multiplexer which allows 8 single-ended voltage inputs constructed from the pins of Port A. The single-ended volt-
age inputs refer to OV (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs (ADC1, ADCO
and ADC3, ADC?2) are equipped with a programmable gain stage, providing amplification steps of 0 dB (1x), 20 dB
(10x), or 46 dB (200x) on the differential input voltage before the A/D conversion. Seven differential analog input
channels share a common negative terminal (ADC1), while any other ADC input can be selected as the positive
input terminal. If 1x or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 7-bit resolution can
be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is held at a constant
level during conversion. A block diagram of the ADC is shown in Figure 22-1.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than +0.3V from V.. See
the paragraph “ADC Noise Canceler” on page 216 on how to connect this pin.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The voltage reference may be exter-
nally decoupled at the AREF pin by a capacitor for better noise performance.

AT 32A [DATASHEET 194
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 22-1. Analog to Digital Converter Block Schematic

ADC CONVERSION
COMPLETE IRQ

INTERRUPT
FLAGS

ADTS[2:0]
_, 8-BIT DATABUS >
15 T 0

) 3 E

ADIE

ADC MULTIPLEXER ADC CTRL. & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)
- ol <] ol 9] =] o w N al = o \A 4
x| < <| < < < <| <| < 2
»| TRIGGER g
»| SELECT <
A, Y_ VY A
| MUX DECODER | Y VY
PRESCALER
START

CONVERSION LOGIC

GAIN SELECTION

CHANNEL SELECTION

AVCC I:'i 3

INTERNAL 256V | |
REFERENCE \ 4 SAMPLE & HOLD

COMPARATOR
AREF ® > 10-BIT DAC

BANDGAP
REFERENCE
ADC7 I:'i

Nl

)

N SINGLE ENDED / DIFFERENTIAL SELECTION

ADC6 I:'i

POS. ADC MULTIPLEXER
ADC5 e » OUTPUT

MUX
ADC4 I:'i Y
ADG3 I:'i GAIN

N +\‘V AMPLIFIER

ADC2
ADC1
ADCO .

NEG.

INPUT
MUX

22.3 Operation
The ADC converts an analog input voltage to a 10-bit digital value through successive approximation. The mini-
mum value represents GND and the maximum value represents the voltage on the AREF pin minus 1 LSB.
Optionally, AVCC or an internal 2.56V reference voltage may be connected to the AREF pin by writing to the
REFSn bits in the ADMUX Register. The internal voltage reference may thus be decoupled by an external capaci-
tor at the AREF pin to improve noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in ADMUX. Any of the ADC
input pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended inputs to the
ADC. A selection of ADC input pins can be selected as positive and negative inputs to the differential gain
amplifier.

If differential channels are selected, the differential gain stage amplifies the voltage difference between the
selected input channel pair by the selected gain factor. This amplified value then becomes the analog input to the
ADC. If single ended channels are used, the gain amplifier is bypassed altogether.

AT 32A [DATASHEET 195
Atmel megas2A [ ]

8155D-AVR-10/2013



The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and input channel selec-
tions will not go into effect until ADEN is set. The ADC does not consume power when ADEN is cleared, so it is
recommended to switch off the ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and ADCL. By default,
the result is presented right adjusted, but can optionally be presented left adjusted by setting the ADLAR bit in
ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH, to ensure that the content of the Data Registers belongs to the same conver-
sion. Once ADCL is read, ADC access to Data Registers is blocked. This means that if ADCL has been read, and
a conversion completes before ADCH is read, neither register is updated and the result from the conversion is lost.
When ADCH is read, ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC access to the
Data Registers is prohibited between reading of ADCH and ADCL, the interrupt will trigger even if the result is lost.

22.4 Starting a Conversion
A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC. This bit stays high as
long as the conversion is in progress and will be cleared by hardware when the conversion is completed. If a differ-
ent data channel is selected while a conversion is in progress, the ADC will finish the current conversion before
performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is enabled by setting
the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is selected by setting the ADC Trigger
Select bits, ADTS in SFIOR (see description of the ADTS bits for a list of the trigger sources). When a positive
edge occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is started. This provides a
method of starting conversions at fixed intervals. If the trigger signal still is set when the conversion completes, a
new conversion will not be started. If another positive edge occurs on the trigger signal during conversion, the edge
will be ignored. Note that an Interrupt Flag will be set even if the specific interrupt is disabled or the global interrupt
enable bit in SREG is cleared. A conversion can thus be triggered without causing an interrupt. However, the Inter-
rupt Flag must be cleared in order to trigger a new conversion at the next interrupt event.

Figure 22-2. ADC Auto Trigger Logic

ADTS[2:0]
——P| PRESCALER
START CLK,oc
ADIF — ADATE
SOURCE1 — |_
----- 5 :)— CONVERSION
..... LOGIC
----- EDGE
SOURCE n DETECTOR
ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon as the ongoing
conversion has finished. The ADC then operates in Free Running mode, constantly sampling and updating the
ADC Data Register. The first conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In

AT 32A [DATASHEET 196
Atmel megas2A [ ]

8155D-AVR-10/2013



22.5

this mode the ADC will perform successive conversions independently of whether the ADC Interrupt Flag, ADIF is
cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to one. ADSC can
also be used to determine if a conversion is in progress. The ADSC bit will be read as one during a conversion,
independently of how the conversion was started.

Prescaling and Conversion Timing

Figure 22-3. ADC Prescaler

ADEN
START Reset
7-BIT ADC PRESCALER

CK — >
o]
o 2| of 8 8 | S
>4 Iv4 v IRv] EEv] IS
O| O] ©| ©| ©| o ©
YV VY V V VY Y
ADPSO
ADPS1
ADPS2

ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency between 50kHz and 200kHz to
get maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency to the ADC can be
higher than 200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any CPU fre-
guency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting from the
moment the ADC is switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as
the ADEN bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at the follow-
ing rising edge of the ADC clock cycle. See “Differential Gain Channels” on page 214 for details on differential
conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in ADC-
SRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conversion and 13.5 ADC
clock cycles after the start of a first conversion. When a conversion is complete, the result is written to the ADC
Data Registers, and ADIF is set. In single conversion mode, ADSC is cleared simultaneously. The software may
then set ADSC again, and a new conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures a fixed delay from
the trigger event to the start of conversion. In this mode, the sample-and-hold takes place 2 ADC clock cycles after
the rising edge on the trigger source signal. Three additional CPU clock cycles are used for synchronization logic.

When using Differential mode, along with Auto Trigging from a source other than the ADC Conversion Complete,
each conversion will require 25 ADC clocks. This is because the ADC must be disabled and re-enabled after every
conversion.

AT 32A [DATASHEET 197
Atmel megas2A [ ]

8155D-AVR-10/2013



In Free Running mode, a new conversion will be started immediately after the conversion completes, while ADSC
remains high. For a summary of conversion times, see Table 22-1.

Figure 22-4.

Figure 22-5.

Figure 22-6.

Atmel

ADC Timing Diagram, First Conversion (Single Conversion Mode)

First Conversion ’C\‘)i::/ersion

SRR -
Cycle Number \1\2: :12\13\14\15\16\17\18\19\20\21\22\23\24\25\ | 11213
ADC Cloc____1 NnSpipipipinipipipipinipipipPaFylpip]
ADEN ] | 3
ADSC / o W
e B
ADCH /] /‘ :’ Y /}( MSE of Resul
ADCL /] Y/ 7 /) 5B of Resut

| | |

\ MUX and REFS Sample & Hold Conversion

Update Complete MUX and REFS
Update
ADC Timing Diagram, Single Conversion
One Conversion < Next Conversion
Cycle Number \ 1 2 | 3| 4| 5| 6| 7| 8| 9| 10 11| 12 13i \ 1] 2] 3
ADC Clock ‘ ‘ ‘ ‘
ADSC / : ZZZ%
o -
ADCH / /p( M:SBof Result
ADCL | / Aﬁ( LéBofRemm

Sample & Hold Conversion /

MUX and REFS Complete MUX and REFS
Update Update

ADC Timing Diagram, Auto Triggered Conversion

One Conversion < Next Conversion
oetumber | 1 2| 3| 4 5| e 7| s| o] o wl el s [ 1]z]
ADC Clock » ‘ | :
o Wiy
ADATE o ] 1 !
SR -
ADCH 7 i )< MSB of Result
ADCL / / // /)( LSBSf Result
N coaren S

MUX and REFS
Update

ATmega32A [DATASHEET] 198

8155D-AVR-10/2013



Figure 22-7. ADC Timing Diagram, Free Running Conversion

One Conversion

Next Conversion

Cycle Number " ‘ 12‘ 131 1 ‘ ‘ 3 ‘ 4 ‘
ADC Clock
ADSC :
ADIF l
ADCH ﬂ{ MSB (%f Result
ADCL /}K LSB o‘f Result
Conversion /—) K ~— Sample & Hold
Complete MUX and REFS

Update

Table 22-1. ADC Conversion Time
Sample & Hold (Cycles
Condition from Start of Conversion) | Conversion Time (Cycles)
First conversion 135 25
Normal conversions, single ended 15 13
Auto Triggered conversions 2 135
Normal conversions, differential 1.5/2.5 13/14

22.5.1 Differential Gain Channels

When using differential gain channels, certain aspects of the conversion need to be taken into consideration.

Differential conversions are synchronized to the internal clock CK,pc, equal to half the ADC clock. This synchroni-
zation is done automatically by the ADC interface in such a way that the sample-and-hold occurs at a specific
phase of CK,pcp. A conversion initiated by the user (that is, all single conversions, and the first free running con-
version) when CK,p, is low will take the same amount of time as a single ended conversion (13 ADC clock cycles
from the next prescaled clock cycle). A conversion initiated by the user when CK,pc, is high will take 14 ADC clock
cycles due to the synchronization mechanism. In Free Running mode, a new conversion is initiated immediately
after the previous conversion completes, and since CK,pc, is high at this time, all automatically started (that is, all
but the first) free running conversions will take 14 ADC clock cycles.

The gain stage is optimized for a bandwidth of 4kHz at all gain settings. Higher frequencies may be subjected to
non-linear amplification. An external low-pass filter should be used if the input signal contains higher frequency
components than the gain stage bandwidth. Note that the ADC clock frequency is independent of the gain stage
bandwidth limitation. For example, the ADC clock period may be 6 ps, allowing a channel to be sampled at
12kSPS, regardless of the bandwidth of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the ADC must be switched off
between conversions. When Auto Triggering is used, the ADC prescaler is reset before the conversion is started.
Since the gain stage is dependent of a stable ADC clock prior to the conversion, this conversion will not be valid.
By disabling and then re-enabling the ADC between each conversion (writing ADEN in ADCSRA to “0” then to “1”),
only extended conversions are performed. The result from the extended conversions will be valid. See “Prescaling
and Conversion Timing” on page 211 for timing details.

ATmega32A [DATASHEET]

8155D-AVR-10/2013

199

Atmel



22.6 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary register to which the
CPU has random access. This ensures that the channels and reference selection only takes place at a safe point
during the conversion. The channel and reference selection is continuously updated until a conversion is started.
Once the conversion starts, the channel and reference selection is locked to ensure a sufficient sampling time for
the ADC. Continuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after ADSC is written. The
user is thus advised not to write new channel or reference selection values to ADMUX until one ADC clock cycle
after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special care must be taken
when updating the ADMUX Register, in order to control which conversion will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the ADMUX Register is
changed in this period, the user cannot tell if the next conversion is based on the old or the new settings. ADMUX
can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.
2. During conversion, minimum one ADC clock cycle after the trigger event.
3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC conversion.

Special care should be taken when changing differential channels. Once a differential channel has been selected,
the gain stage may take as much as 125 s to stabilize to the new value. Thus conversions should not be started
within the first 125 us after selecting a new differential channel. Alternatively, conversion results obtained within
this period should be discarded.

The same settling time should be observed for the first differential conversion after changing ADC reference (by
changing the REFS1:0 bits in ADMUX).

22.6.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure that the correct
channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The channel selection may
be changed one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the con-
version to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The channel selection may
be changed one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the first
conversion to complete, and then change the channel selection. Since the next conversion has already started
automatically, the next result will reflect the previous channel selection. Subsequent conversions will reflect the
new channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accuracy due to the
required settling time for the automatic offset cancellation circuitry. The user should preferably disregard the first
conversion result.

22.6.2 ADC Voltage Reference
The reference voltage for the ADC (Vgeg) indicates the conversion range for the ADC. Single ended channels that
exceed Vgee Will result in codes close to Ox3FF. Ve can be selected as either AVCC, internal 2.56V reference, or
external AREF pin.

AT 32A [DATASHEET 200
Atmel megas2A [ ]

8155D-AVR-10/2013



AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is generated from the inter-
nal bandgap reference (Vgg) through an internal amplifier. In either case, the external AREF pin is directly
connected to the ADC, and the reference voltage can be made more immune to noise by connecting a capacitor
between the AREF pin and ground. Vgge can also be measured at the AREF pin with a high impedant voltmeter.
Note that Vgee is a high impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other reference voltage
options in the application, as they will be shorted to the external voltage. If no external voltage is applied to the
AREF pin, the user may switch between AVCC and 2.56V as reference selection. The first ADC conversion result
after switching reference voltage source may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AVCC than indicated in Table 27-4
on page 303.

22.7 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise induced from the
CPU core and other I/O peripherals. The noise canceler can be used with ADC Noise Reduction and Idle mode. To
make use of this feature, the following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion Mode must be selected
and the ADC conversion complete interrupt must be enabled.
2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once the CPU has
been halted.
3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake up the CPU
and execute the ADC Conversion Complete interrupt routine. If another interrupt wakes up the CPU
before the ADC conversion is complete, that interrupt will be executed, and an ADC Conversion Complete
interrupt request will be generated when the ADC conversion completes. The CPU will remain in active
mode until a new sleep command is executed.
Note that the ADC will not be automatically turned off when entering other sleep modes than Idle mode and ADC
Noise Reduction mode. The user is advised to write zero to ADEN before entering such sleep modes to avoid
excessive power consumption. If the ADC is enabled in such sleep modes and the user wants to perform differen-
tial conversions, the user is advised to switch the ADC off and on after waking up from sleep to prompt an
extended conversion to get a valid result.

22.7.1 Analog Input Circuitry
The Analog Input Circuitry for single ended channels is illustrated in Figure 22-8. An analog source applied to
ADCn is subjected to the pin capacitance and input leakage of that pin, regardless of whether that channel is
selected as input for the ADC. When the channel is selected, the source must drive the S/H capacitor through the
series resistance (combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kQ or less. If such a source
is used, the sampling time will be negligible. If a source with higher impedance is used, the sampling time will
depend on how long time the source needs to charge the S/H capacitor, with can vary widely. The user is recom-
mended to only use low impedant sources with slowly varying signals, since this minimizes the required charge
transfer to the S/H capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although source impedances of a
few hundred kQ or less is recommended.

Signal components higher than the Nyquist frequency (fapc/2) should not be present for either kind of channels, to
avoid distortion from unpredictable signal convolution. The user is advised to remove high frequency components
with a low-pass filter before applying the signals as inputs to the ADC.

AT 32A [DATASHEET 201
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 22-8. Analog Input Circuitry

1..100 kQ

ADCn M L

Cgqy= 14 pF

22.7.2 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog measure-
ments. If conversion accuracy is critical, the noise level can be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run over the analog ground
plane, and keep them well away from high-speed switching digital tracks.

2. The AVCC pin on the device should be connected to the digital V. supply voltage via an LC network as
shown in Figure 22-9.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do not switch while a conversion
is in progress.

Figure 22-9. ADC Power Connections

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+
1

CcC

>

PA2 (ADC2)
PA3 (ADC3)

[a)
=z
]

Analog Ground Plane !

j PA4 (ADC4)
|| Pas (aDcs)
j PA6 (ADC6)
j PA7 (ADCT)
| ] AreF

10uH

100nF

ATmega32A [DATASHEET] 202
A t m eL 8155D-AVR-10/2013



22.7.3 Offset Compensation Schemes

The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential measurements as much
as possible. The remaining offset in the analog path can be measured directly by selecting the same channel for
both differential inputs. This offset residue can be then subtracted in software from the measurement results. Using
this kind of software based offset correction, offset on any channel can be reduced below one LSB.

22.7.4  ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and Vgg in 2" steps (LSBs). The lowest code
is read as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:
« Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at 0.5 LSB). Ideal
value: 0 LSB.
Figure 22-10. Offset Error

Output Codeh

————— Ideal ADC
—— Actual ADC

Vger Input Voltage

» Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last transition (Ox3FE to
0x3FF) compared to the ideal transition (at 1.5 LSB below maximum). Ideal value: 0 LSB

Figure 22-11. Gain Error

OutputCoded . Gain
Error:
————— Ideal ADC
Actual ADC
Vger Input Voltage

* Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum deviation of an
actual transition compared to an ideal transition for any code. Ideal value: 0 LSB.

AT 32A [DATASHEET 203
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 22-12. Integral Non-linearity (INL)

Output Code A

N

77777 Ideal ADC
Actual ADC

VREFVInput Voltage

« Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval between two
adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 22-13. Differential Non-linearity (DNL)

Output Code A
O0x3FF

[

0 Vgeg Input Voltage

» Quantization Error: Due to the quantization of the input voltage into a finite number of codes, a range of input
voltages (1 LSB wide) will code to the same value. Always +0.5 LSB.

» Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to an ideal transition
for any code. This is the compound effect of Offset, Gain Error, Differential Error, Non-linearity, and Quantization
Error. Ideal value: +0.5 LSB.

22.8 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC Result Registers
(ADCL, ADCH).

AT 32A [DATASHEET 204
Atmel megas2A [ ]

8155D-AVR-10/2013



For single ended conversion, the result is

V,y - 1024
ADC = ———
VREF

where V| is the voltage on the selected input pin and Vg the selected voltage reference (see Table 22-3 on page
222 and Table 22-4 on page 223). 0x000 represents analog ground, and 0x3FF represents the selected reference
voltage minus one LSB.

If differential channels are used, the result is
(Vpos— Vneg) - GAIN - 512

ADC =
VRer

where Vpqg is the voltage on the positive input pin, Vg the voltage on the negative input pin, GAIN the selected
gain factor, and Vxge the selected voltage reference. The result is presented in two’s complement form, from 0x200
(-512d) through Ox1FF (+511d). Note that if the user wants to perform a quick polarity check of the results, it is suf-
ficient to read the MSB of the result (ADC9 in ADCH). If this bit is one, the result is negative, and if this bit is zero,
the result is positive. Figure 22-14 shows the decoding of the differential input range.

Table 22-2 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is selected with a
gain of GAIN and a reference voltage of Vgge.

Figure 22-14. Differential Measurement Range

Output Code
Ox1FF

REF Voltage (Volts)

ox000 |+
T ) | E— NX S R e )()—v—v—i—>
- Viee/GAIN (( 170 ( V. _/GAIN Differential Input

((

0x200

AT 32A [DATASHEET 205
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 22-2.  Correlation between Input Voltage and Output Codes

Vapcn Read code Corresponding Decimal Value
Vaoem + Vrer/GAIN OX1FF 511
Vapem + 511/512 Vree/GAIN OX1FF 511
Vapem + 510/512 Vee/GAIN OX1FE 510
Vapem + 1/512 Vgee/GAIN 0x001 1
Vapem 0x000 0
Vapem - 1/512 Veee/GAIN Ox3FF -1
Vapem - 511/512 Ve /GAIN 0x201 -511
Vapem - Veee/GAIN 0x200 -512
Example:

ADMUX = OxED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)
Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.
ADCR =512 x 10 x (300 - 500) / 2560 = -400 = 0x270

ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right adjusts the result: ADCL =
0x70, ADCH = 0x02.

22.9 Register Description

229.1 ADMUX — ADC Multiplexer Selection Register

Bit 7 6 5 4 3 2 1 0
| REFS1 | REFSO | ADLAR | Mux4 | MUX3 MUX2 MUX1 MUX0 | ADMUX

Read/Write RIW RIW RIW RIW R/W RIW RIW R/W

Initial Value 0 0 0 0 0 0 0 0

» Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 22-3. If these bits are changed during a
conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSRA is set). The internal
voltage reference options may not be used if an external reference voltage is being applied to the AREF pin.

Table 22-3.  Voltage Reference Selections for ADC

REFS1 REFSO | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AVCC with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin

» Bit5—- ADLAR: ADC Left Adjust Result

AT 32A [DATASHEET 206
Atmel megas2A [ ]

8155D-AVR-10/2013



The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register. Write one to
ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the ADLAR bit will affect the ADC
Data Register immediately, regardless of any ongoing conversions. For a complete description of this bit, see
“ADCL and ADCH — The ADC Data Register” on page 225.

e Bits 4:0 - MUX4:0: Analog Channel and Gain Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC. These bits also
select the gain for the differential channels. See Table 22-4 for details. If these bits are changed during a
conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSRA is set).

Table 22-4.  Input Channel and Gain Selections

Single Ended Positive Differential Negative Differential
MUX4:0 Input Input Input Gain
00000 ADCO
00001 ADC1
00010 ADC2
00011 ADC3 N/A
00100 ADCA4
00101 ADC5
00110 ADC6
00111 ADC7
01000 ADCO ADCO 10x
01001 ADC1 ADCO 10x
01010 ADCO ADCO 200x
01011 ADC1 ADCO 200x
01100 ADC2 ADC2 10x
01101 ADC3 ADC2 10x
01110 ADC2 ADC2 200x
01111 ADC3 ADC2 200x
10000 ADCO ADC1 1x
10001 ADC1 ADC1 1x
10010 N/A ADC2 ADC1 1x
10011 ADC3 ADC1 1x
10100 ADC4 ADC1 1x
10101 ADC5 ADC1 1x
10110 ADC6 ADC1 1x
10111 ADC7 ADC1 1x
11000 ADCO ADC2 1x
11001 ADC1 ADC2 1x
11010 ADC2 ADC2 1x
11011 ADC3 ADC2 1x
11100 ADC4 ADC2 1x

AT 32A [DATASHEET 207
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 22-4. Input Channel and Gain Selections (Continued)

Single Ended Positive Differential Negative Differential
MUX4:0 Input Input Input Gain
11101 ADC5 ADC2 1x
11110 1.22V (Vgg) N/A
11111 0V (GND)

22.9.2 ADCSRA — ADC Control and Status Register A

Bit 7 6 5 4 3 2 1 0

| AcEN | ADsC | ADATE | ADIF | ADIE | ADPS2 ADPS1 ADPS0 | ADCsRA
Read/Write R/W RIW R/W RIW RIW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

» Bit 7—- ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the ADC off while a con-
version is in progress, will terminate this conversion.

» Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running Mode, write this bit to
one to start the first conversion. The first conversion after ADSC has been written after the ADC has been enabled,
or if ADSC is written at the same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal
13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete, it returns to zero.
Writing zero to this bit has no effect.

» Bit 5—- ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a conversion on a positive
edge of the selected trigger signal. The trigger source is selected by setting the ADC Trigger Select bits, ADTS in
SFIOR.

* Bit 4 - ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The ADC Conversion
Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, ADIF is cleared by writing a logical one to the
flag. Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be disabled. This also applies
if the SBI and CBI instructions are used.

» Bit 3—- ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Interrupt is activated.

» Bits 2:0 — ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the XTAL frequency and the input clock to the ADC.

AT 32A [DATASHEET 208
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 22-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPSO Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

22.9.3 ADCL and ADCH — The ADC Data Register

22931 ADLAR =0

Bit 15 14 13 12 11 10 9 8
- — - - - - ADC9 ADC8 ADCH
ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

22.9.3.2 ADLAR =1

Bit 15 14 13 12 11 10 9 8
ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
ADC1 ADCO - - - - - - ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

When an ADC conversion is complete, the result is found in these two registers. If differential channels are used,
the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result is left
adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be read
first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from the registers. If
ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.

» ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on page 220.

2294 SFIOR — Special FunctionlO Register

Bit 7 6 5 4 3 2 1 0
| ADTS2 | ADTS1 | ADTSO | - ACME PUD PSR2 | PSR10 | SFIOR

AT 32A [DATASHEET 209
Atmel megas2A [ ]

8155D-AVR-10/2013



Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7:5-ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger an ADC conversion.
If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion will be triggered by the rising edge of
the selected Interrupt Flag. Note that switching from a trigger source that is cleared to a trigger source that is set,
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching
to Free Running mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

Table 22-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTSO Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match
1 0 0 Timer/CounterO Overflow
1 0 1 Timer/Counterl Compare Match B
1 1 0 Timer/Counterl Overflow
1 1 1 Timer/Counterl Capture Event

* Bit4 - Reserved Bit
This bit is reserved for future use in the ATmega32A. For ensuring compability with future devices, this bit must be
written zero when SFIOR is written.

AT 32A [DATASHEET 210
Atmel megas2A [ ]

8155D-AVR-10/2013



23. JTAG Interface and On-chip Debug System

23.1 Features
* JTAG (IEEE std. 1149.1 Compliant) Interface
* Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
* Debugger Access to:
— All Internal Peripheral Units
— Internal and External RAM
— The Internal Register File
— Program Counter
— EEPROM and Flash Memories
— Extensive On-chip Debug Support for Break Conditions, Including
— AVR Break Instruction
— Break on Change of Program Memory Flow
— Single Step Break
— Program Memory Breakpoints on Single Address or Address Range
— Data Memory Breakpoints on Single Address or Address Range
* Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
« On-chip Debugging Supported by AVR Studio®

23.2 Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

» Testing PCBs by using the JTAG Boundary-scan capability

* Programming the non-volatile memories, Fuses and Lock bits

» On-chip Debugging
A brief description is given in the following sections. Detailed descriptions for Programming via the JTAG interface,
and using the Boundary-scan Chain can be found in the sections “Programming via the JTAG Interface” on page

284 and “IEEE 1149.1 (JTAG) Boundary-scan” on page 233, respectively. The On-chip Debug support is consid-
ered being private JTAG instructions, and distributed within ATMEL and to selected third party vendors only.

Figure 23-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The TAP Controller is a
state machine controlled by the TCK and TMS signals. The TAP Controller selects either the JTAG Instruction
Register or one of several Data Registers as the scan chain (Shift Register) between the TDI input and TDO out-
put. The Instruction Register holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used for board-level test-
ing. The JTAG Programming Interface (actually consisting of several physical and virtual Data Registers) is used
for JTAG Serial Programming via the JTAG interface. The Internal Scan Chain and Break Point Scan Chain are
used for On-chip Debugging only.

23.3 TAP — Test Access Port
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins constitute the

Test Access Port — TAP. These pins are:
» TMS: Test Mode Select. This pin is used for navigating through the TAP-controller state machine.
* TCK: Test Clock. JTAG operation is synchronous to TCK.
» TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register (Scan Chains).

AT 32A [DATASHEET 211
Atmel megas2A [ ]

8155D-AVR-10/2013



» TDO: Test Data Out. Serial output data from Instruction Register or Data Register.
The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT — which is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the TAP controller is in
reset. When programmed and the JTD bit in MCUCSR is cleared, the TAP input signals are internally pulled high
and the JTAG is enabled for Boundary-scan and programming. In this case, the TAP output pin (TDO) is left float-
ing in states where the JTAG TAP controller is not shifting data, and must therefore be connected to a pull-up
resistor or other hardware having pull-ups (for instance the TDI-input of the next device in the scan chain). The
device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is monitored by the debug-
ger to be able to detect external reset sources. The debuggerbta can also pull the RESET pin low to reset the
whole system, assuming only open collectors on the reset line are used in the application.

Figure 23-1. Block Diagram

1/0 PORT O

A
DEVICE BOUNDARY 4

=I| BOUNDARY SCAN CHAIN
o 4y
DO < 1 p JTAG PROGRAMMING
- i TAP INTERFACE
TCK —»| | CONTROLLER
™s > A
i
\ v AVR CPU
INTERNAL
FLASH Address <€ scan  [€ pC
INSEZ:JS(}rESN MEMORY Data [ > cpam PC ruction
]
D
REGISTER BREAKPOINT [« >
UNIT
M [~>] FLOW CONTROL[?] .
BYPASS 9
v A UNIT < 2
X REGISTER DIGITAL 8 % &J g
< PERIPHERAL >l das
< UNITS ELE E
BREAKPOINT a 2
SCAN CHAIN
v JTAG / AVR CORE
ADDRESS COMMUNICATION
DECODER OCD STATUS > INTERFACE P
AND CONTROL £
<
%
8
< ©
]
i
v £
5
l o
|
A
Y
.
1/0 PORT n
Atmel ATmega32A [DATASHEET] 212

8155D-AVR-10/2013



Figure 23-2. TAP Controller State Diagram

+ G

Test-Logic-Reset

A

°G

Run-Test/Idle

Select-DR Scan

23.4 TAP Controller

y

A 4

Select-IR Scan

Pause-DR

Update-DR

1 0

Update-IR

A

1 0

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-scan circuitry,
JTAG programming circuitry, or On-chip Debug system. The state transitions depicted in Figure 23-2 depend on
the signal present on TMS (shown adjacent to each state transition) at the time of the rising edge at TCK. The ini-
tial state after a Power-On Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift Instruction Register
— Shift-IR state. While in this state, shift the four bits of the JTAG instructions into the JTAG Instruction Register
from the TDI input at the rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when this state is left by setting
TMS high. While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on the

Atmel

ATmega32A [DATASHEET] 213

8155D-AVR-10/2013



TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI and TDO and controls
the circuitry surrounding the selected Data Register.

» Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched onto the parallel
output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-IR, and Exit2-IR states are only
used for navigating the state machine.

» At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data Register — Shift-
DR state. While in this state, upload the selected Data Register (selected by the present JTAG instruction in the
JTAG Instruction Register) from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state,
the TMS input must be held low during input of all bits except the MSB. The MSB of the data is shifted in when
this state is left by setting TMS high. While the Data Register is shifted in from the TDI pin, the parallel inputs to
the Data Register captured in the Capture-DR state is shifted out on the TDO pin.

» Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data Register has a latched
parallel-output, the latching takes place in the Update-DR state. The Exit-DR, Pause-DR, and Exit2-DR states
are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting JTAG instruction
and using Data Registers, and some JTAG instructions may select certain functions to be performed in the Run-
Test/ldle, making it unsuitable as an Idle state.

Note:  Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be entered by holding TMS
high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography” on page 232.

23.5 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1 (JTAG) Boundary-
scan” on page 233.

23.6 Using the On-chip Debug System
As shown in Figure 23-1, the hardware support for On-chip Debugging consists mainly of:

A scan chain on the interface between the internal AVR CPU and the internal peripheral units
» Break Point unit
« Communication interface between the CPU and JTAG system

All read or modify/write operations needed for implementing the Debugger are done by applying AVR instructions
via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O memory mapped location which is part
of the communication interface between the CPU and the JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, 2 Program Memory Break
Points, and 2 combined Break Points. Together, the 4 Break Points can be configured as either:

* 4 single Program Memory Break Points

* 3 Single Program Memory Break Point + 1 single Data Memory Break Point

« 2 single Program Memory Break Points + 2 single Data Memory Break Points

* 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range Break Point”)

* 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break Point”)
A debugger, like the AVR Studio, may however use one or more of these resources for its internal purpose, leaving
less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG Instructions” on
page 231.

AT 32A [DATASHEET 214
Atmel megas2A [ ]

8155D-AVR-10/2013



23.7

23.7.1

23.7.2

23.7.3

23.7.4

23.8

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the OCDEN Fuse must
be programmed and no Lock bits must be set for the On-chip Debug system to work. As a security feature, the On-
chip Debug system is disabled when any Lock bits are set. Otherwise, the On-chip Debug system would have pro-
vided a back-door into a secured device.

The AVR JTAG ICE from Atmel is a powerful development tool for On-chip Debugging of all AVR 8-bit RISC Micro-
controllers with IEEE 1149.1 compliant JTAG interface. The JTAG ICE and the AVR Studio user interface give the
user complete control of the internal resources of the microcontroller, helping to reduce development time by mak-
ing debugging easier. The JTAG ICE performs real-time emulation of the micrcontroller while it is running in a
target system.

Please refer to the Support Tools section on the AVR pages on www.atmel.com for a full description of the AVR
JTEG ICE. AVR Studio can be downloaded free from Software section on the same web site.

All necessary execution commands are available in AVR Studio, both on source level and on disassembly level.
The user can execute the program, single step through the code either by tracing into or stepping over functions,
step out of functions, place the cursor on a statement and execute until the statement is reached, stop the execu-
tion, and reset the execution target. In addition, the user can have an unlimited humber of code breakpoints (using
the BREAK instruction) and up to two data memory breakpoints, alternatively combined as a mask (range) Break
Point.

On-chip Debug Specific JTAG Instructions

The On-chip Debug support is considered being private JTAG instructions, and distributed within ATMEL and to
selected third party vendors only. Instruction opcodes are listed for reference.

PRIVATEO; $8
Private JTAG instruction for accessing On-chip Debug system.

PRIVATE1; $9
Private JTAG instruction for accessing On-chip Debug system.

PRIVATEZ2; $A
Private JTAG instruction for accessing On-chip Debug system.

PRIVATE3; $B
Private JTAG instruction for accessing On-chip Debug system.

Using the JTAG Programming Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI and TDO. These are
the only pins that need to be controlled/observed to perform JTAG programming (in addition to power pins). It is not
required to apply 12V externally. The JTAGEN fuse must be programmed and the JTD bit in the MCUSR Register
must be cleared to enable the JTAG Test Access Port.

The JTAG programming capability supports:

 Flash programming and verifying
 EEPROM programming and verifying
* Fuse programming and verifying

* Lock bit programming and verifying

The Lock bit security is exactly as in Parallel Programming mode. If the Lock bits LB1 or LB2 are programmed, the
OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a security feature that ensures no
back-door exists for reading out the content of a secured device.

AT 32A [DATASHEET 215
Atmel megas2A [ ]

8155D-AVR-10/2013



The details on programming through the JTAG interface and programming specific JTAG instructions are given in
the section “Programming via the JTAG Interface” on page 284.

23.9 Register Description

23.9.1 OCDR - On-chip Debug Register

Bit 7 6 5 4 3 2 1 0

| vssibRrD | | Lse | ocor
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The OCDR Register provides a communication channel from the running program in the microcontroller to the
debugger. The CPU can transfer a byte to the debugger by writing to this location. At the same time, an Internal
Flag; 1/0 Debug Register Dirty — IDRD — is set to indicate to the debugger that the register has been written. When
the CPU reads the OCDR Register the 7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The
debugger clears the IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard 1/O location. In this case, the OCDR Register can only
be accessed if the OCDEN Fuse is programmed, and the debugger enables access to the OCDR Register. In all
other cases, the standard I/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

23.10 Bibliography

For more information about general Boundary-scan, the following literature can be consulted:

 IEEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan Architecture, IEEE, 1993
 Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 1992

24. |IEEE 1149.1 (JTAG) Boundary-scan

24.1 Features
* JTAG (IEEE std. 1149.1 Compliant) Interface
* Boundary-scan Capabilities According to the JTAG Standard
* Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
* Supports the Optional IDCODE Instruction
Additional Public AVR_RESET Instruction to Reset the AVR

24.2 Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digital /O pins, as well
as the boundary between digital and analog logic for analog circuitry having Off-chip connections. At system level,
all ICs having JTAG capabilities are connected serially by the TDI/TDO signals to form a long Shift Register. An
external controller sets up the devices to drive values at their output pins, and observe the input values received
from other devices. The controller compares the received data with the expected result. In this way, Boundary-scan
provides a mechanism for testing interconnections and integrity of components on Printed Circuits Boards by using
the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRELOAD, and
EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be used for testing the Printed Cir-
cuit Board. Initial scanning of the Data Register path will show the ID-code of the device, since IDCODE is the
default JTAG instruction. It may be desirable to have the AVR device in Reset during Test mode. If not reset, inputs

AT 32A [DATASHEET 216
Atmel megas2A [ ]

8155D-AVR-10/2013



to the device may be determined by the scan operations, and the internal software may be in an undetermined
state when exiting the Test mode. Entering reset, the outputs of any Port Pin will instantly enter the high imped-
ance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to make the
shortest possible scan chain through the device. The device can be set in the reset state either by pulling the exter-
nal RESET pin low, or issuing the AVR_RESET instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data. The data from the
output latch will be driven out on the pins as soon as the EXTEST instruction is loaded into the JTAG IR-Register.
Therefore, the SAMPLE/PRELOAD should also be used for setting initial values to the scan ring, to avoid damag-
ing the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD can also be used for
taking a snapshot of the external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCSR must be cleared to enable
the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher than the internal
chip frequency is possible. The chip clock is not required to run.

24.3 Data Registers
The Data Registers relevant for Boundary-scan operations are:
» Bypass Register
» Device Identification Register
» Reset Register
» Boundary-scan Chain

24.3.1 Bypass Register
The Bypass Register consists of a single Shift Register stage. When the Bypass Register is selected as path
between TDI and TDO, the register is reset to 0 when leaving the Capture-DR controller state. The Bypass Regis-
ter can be used to shorten the scan chain on a system when the other devices are to be tested.

24.3.2 Device Identification Register
Figure 24-1 shows the structure of the Device Identification Register.

Figure 24-1. The Format of the Device Identification Register

MSB LSB
Bit 31 28 27 12 11 1 0
Device ID | \Version Part Number Manufacturer ID 1 |
4 bits 16 bits 11 bits 1 bit

24.3.2.1 Version

Version is a 4-bit number identifying the revision of the component. The JTAG version nhumber follows the revision
of the device. Revision A is 0x0, revision B is x1 and so on.

24.3.2.2 Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for ATmega32A is listed in

Table 24-1.

Table 24-1. AVR JTAG Part Number
Part Number JTAG Part Number (Hex)
ATmega32A 0x9502

AT 32A [DATASHEET 217
Atmel megas2A [ ]

8155D-AVR-10/2013



24.3.2.3 Manufacturer ID

24.3.3

24.3.4

24.4

2441

The Manufacturer ID is a 11 bit code identifying the manufacturer. The JTAG manufacturer ID for ATMEL is listed
in Table 24-2.
Table 24-2.  Manufacturer ID
Manufacturer JTAG Man. ID (Hex)
ATMEL Ox01F

Reset Register
The Reset Register is a Test Data Register used to reset the part. Since the AVR tri-states Port Pins when reset,
the Reset Register can also replace the function of the unimplemented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the External Reset low. The part is reset as long as there
is a high value present in the Reset Register. Depending on the Fuse settings for the clock options, the part will
remain reset for a Reset Time-Out Period (refer to “Clock Sources” on page 26) after releasing the Reset Register.
The output from this Data Register is not latched, so the reset will take place immediately, as shown in Figure 24-2.

Figure 24-2. Reset Register

To
TDO

From other Internal and
External Reset Sources

From i)—v Internal Reset
D Q

o

ClockDR - AVR_RESET

Boundary-scan Chain
The Boundary-scan Chain has the capability of driving and observing the logic levels on the digital I/0 pins, as well
as the boundary between digital and analog logic for analog circuitry having Off-chip connections.

See “Boundary-scan Chain” on page 236 for a complete description.

Boundary-scan Specific JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are the JTAG instructions useful
for Boundary-scan operation. Note that the optional HIGHZ instruction is not implemented, but all outputs with tri-
state capability can be set in high-impedant state by using the AVR_RESET instruction, since the initial state for all
port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes which
Data Register is selected as path between TDI and TDO for each instruction.

EXTEST, $0
Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing circuitry external to
the AVR package. For port-pins, Pull-up Disable, Output Control, Output Data, and Input Data are all accessible in
the scan chain. For Analog circuits having Off-chip connections, the interface between the analog and the digital

AT 32A [DATASHEET 218
Atmel megas2A [ ]

8155D-AVR-10/2013



logic is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is driven out as soon as
the JTAG IR-register is loaded with the EXTEST instruction.

The active states are:

» Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
« Shift-DR: The Internal Scan Chain is shifted by the TCK input.
» Update-DR: Data from the scan chain is applied to output pins.

24.4.2 IDCODE; $1
Optional JTAG instruction selecting the 32-bit ID-register as Data Register. The ID-register consists of a version
number, a device number and the manufacturer code chosen by JEDEC. This is the default instruction after power-

up.

The active states are:

* Capture-DR: Data in the IDCODE-register is sampled into the Boundary-scan Chain.
« Shift-DR: The IDCODE scan chain is shifted by the TCK input.

24.4.3 SAMPLE_PRELOAD; $2
Mandatory JTAG instruction for pre-loading the output latches and talking a snap-shot of the input/output pins with-
out affecting the system operation. However, the output latches are not connected to the pins. The Boundary-scan
Chain is selected as Data Register.

The active states are:

 Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
« Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

» Update-DR: Data from the Boundary-scan Chain is applied to the output latches. However, the output latches
are not connected to the pins.

2444  AVR_RESET; $C
The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or releasing the JTAG
Reset source. The TAP controller is not reset by this instruction. The one bit Reset Register is selected as Data
Register. Note that the reset will be active as long as there is a logic 'one' in the Reset Chain. The output from this
chain is not latched.

The active states are:
« Shift-DR: The Reset Register is shifted by the TCK input.
24.4.5 BYPASS; $F
Mandatory JTAG instruction selecting the Bypass Register for Data Register.
The active states are:

» Capture-DR: Loads a logic “0” into the Bypass Register.
* Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

24.5 Boundary-scan Chain
The Boundary-scan chain has the capability of driving and observing the logic levels on the digital /O pins, as well
as the boundary between digital and analog logic for analog circuitry having Off-chip connection.

AT 32A [DATASHEET 219
Atmel megas2A [ ]

8155D-AVR-10/2013



2451 Scanning the Digital Port Pins
Figure 24-3 shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The cell consists of a
standard Boundary-scan cell for the Pull-up Enable — PUExn — function, and a bi-directional pin cell that combines
the three signals Output Control — OCxn, Output Data — ODxn, and Input Data — IDxn, into only a two-stage Shift
Register. The port and pin indexes are not used in the following description.

The Boundary-scan logic is not included in the figures in the datasheet. Figure 24-4 shows a simple digital Port Pin
as described in the section “I/O Ports” on page 50. The Boundary-scan details from Figure 24-3 replaces the
dashed box in Figure 24-4.

When no alternate port function is present, the Input Data — ID — corresponds to the PINxn Register value (but ID
has no synchronizer), Output Data corresponds to the PORT Register, Output Control corresponds to the Data
Direction — DD Register, and the Pull-up Enable — PUEXn — corresponds to logic expression PUD - DDxn -
PORTXxn.

Digital alternate port functions are connected outside the dotted box in Figure 24-4 to make the scan chain read the
actual pin value. For Analog function, there is a direct connection from the external pin to the analog circuit, and a
scan chain is inserted on the interface between the digital logic and the analog circuitry.

Figure 24-3. Boundary-scan Cell for Bidirectional Port Pin with Pull-up Function.
ShiftDR To Next Cell EXTEST Vee

Pullup Enable (PUE) »——

Output Control (OC)

FF1 LD1 0

Output Data (OD)

0 FFO LDO 0
0 >—|\/ [] Portpin (Pxn)
1 b 1

Input Data (ID)

From Last Cell ClockDR UpdateDR

AT 32A [DATASHEET 220
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 24-4. General Port Pin Schematic Diagram™®

—_— e
I
| |
| |
| , PUExn b
| i =
I : @ ole
| 3. 4
| | I 1WDX
| OCxn RESET
| | A el
| g | RDx
| | & > @
| N1 | m
Q D |g
| E’ ~ | ODxn PORTXn |§
e e 3. < <
IDxn [ L WPx ()
RESET
SLEEP C RRx

SYNCHRONIZER

|
| |
L q > 3
N
| y } ClKyo

PUD: PULLUP DISABLE WDx: WRITE DDRx

PUEXxn: PULLUP ENABLE for pin Pxn RDx: READ DDRx

OCxn: OUTPUT CONTROL for pin Pxn WPx: WRITE PORTx

ODxn: OUTPUT DATA to pin Pxn RRx: READ PORTx REGISTER
IDxn: INPUT DATA from pln Pxn RPx: READ PORTx PIN
SLEEP:  SLEEP CONTROL CLKyo: /0 CLOCK

Note: 1. See Boundary-scan descriptin for details.

245.2 Boundary-scan and the Two-wire Interface
The 2 Two-wire Interface pins SCL and SDA have one additional control signal in the scan-chain; Two-wire Inter-
face Enable — TWIEN. As shown in Figure 24-5, the TWIEN signal enables a tri-state buffer with slew-rate control
in parallel with the ordinary digital port pins. A general scan cell as shown in Figure 24-9 is attached to the TWIEN
signal.

Notes: 1. A separate scan chain for the 50 ns spike filter on the input is not provided. The ordinary scan support for digital

port pins suffice for connectivity tests. The only reason for having TWIEN in the scan path, is to be able to discon-
nect the slew-rate control buffer when doing boundary-scan.

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will lead to drive contention.

AT 32A [DATASHEET 221
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 24-5. Additional Scan Signal for the Two-wire Interface

b o] PUExn

OCxn
%,7 ODxn

Pxn * TWIEN
<
Slew-rate Limited
IDxn

2453 Scanning the RESET Pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high logic for High Voltage

Parallel Programming. An observe-only cell as shown in Figure 24-6 is inserted both for the 5V reset signal; RSTT,
and the 12V reset signal; RSTHV.

Figure 24-6. Observe-only Cell

To
Next
ShiftDR Cell
From System Pin » ® [ I To System Logic
FF1
D Q

From ClockDR
Previous
Cell

24.5.4 Scanning the Clock Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscillator, External RC,
External Clock, (High Frequency) Crystal Oscillator, Low Frequency Crystal Oscillator, and Ceramic Resonator.

Figure 24-7 shows how each Oscillator with external connection is supported in the scan chain. The Enable signal
is supported with a general boundary-scan cell, while the Oscillator/Clock output is attached to an observe-only
cell. In addition to the main clock, the Timer Oscillator is scanned in the same way. The output from the internal RC
Oscillator is not scanned, as this Oscillator does not have external connections.

AT 32A [DATASHEET 222
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 24-7. Boundary-scan Cells for Oscillators and Clock Options
XTAL1/TOSC1 XTAL2/TOSC2

To

Next To

o ShiftDR Cell EXTEST Oscillator Next

> ShiftbR Cell g
- 3
‘_g -
5 0 I I 5
a ENABLE OUTPUT 13
§ %)
& P

1
FF1
D Q+—D Q J
e D Q

From ClockDR UpdateDR
Previous From ClockDR
Cell Previous
Cell

Table 24-3 summaries the scan registers for the external clock pin XTAL1, Oscillators with XTAL1/XTAL2 connec-
tions as well as 32kHz Timer Oscillator.

Table 24-3.  Scan Signals for the OscillatorsW@®

Scanned Clock Line

Enable Signal | Scanned Clock Line | Clock Option when not Used
EXTCLKEN EXTCLK (XTAL1) External Clock 0
OSCON OSCCK External Crystal 0

External Ceramic

Resonator
RCOSCEN RCCK External RC 1
OSC32EN 0SC32CK Low Freq. External Crystal 0
TOSKON TOSCK 32kHz Timer Oscillator 0

Notes: 1. Do not enable more than one clock source as main clock at a time.

2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between the Internal Oscilla-
tor and the JTAG TCK clock. If possible, scanning an external clock is preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time, the clock configuration is con-
sidered fixed for a given application. The user is advised to scan the same clock option as to be used in the final
system. The enable signals are supported in the scan chain because the system logic can disable clock options in
sleep modes, thereby disconnecting the Oscillator pins from the scan path if not provided. The INTCAP fuses are
not supported in the scan-chain, so the boundary scan chain can not make a XTAL Oscillator requiring internal
capacitors to run unless the fuse is correctly programmed.

2455 Scanning the Analog Comparator
The relevant Comparator signals regarding Boundary-scan are shown in Figure 24-8. The Boundary-scan cell from
Figure 24-9 is attached to each of these signals. The signals are described in Table 24-4.

The Comparator need not be used for pure connectivity testing, since all analog inputs are shared with a digital
port pin as well.

AT 32A [DATASHEET 223
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 24-8. Analog Comparator

BANDGAP
REFERENCE VCcC
ACBG
ACD —>»
AINO

ACO

AC_IDLE

ACME
ADC MULTIPLEXER
OUTPUT

Pl

Figure 24-9. General Boundary-scan Cell used for Signals for Comparator and ADC

To
Next
ShiftDR Cell EXTEST
From Digital Logic/ ¢ I 0
From Analog Ciruitry To Analog Circuitry/
1 To Digital Logic
0
D Q Q
1
— G
From ClockDR UpdateDR
Previous
Cell
ATmega32A [DATASHEET] 224
Atmel

8155D-AVR-10/2013



Table 24-4.  Boundary-scan Signals for the Analog Comparator

Signal Direction as Seen from Recommended Input Output Values when

Name the Comparator Description when Not in Use Recommended Inputs are Used

AC_IDLE Input Turns off Analog 1 Depends upon pC code being
comparator when true executed

ACO Output Analog Comparator Will become inputtouC | 0
Output code being executed

ACME Input Uses output signal from 0 Depends upon pC code being
ADC mux when true executed

ACBG Input Bandgap Reference 0 Depends upon pC code being
enable executed

24.5.6 Scanning the ADC

Figure 24-10 shows a block diagram of the ADC with all relevant control and observe signals. The Boundary-scan cell from
Figure 24-9 is attached to each of these signals. The ADC need not be used for pure connectivity testing, since all analog
inputs are shared with a digital port pin as well.

Figure 24-10. Analog to Digital Converter

VCCREN

AREF

»

IREFEN

» To Comparator

PASSEN
MUXEN_7 >
ADC_7 ;

MUXEN_4 SCTEST ADCBGEN
ADC_4 I { ’j

EXTCH , N 3 PRECH  oqeon
MUXEN_3 > e nee
ADC_3 : : — 9 —‘ DACOUT
MUXEN_2
ADC_2 : J ° DAC_9..0 N
MUXEN_1 P————— < | 10bitDAC Py > o g
aoci,_ Glo, e |- — 0
MUXEN_0 ADCEN — 0
ADC_0 J 3 ’ il I
NEGSEL_2 10x >—%7 L
_ADC_2 g - HOLD -
NEGSEL_1
X S
NEGSEL_0 — ACLK
:’ I AMPEN
The signals are described briefly in Table 24-5.
ATmega32A [DATASHEET] 225
Atmel

8155D-AVR-10/2013



Table 24-5.  Boundary-scan Signals for the ADC
Recommended | Output Values when Recommended
Signal Direction as Seen Input when Not | Inputs are used, and CPU is not
Name from the ADC Description in Use Using the ADC
COMP Output Comparator Output 0 0
ACLK Input Clock signal to gain stages 0 0
implemented as Switch-cap filters
ACTEN Input Enable path from gain stages to 0 0
the comparator
ADCBGEN | Input Enable Band-gap reference as 0 0
negative input to comparator
ADCEN Input Power-on signal to the ADC 0 0
AMPEN Input Power-on signal to the gain stages 0 0
DAC_9 Input Bit 9 of digital value to DAC 1 1
DAC_8 Input Bit 8 of digital value to DAC 0 0
DAC_7 Input Bit 7 of digital value to DAC 0 0
DAC_6 Input Bit 6 of digital value to DAC 0 0
DAC 5 Input Bit 5 of digital value to DAC 0 0
DAC 4 Input Bit 4 of digital value to DAC 0 0
DAC_3 Input Bit 3 of digital value to DAC 0 0
DAC_2 Input Bit 2 of digital value to DAC 0 0
DAC_1 Input Bit 1 of digital value to DAC 0 0
DAC 0 Input Bit O of digital value to DAC 0 0
EXTCH Input Connect ADC channels 0 - 3 to by- 1 1
pass path around gain stages
G10 Input Enable 10x gain 0 0
G20 Input Enable 20x gain 0 0
GNDEN Input Ground the negative input to 0 0
comparator when true
HOLD Input Sample&Hold signal. Sample 1 1
analog signal when low. Hold
signal when high. If gain stages
are used, this signal must go
active when ACLK is high.
IREFEN Input Enables Band-gap reference as 0 0
AREF signal to DAC
MUXEN_7 Input Input Mux bit 7 0 0
MUXEN_6 Input Input Mux bit 6 0 0
MUXEN_5 Input Input Mux bit 5 0 0
MUXEN_4 Input Input Mux bit 4 0 0
MUXEN_3 Input Input Mux bit 3 0 0
MUXEN_2 Input Input Mux bit 2 0 0

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

226



Table 24-5.  Boundary-scan Signals for the ADC (Continued)

Recommended | Output Values when Recommended

Signal Direction as Seen Input when Not | Inputs are used, and CPU is not

Name from the ADC Description in Use Using the ADC

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_O Input Input Mux bit 0 1 1

NEGSEL_2 | Input Input Mux for negative input for 0 0
differential signal, bit 2

NEGSEL_1 | Input Input Mux for negative input for 0 0
differential signal, bit 1

NEGSEL_O | Input Input Mux for negative input for 0 0
differential signal, bit 0

PASSEN Input Enable pass-gate of gain stages. 1 1

PRECH Input Precharge output latch of 1 1
comparator. (Active low)

SCTEST Input Switch-cap TEST enable. Output 0 0

from x10 gain stage send out to
Port Pin having ADC_4

ST Input Output of gain stages will settle 0 0
faster if this signal is high first two
ACLK periods after AMPEN goes
high.

VCCREN Input Selects Vcc as the ACC reference 0 0
voltage.

Note:  Incorrect setting of the switches in Figure 24-10 will make signal contention and may damage the part. There are several input
choices to the S&H circuitry on the negative input of the output comparator in Figure 24-10. Make sure only one path is selected
from either one ADC pin, Bandgap reference source, or Ground.

AT 32A [DATASHEET 227
Atmel megas2A [ ]

8155D-AVR-10/2013



If the ADC is not to be used during scan, the recommended input values from Table 24-5 should be used. The user
is recommended not to use the Differential Gain stages during scan. Switch-cap based gain stages require fast
operation and accurate timing which is difficult to obtain when used in a scan chain. Details concerning operations
of the differential gain stage is therefore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 24-10 with a successive approximation algorithm
implemented in the digital logic. When used in Boundary-scan, the problem is usually to ensure that an applied
analog voltage is measured within some limits. This can easily be done without running a successive approxima-
tion algorithm: apply the lower limit on the digital DAC[9:0] lines, make sure the output from the comparator is low,
then apply the upper limit on the digital DAC[9:0] lines, and verify the output from the comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with a digital port pin as
well.

When using the ADC, remember the following:

» The Port Pin for the ADC channel in use must be configured to be an input with pull-up disabled to avoid signal
contention.

* In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when enabling the ADC.
The user is advised to wait at least 200 ns after enabling the ADC before controlling/observing any ADC signal,
or perform a dummy conversion before using the first result.

» The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal low (Sample mode).

As an example, consider the task of verifying a 1.5V £5% input signal at ADC channel 3 when the power supply is
5.0V and AREF is externally connected to V.

The lower limitis:  [1024 - 1.5V -0,95/5V] = 291 = 0x123
The upper limitis:  [1024 - 1.5V - 1.05/5V’] = 323 = 0x143

The recommended values from Table 24-5 are used unless other values are given in the algorithm in Table 24-6.
Only the DAC and Port Pin values of the Scan-chain are shown. The column “Actions” describes what JTAG
instruction to be used before filling the Boundary-scan Register with the succeeding columns. The verification
should be done on the data scanned out when scanning in the data on the same row in the table.

AT 32A [DATASHEET 228
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 24-6.  Algorithm for Using the ADC

PA3.
PA3. PA3. Pullup_
Step Actions ADCEN DAC MUXEN HOLD PRECH Data Control Enable

1 SAMPLE_ 1 0x200 0x08 1 1 0 0 0

PRELOAD
2 EXTEST 1 0x200 0x08 0 1 0 0 0
3 1 0x200 0x08 1 1 0 0 0
4 1 0x123 0x08 1 1 0 0 0
5 1 0x123 0x08 1 0 0 0 0
6 Verify the 1 0x200 0x08 1 1 0 0 0

COMP bit

scanned

outtobeO
7 1 0x200 0x08 0 1 0 0 0
8 1 0x200 0x08 1 1 0 0 0
9 1 0x143 0x08 1 1 0 0 0
10 1 0x143 0x08 1 0 0 0 0
11 Verify the 1 0x200 0x08 1 1 0 0 0

COMP bit

scanned

outtobel

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock frequency. As the algo-
rithm keeps HOLD high for five steps, the TCK clock frequency has to be at least five times the number of scan bits
divided by the maximum hold time, t,q max-

24.6 ATmega32A Boundary-scan Order

Table 24-7 shows the scan order between TDI and TDO when the Boundary-scan chain is selected as data path.
Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The scan order follows the pin-out order as far
as possible. Therefore, the bits of Port A is scanned in the opposite bit order of the other ports. Exceptions from the
rules are the Scan chains for the analog circuits, which constitute the most significant bits of the scan chain regard-
less of which physical pin they are connected to. In Figure 24-3, PXn. Data corresponds to FFO, PXn. Control
corresponds to FF1, and PXn. Pullup_enable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is not in the scan
chain, since these pins constitute the TAP pins when the JTAG is enabled.

Table 24-7. ATmega32A Boundary-scan Order

Bit Number Signal Name Module
140 AC_IDLE Comparator
139 ACO

138 ACME

137 ACBG

AT 32A [DATASHEET 229
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 24-7. ATmega32A Boundary-scan Order (Continued)

Bit Number Signal Name Module
136 COMP ADC
135 PRIVATE_SIGNAL1®W
134 ACLK

133 ACTEN

132 PRIVATE_SIGNAL2®
131 ADCBGEN

130 ADCEN

129 AMPEN

128 DAC_9

127 DAC_8

126 DAC_7

125 DAC_6

124 DAC_5

123 DAC_4

122 DAC_3

121 DAC_2

120 DAC_1

119 DAC_0

118 EXTCH

117 G10

116 G20

115 GNDEN

114 HOLD

113 IREFEN

AT 32A [DATASHEET 230
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 24-7. ATmega32A Boundary-scan Order (Continued)

Bit Number Signal Name Module
112 MUXEN_7 ADC
111 MUXEN_6

110 MUXEN_5

109 MUXEN_4

108 MUXEN_3

107 MUXEN_2

106 MUXEN_1

105 MUXEN_O

104 NEGSEL_2

103 NEGSEL_1

102 NEGSEL_0O

101 PASSEN

100 PRECH

99 SCTEST

98 ST

97 VCCREN

96 PBO.Data Port B
95 PBO0.Control

94 PBO.Pullup_Enable
93 PB1.Data

92 PB1.Control

91 PB1.Pullup_Enable
90 PB2.Data

89 PB2.Control

88 PB2.Pullup_Enable
87 PB3.Data

86 PB3.Control

85 PB3.Pullup_Enable
84 PB4.Data

83 PB4.Control

82 PB4.Pullup_Enable

AT 32A [DATASHEET 231
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 24-7. ATmega32A Boundary-scan Order (Continued)

Bit Number Signal Name Module

81 PB5.Data Port B

80 PB5.Control

79 PB5.Pullup_Enable

78 PB6.Data

77 PB6.Control

76 PB6.Pullup_Enable

75 PB7.Data

74 PB7.Control

73 PB7.Pullup_Enable

72 RSTT Reset Logic

71 RSTHV (Observe-Only)
70 EXTCLKEN Enable signals for main clock/Oscillators
69 OSCON

68 RCOSCEN

67 OSC32EN

66 EXTCLK (XTAL1) Clock input and Oscillators for the main clock
65 0SCCK (Observe-Only)
64 RCCK

63 0OSC32CK

62 TWIEN TWI

61 PDO.Data Port D

60 PDO.Control

59 PDO.Pullup_Enable

58 PD1.Data

57 PD1.Control

56 PD1.Pullup_Enable

55 PD2.Data

54 PD2.Control

53 PD2.Pullup_Enable

52 PD3.Data

51 PD3.Control

50 PD3.Pullup_Enable

49 PD4.Data

48 PD4.Control

47 PD4.Pullup_Enable

AT 32A [DATASHEET 232
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 24-7. ATmega32A Boundary-scan Order (Continued)

Bit Number Signal Name Module
46 PD5.Data Port D
45 PD5.Control

44 PD5.Pullup_Enable

43 PD6.Data

42 PD6.Control

41 PD6.Pullup_Enable

40 PD7.Data

39 PD7.Control

38 PD7.Pullup_Enable

37 PCO0.Data Port C
36 PCO.Control

35 PCO.Pullup_Enable

34 PC1.Data

33 PC1.Control

32 PC1.Pullup_Enable

31 PC6.Data

30 PCé6.Control

29 PC6.Pullup_Enable

28 PC7.Data

27 PC7.Control

26 PC7.Pullup_Enable

25 TOSC 32kHz Timer Oscillator
24 TOSCON

23 PAT7.Data Port A
22 PA7.Control

21 PA7.Pullup_Enable

20 PAG.Data

19 PAG6.Control

18 PAG6.Pullup_Enable

17 PA5.Data

16 PA5.Control

15 PA5.Pullup_Enable

14 PA4.Data

13 PA4.Control

12 PA4.Pullup_Enable

AT 32A [DATASHEET 233
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 24-7. ATmega32A Boundary-scan Order (Continued)

Bit Number Signal Name Module

11 PA3.Data Port A

PA3.Control

[En
o

PA3.Pullup_Enable
PA2.Data
PA2.Control
PA2.Pullup_Enable
PA1.Data

PA1.Control

PA1.Pullup_Enable
PAO.Data
PAO.Control

0 PAO.Pullup_Enable

Notes: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.
2. PRIVATE_SIGNALZ2 should always be scanned in as zero.

P N W |, OO | N || O

24.7 Boundary-scan Description Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in a standard format
used by automated test-generation software. The order and function of bits in the Boundary-scan Data Register
are included in this description. A BSDL file for ATmega32A is available.

24.8 Register Description

248.1 MCU Control and Status Register - MCUCSR
The MCU Control and Status Register contains control bits for general MCU functions, and provides information on
which reset source caused an MCU Reset.

Bit 7 6 5 4 3 2 1 0
| s | sc2 | = | JTRF WDRF BORF EXTRF PORF | MCUCSR

Read/Write R/W R/W R R/W R/W R/W RIW RIW

Initial Value 0 0 0 See Bit Description

» Bit 7-JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this bit is one, the JTAG
interface is disabled. In order to avoid unintentional disabling or enabling of the JTAG interface, a timed sequence
must be followed when changing this bit: The application software must write this bit to the desired value twice
within four cycles to change its value.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to one. The reason for
this is to avoid static current at the TDO pin in the JTAG interface.

» Bit4-JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by the JTAG instruction
AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

AT 32A [DATASHEET 234
Atmel megas2A [ ]

8155D-AVR-10/2013



25. Boot Loader Support — Read-While-Write Self-Programming

25.1 Features
* Read-While-Write Self-Programming
* Flexible Boot Memory size
* High Security (Separate Boot Lock Bits for a Flexible Protection)
* Separate Fuse to Select Reset Vector
+ Optimized Page® Size
* Code Efficient Algorithm
» Efficient Read-Modify-Write Support

Note: 1. A page is a section in the flash consisting of several bytes (see Table 26-5 on page 269) used during program-
ming. The page organization does not affect normal operation.

25.2 Overview

The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for downloading and
uploading program code by the MCU itself. This feature allows flexible application software updates controlled by
the MCU using a Flash-resident Boot Loader program. The Boot Loader program can use any available data inter-
face and associated protocol to read code and write (program) that code into the Flash memory, or read the code
from the Program memory. The program code within the Boot Loader section has the capability to write into the
entire Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it can also erase
itself from the code if the feature is not needed anymore. The size of the Boot Loader memory is configurable with
Fuses and the Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives the
user a unique flexibility to select different levels of protection.

25.3 Application and Boot Loader Flash Sections
The Flash memory is organized in two main sections, the Application section and the Boot Loader section (see Fig-
ure 25-2). The size of the different sections is configured by the BOOTSZ Fuses as shown in Table 25-6 on page
263 and Figure 25-2. These two sections can have different level of protection since they have different sets of
Lock bits.

25.3.1 Application Section
The Application section is the section of the Flash that is used for storing the application code. The protection level
for the application section can be selected by the Application Boot Lock bits (Boot Lock bits 0), see Table 25-2 on
page 256. The Application section can never store any Boot Loader code since the SPM instruction is disabled
when executed from the Application section.

25.3.2 BLS — Boot Loader Section
While the Application section is used for storing the application code, the The Boot Loader software must be
located in the BLS since the SPM instruction can initiate a programming when executing from the BLS only. The
SPM instruction can access the entire Flash, including the BLS itself. The protection level for the Boot Loader sec-
tion can be selected by the Boot Loader Lock bits (Boot Lock bits 1), see Table 25-3 on page 256.

25.4 Read-While-Write and no Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader software update is
dependent on which address that is being programmed. In addition to the two sections that are configurable by the
BOOTSZ Fuses as described above, the Flash is also divided into two fixed sections, the Read-While-Write
(RWW) section and the No Read-While-Write (NRWW) section. The limit between the RWW- and NRWW sections
is given in Table 25-7 on page 263 and Figure 25-2 on page 255. The main difference between the two sections is:

AT 32A [DATASHEET 235
Atmel megas2A [ ]

8155D-AVR-10/2013



» When erasing or writing a page located inside the RWW section, the NRWW section can be read during the
operation.

» When erasing or writing a page located inside the NRWW section, the CPU is halted during the entire
operation.

Note that the user software can never read any code that is located inside the RWW section during a Boot Loader
software operation. The syntax “Read-While-Write section” refers to which section that is being programmed
(erased or written), not which section that actually is being read during a Boot Loader software update.

2541 RWW — Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible to read code from
the Flash, but only code that is located in the NRWW section. During an on-going programming, the software must
ensure that the RWW section never is being read. If the user software is trying to read code that is located inside
the RWW section (that is, by a call/jmp/lpm or an interrupt) during programming, the software might end up in an
unknown state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader section. The
Boot Loader section is always located in the NRWW section. The RWW Section Busy bit (RWWSB) in the Store
Program Memory Control Register (SPMCR) will be read as logical one as long as the RWW section is blocked for
reading. After a programming is completed, the RWWSB must be cleared by software before reading code located
in the RWW section. See “SPMCR - Store Program Memory Control Register” on page 264. for details on how to
clear RWWSB.

25.4.2 NRWW — No Read-While-Write Section
The code located in the NRWW section can be read when the Boot Loader software is updating a page in the
RWW section. When the Boot Loader code updates the NRWW section, the CPU is halted during the entire page
erase or page write operation.

Table 25-1. Read-While-Write Features

Which Section does the Z- Which Section can be Read-While-
pointer Address during the Read during Is the CPU Write
Programming? Programming? Halted? Supported?
RWW section NRWW section No Yes
NRWW section None Yes No

AT 32A [DATASHEET 236
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 25-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

- - - - - — — Z-pointer
Addresses NRWW
Z-pointer Section
Addresses RWW No Read-While-Write
Section (NRWW) Section
CPU is Halted
f during the Operation
Code Located in
NRWW Section
Can be Read during
the Operation
ATmega32A [DATASHEET)] 237
AtmeL 8155D-AVR-10/2013



25.5

Figure 25-2. Memory Sections®

Note:

Read-While-Write Section No Read-While-Write Section Read-While-Write Section

No Read-While-Write Section

Program Memory
BOOTSZ ="'11'

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Program Memory
BOOTSZ ='01'

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Boot Loader Lock Bits
If no Boot Loader capability is needed, the entire Flash is available for application code. The Boot Loader has two
separate sets of Boot Lock bits which can be set independently. This gives the user a unique flexibility to select dif-
ferent levels of protection.

The user can select:

$0000

End RWW
Start NRWW

End Application
Start Boot Loader
Flashend

$0000

End RWW
Start NRWW

End Application
Start Boot Loader

Flashend

Read-While-Write Section

No Read-While-Write Section

Read-While-Write Section

No Read-While-Write Section

Program Memory
BOOTSZ ='10'

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Program Memory
BOOTSZ ='00'

Application flash Section

Boot Loader Flash Section

1. The parameters in the figure above are given in Table 25-6 on page 263.

* To protect the entire Flash from a software update by the MCU

$0000

End RWW
Start NRWW

End Application
Start Boot Loader

Flashend

$0000

End RWW, End Application
Start NRWW, Start Boot Loader

Flashend

* To protect only the Boot Loader Flash section from a software update by the MCU

* To protect only the Application Flash section from a software update by the MCU

« Allow software update in the entire Flash

See Table 25-2 and Table 25-3 for further details. The Boot Lock bits can be set in software and in Serial or Paral-
lel Programming mode, but they can be cleared by a Chip Erase command only. The general Write Lock (Lock Bit
mode 2) does not control the programming of the Flash memory by SPM instruction. Similarly, the general
Read/Write Lock (Lock Bit mode 3) does not control reading nor writing by LPM/SPM, if it is attempted.

Atmel

ATmega32A [DATASHEET]

238

8155D-AVR-10/2013



Table 25-2.  Boot Lock Bit0 Protection Modes (Application Section)®
BLBO Mode BLBO02 BLBO1 | Protection

No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read

3 0 0 from the Application section. If interrupt vectors are placed in the
Boot Loader section, interrupts are disabled while executing
from the Application section.

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If interrupt vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 25-3.  Boot Lock Bitl Protection Modes (Boot Loader Section)®
BLB1 mode BLB12 BLB11 | Protection

No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read

3 0 0 from the Boot Loader section. If interrupt vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If interrupt vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Note: 1. “1” means unprogrammed, “0” means programmed

25.6 Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may be initiated by a trig-
ger such as a command received via USART, or SPI interface. Alternatively, the Boot Reset Fuse can be
programmed so that the Reset Vector is pointing to the Boot Flash start address after a reset. In this case, the Boot
Loader is started after a reset. After the application code is loaded, the program can start executing the application
code. Note that the fuses cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be changed through
the serial or parallel programming interface.

AT 32A [DATASHEET 239
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 25-4.
BOOTRST

Boot Reset Fuse®

Reset Address

1 Reset Vector = Application reset (address $0000)

0 Reset Vector = Boot Loader reset (see Table 25-6 on page 263)
Note: 1.

“1” means unprogrammed, “0” means programmed

25.7 Addressing the Flash during Self-Programming

The Z-pointer is used to address the SPM commands.

Bit

15

14

13

12

11

10

9

8

ZH (R31)

715

Z14

Z13

Z12

Z11

Z10

Z9

Z8

ZL (R30)

z7

Z6

z5

Z4

Z3

z2

Z1

Z0

7

6

5

4

3

2

1

0

Since the Flash is organized in pages (see Table 26-5 on page 269), the Program Counter can be treated as hav-
ing two different sections. One section, consisting of the least significant bits, is addressing the words within a
page, while the most significant bits are addressing the pages. This is shown in Figure 25-3. Note that the Page
Erase and Page Write operations are addressed independently. Therefore it is of major importance that the Boot
Loader software addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits. The content of the Z-
pointer is ignored and will have no effect on the operation. The LPM instruction does also use the Z pointer to store
the address. Since this instruction addresses the Flash byte by byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 25-3. Addressing the Flash during SPM®

BIT 15 ZPCMSB ZPAGEMSB 1 0
Z - REGISTER I 0
PCMSB PAGEMSB
PROGRAM
COUNTER PCPAGE PCWORD

PAGE ADDRESS
WITHIN THE FLASH

WORD ADDRESS
WITHIN A PAGE

PROGRAM MEMORY PAGE

PCWORD[PAGEMSB:Q]:

PAGE INSTRUCTION WORD 00

01

02

-

PAGEEND

Notes: 1. The different variables used in Figure 25-3 are listed in Table 25-8 on page 263.

2. PCPAGE and PCWORD are listed in “Page Size” on page 269.

ATmega32A [DATASHEET]

8155D-AVR-10/2013

240

Atmel



25.8 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with the data stored in the
temporary page buffer, the page must be erased. The temporary page buffer is filled one word at a time using SPM
and the buffer can be filled either before the page erase command or between a page erase and a page write
operation:

Alternative 1, fill the buffer before a Page Erase

* Fill temporary page buffer
» Perform a Page Erase
» Perform a Page Write
Alternative 2, fill the buffer after Page Erase

» Perform a Page Erase
* Fill temporary page buffer
» Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example in the temporary
page buffer) before the erase, and then be rewritten. When using alternative 1, the Boot Loader provides an effec-
tive Read-Modify-Write feature which allows the user software to first read the page, do the necessary changes,
and then write back the modified data. If alternative 2 is used, it is not possible to read the old data while loading
since the page is already erased. The temporary page buffer can be accessed in a random sequence. It is essen-
tial that the page address used in both the page erase and page write operation is addressing the same page. See
“Simple Assembly Code Example for a Boot Loader” on page 261 for an assembly code example.

25.8.1 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCR and execute SPM within
four clock cycles after writing SPMCR. The data in R1 and RO is ignored. The page address must be written to
PCPAGE in the Z-register. Other bits in the Z-pointer must be written zero during this operation.

» Page Erase to the RWW section: The NRWW section can be read during the page erase.
» Page Erase to the NRWW section: The CPU is halted during the operation.

Note:  If an iterrupt occurs in the timed sequence, the four cycle access cannot be guaranteed. In order to ensure atomic
operation disable interrupts before writing to SPMCSR.

25.8.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to SPMCR
and execute SPM within four clock cycles after writing SPMCR. The content of PCWORD in the Z-register is used
to address the data in the temporary buffer. The temporary buffer will auto-erase after a page write operation or by
writing the RWWSRE bit in SPMCR. It is also erased after a system reset. Note that it is not possible to write more
than one time to each address without erasing the temporary buffer.

Note:  If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be lost.

25.8.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCR and execute SPM within
four clock cycles after writing SPMCR. The data in R1 and RO is ignored. The page address must be written to
PCPAGE. Other bits in the Z-pointer must be written to zero during this operation.

» Page Write to the RWW section: The NRWW section can be read during the Page Write.
» Page Write to the NRWW section: The CPU is halted during the operation.

AT 32A [DATASHEET 241
Atmel megas2A [ ]

8155D-AVR-10/2013



25.84 Using the SPM Interrupt
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SPMEN bit in
SPMCR is cleared. This means that the interrupt can be used instead of polling the SPMCR Register in software.
When using the SPM interrupt, the Interrupt Vectors should be moved to the BLS section to avoid that an interrupt
is accessing the RWW section when it is blocked for reading. How to move the interrupts is described in “Inter-
rupts” on page 45.

25.8.5 Consideration while Updating BLS
Special care must be taken if the user allows the Boot Loader section to be updated by leaving Boot Lock bit11
unprogrammed. An accidental write to the Boot Loader itself can corrupt the entire Boot Loader, and further soft-
ware updates might be impossible. If it is not necessary to change the Boot Loader software itself, it is
recommended to program the Boot Lock bitll to protect the Boot Loader software from any internal software
changes.

25.8.6 Prevent Reading the RWW Section during Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always blocked for reading. The
user software itself must prevent that this section is addressed during the Self-Programming operation. The
RWWSB in the SPMCR will be set as long as the RWW section is busy. During self-programming the Interrupt
Vector table should be moved to the BLS as described in “Interrupts” on page 45, or the interrupts must be dis-
abled. Before addressing the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on page 261 for an
example.

25.8.7 Setting the Boot Loader Lock Bits by SPM
To set the Boot Loader Lock bits, write the desired data to RO, write “X0001001” to SPMCR and execute SPM
within four clock cycles after writing SPMCR. The only accessible Lock bits are the Boot Lock bits that may prevent
the Application and Boot Loader section from any software update by the MCU.

Bit 7 6 5 4 3 2 1 0
RO | 1 | 1 | BLB12 | BLB11 | BLB02 | BLBO1 | 1 | 1 |

See Table 25-2 and Table 25-3 for how the different settings of the Boot Loader bits affect the Flash access.

If bits 5:2 in RO are cleared (zero), the corresponding Boot Lock bit will be programmed if an SPM instruction is
executed within four cycles after BLBSET and SPMEN are set in SPMCR. The Z-pointer is don’t care during this
operation, but for future compatibility it is recommended to load the Z-pointer with $0001 (same as used for reading
the Lock bits). For future compatibility It is also recommended to set bits 7, 6, 1, and 0 in RO to “1” when writing the
Lock bits. When programming the Lock bits the entire Flash can be read during the operation.

25.8.8 EEPROM Write Prevents Writing to SPMCR
Note that an EEPROM write operation will block all software programming to Flash. Reading the Fuses and Lock
bits from software will also be prevented during the EEPROM write operation. It is recommended that the user
checks the status bit (EEWE) in the EECR Register and verifies that the bit is cleared before writing to the SPMCR
Register.

25.8.9 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the Z-pointer with
$0001 and set the BLBSET and SPMEN bits in SPMCR. When an LPM instruction is executed within three CPU
cycles after the BLBSET and SPMEN bits are set in SPMCR, the value of the Lock bits will be loaded in the desti-
nation register. The BLBSET and SPMEN bits will auto-clear upon completion of reading the Lock bits or if no LPM

AT 32A [DATASHEET 242
Atmel megas2A [ ]

8155D-AVR-10/2013



instruction is executed within three CPU cycles or no SPM instruction is executed within four CPU cycles. When
BLBSET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

Bit 7 6 5 4 3 2 1 0
Rd | - | - | BLB12 | BLB11 | BLBO2 | BLBOL | B2 | LBL |

The algorithm for reading the Fuse Low bits is similar to the one described above for reading the Lock bits. To read
the Fuse Low bits, load the Z-pointer with $0000 and set the BLBSET and SPMEN bits in SPMCR. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of
the Fuse Low bits (FLB) will be loaded in the destination register as shown below. Refer to Table 26-4 on page 268
for a detailed description and mapping of the Fuse Low bits.

Bit 7 6 5 4 3 2 1 0
Rd | rB7 | FLB6 | FLB5 | FLB4 | FLB3 | FLB2 | FLB1 | FLeo |

Similarly, when reading the Fuse High bits, load $0003 in the Z-pointer. When an LPM instruction is executed
within three cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the Fuse High bits (FHB)
will be loaded in the destination register as shown below. Refer to Table 26-3 on page 267 for detailed description
and mapping of the Fuse High bits.

Bit 7 6 5 4 3 2 1 0
Rd | FHB7 | FHB6 | FHB5 | FHB4 | FHB3 | FHB2 | FHB1 | FHBO |

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are unprogrammed, will be
read as one.

25.8.10 Preventing Flash Corruption
During periods of low V¢ the Flash program can be corrupted because the supply voltage is too low for the CPU
and the Flash to operate properly. These issues are the same as for board level systems using the Flash, and the
same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a regular write
sequence to the Flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute
instructions incorrectly, if the supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. Ifthere is no need for a Boot Loader update in the system, program the Boot Loader Lock bits to prevent
any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done
by enabling the internal Brown-out Detector (BOD) if the operating voltage matches the detection level. If
not, an external low V. Reset Protection circuit can be used. If a reset occurs while a write operation is in
progress, the write operation will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down Sleep mode during periods of low V. This will prevent the CPU from
attempting to decode and execute instructions, effectively protecting the SPMCR Register and thus the
Flash from unintentional writes.

25.8.11 Programming Time for Flash when using SPM
The Calibrated RC Oscillator is used to time Flash accesses. Table 25-5 shows the typical programming time for
Flash accesses from the CPU.

Table 25-5.  SPM Programming Time.

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write,

and write Lock bits by SPM) 3.7ms 4.5ms

AT 32A [DATASHEET 243
Atmel megas2A [ ]

8155D-AVR-10/2013



25.8.12 Simple Assembly Code Example for a Boot Loader

Atmel

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z pointer
;-error handling is not included
;-the routine must be placed inside the boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during self-programming (page erase and page write).
;-registers used: r0, rl, templ (rl6), temp2 (rl7), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ; PAGESIZEB is page size in BYTES, not

; words
.org SMALLBOOTSTART

Write page:

; page erase
1di spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do spm

; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) | (l<<SPMEN)

call Do_spm

; transfer data from RAM to Flash page buffer

1di looplo, low(PAGESIZEB) ;init loop variable
1di loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
Wrloop:

1d r0, Y+

1d rl, Y+

1di spmcrval, (1<<SPMEN)

call Do spm

adiw ZH:ZL, 2

sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute page write

subi ZL, low(PAGESIZEBR) ;restore pointer
sbci ZH, high (PAGESIZEB) ;not required for PAGESIZEB<=256
1di spmecrval, (1<<PGWRT) | (1<<SPMEN)

call Do_spm

; re-enable the RWW section

1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do spm

; read back and check, optional

1di looplo, low (PAGESIZEB) ;init loop variable
1di loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEBR) ;restore pointer

sbci YH, high(PAGESIZEB)

Rdloop:

lpm 0, Z+
1d rl, Y+
cpse r0, rl
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

ATmega32A [DATASHEET] 244

8155D-AVR-10/2013



; return to RWW section

; verify that RWW section is safe to read

Return:
in templ, SPMCR
sbrs templ, RWWSB
ret
; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) |

call Do_spm
rjmp Return

Do_spm:

If RWWSB is set,
ready yet

(1<<SPMEN)

; check for previous SPM complete

Wait spm:
in templ, SPMCR
sbrc templ, SPMEN
rjmp Wait_spm
; input:

; disable interrupts if enabled,

in temp2, SREG

cli

spmcrval determines SPM action
store status

; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait ee
; SPM timed sequence
out SPMCR, spmcrval
spm

the RWW section is not

; restore SREG (to enable interrupts if originally enabled)

out
ret

SREG, temp2

25.8.13 Boot Loader Parameters

In Table 25-6 through Table 25-8, the parameters used in the description of the self programming are given.

Table 25-6.  Boot Size Configuration®
Boot Boot Reset
Application Loader End Address (start
Boot Flash Flash Application Boot Loader
BOOTSZ1 BOOTSZ0 Size Pages Section Section section Section)
256 $0000 - $3F00 -
L ! words 4 $3EFF $3FFF $3EFF $3F00
512 $0000 - $3E00 -
L 0 words 8 $3DFF $3FFF $3DFF $3E00
1024 $0000 - $3C00 -
0 ! words 16 $3BFF $3FFF $3BFF $3C00
2048 $0000 - $3800 -
0 0 words 32 $37FF $3FFF $37FF $3800
Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 25-2
Table 25-7.  Read-While-Write Limit™®
Section Pages Address
Read-While-Write section (RWW) 224 $0000 - $37FF
No Read-While-Write section (NRWW) 32 $3800 - $3FFF

Atmel

ATmega32A [DATASHEET] 245

8155D-AVR-10/2013



25.9

259.1

Note: 1. For details about these two section, see “NRWW — No Read-While-Write Section” on page 253 and “RWW — Read-
While-Write Section” on page 253

Table 25-8.  Explanation of Different Variables used in Figure 25-3 and the Mapping to the Z-pointer

Corresponding
Variable Z-value® Description

13 Most significant bit in the Program Counter. (The

PCMSB Program Counter is 14 bits PC[13:0])

5 Most significant bit which is used to address the
PAGEMSB words within one page (64 words in a page requires
6 bits PC [5:0]).

Z14 Bit in Z-register that is mapped to PCMSB. Because
Z0 is not used, the ZPCMSB equals PCMSB + 1.

Z6 Bit in Z-register that is mapped to PAGEMSB.
Z/PAGEMSB Because Z0 is not used, the ZPAGEMSB equals
PAGEMSB + 1.

ZPCMSB

PC[13:6] 214:77 Program Counter page address: Page select, for

PCPAGE .
page erase and page write

PC[5:0] 76:71 Program Counter word address: Word select, for
PCWORD filling temporary buffer (must be zero during page
write operation)

Note: 1. Z15: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash during Self-Programming” on page 257 for details about the use of Z-pointer during
Self-Programming.

Register Description

SPMCR - Store Program Memory Control Register
The Store Program Memory Control Register contains the control bits needed to control the Boot Loader
operations.

Bit 7 6 5 4 3 2 1 0

I SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN I SPMCR
Read/Write R/IW R R R/IW R/W R/W R/IW RIW
Initial value 0 0 0 0 0 0 0 0

» Bit 7 - SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM ready interrupt will
be enabled. The SPM ready Interrupt will be executed as long as the SPMEN bit in the SPMCR Register is cleared.

* Bit 6 - RWWSB: Read-While-Write Section Busy

When a self-programming (Page Erase or Page Write) operation to the RWW section is initiated, the RWWSB will
be set (one) by hardware. When the RWWSB bit is set, the RWW section cannot be accessed. The RWWSB bit
will be cleared if the RWWSRE bit is written to one after a Self-Programming operation is completed. Alternatively
the RWWSB bit will automatically be cleared if a page load operation is initiated.

* Bit 5 - Reserved Bit
This bit is a reserved bit in the ATmega32A and always read as zero.

* Bit 4 - RWWSRE: Read-While-Write Section Read Enable

AT 32A [DATASHEET 246
Atmel megas2A [ ]

8155D-AVR-10/2013



When programming (Page Erase or Page Write) to the RWW section, the RWW section is blocked for reading (the
RWWSB will be set by hardware). To re-enable the RWW section, the user software must wait until the program-
ming is completed (SPMEN will be cleared). Then, if the RWWSRE bit is written to one at the same time as
SPMEN, the next SPM instruction within four clock cycles re-enables the RWW section. The RWW section cannot
be re-enabled while the Flash is busy with a page erase or a page write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will be lost.

* Bit 3-BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles sets Boot
Lock bits, according to the data in RO. The data in R1 and the address in the Z-pointer are ignored. The BLBSET
bit will automatically be cleared upon completion of the Lock bit set, or if no SPM instruction is executed within four
clock cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCR Register, will read either
the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the destination register. See “Reading the
Fuse and Lock Bits from Software” on page 260 for details.

* Bit 2 - PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes
Page Write, with the data stored in the temporary buffer. The page address is taken from the high part of the Z-
pointer. The data in R1 and RO are ignored. The PGWRT bit will auto-clear upon completion of a page write, or if
no SPM instruction is executed within four clock cycles. The CPU is halted during the entire page write operation if
the NRWW section is addressed.

e Bit 1 - PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles executes
Page Erase. The page address is taken from the high part of the Z-pointer. The data in R1 and RO are ignored. The
PGERS bit will auto-clear upon completion of a page erase, or if no SPM instruction is executed within four clock
cycles. The CPU is halted during the entire page write operation if the NRWW section is addressed.

e Bit 0 — SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with either RWWSRE,
BLBSET, PGWRT' or PGERS, the following SPM instruction will have a special meaning, see description above. If
only SPMEN is written, the following SPM instruction will store the value in R1:R0 in the temporary page buffer
addressed by the Z-pointer. The LSB of the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of
an SPM instruction, or if no SPM instruction is executed within four clock cycles. During page erase and page
write, the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower five bits will have no
effect.

AT 32A [DATASHEET 247
Atmel megas2A [ ]

8155D-AVR-10/2013



26. Memory Programmi

ng

26.1 Program And Data Memory Lock Bits

The ATmega32A provides six Lock bits which can be left unprogrammed (“1”) or can be programmed (“0") to
obtain the additional features listed in Table 26-2. The Lock bits can only be erased to “1” with the Chip Erase

command.

Table 26-1.  Lock Bit Byte®

Lock Bit Byte Bit No. Description Default Value

7 - 1 (unprogrammed)

6 - 1 (unprogrammed)
BLB12 5 Boot Lock bit 1 (unprogrammed)
BLB11 4 Boot Lock bit 1 (unprogrammed)
BLB02 3 Boot Lock bit 1 (unprogrammed)
BLBO1 2 Boot Lock bit 1 (unprogrammed)
LB2 1 Lock bit 1 (unprogrammed)
LB1 0 Lock bit 1 (unprogrammed)

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-2.  Lock Bit Protection Modes

Memory Lock Bits® Protection Type
LB Mode LB2 LB1

1 1 1 No memory lock features enabled.
Further programming of the Flash and EEPROM is disabled in

2 1 0 Parallel and SPI/JTAG Serial Programming mode. The Fuse bits
are locked in both Serial and Parallel Programming mode.®
Further programming and verification of the Flash and EEPROM

3 0 0 is disabled in Parallel and SPI/JTAG Serial Programming mode.
The Fuse bits are locked in both Serial and Parallel
Programming mode.®

BLBO Mode BLB02 BLBO1

1 1 1 No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.
SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read

3 0 0 from the Application section. If interrupt vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.
LPM executing from the Boot Loader section is not allowed to

4 0 1 read from the Application section. If interrupt vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

BLB1 Mode BLB12 BLB11

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

248



Table 26-2.  Lock Bit Protection Modes (Continued)

Memory Lock Bits® Protection Type
1 1 1 No restrictions for SPM or LPM accessing the Boot Loader
section.
2 1 0 SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read

3 0 0 from the Boot Loader section. If interrupt vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If interrupt vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Notes: 1. Program the fuse bits before programming the Lock bits.
2. "1” means unprogrammed, “0” means programmed

26.2 Fuse Bits

The ATmega32A has two fuse bytes. Table 26-3 and Table 26-4 describe briefly the functionality of all the fuses
and how they are mapped into the fuse bytes. Note that the fuses are read as logical zero, “0", if they are
programmed.

Table 26-3.  Fuse High Byte

Fuse High
Byte Bit No. | Description Default Value
OCDEN® 7 Enable OCD 1 (unprogrammed, OCD disabled)
JTAGEN® 6 Enable JTAG 0 (programmed, JTAG enabled)
Enable SPI Serial Program and
1)
SPIEN 5 Data Downloading 0 (programmed, SPI prog. enabled)
CKOPT® 4 Oscillator options 1 (unprogrammed)
EEPROM memory is preserved 1 (unprogrammed, EEPROM not
EESAVE 3 .
through the Chip Erase preserved)
Select Boot Size (see Table 25-6
BOOTSZL 2 for details) 0 (programmed)®
Select Boot Size (see Table 25-6
BOOTSZ0 L for details) 0 (programmed)®
BOOTRST 0 Select reset vector 1 (unprogrammed)

Notes: 1. The SPIEN Fuse is not accessible in SPI Serial Programming mode.
2. The CKOPT Fuse functionality depends on the setting of the CKSEL bits. See See “Clock Sources” on page 26. for
details.
3. The default value of BOOTSZ1:0 results in maximum Boot Size. See Table 25-6 on page 263.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits and the JTAGEN

Fuse. A programmed OCDEN Fuse enables some parts of the clock system to be running in all sleep modes. This
may increase the power consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This to avoid static cur-
rent at the TDO pin in the JTAG interface.

AT 32A [DATASHEET 249
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 26-4. Fuse Low Byte
Fuse Low
Byte Bit No. | Description Default Value
BODLEVEL 7 Brown-out Detector trigger level 1 (unprogrammed)
BODEN 6 Brown-out Detector enable 1 (unprogrammed, BOD disabled)
SUT1 5 Select start-up time 1 (unprogrammed)®
SUTO 4 Select start-up time 0 (programmed)®
CKSEL3 3 Select Clock source 0 (programmed)®
CKSEL2 2 Select Clock source 0 (programmed)®
CKSEL1 1 Select Clock source 0 (programmed)®
CKSELO 0 Select Clock source 1 (unprogrammed)®

Notes: 1. The default value of SUT1:0 results in maximum start-up time. SeeTable 8-9 on page 30 for details.
2. The default setting of CKSEL3:0 results in internal RC Oscillator @ 1MHz. See Table 8-1 on page 26 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if Lock bitl (LB1) is
programmed. Program the Fuse bits before programming the Lock bits.

26.2.1 Latching of Fuses

The Fuse values are latched when the device enters programming mode and changes of the Fuse values will have
no effect until the part leaves Programming mode. This does not apply to the EESAVE Fuse which will take effect
once it is programmed. The fuses are also latched on Power-up in Normal mode.

26.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This code can be read in
both serial and parallel mode, also when the device is locked. The three bytes reside in a separate address space.

For the ATmega32A the signature bytes are:

1. $000: $1E (indicates manufactured by Atmel)
2. $001: $95 (indicates 32Kbytes Flash memory)
3. $002: $02 (indicates ATmega32A device when $001 is $95)

26.4 Calibration Byte
The ATmega32A stores four different calibration values for the internal RC Oscillator. These bytes resides in the
signature row High Byte of the addresses 0x0000, 0x0001, 0x0002, and 0x0003 for 1, 2, 4 , and 8Mhz respectively.
During Reset, the 1MHz value is automatically loaded into the OSCCAL Register. If other frequencies are used,
the calibration value has to be loaded manually, see “OSCCAL — Oscillator Calibration Register” on page 31" for
details.

26.5 Page Size

Table 26-5.  No. of Words in a Page and no. of Pages in the Flash
Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB
16K words (32Kbytes) 64 words PC[5:0] 256 PC[13:6] 13

ATmega32A [DATASHEET] 250

8155D-AVR-10/2013

Atmel



Table 26-6. No. of Words in a Page and no. of Pages in the EEPROM
EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB
1024bytes 4bytes EEA[1:0] 256 EEA[9:2] 9

26.6 Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify Flash Program memory, EEPROM Data memory, Mem-
ory Lock bits, and Fuse bits in the ATmega32A. Pulses are assumed to be at least 250 ns unless otherwise noted.

26.6.1 Signal Names
In this section, some pins of the ATmega32A are referenced by signal names describing their functionality during
parallel programming, see Figure 26-1 and Table 26-7. Pins not described in the following table are referenced by
pin names.

The XA1/XAO0 pins determine the action executed when the XTAL1 pin is given a positive pulse. The bit coding is
shown in Table 26-9.

When pulsing WR or OE, the command loaded determines the action executed. The different Commands are
shown in Table 26-10.

Figure 26-1. Parallel Programming

+5V

RDY/BSY «<— PD1
vce
OE ——» PD2 +5V
WR ——»| PD3 AVCC
BS1 ——> PD4
PB7 - PBO [«——> DATA
XA0O ——>»{ PD5
XA1 ——»| PD6
PAGEL —»| PD7
+12V — »| RESET
BS2 ——>»| PAO

—»{ XTAL1
GND

Table 26-7.  Pin Name Mapping

Signal Name in Pin
Programming Mode Name 1/0 Function
RDY/BSY PD1 o 0: Device is busy programming, 1: Device is ready for
new command
OE PD2 I Output Enable (Active low)
WR PD3 | Write Pulse (Active low)
BS1 PD4 | Byte Select 1 (“0” selects low byte, “1” selects high
byte)
XAO0 PD5 | XTAL Action Bit 0
XAl PD6 | XTAL Action Bit 1

AT 32A [DATASHEET 251
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 26-7.  Pin Name Mapping (Continued)

Signal Name in Pin
Programming Mode Name 1/0 Function
PAGEL PD7 I Program Memory and EEPROM data Page Load
BS2 PAO | Byte Select 2 (“0” selects low byte, “1” selects 2'nd high
byte)
DATA PB7-0 I/O Bidirectional Data bus (Output when OE is low)

Table 26-8.  Pin Values used to Enter Programming Mode

Pin Symbol Value
PAGEL Prog_enable[3] 0
XAl Prog_enable[2] 0
XAO0 Prog_enable[1] 0
BS1 Prog_enable[0] 0

Table 26-9. XAl and XAO Coding
XAl | XAO | Action when XTAL1 is Pulsed
Load Flash or EEPROM Address (High or low address byte determined by BS1)

Load Data (High or Low data byte for Flash determined by BS1)

Load Command

|| O |O

0
1
0
1

No Action, Idle

Table 26-10. Command Byte Bit Coding

Command Byte Command Executed
1000 0000 Chip Erase
0100 0000 Write Fuse Bits
0010 0000 Write Lock Bits
0001 0000 Write Flash
0001 0001 Write EEPROM
0000 1000 Read Signature Bytes and Calibration byte
0000 0100 Read Fuse and Lock bits
0000 0010 Read Flash
0000 0011 Read EEPROM

26.7 Parallel Programming

26.7.1 Enter Programming Mode
The following algorithm puts the device in Parallel Programming mode:

1. Apply 4.5V - 5.5V between V- and GND, and wait at least 100 ps.
2. Set RESET to “0” and toggle XTALL1 at least 6 times

AT 32A [DATASHEET 252
Atmel megas2A [ ]

8155D-AVR-10/2013



3. Set the Prog_enable pins listed in Table 26-8 on page 270 to “0000” and wait at least 100 ns.

4. Apply 11.5V - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after +12V has been
applied to RESET, will cause the device to fail entering Programming mode.

Note, if External Crystal or External RC configuration is selected, it may not be possible to apply qualified XTAL1
pulses. In such cases, the following algorithm should be followed:

1. Set Prog_enable pins listed in Table 26-8 on page 270 to “0000".

2. Apply 4.5V - 5.5V between V- and GND simultanously as 11.5V - 12.5V is applied to RESET.

3. Wait 100 ps.

4. Re-program the fuses to ensure that External Clock is selected as clock source (CKSEL3:0 = 0b0000) If
Lock bits are programmed, a Chip Erase command must be executed before changing the fuses.

5. Exit Programming mode by power the device down or by bringing RESET pin to ObO.

6. Entering Programming mode with the original algorithm, as described above.

26.7.2 Considerations for Efficient Programming
The loaded command and address are retained in the device during programming. For efficient programming, the
following should be considered.

» The command needs only be loaded once when writing or reading multiple memory locations.
« Skip writing the data value $FF, that is the contents of the entire EEPROM (unless the EESAVE fuse is
programmed) and Flash after a Chip Erase.

» Address high byte needs only be loaded before programming or reading a new 256 word window in Flash or
256 byte EEPROM. This consideration also applies to Signature bytes reading.

26.7.3 Chip Erase
The Chip Erase will erase the Flash and EEPROM® memories plus Lock bits. The Lock bits are not reset until the
program memory has been completely erased. The Fuse bits are not changed. A Chip Erase must be performed
before the Flash and/or the EEPROM are reprogrammed.
Note: 1. The EEPRPOM memory is preserved during chip erase if the EESAVE Fuse is programmed.
Load Command “Chip Erase”

1. Set XA1l, XAO0 to “10”". This enables command loading.

Set BS1 to “0".

Set DATA to “1000 0000". This is the command for Chip Erase.

Give XTAL1 a positive pulse. This loads the command.

Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
Wait until RDY/BSY goes high before loading a new command.

ok wN

26.7.4 Programming the Flash
The Flash is organized in pages, see Table 26-5 on page 269. When programming the Flash, the program data is
latched into a page buffer. This allows one page of program data to be programmed simultaneously. The following
procedure describes how to program the entire Flash memory:

A. Load Command “Write Flash”

Set XA1, XAQ to “10". This enables command loading.

Set BS1 to “0".

Set DATA to “0001 0000". This is the command for Write Flash.
. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

A owbdpR

AT 32A [DATASHEET 253
Atmel megas2A [ ]

8155D-AVR-10/2013



Set XA1, XA0 to “00". This enables address loading.

Set BS1 to “0”. This selects low address.

Set DATA = Address low byte ($00 - $FF).

. Give XTAL1 a positive pulse. This loads the address low byte.
C. Load Data Low Byte

1. Set XAl, XAO to “01". This enables data loading.

2. Set DATA = Data low byte ($00 - $FF).

3. Give XTAL1 a positive pulse. This loads the data byte.
D. Load Data High Byte

1. SetBS1to “1". This selects high data byte.

2. Set XA1, XAO to “01". This enables data loading.

3. Set DATA = Data high byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the data byte.
E. Latch Data

A wbdpR

1. SetBS1to “1". This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 26-3 for signhal waveforms)
F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.
While the lower bits in the address are mapped to words within the page, the higher bits address the pages within
the FLASH. This is illustrated in Figure 26-2 on page 273. Note that if less than 8 bits are required to address
words in the page (pagesize < 256), the most significant bit(s) in the address low byte are used to address the
page when performing a page write.

G. Load Address High byte

1. Set XAl, XAO to “00". This enables address loading.
2. SetBS1to “1". This selects high address.
3. Set DATA = Address high byte ($00 - $FF).
4. Give XTAL1 a positive pulse. This loads the address high byte.
H. Program Page
1. SetBS1="0"
2. Give WR a negative pulse. This starts programming of the entire page of data. RDY/@goes low.
3. Wait until RDY/BSY goes high. (See Figure 26-3 for signal waveforms)
I. Repeat B through H until the entire Flash is programmed or until all data has been programmed.

J. End Page Programming

1. 1. Set XAl, XA0 to “10". This enables command loading.
2. Set DATA to “0000 0000". This is the command for No Operation.
3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are reset.

AT 32A [DATASHEET 254
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 26-2. Addressing the Flash which is Organized in Pages

PCMSB PAGEMSB
PROGRAM
COUNTER PCPAGE | Pcworp |
PAGE ADDRESS WORD ADDRESS

WITHIN THE FLASH WITHIN A PAGE

PROGRAM MEMORY

I PAGE PCWORD[PAGEMSB:0]:
PAGE R INSTRUCTION WORD 00
! o1
\
! 02
\

|
I

I

1

I

I

1

\ I
1

1

|

1

I

|

\ P.AGEEND
Note: 1. PCPAGE and PCWORD are listed in Table 26-5 on page 269.
Figure 26-3. Programming the Flash Waveforms®
.
/—/%
A B (o3 D E B C D E G H
oata X510 Ypoor coni(omm com Yommran Y o Yoo con)(omcowY(ommmar o Yaoommar} %
w0\
wo \/ \
st /A Ny A
NTT R A A U A Y A W A W A WA /\
WA \_/
RDY/BSY \—/_
RESET +12V
OE
PAGEL [\ /\

BS2

Note: 1. “XX"is don't care. The letters refer to the programming description above.

26.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 26-6 on page 269. When programming the EEPROM, the program
data is latched into a page buffer. This allows one page of data to be programmed simultaneously. The program-

ming algorithm for the EEPROM data memory is as follows (refer to “Programming the Flash” on page 272 for
details on Command, Address and Data loading):

AT 32A [DATASHEET 255
Atmel megas2A [ ]

8155D-AVR-10/2013



A: Load Command “0001 0001".

G: Load Address High Byte ($00 - $FF)

B: Load Address Low Byte ($00 - $FF)

C: Load Data ($00 - $FF)

E: Latch data (give PAGEL a positive pulse)
K: Repeat 3 through 5 until the entire buffer is filled

a s wbdpE

L: Program EEPROM page

1. SetBS1to*“0".
2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page. (See Figure 26-4 for signal
waveforms)

Figure 26-4. Programming the EEPROM Waveforms

K
K_H
A G B C E B C E L
DATA :X oxt1 Yoo iGH(aoor. Low) para X xx aoomtowf pam X
XA1 _/—\
XA0 /—\_/—\
Bt /N
XTAL1 _/_\_/_\_/_\_/_\—/_\_/_\
WA \/
RDY/BSY \—/—
RESET +12V
OE
PAGEL /_\ /_\

BS2

26.7.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on page 272 for details
on Command and Address loading):

1. A:Load Command “0000 0010".

2. G: Load Address High Byte ($00 - $FF)

3. B: Load Address Low Byte ($00 - $FF)

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.
5. SetBS1to “1". The Flash word high byte can now be read at DATA.

6. SetOE to “1".

26.7.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash” on page 272 for
details on Command and Address loading):

AT 32A [DATASHEET 256
Atmel megas2A [ ]

8155D-AVR-10/2013



A: Load Command “0000 0011".

G: Load Address High Byte ($00 - $FF)

B: Load Address Low Byte ($00 - $FF)

Set OE to “0”, and BS1 to “0". The EEPROM Data byte can now be read at DATA.
Set OE to “1”.

a s wbdpE

26.7.8 Programming the Fuse Low Bits
The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash” on page 272 for

details on Command and Data loading):
1. A:Load Command “0100 0000".
2. C:Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS1to “0” and BS2 to “0".
4. Give WR a negative pulse and wait for RDY/BSY to go high.

26.7.9 Programming the Fuse High Bits
The algorithm for programming the Fuse high bits is as follows (refer to “Programming the Flash” on page 272 for
details on Command and Data loading):

1. A:Load Command “0100 0000".

C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
Set BS1 to “1” and BS2 to “0”. This selects high data byte.

Give WR a negative pulse and wait for RDY/BSY to go high.

Set BS1 to “0”. This selects low data byte.

a s~ wnN

Figure 26-5. Programming the Fuses

Write Fuse Low byte Write Fuse high byte
A c K_H A Cc /_H
DATA :X si0 f oaa X xx X s X oam X xx
xat __/ \ / \
XAO
BST / (-
BS2
e [\ /S
WA \/ \/
RDY/BSY \_/ \_/_

RESET +12V

OE

PAGEL

26.7.10 Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on page 272 for details
on Command and Data loading):

AT 32A [DATASHEET 257
Atmel megas2A [ ]

8155D-AVR-10/2013



1. A:Load Command “0010 0000".

2. C:Load Data Low Byte. Bit n = “0” programs the Lock bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.

26.7.11 Reading the Fuse and Lock Bits
The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash” on page 272 for
details on Command loading):

1. A:Load Command “0000 0100".

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be read at DATA 0"
means programmed).

3. SetOE to “0", BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be read at DATA (“0”
means programmed).

4. SetOE to “0", BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at DATA (“0” means
programmed).

5. Set OF to “1”.

Figure 26-6. Mapping between BS1, BS2 and the Fuse- and Lock Bits during Read

Fuse Low Byte »| 0

DATA

Lock Bits »| 0

,—> 1

BS1

Fuse High Byte|—»| 1

BS2

26.7.12 Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on page 272 for
details on Command and Address loading):

1. A:Load Command “0000 1000".

2. B: Load Address Low Byte ($00 - $02).

3. Set OE to “0”, and BS1 to “0". The selected Signature byte can now be read at DATA.
4. SetOE to“1".

26.7.13 Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on page 272 for
details on Command and Address loading):

1. A:Load Command “0000 1000".

2. B: Load Address Low Byte, $00.

3. SetOE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4. SetOEto*“1".

AT 32A [DATASHEET 258
Atmel megas2A [ ]

8155D-AVR-10/2013



26.7.14 Parallel Programming Characteristics

Figure 26-7. Parallel Programming Timing, Including some General Timing Requirements

txLwe
XTAL1 PATENN }
tovxH txLbx
Data & Contol -
(DATA, XA0/1, BS1, BS2) -
tevpH teex | fBvwL
VamnN } < twiBx
PAGEL _  Atewp N _
twi wH .
v N d
WR toLwi N—
WLRL
- e S—
RDY/BSY ‘L A
twirH

Figure 26-8. Parallel Programming Timing, Loading Sequence with Timing Requirements®

LOAD ADDRESS LOAD DATA LOAD DATA LOAD DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
txLpH

XTAL1

/_* ExixH

o xH m

BS1

PAGEL

DATA X ADDRO (Low Byte) ><

DATA (Low Byte) X

DATA (High Byte) >< ADDR1 (Low Byte)

XAO

XA1

Note:

1. The timing requirements shown in Figure 26-7 (that is, thyxn. txnxe, and ty, px) also apply to loading operation.

Figure 26-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing

Requirements®

LOAD ADDRESS READ DATA READ DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
—
oL

-
XTAL1

tsvbpv
—

BS1

toLpv
-~

tOH Dz
-—

ADDRO (Low Byte) DATA (Low Byte)

DATA —<

DATA (High Byte)

% ADDR1 (Low Byte)

XA0

XA1

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

259



Note: 1. The timing requirements shown in Figure 26-7 (that is, thyxn, txqx, and ty px) also apply to reading operation.

Table 26-11. Parallel Programming Characteristics, V¢ = 5V +10%

Symbol Parameter Min Typ Max Units
Vpp Programming Enable Voltage 115 12.5 \%
Ipp Programming Enable Current 250 pA
tovxH Data and Control Valid before XTAL1 High 67 ns
tyLxH XTAL1 Low to XTAL1 High 200 ns
tyHxL XTAL1 Pulse Width High 150 ns
tyLDx Data and Control Hold after XTAL1 Low 67 ns
tyLwl XTAL1 Low to WR Low 0 ns
tyLpH XTAL1 Low to PAGEL high 0 ns
toLxH PAGEL low to XTAL1 high 150 ns
tavpH BS1 Valid before PAGEL High 67 ns
tpHpL PAGEL Pulse Width High 150 ns
tpLBxX BS1 Hold after PAGEL Low 67 ns
twLex BS2/1 Hold after WR Low 67 ns
toLwiL PAGEL Low to WR Low 67 ns
tavwiL BS1 Valid to WR Low 67 ns
twLwH WR Pulse Width Low 150 ns
twLRL WR Low to RDY/BSY Low 0 1 us
twLRH WR Low to RDY/BSY High® 3.7 45 ms
twirH_cE WR Low to RDY/BSY High for Chip Erase(® 7.5 9 ms
tyLoL XTAL1 Low to OE Low 0 ns
tavpv BS1 Valid to DATA valid 0 250 ns
toLpy OE Low to DATA Valid 250 ns
tonDz OE High to DATA Tri-stated 250 ns

Notes: 1. ty, gy is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits commands.
2. tyirH_ce is valid for the Chip Erase command.

26.8 SPI Serial Downloading
Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET is pulled
to GND. The serial interface consists of pins SCK, MOSI (input), and MISO (output). After RESET is set low, the
Programming Enable instruction needs to be executed first before program/erase operations can be executed.
NOTE, in Table 26-12 on page 280, the pin mapping for SPI programming is listed. Not all parts use the SPI pins
dedicated for the internal SPI interface.

AT 32A [DATASHEET 260
Atmel megas2A [ ]

8155D-AVR-10/2013



26.9 SPI Serial Programming Pin Mapping

Table 26-12. Pin Mapping SPI Serial Programming

Symbol Pins 110 Description
MOSI PB5 | Serial Data in
MISO PB6 (0] Serial Data out
SCK PB7 | Serial Clock
Figure 26-10. SPI Serial Programming and Verify®
+2.7-55V
vCC
+2.7-5.5v@
MOSI ——>» PB5
AVCC
MISO «—— PB6
SCK ——»{ PB7
——»{ XTAL1
——»| RESET
GND

i

Notes: 1. If the device is clocked by the Internal Oscillator, it is no need to connect a clock source to the XTAL1 pin.

2. V¢ -0.3V < AVCC < V¢ +0.3V, however, AVCC should always be within 2.7V - 5.5V
When programming the EEPROM, an auto-erase cycle is built into the self-timed programming operation (in the
serial mode ONLY) and there is no need to first execute the Chip Erase instruction. The Chip Erase operation turns
the content of every memory location in both the Program and EEPROM arrays into $FF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods for the serial clock
(SCK) input are defined as follows:

Low: > 2 CPU clock cycles for f,, < 12MHz, 3 CPU clock cycles for f, [1 12MHz

High: > 2 CPU clock cycles for f,, < 12MHz, 3 CPU clock cycles for f, [1 12MHz

26.9.1 SPI Serial Programming Algorithm
When writing serial data to the ATmega32A, data is clocked on the rising edge of SCK.

When reading data from the ATmega32A, data is clocked on the falling edge of SCK. See Figure 26-11 for timing

details.

To program and verify the ATmega32A in the SPI Serial Programming mode, the following sequence is recom-
mended (See four byte instruction formats in Table 26-14):

1. Power-up sequence:

Apply power between V. and GND while RESET and SCK are set to “0”. In some systems, the program-

Atmel

ATmega32A [DATASHEET] 261

8155D-AVR-10/2013



mer can not guarantee that SCK is held low during power-up. In this case, RESET must be given a
positive pulse of at least two CPU clock cycles duration after SCK has been set to “0”.

2. Wait for at least 20ms and enable SPI Serial Programming by sending the Programming Enable serial
instruction to pin MOSI.

3. The SPI Serial Programming instructions will not work if the communication is out of synchronization.
When in sync. the second byte ($53), will echo back when issuing the third byte of the Programming
Enable instruction. Whether the echo is correct or not, all four bytes of the instruction must be transmitted.
If the $53 did not echo back, give RESET a positive pulse and issue a new Programming Enable
command.

4. The Flash is programmed one page at a time (page size found in “Page Size” on page 269). The memory
page is loaded one byte at a time by supplying the 6 LSB of the address and data together with the Load
Program Memory Page instruction. To ensure correct loading of the page, the data low byte must be
loaded before data high byte is applied for a given address. The Program Memory Page is stored by load-
ing the Write Program Memory Page instruction with the 8 MSB of the address. If polling is not used, the
user must wait at least t,,n g asy before issuing the next page. (See Table 26-13). Accessing the SPI
Serial Programming interface before the Flash write operation completes can result in incorrect
programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and data together with
the appropriate Write instruction. An EEPROM memory location is first automatically erased before new
data is written. If polling is not used, the user must wait at least t,p ggprom PEfOre issuing the next byte.
(See Table 26-13). In a chip erased device, no $FFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the content at the
selected address at serial output MISO.
7. At the end of the programming session, RESET can be set high to commence normal operation.
8. Power-off sequence (if needed):
Set RESET to “1”.
Turn Ve power off.

26.9.2 Data Polling Flash

When a page is being programmed into the Flash, reading an address location within the page being programmed
will give the value $FF. At the time the device is ready for a new page, the programmed value will read correctly.
This is used to determine when the next page can be written. Note that the entire page is written simultaneously
and any address within the page can be used for polling. Data polling of the Flash will not work for the value $FF,
so when programming this value, the user will have to wait for at least t,yp g sy before programming the next
page. As a chip erased device contains $FF in all locations, programming of addresses that are meant to contain
$FF, can be skipped. See Table 26-13 for typ g asy Value

26.9.3 Data Polling EEPROM

When a new byte has been written and is being programmed into EEPROM, reading the address location being
programmed will give the value $FF. At the time the device is ready for a new byte, the programmed value will read
correctly. This is used to determine when the next byte can be written. This will not work for the value $FF, but the
user should have the following in mind: As a chip erased device contains $FF in all locations, programming of
addresses that are meant to contain $FF, can be skipped. This does not apply if the EEPROM is re-programmed
without chip erasing the device. In this case, data polling cannot be used for the value $FF, and the user will have
to wait at least tp geprom before programming the next byte. See Table 26-13 for tyyp geprom Value.

AT 32A [DATASHEET 262
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 26-13. Minimum Wait Delay before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay
twp_rLasH 4.5ms
two_EEPROM 9.0ms
twp_erase 9.0ms
two_Fuse 4.5ms

Figure 26-11. SPI Serial Programming Waveforms

EY D D G S G G
L G G

SERIAL DATA INPUT
(MOSI)

SERIAL DATA OUTPUT
(MISO)

SERIAL CLOCK INPUT
(SCK)

SAMPLE

Atmel

L L

bttt

A N

ATmega32A [DATASHEET] 263

8155D-AVR-10/2013



Table 26-14. SPI Serial Programming Instruction Set

Instruction Format

Instruction Byte 1 Byte 2 Byte 3 Byte4 Operation

1010 1100 | 0101 0011 | XXXX XXXX | XXXX XXXX | Enable SPI Serial Programming after
RESET goes low.

Programming Enable

Chip Erase 1010 1100 | 100X XXXX | XXXX XXXX | XXxXX XXxX | Chip Erase EEPROM and Flash.

0010 HOOO | OOaa aaaa | bbbb bbbb | cooo oooo | Read H (high or low) data o from
Program memory at word address a:b.

0100 HOOO | 00xx xxxx | xxbb bbbb | ¥iii iiii | Write H (high or low) data i to Program
Memory page at word address b. Data
Load Program Memory Page low byte must be loaded before Data
high byte is applied within the same
address.

Read Program Memory

0100 1100 | OOaa aaaa | bbxx xxxx | xxxx xxxx | Write Program Memory Page at
address a:b.

1010 0000 | 00xx xxaa | bbbb bbbb | oooo oooo | Read data o from EEPROM memory at
address a:b.

Write Program Memory Page

Read EEPROM Memory

1100 0000 | 00Oxx xxaa | bbbb bbbb | iiii iiii | Write datai to EEPROM memory at

Write EEPROM Memory address a:b

0101 1000 | 0000 0000 | XXXX XXXX | XX00 0000 | Read Lock bits. “0” = programmed, “1”
Read Lock Bits = unprogrammed. See Table 26-1 on
page 266 for details.

1010 1100 | 111x XXXX | XXXX XXXX | 118 iiii | Write Lock bits. Set bits = “0” to
Write Lock Bits program Lock bits. See Table 26-1 on
page 266 for details.

Read Signature Byte 0011 0000 | 00xx xxxX | xxxx xxbb | ocooo oooo | Read Signature Byte o at address b.
1010 1100 | 1010 0000 | xxxx xxxx | iiii ¥iiii | Setbits =“0"to program, “1" to
Write Fuse Bits unprogram. See Table 26-4 on page

268 for details.

1010 1100 | 1010 1000 | xxxx xxxx | iiii Biii | Set bits =“0" to program, “1”" to
Write Fuse High Bits unprogram. See Table 26-3 on page
267 for details.

0101 0000 | 0000 0000 | XxXXX XXXX | 0000 0000 | Read Fuse bits. “0” = programmed, “1”
Read Fuse Bits = unprogrammed. See Table 26-4 on
page 268 for details.

0101 1000 | 0000 1000 | xxxX XXXX | 0000 0000 | Read Fuse high bits. “0” = pro-
Read Fuse High Bits grammed, “1" = unprogrammed. See
Table 26-3 on page 267 for details.

Read Calibration Byte 0011 1000 | xxxx xxxX | 0000 OObb | cooo oooo | Read Calibration Byte o at address b

Note:  a = address high bits
b = address low bits
H =0 - Low byte, 1 — High Byte
0 = data out
i =datain
x = don't care

26.94 SPI Serial Programming Characteristics
For Characteristics of SPI module, see “SPI Timing Characteristics” on page 301.

AT 32A [DATASHEET 264
Atmel megas2A [ ]

8155D-AVR-10/2013



26.10 Programming via the JTAG Interface
Programming through the JTAG interface requires control of the four JTAG specific pins: TCK, TMS, TDI and TDO.
Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is default shipped with
the fuse programmed. In addition, the JTD bit in MCUCSR must be cleared. Alternatively, if the JTD bit is set, the
External Reset can be forced low. Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are
available for programming. This provides a means of using the JTAG pins as normal port pins in running mode
while still allowing In-System Programming via the JTAG interface. Note that this technique can not be used when
using the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be dedicated for
this purpose.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

26.10.1 Programming Specific JTAG Instructions
The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions useful for Program-
ming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes which
Data Register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be used as an idle
state between JTAG sequences. The state machine sequence for changing the instruction word is shown in Figure
26-12.

AT 32A [DATASHEET 265
Atmel megas2A [ 1

8155D-AVR-10/2013



Figure 26-12. State Machine Sequence for Changing the Instruction Word

1 TeSt-LOGIC-RESEt i----+=nmrsmmmrssmmmr s
L0
v '
0 C; Run-Test/Idle 1'.. » Select-DR Scan | » Select-IR Scan |-
A { :
L0 0
____________ A A v
1 Capture-DR 1 Capture-IR
Lo 0
............ \ AN
. B .
----- »  ShiftDR i 0 »  Shift-IR :) 0
1 1
R \ A y
gl Extt-DR bt | LB Exiti-R L
) ' 0
____________ . AT y
<
Pause-DR 0 Pause-IR 0
1 1
____________ ) A A4
Q4 ExitoDR 0 Exit-IR
1 1
____________ ) A A4
Update-DR  i------- Update-IR |«
T 1 0

26.10.2 AVR_RESET ($C)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking the device out
from the Reset Mode. The TAP controller is not reset by this instruction. The one bit Reset Register is selected as
Data Register. Note that the Reset will be active as long as there is a logic “one” in the Reset Chain. The output
from this chain is not latched.

The active states are:

* Shift-DR: The Reset Register is shifted by the TCK input.

26.10.3 PROG_ENABLE ($4)
The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-bit Programming
Enable Register is selected as Data Register. The active states are the following:
* Shift-DR: The programming enable signature is shifted into the Data Register.

» Update-DR: The programming enable signature is compared to the correct value, and Programming mode is
entered if the signature is valid.

AT 32A [DATASHEET 266
Atmel megas2A [ ]

8155D-AVR-10/2013



26.10.4 PROG_COMMANDS ($5)
The AVR specific public JTAG instruction for entering programming commands via the JTAG port. The 15-bit Pro-
gramming Command Register is selected as Data Register. The active states are the following:

» Capture-DR: The result of the previous command is loaded into the Data Register.

« Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous command and
shifting in the new command.

» Update-DR: The programming command is applied to the Flash inputs

» Run-Test/Idle: One clock cycle is generated, executing the applied command (not always required, see Table
26-15 below).

26.10.5 PROG_PAGELOAD ($6)

The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port. The 1024 bit Vir-
tual Flash Page Load Register is selected as Data Register. This is a virtual scan chain with length equal to the
number of bits in one Flash page. Internally the Shift Register is 8-bit. Unlike most JTAG instructions, the Update-
DR state is not used to transfer data from the Shift Register. The data are automatically transferred to the Flash
page buffer byte by byte in the Shift-DR state by an internal state machine. This is the only active state:

« Shift-DR: Flash page data are shifted in from TDI by the TCK input, and automatically loaded into the Flash
page one byte at a time.

Note:  The JTAG instruction PROG_PAGELOAD can only be used if the AVR device is the first device in JTAG scan chain. If
the AVR cannot be the first device in the scan chain, the byte-wise programming algorithm must be used.

26.10.6 PROG_PAGEREAD ($7)

The AVR specific public JTAG instruction to read one full Flash data page via the JTAG port. The 1032 bit Virtual
Flash Page Read Register is selected as Data Register. This is a virtual scan chain with length equal to the number
of bits in one Flash page plus 8. Internally the Shift Register is 8-bit. Unlike most JTAG instructions, the Capture-
DR state is not used to transfer data to the Shift Register. The data are automatically transferred from the Flash
page buffer byte by byte in the Shift-DR state by an internal state machine. This is the only active state:

» Shift-DR: Flash data are automatically read one byte at a time and shifted out on TDO by the TCK input. The
TDI input is ignored.

Note:  The JTAG instruction PROG_PAGEREAD can only be used if the AVR device is the first device in JTAG scan chain. If
the AVR cannot be the first device in the scan chain, the byte-wise programming algorithm must be used.

26.10.7 Data Registers
The Data Registers are selected by the JTAG Instruction Registers described in section “Programming Specific

JTAG Instructions” on page 284. The Data Registers relevant for programming operations are:
* Reset Register
* Programming Enable Register
* Programming Command Register
« Virtual Flash Page Load Register
« Virtual Flash Page Read Register

26.10.8 Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is required to reset the
part before entering programming mode.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is reset as long as there
is a high value present in the Reset Register. Depending on the Fuse settings for the clock options, the part will
remain reset for a Reset Time-out Period (refer to “Clock Sources” on page 26) after releasing the Reset Register.

AT 32A [DATASHEET 267
Atmel megas2A [ ]

8155D-AVR-10/2013



The output from this Data Register is not latched, so the reset will take place immediately, as shown in Figure 24-2
on page 235.

26.10.9 Programming Enable Register
The Programming Enable Register is a 16-bit register. The contents of this register is compared to the program-
ming enable signature, binary code 1010_0011 0111 0000. When the contents of the register is equal to the
programming enable signature, programming via the JTAG port is enabled. The register is reset to 0 on Power-on
Reset, and should always be reset when leaving Programming mode.

Figure 26-13. Programming Enable Register

TDI

|

$A370

= D Qf——®» Programming Enable

.

ClockDR & PROG_ENABLE

> -4 >0

TDO

26.10.10 Programming Command Register
The Programming Command Register is a 15-bit register. This register is used to serially shift in programming
commands, and to serially shift out the result of the previous command, if any. The JTAG Programming Instruction

Set is shown in Table 26-15. The state sequence when shifting in the programming commands is illustrated in Fig-
ure 26-16.

AT 32A [DATASHEET 268
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 26-14. Programming Command Register

TDI

|

»wm®mOTWAHW®»

>-H4>»0~-~W0W0mMDVO O >

Flash
EEPROM
Fuses
Lock Bits

TDO

Figure 26-15. JTAG Programming Instruction Set

a = address high bits, b = address low bits, H = 0 — Low byte, 1 — High Byte, o = data out, i = data in, x = don’t care

Instruction TDI sequence TDO sequence Notes

la. Chip erase 0100011_10000000 XXXXKXXX_XXXXXXKX
0110001_10000000 XXXXXXX_ XXXXXXXX
0110011_10000000 XXXXXXX_XXXXXXXX
0110011_10000000 XXXXXXX_XXXXXXXX

1b. Poll for chip erase complete 0110011_10000000 XXXXXOX_XXXXXXXX 2

2a. Enter Flash Write 0100011 00010000 XXXXXXX_ XXXXXXKX

2b. Load Address High Byte 0000111 aaaaaaaa XXXXKXXX_XXXXXXKX 9)

2c. Load Address Low Byte 0000011_bbbbbbbb XXXXKXXX_XXXXXXKX

2d. Load Data Low Byte 00100121 _iiiiiiii XXXXXXX_XXXXXXXX

2e. Load Data High Byte 0010111 _jiiiiiii XXXXHXXX_XXXXXXXX

2f. Latch Data 0110111_00000000 XXXXXXX_XXXXXXXX 1)
1110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX

2g. Write Flash Page 0110111_00000000 XXXXXXX_XXXXXXXX 1)
0110101_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX
0110111 00000000 XXXXXXX_ XXXXXXXX

2h. Poll for Page Write complete 0110111_00000000 XXXXXOX_ XXXXXXXX 2)

3a. Enter Flash Read 0100011_00000010 XXXXXXX_XXXXXXXX

3b. Load Address High Byte 0000111 aaaaaaaa XXXXKXXX_XXXXXXXX 9)

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

269



Figure 26-15. JTAG Programming Instruction Set (Continued)
a = address high bits, b = address low bits, H = 0 — Low byte, 1 — High Byte, o = data out, i = data in, x = don’t care

Instruction TDI sequence TDO sequence Notes

3c. Load Address Low Byte 0000011 _bbbbbbbb XXXXXXX_ XXXXXXXX

3d. Read Data Low and High Byte 0110010_00000000 XXXXKXXX_XXXXXXKX
0110110_00000000 XXXXXXX_00000000 low byte
0110111_00000000 XXXXXXX_00000000 high byte

4a. Enter EEPROM Write 0100011_00010001 XXXXXXX_ XXXXXXXX

4b. Load Address High Byte 0000111 aaaaaaaa XXXXXXX_XXXXXXXX 9)

4c. Load Address Low Byte 0000011_bbbbbbbb XXXXKXXX_XXXXXXKX

4d. Load Data Byte 0010011 _iiiiiiii XXXXXXX_XXXXXXXX

4e. Latch Data 0110111_00000000 XXXXXXX_XXXXXXXX 1)
1110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX

4f. Write EEPROM Page 0110011_00000000 XXXXXXX_XXXXXXXX 1)
0110001_00000000 XXXXXXX_XXXXXXXX
0110011_00000000 XXXXXXX_ XXXXXXXX
0110011_00000000 XXXXXXX_ XXXXXXXX

4qg. Poll for Page Write complete 0110011_00000000 XXXXXOX_XXXXXXXX (2)

5a. Enter EEPROM Read 0100011_00000011 XXXXXXX_XXXXXXXX

5b. Load Address High Byte 0000111 aaaaaaaa XXXXKXXX_XXXXXXXX 9)

5c. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX

5d. Read Data Byte 0110011_bbbbbbbb XXXHXXXX_XXXXXXXX
0110010_00000000 XXXXXXX_XXXXXXXX
0110011_00000000 XXXXXXX_00000000

6a. Enter Fuse Write 0100011_01000000 XXXXXXK_XXXXXXXX

6b. Load Data Low Byte® 0010011 _iiiiiiii XXXXXKX_XXKXKXKX (3)

6¢. Write Fuse High byte 0110111_00000000 XXXXXXX_XXXXXXXX (2)
0110101_00000000 XXHXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX

6d. Poll for Fuse Write complete 0110111_00000000 XXXXXOX_XXXXXXXX 2)

6e. Load Data Low Byte(” 0010011 _iiiiiiii XHXXXHKX_XXKXKXKX (3)

6f. Write Fuse Low byte 0110011_00000000 XXXXXXX_XXXXXXXX (2)
0110001_00000000 XXXXXXX_XXXXXXXX
0110011_00000000 XXXXXXX_XXXXXXXX
0110011_00000000 XXXXXXX_XXXXXXXX

6g. Poll for Fuse Write complete 0110011_00000000 XXXXXOX_XXXXXXXX 2)

7a. Enter Lock Bit Write 0100011_00100000 XXXXXXX_XXXXXXXX

7b. Load Data Byte® 0010011_11iiiiii XXXXXKX_XXKXKXKX (4)

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

270



Figure 26-15. JTAG Programming Instruction Set (Continued)
a = address high bits, b = address low bits, H = 0 — Low byte, 1 — High Byte, o = data out, i = data in, x = don’t care

Instruction TDI sequence TDO sequence Notes

7c. Write Lock Bits 0110011_00000000 XXXXXXX_XXXXXXXX (2)
0110001_00000000 XXXXXXX_XXXXXXXX
0110011_00000000 XXHXXXXX_XXXXXXXX
0110011_00000000 XXXXXXX_XXXXXXXX

7d. Poll for Lock Bit Write complete 0110011_00000000 XXXXXOX_XXXXXXXX 2

8a. Enter Fuse/Lock Bit Read 0100011_00000100 XXXXXXX_XXXXXXXX

8b. Read Fuse High Byte® 0111110_00000000 XXXKXKX_XXKXKXKX
0111111 00000000 XXXXXXX_00000000

8c. Read Fuse Low Byte(” 0110010_00000000 XXXXXXX_ XXXXXXXX
0110011_00000000 XXXXXXX_00000000

8d. Read Lock Bits® 0110110_00000000 XXXKXKX_XXKXKXKX (5)
0110111_00000000 XXXXXXX_XX000000

8e. Read Fuses and Lock Bits 0111110_00000000 XXXXXXX_XXXXXXXX (5)
0110010_00000000 XXXXXXX_00000000 fuse high byte
0110110_00000000 XXXXXXX_00000000 fuse low byte
0110111_00000000 XXXXXXX_00000000 lock bits

9a.

Enter Signature Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

9b.

Load Address Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

9c.

Read Signature Byte

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

10a. Enter Calibration Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

10b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

10c. Read Calibration Byte

0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

11a. Load No Operation Command

0100011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is

normally the case).
Repeat until o = “1".

“0” = programmed, “1” = unprogrammed.

Set bits to “0” to program the corresponding fuse, “1” to unprogram the fuse.
Set bits to “0” to program the corresponding lock bit, “1” to leave the lock bit unchanged.

The bit mapping for fuses high byte is listed in Table 26-3 on page 267

The bit mapping for fuses low byte is listed in Table 26-4 on page 268

The bit mapping for Lock bits byte is listed in Table 26-1 on page 266

Address bits exceeding PCMSB and EEAMSB (Table 26-5 and Table 26-6) are don't care

© o NGk WD

ATmega32A [DATASHEET] 271

8155D-AVR-10/2013

Atmel



Figure 26-16. State Machine Sequence for Changing/Reading the Data Word

1 Test-LOGIC-RESEt id----snnrnrrrmmmmerem e
Lo
Yy s :
0 C; Run-Test/ldle 1,. Select-DR Scan p-r----s---- b Select-IR Scan i -----
y H :............:, ............
0 L0
Yy .
1 Capture-DR 1 Capture-IR
0 L0
vy ) A
. . <4
> Shift-DR 0 --te- i Shift-IR 0
1 1
vy b A
| Exit1-DR L | g Exit1-IR 1 -------
0 L0
A . AN
: : <.
Pause-DR 0| : ' Pause-IR L2 0:
1 1
A I b AR
O  ExteDR | | b 9f  Exite-R
1 1
Yy ] b AR
Update-DR < Update-IR -------
1 0 R 0

26.10.11 Virtual Flash Page Load Register
The Virtual Flash Page Load Register is a virtual scan chain with length equal to the number of bits in one Flash
page. Internally the Shift Register is 8-bit, and the data are automatically transferred to the Flash page buffer byte
by byte. Shift in all instruction words in the page, starting with the LSB of the first instruction in the page and ending
with the MSB of the last instruction in the page. This provides an efficient way to load the entire Flash page buffer
before executing Page Write.

AT 32A [DATASHEET 272
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 26-17. Virtual Flash Page Load Register

STROBES |

State

oI Machine
ADDRESS

Flash
EEPROM
Fuses
Lock Bits

>+ >»0

TDO

26.10.12 Virtual Flash Page Read Register
The Virtual Flash Page Read Register is a virtual scan chain with length equal to the number of bits in one Flash
page plus 8. Internally the Shift Register is 8-bit, and the data are automatically transferred from the Flash data
page byte by byte. The first 8 cycles are used to transfer the first byte to the internal Shift Register, and the bits that
are shifted out during these 8 cycles should be ignored. Following this initialization, data are shifted out starting
with the LSB of the first instruction in the page and ending with the MSB of the last instruction in the page. This pro-
vides an efficient way to read one full Flash page to verify programming.

Figure 26-18. Virtual Flash Page Read Register

STROBES |

State

™ Machine
ADDRESS _|

Flash
EEPROM
Fuses
Lock Bits

>+ >»0

TDO

26.10.13 Programming Algorithm
All references below of type “1a”, “1b”, and so on, refer to Table 26-15.

AT 32A [DATASHEET 273
Atmel megas2A [ ]

8155D-AVR-10/2013



26.10.14 Entering Programming Mode
1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.
2. Enterinstruction PROG_ENABLE and shift 1010_0011_0111 0000 in the Programming Enable Register.

26.10.15 Leaving Programming Mode

Enter JTAG instruction PROG_COMMANDS.

Disable all programming instructions by usning no operation instruction 11a.

Enter instruction PROG_ENABLE and shift 0000_0000_0000_0000 in the programming Enable Register.
Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

A wbdPE

26.10.16 Performing Chip Erase
1. Enter JTAG instruction PROG_COMMANDS.
Start chip erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for ty, gy ce (refer to Table 26-11
on page 279).

26.10.17 Programming the Flash
Before programming the Flash a Chip Erase must be performed. See “Performing Chip Erase” on page 293.

1. Enter JTAG instruction PROG_COMMANDS.
Enable Flash write using programming instruction 2a.
Load address high byte using programming instruction 2b.
Load address low byte using programming instruction 2c.
Load data using programming instructions 2d, 2e and 2f.
Repeat steps 4 and 5 for all instruction words in the page.
Write the page using programming instruction 2g.
Poll for Flash write complete using programming instruction 2h, or wait for ty, g (refer to Table 26-11 on
page 279).
9. Repeat steps 3 to 7 until all data have been programmed.
A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

© Nk~ wN

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to Table 26-5 on page
269) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page, starting with the LSB of the first
instruction in the page and ending with the MSB of the last instruction in the page.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for t,, g (refer to Table 26-11 on
page 279).

9. Repeat steps 3 to 8 until all data have been programmed.

26.10.18 Reading the Flash
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash read using programming instruction 3a.
3. Load address using programming instructions 3b and 3c.

AT 32A [DATASHEET 274
Atmel megas2A [ ]

8155D-AVR-10/2013



4,
5.

Read data using programming instruction 3d.
Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

1.
2.
3.

6.
7.

Enter JTAG instruction PROG_COMMANDS.
Enable Flash read using programming instruction 3a.

Load the page address using programming instructions 3b and 3c. PCWORD (refer to Table 26-5 on page
269) is used to address within one page and must be written as 0.

Enter JTAG instruction PROG_PAGEREAD.

Read the entire page by shifting out all instruction words in the page, starting with the LSB of the first
instruction in the page and ending with the MSB of the last instruction in the page. Remember that the first
8 bits shifted out should be ignored.

Enter JTAG instruction PROG_COMMANDS.

Repeat steps 3 to 6 until all data have been read.

26.10.19 Programming the EEPROM
Before programming the EEPROM a Chip Erase must be performed. See “Performing Chip Erase” on page 293.

1.

© N o ok wN

9.

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM write using programming instruction 4a.

Load address high byte using programming instruction 4b.

Load address low byte using programming instruction 4c.

Load data using programming instructions 4d and 4e.

Repeat steps 4 and 5 for all data bytes in the page.

Write the data using programming instruction 4f.

Poll for EEPROM write complete using programming instruction 4g, or wait for t, r (refer to Table 26-11
on page 279).

Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM

26.10.20 Reading the EEPROM

Ao PR

5.

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM read using programming instruction 5a.
Load address using programming instructions 5b and 5c.
Read data using programming instruction 5d.

Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM

26.10.21 Programming the Fuses

1.
2.
3.

Atmel

Enter JTAG instruction PROG_COMMANDS.
Enable Fuse write using programming instruction 6a.

Load data high byte using programming instructions 6b. A bit value of “0” will program the corresponding
fuse, a “1” will unprogram the fuse.

Write Fuse High byte using programming instruction 6c.

Poll for Fuse write complete using programming instruction 6d, or wait for ty, r (refer to Table 26-11 on
page 279).

Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1” will unprogram
the fuse.

ATmega32A [DATASHEET] 275

8155D-AVR-10/2013



7.
8.

Write Fuse low byte using programming instruction 6f.

Poll for Fuse write complete using programming instruction 6g, or wait for ty, g, (refer to Table 26-11 on
page 279).

26.10.22 Programming the Lock Bits

1.
2.
3.

4,
5.

Enter JTAG instruction PROG_COMMANDS.
Enable Lock bit write using programming instruction 7a.

Load data using programming instructions 7b. A bit value of “0” will program the corresponding Lock bit, a
“1” will leave the Lock bit unchanged.

Write Lock bits using programming instruction 7c.

Poll for Lock bit write complete using programming instruction 7d, or wait for t,, r (refer to Table 26-11 on
page 279).

26.10.23 Reading the Fuses and Lock Bits

1.

Enter JTAG instruction PROG_COMMANDS.

Enable Fuse/Lock bit read using programming instruction 8a.

To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse high byte, use programming instruction 8b.

To only read Fuse low byte, use programming instruction 8c.

To only read Lock bits, use programming instruction 8d.

26.10.24 Reading the Signature Bytes

a s~ wbdpE

Enter JTAG instruction PROG_COMMANDS.

Enable Signature byte read using programming instruction 9a.
Load address $00 using programming instruction 9b.

Read first signature byte using programming instruction 9c.

Repeat steps 3 and 4 with address $01 and address $02 to read the second and third signature bytes,
respectively.

26.10.25 Reading the Calibration Byte

PR

Atmel

Enter JTAG instruction PROG_COMMANDS.

Enable Calibration byte read using programming instruction 10a.
Load address $00 using programming instruction 10b.

Read the calibration byte using programming instruction 10c.

ATmega32A [DATASHEET] 276

8155D-AVR-10/2013



27. Electrical Characteristics

27.1 Absolute Maximum Ratings*

Voltage on any Pin except RESET

400.0 mA TQFP/MLF

Operating Temperature...........cccceveerveeenneenne -55°C to +125°C

Storage Temperature .........cccccvvvvvveeeveienennenenn -65°C to +150°C

with respect to Ground ..........cccoceevvriiiiennns -0.5Vto V+0.5V
Voltage on RESET with respect to Ground......-0.5V to +13.0V
Maximum Operating Voltage ................

DC Current per /O Pin ......ccccccovvvveeen.
DC Current V¢ and GND Pins............

27.2 DC Characteristics

*NOTICE:

T, =-40°C to 85°C, V¢ = 2.7 V t0 5.5 V (Unless Otherwise Noted)

Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Symbol | Parameter Condition Min Typ Max Units
Input Low Voltage except | Vec=2.7-5.5 @
Vi XTAL1 and RESET pins | V.=4.5-55 05 0-2Vee v
Input High Voltage except | Vcc=2.7-5.5 @
Vi XTALL and RESET pins | V.= 4.5-55 0-6 Vee Vee + 0.5 v
Input Low Voltage
Vg P . g Vee=27-55 -0.5 0.1 V@ Y
XTAL1 pin
Input High Voltage Vee=27-55
Ving put g g e 0.7 Vec® Vee +0.5 Y%
XTAL1 pin Vec=45-55
Input Low Voltage
V Vee=27-55 -0.5 0.2V \%
L2 RESET pin ce ce
Input High Voltage
™ RESET pin Vee=27-55 0.9 V@ Ve + 0.5 Y
v Output Low Voltage® lop =20 MA, Vo =5V 0.7 v
oL (Ports A,B,C,D) loL =10 MA, Ve = 3V 0.5 %
v Output High Voltage® lon = -20 MA, Ve = 5V 4.2 %
OH (Ports A,B,C,D) lo = -10 MA, Ve = 3V 2.2 %
| Input Leakage Vee = 5.5V, pin low 1 UA
L Current I/O Pin (absolute value)
| Input Leakage Ve = 5.5V, pin high 1 A
IH Current I/O Pin (absolute value) H
Rrst Reset Pull-up Resistor 30 60 85 kQ
Rpu I/0 Pin Pull-up Resistor 20 50 kQ

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

277



T, =-40°C to 85°C, V¢ = 2.7 V to 5.5 V (Unless Otherwise Noted)

Symbol | Parameter Condition Min Typ Max Units
Active 1IMHz, Vo = 3V 0.6 mA
Active 4MHz, Vi = 3V 2.1 5 mA
Active 8MHz, Vi = 5V 7.5 15 mA
Power Supply Current
Idle 1IMHz, V¢ =3V 0.2 mA
I
ce Idle 4MHz, Ve = 3V 0.6 25 mA
Idle 8MHz, Vi =5V 2.8 8 mA
WDT enabled, V¢ = 3V <10 20 MA
Power-down Mode®
WDT disabled, V¢ = 3V <1 10 HA
Analog Comparator Ve =5V
Vacio Input Offset Voltage Vi, = Veel2 0 m
Analog Comparator Vee =5V
lacLk Input Leakage Current Vi, = Veel2 50 50 nA
t Analog Comparator Ve =27V 750 ns
ACPD Propagation Delay Ve = 4.0V 500
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

Atmel

Although each 1/0 port can sink more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed:

PDIP Package:

1] The sum of all IOL, for all ports, should not exceed 200 mA.

2] The sum of all IOL, for port AO - A7, should not exceed 100 mA.

3] The sum of all IOL, for ports BO - B7,C0 - C7, DO - D7 and XTALZ2, should not exceed 100 mA.

TQFP and QFN/MLF Package:

1] The sum of all IOL, for all ports, should not exceed 400 mA.

2] The sum of all IOL, for ports AO - A7, should not exceed 100 mA.

3] The sum of all IOL, for ports BO - B4, should not exceed 100 mA.

4] The sum of all IOL, for ports B3 - B7, XTAL2, DO - D2, should not exceed 100 mA.

5] The sum of all IOL, for ports D3 - D7, should not exceed 100 mA.

6] The sum of all IOL, for ports CO - C7, should not exceed 100 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

Although each 1/O port can source more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state
conditions (non-transient), the following must be observed:

PDIP Package:

1] The sum of all IOH, for all ports, should not exceed 200 mA.

2] The sum of all IOH, for port AO - A7, should not exceed 100 mA.

3] The sum of all IOH, for ports BO - B7,C0 - C7, DO - D7 and XTALZ2, should not exceed 100 mA.

TQFP and QFN/MLF Package:

1] The sum of all IOH, for all ports, should not exceed 400 mA.

2] The sum of all IOH, for ports AO - A7, should not exceed 100 mA.

3] The sum of all IOH, for ports BO - B4, should not exceed 100 mA.

4] The sum of all IOH, for ports B3 - B7, XTAL2, DO - D2, should not exceed 100 mA.

5] The sum of all IOH, for ports D3 - D7, should not exceed 100 mA.

6] The sum of all IOH, for ports CO - C7, should not exceed 100 mA.If IOH exceeds the test condition, VOH may exceed the
related specification. Pins are not guaranteed to source current greater than the listed test condition.

Minimum V. for Power-down is 2.5V.

ATmega32A [DATASHEET] 278

8155D-AVR-10/2013



27.3 Speed Grades

Figure 27-1. Maximum Frequency vs. V.

AN

16 MHz

8 MHz

Safe Operating Area

>
2.7V 4.5V 5.5V
27.4 Clock Characteristics
274.1 External Clock Drive Waveforms
Figure 27-2. External Clock Drive Waveforms
<« tenex
teen — — — teroL
 toiex —*
- tCLCL 4
27.4.2 External Clock Drive
Figure 27-3. External Clock Drive
Ve = 2.7V to 5.5V Ve = 4.5V to 5.5V
Symbol Parameter Min Max Min Max Units
el Oscillator Frequency 0 8 0 16 MHz
teleL Clock Period 125 62.5 ns
tehex High Time 50 25 ns
terex Low Time 50 25 ns
teLcH Rise Time 1.6 0.5 us
teheL Fall Time 1.6 0.5 us
Change in period from
one clock cycle to the 2 2 %
Ate oL next

Atmel

ATmega32A [DATASHEET] 279

8155D-AVR-10/2013



Figure 27-4. External RC Oscillator, Typical Frequencies (V¢ = 5V)

R [kQ]W C [pF] @
33 22 650kHz
10 22 2.0MHz

Notes: 1. R should be in the range 3 kQ - 100 kQ, and C should be at least 20 pF. The C values given in the table includes
pin capacitance. This will vary with package type.
2. The frequency will vary with package type and board layout.

27.5 System and Reset Characteristics

Table 27-1.  Reset, Brown-out and Internal Voltage Reference Characteristics

Symbol | Parameter Condition Min Typ Max Units
Power-on_Reset Threshold 14 23 Vv
Voltage (rising)
V
PoT Power-on Reset Threshold 13 23 Vv
Voltage (falling)® : '
RESET Pin Threshold
Minimum pulse width on
'RST | RESET Pin 13 Hs
Brown-out Reset Threshold BODLEVEL =1 25 2.7 2.9
V (2) \%
BoT | Voltage BODLEVEL = 0 36 | 40 4.2
Minimum low voltage period BODLEVEL = 1 2 us
=e) for Brown-out Detection BODLEVEL = 0 ) s
Brown-out Detector
Vst hysteresis >0 mv
Vie Bandgap reference voltage 1.15 1.23 1.35 \Y,
Bandgap reference start-up
tag time 40 70 ys
I Bandgap reference current 10 LA
consumption

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below Vpqr (falling).

2. Vg7 may be below nominal minimum operating voltage for some devices. For devices where this is the case, the
device is tested down to V¢ = Vgor during the production test. This guarantees that a Brown-out Reset will occur
before V. drops to a voltage where correct operation of the microcontroller is no longer guaranteed. The test is
performed using BODLEVEL =1 and BODLEVEL = 0 for ATmega32A.

27.6 Two-wire Serial Interface Characteristics

Table 27-2 describes the requirements for devices connected to the Two-wire Serial Bus. The ATmega32A Two-wire Serial
Interface meets or exceeds these requirements under the noted conditions.

AT 32A [DATASHEET 280
Atmel megas2A [ ]

8155D-AVR-10/2013



Timing symbols refer to Figure 27-5.

Table 27-2. Two-wire Serial Bus Requirements
Symbol | Parameter Condition Min Max Units
V. Input Low-voltage -0.5 0.3 Ve \Y,
Viu Input High-voltage 0.7 Ve Ve + 0.5 \Y
Vi Hysteresis of Schmitt Trigger Inputs 0.05 V@ - Y
Vo @ Output Low-voltage 3 mA sink current 0 0.4 Y
£, Rise Time for both SDA and SCL 20 +0.1C,®® 300 ns
to? Output Fall Time from V,ymin t0 V) max 10 pF < C, < 400 pF® 20 +0.1C, @ 250 ns
tgp® Spikes Suppressed by Input Filter 0 50 ns
l; Input Current each 1/O Pin 0.1V <V;<0.9 Ve -10 10 HA
c® Capacitance for each I/0 Pin - 10 pF
fscL SCL Clock Frequency fox™® > max(16fgc, 250kHz)® 0 400 kHz
fscL < 100kHz Ve - 0.4V 1000ns
—— Q
3 mA Cp
Rp Value of Pull-up resistor
fscL > 100kHz Ve -04V 300ns
—— Q
3 mA Cp
tupsta | Hold Time (repeated) START Condition fsci < 100kHz 4.0 - Hs
fscL > 100kHz 0.6 - ps
tiow Low Period of the SCL Clock fsci < 100kHz 4.7 - HS
fscL > 100kHz 1.3 - Hs
thich High period of the SCL clock fsci < 100kHz 4.0 - HS
fscL > 100kHz 0.6 - us
< —
tusTa fscL < 100kHz 4.7 ps
Set-up time for a repeated START condition fscL > 100kHz 0.6 - ps
to0aT Data hold time fscL < 100kHz 0 3.45 ps
fscL > 100kHz 0 0.9 us
tsupar | Data setup time fsci < 100kHz 250 - ns
fscL > 100kHz 100 - ns
tsusto | Setup time for STOP condition fsc. < 100kHz 4.0 - Hs
fscL > 100kHz 0.6 - ps
< —
tgur Bus free time between a STOP and START fscu < 100kHz 47 HS
condition fscL > 100kHz 13 - us
Notes: 1. In ATmega32A, this parameter is characterized and not 100% tested.
2. Required only for fgc, > 100kHz.
3. C, = capacitance of one bus line in pF.
4. fcx = CPU clock frequency
5. This requirement applies to all ATmega32A Two-wire Serial Interface operation. Other devices connected to the Two-wire

Atmel

Serial Bus need only obey the general f5¢, requirement.

ATmega32A [DATASHEET]

8155D-AVR-10/2013

281




Figure 27-5. Two-wire Serial Bus Timing

tHiGH

— ¢ Tlof — ) — b
sc. —| |V | v
ISUSTA e )¢ tHD;STA HDDAT ¢ | > tsu;pAT A
oA\ tsu;sTO
T | teur
27.7 SPI Timing Characteristics
See Figure 27-6 and Figure 27-7 for details.
Table 27-3.  SPI Timing Parameters
Description Mode Min Typ Max
1 SCK period Master See Table 18-4
2 SCK high/low Master 50% duty cycle
3 Rise/Fall time Master 3.6
4 Setup Master 10
5 Hold Master 10
6 Out to SCK Master 0.5 * tgck ns
7 SCK to out Master 10
8 SCK to out high Master 10
9 SS low to out Slave 15
10 SCK period Slave 4 ety
11 SCK high/low Slave 20ty
12 Rise/Fall time Slave 1.6 us
13 Setup Slave 10
14 Hold Slave tex
15 SCK to out Slave 15
16 SCK to SS high Slave 20 "
17 SS high to tri-state Slave 10
18 SS low to SCK Salve 20ty

Atmel

ATmega32A [DATASHEET] 282

8155D-AVR-10/2013



Figure 27-6. SPI Interface Timing Requirements (Master Mode)

S8

SCK

(CPOL = 0) |

SCK

(CPOL = 1)

MISO
(Data Input)

LSB

MOSI
(Data Output)

MSB

o

LSB

Figure 27-7. SPI Interface Timing Requirements (Slave Mode)

18

s\ ’
\ 10 16
EI™ >
SCK Y ,\
(CPOL = 0) 7 \ \ %
11 11
SCK \ J Y
(CPOL = 1) X M
13 14 12| |
MOSI
(Data Input) 4 MSB “ +e8
1] 17
MISO ,\/
(Data Output)y - MSB N LS8 x

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013



27.8 ADC Characteristics

Table 27-4.  ADC Characteristics, Single Ended channels, T, = -40°C to 85°C

Symbol | Parameter Condition Min Typ Max Units

Resolution Single Ended Conversion 10 Bits

Single Ended Conversion
Virer = 4V, Ve = 4V 15 LSB
ADC clock = 200kHz

Single Ended Conversion
Vger = 4V, Ve = 4V 3 LSB
ADC clock = 1MHz
Absolute Accuracy (Including INL, DNL, Single Ended Conversion
Quantization Error, Gain, and Offset Error) Vier = 4V, Vee = 4V
ADC clock = 200kHz
Noise Reduction mode

15 LSB

Single Ended Conversion
Vier = 4V, Ve = 4V
ADC clock = 1IMHz
Noise Reduction mode

3 LSB

Single Ended Conversion
Integral Non-Linearity (INL) Vier = 4V, Ve = 4V 0.75 LSB
ADC clock = 200kHz

Single Ended Conversion
Differential Non-linearity (DNL) Vier = 4V, Ve = 4V 0.25 LSB
ADC clock = 200kHz

Single Ended Conversion
Gain Error Vier = 4V, Ve = 4V 0.75 LSB
ADC clock = 200kHz

Single Ended Conversion

Offset Error Vier = 4V, Ve = 4V 0.75 LSB
ADC clock = 200kHz

Clock Frequency 50 1000 kHz

Conversion Time 13 260 us
AVCC | Analog Supply Voltage Vee - 0.30 Ve +03@ | v
VRree Reference Voltage 2.0 AvVCC \Y
Vin Input voltage GND Vrer \Y

ADC conversion output 0 1023 LSB

Input bandwith 38.5 kHz
VinT Internal Voltage Reference 2.3 2.56 2.7 \Y
Rgrer Reference Input Resistance 32 kQ
Rain Analog Input Resistance 100 MQ

Notes: 1. Minimum for AVCC is 2.7V.
2. Maximum for AVCC is 5.5V.

AT 32A [DATASHEET 284
Atmel megas2A [ ]

8155D-AVR-10/2013



Table 27-5.  ADC Characteristics, Differential channels, T, = -40°C to 85°C
Symbol | Parameter Condition Min Typ Max Units
Gain = 1x 10 Bits
Resolution Gain = 10x 10 Bits
Gain = 200x 10 Bits
Gain = 1x
Vger = 4V, Ve = 5V 17 LSB
ADC clock = 50 - 200kHz
Gain = 10x
Absolute Accuracy Vier = 4V, Ve =5V 16 LSB
ADC clock = 50 - 200kHz
Gain = 200x
Vger = 4V, Ve = 5V 7 LSB
ADC clock = 50 - 200kHz
Gain = 1x
Vger = 4V, Ve = 5V 0.75 LSB
ADC clock = 50 - 200kHz
Integral Non-Linearity (INL) Gain = 10x
(Accuracy after calibration for Offset and Vgrer = 4V, Ve = 5V 0.75 LSB
Gain Error) ADC clock =50 - 200kHz
Gain = 200x
Virer = 4V, Ve = 5V 2 LSB
ADC clock = 50 - 200kHz
Gain = 1x 1.6 %
Gain Error Gain = 10x 15 %
Gain = 200x 0.2 %
Gain = 1x
Vger = 4V, Voo =5V 1 LSB
ADC clock = 50 - 200kHz
Gain = 10x
Offset Error Virer = 4V, Ve = 5V 15 LSB
ADC clock = 50 - 200kHz
Gain = 200x
Vger = 4V, Voo =5V 4.5 LSB
ADC clock = 50 - 200kHz
Clock Frequency 50 200 kHz
Conversion Time 65 260 us
AVCC | Analog Supply Voltage Vee - 0.30 Vee +03@ | v
VRer Reference Voltage 2.0 AVCC - 0.5 \
Vin Input voltage GND AVCC \
Viier Input differential voltage -Vgee/Gain Vrzee/Gain, \%
ADC conversion output -511 511 LSB
Input bandwith 4 kHz
ATmega32A [DATASHEET] 285

Atmel

8155D-AVR-10/2013




Table 27-5.  ADC Characteristics, Differential channels, T, = -40°C to 85°C (Continued)

Symbol | Parameter Condition Min Typ Max Units
VNt Internal Voltage Reference 23 2.56 2.7 \Y,
Rree Reference Input Resistance 32 kQ
Rain Analog Input Resistance 100 MQ

Notes: 1. Minimum for AVCC is 2.7V.
2. Maximum for AVCC is 5.5V.

ATmega32A [DATASHEET] 286
A t m eL 8155D-AVR-10/2013



28. Typical Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing. All current con-
sumption measurements are performed with all 1/O pins configured as inputs and with internal pull-ups enabled. A
square wave generator with rail-to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of
I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating
voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C, *V.-*f where C, = load capac-
itance, V. = operating voltage and f = average switching frequency of 1/0O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at
frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down
mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.

28.1 Active Supply Current

Figure 28-1. Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

1.6
14 - 55V
12 — 5.0V
1 45V
T 08 1 40V
50 36V
3 /////j 3.3V
0.6
04 T | ey
0.2
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

AT 32A [DATASHEET 287
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-2. Active Supply Current vs. Frequency (1 - 16MHz)

16 5.5V

14 5.0V

12 ; 4.5V
Z 10
2 L 4.0V
o 8

6 —— 1 —T 3ev

. /% 3.3V

— 2.7V
2 ——4 —
/
0 !

0 2 4 6 8 10 12 14 16
Frequency (MHz)

Figure 28-3. Active Supply Current vs. V¢ (Internal RC Oscillator, 8MHz)

12

25°C
) / 850
-40 °C
=
8 —
g /
£ 6
4 e
2
0
2.5 3 3.5 4 4.5 5 55

Vee (V)

AT 32A [DATASHEET 288
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-4. Active Supply Current vs. V¢ (Internal RC Oscillator, 4MHZz)

6 25 °C
85 °C
5
-40 °C

4 /

\

2.5 3 3.5 4 4.5 5 55
Vee (V)

Figure 28-5. Active Supply Current vs. V¢ (Internal RC Oscillator, 1MHz)

1.6 25 °C

14 / 85 °C
= -40 °C

12 ——

1 ——

0.8

Icc (mA)

0.6

0.4

0.2

0
2.5 3 3.5 4 4.5 5 55

Vee (V)

ATmega32A [DATASHEET] 289
A t m eL 8155D-AVR-10/2013



Figure 28-6. Active Supply Current vs. V¢ (External Oscillator, 32kHz)

160

140 25°C
120 - —
100
< —]
2 80
3
60
40
20
0
2.5 3 3.5 4 45 5 55
Vee (V)

28.2 Idle Supply Current

Figure 28-7. Idle Supply Current vs. Low Frequency (0.1 - 1.0MHz)

0.7
0.6
|55V
0.5
/ | — 50V
< 04 ] —] 45V
= —
2 0s — 1 — _— 40V
T — — [ 36V
| — — 1 +——1T 33V
02 ////j/ ———27v
——r—fF—+— 1  —T
0.1 —
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

AT 32A [DATASHEET 290
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-8. Idle Supply Current vs. Frequency (1 MHz - 16 MHz)

8
7
5.5V
6
5.0V
5
— 4.5V
£, ///
3 L 4.0V
3
] _—1 36V
2
—— 3.3V
1 ———
Z——an
0 !
0 2 4 6 8 10 12 14 16
Frequency (MHz)
Figure 28-9. Idle Supply Current vs. V. (Internal RC Oscillator, 8 MHz)
° -40°C

4 _—
—

3
<
é /
R

25 3 3.5 4 4.5 5 5.5
Vee (V)

ATmega32A [DATASHEET] 291
A t m eL 8155D-AVR-10/2013



Figure 28-10. Idle Supply Current vs. V¢ (Internal RC Oscillator, 4MHZz)

25 -40 °C

/ 25°C
85 °C
15

/

0.5

Icc (MA)

)

2.5 3 3.5 4 4.5 5 5.5
Vee (V)

Figure 28-11. Idle Supply Current vs. V. (Internal RC Oscillator, 1MHz)

0.8

0.7
85°C

0.6 25°C
/ / -40 °C

0.5

0.3 /

0.2

Icc (mA)

0.1

0
2.5 3 3.5 4 4.5 5 5.5

Vee (V)

ATmega32A [DATASHEET] 292
A t m eL 8155D-AVR-10/2013



Figure 28-12. Idle Supply Current vs. V. (External Oscillator, 32kHz)

40
35
30 25°C
25
<
2 20
8 /
15
/
10
5
0
2.5 3 3.5 4 45 5 5.5
Vee (V)

28.3 Power-down Supply Current

Figure 28-13. Power-down Supply Current vs. V. (Watchdog Timer Disabled)

2

6 85°C
-40°C

= 25°C
2
3 /

" /
0‘4 / /
/
0
25 3 3.5 4 45 5 5.5
Vee (V)

ATmega32A [DATASHEET] 293
A t m eL 8155D-AVR-10/2013



Figure 28-14. Power-down Supply Current vs. V. (Watchdog Timer Enabled)

20
85 °C

_-40°C

16 / 25 °C

_—

lcc (UA)
o

\

2.5 3 3.5 4 4.5 5 5.5
Vee (V)

28.4 Power-save Supply Current

Figure 28-15. Power-save Supply Current vs. V. (Watchdog Timer Disabled)

20
25°C

/

25 3 3.5 4 45 5 55

Vec (V)

ATmega32A [DATASHEET] 294
A t m eL 8155D-AVR-10/2013



28.5 Standby Supply Current

Figure 28-16. Standby Supply Current vs. V. (WDT Disabled)

Icc (MA)

0.16
6MHz_xtal
0.14 6MHz_res
0.12
o1 4MHz_res
: 4MHz_xtal
0.08
2MHz_res
| — 2MHz_xtal
0.06
450kHz_res
oos - | _//; 1MHz_res
X —— E—
B I
0.02
0
25 3 35 5 55

28.6 Pin Pull-up

Figure 28-17. 1/0O Pin Pull-up Resistor Current vs. Input Voltage (Ve = 5V)

Atmel

140

120

100

80

lop (UA)

60

40

20

25°C

85°C

\-\40 °C

ATmega32A [DATASHEET]

8155D-AVR-10/2013

295



Figure 28-18. I/O Pin Pull-up Resistor Current vs. Input Voltage (V¢ = 2.7V)

70
-40 °C
60

25°C

85 °C
50 N

. N

30

lop (uA)

20

Vor (V)

Figure 28-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V¢ = 5V)

100

NN
. AN

A)

IReseT (U

\ -40 °C
25°C
0 85 °C

Veeset(V)

AT 32A [DATASHEET 296
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V¢ = 2.7V)

60

50

o
o

IReseT (UA)
w
o
/

/
/

- -40 °C
\ 25°C
0 — 85°C
0 05 1 15 2 25 3
VReset(V)
28.7 Pin Driver Strength
Figure 28-21. 1/0O Pin Source Current vs. Output Voltage (V¢ = 5V)

80

7 o0 °C

60 \k

85 °C

50
<
E 10
K

30

20

10

0

3 3.4 3.8 42 46 5
Von (V)
ATmega32A [DATASHEET] 297
A t m eL 8155D-AVR-10/2013



Figure 28-22. I/O Pin Source Current vs. Output Voltage (V¢ = 3V)

% T40°C
—re——
o | 25°C
85 °C
25
T 20
£
I
© 15
10
5
0
1 1.5 2 25 3

Vor (V)

Figure 28-23. 1/0 Pin Sink Current vs. Output Voltage (V¢ = 5V)

2
-40 °C
80
25°C
70
60 85°C
T 50
£
B 40
30
20
10
0
0 05 1 15 2

VoL (V)

AT 32A [DATASHEET 298
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-24. I/O Pin Sink Current vs. Output Voltage (V¢ = 3V)

45

40 -40 °C
35 25°C
30 85°C
< 25
£
3 20
15 v
10 /
5
0
0 0.5 1 15 2
VoL (V)

28.8 Pin Thresholds and Hysteresis

Figure 28-25. 1/0O Pin Input Threshold Voltage vs. V¢ (V|y, I/O Pin Read as “1”)
/ 85°C
25°C
25 =
// -40°C
2 /

3

Threshold (V)

Vee (V)

AT 32A [DATASHEET 299
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-26. I/O Pin Input Threshold Voltage vs. V¢ (V. I/0 Pin Read as “0”)

- / 857e
25 °C
2 / — -40 °C
S 15 -
%
3 = |
£ 1
05
0
25 3 35 4 45 5 55

Vee (V)

Figure 28-27. 1/0 Pin Input Hysteresis vs. V¢

06
-40 °C
/ 25°C
/ 85 °C
S 04 ]
é /
.§ ~>—7/
g8 02
0
25 3 35 4 45 5 55
Vee (V)
ATmega32A [DATASHEET 300
Atmel gadzA ]

8155D-AVR-10/2013



Figure 28-28. Reset Input Threshold Voltage vs. V¢ (V,4,Reset Pin Read as “1”)

25
2 —
/{
-40 °C
S 15 ;’:/
= P
3 85 °C
£ 1
0.5
0
25 3 35 4 45 5 5.5

Vee (V)

Figure 28-29. Reset Input Threshold Voltage vs. V¢ (V| ,Reset Pin Read as “0”)

2.5 85 °C
/ 25 °8
-40 °
2 / //
g s /
g //
Qo
= 1
0.5
0
2.5 3 3.5 4 45 5 5.5
Vec (V)
ATmega32A [DATASHEET 301
Atmel gasaAl ]

8155D-AVR-10/2013



Figure 28-30. Reset Input Pin Hysteresis vs. V¢

0.5
0.4
s |\
%’ 0.3 N
8 \\40 °C
Q
g
T 02
3
F \ \
o \25 °C N
85 °C
0 \\\>
25 3 3.5 4 45 5 55

Vec (V)

28.9 BOD Thresholds and Analog Comparator Offset

Figure 28-31. BOD Thresholds vs. Temperature (BOD Level is 4.0V)

4.1

4 Rising[Vcc
S
2
g
=
3.9
Falling|Vce
3.8
-60 -40 -20 0 20 40 60 80 100
Temperature (°C)
ATmega32A [DATASHEET 302
Atmel gasAl ]

8155D-AVR-10/2013



Figure 28-32. BOD Thresholds vs. Temperature (BOD Level is 2.7V)

29

Rising|V,
2.8 9'ce

Threshold (V)

2.7

Falling|Vcc

2.6

-60 -40 -20 0 20 40 60 80 100

Temperature (C)

Figure 28-33. Bandgap Voltage vs. V¢

1.25

1.248

1.246 /
S 1.244 y

1242 / //
1E 25°C /

1288 1= ——

1.236 —— ] /

-40°C I /
1.234

1.232

Bandgap Voltage (V

25 3 3.5 4 4.5 5 5.5
Vee (V)

AT 32A [DATASHEET 303
Atmel megas2A [ ]

8155D-AVR-10/2013



28.10 Internal Oscillator Speed
Figure 28-34. Watchdog Oscillator Frequency vs. V¢

1320

-40 °C
25°C

1300

AN

1280
85°C
1260

1240

1220

Frc (kHz)

1200

1180

1160

1140

1120

_—
/
3

2.5 3.5 4 45 5 55

Vee (V)

Figure 28-35. Calibrated 8MHz RC Oscillator Frequency vs. Temperature

8.5

8.3

8.1

7.9 \

—
7.7 —
—
[~~~

7.5

Fgrc (MHz)

7.3

71

6.9

~ 2.7V
6.7

6.5

-60 -40 -20 0 20 40 60 80 100

Temperature

AT 32A [DATASHEET 304
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-36. Calibrated 8MHz RC Oscillator Frequency vs. V¢

9

85 40°C
[—
8 //_/ 25 oC
— | | ——85°C
7.5

FRC (MHZ)

6.5

2.5 3 3.5 4 4.5 5 5.5
Vee (V)

Figure 28-37. Calibrated 8MHz RC Oscillator Frequency vs. Osccal Value

" -40 °C
25 °C

7

pA

\

Frc (MHz)
\

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

ATmega32A [DATASHEET] 305
A t m eL 8155D-AVR-10/2013



Figure 28-38. Calibrated 4MHz RC Oscillator Frequency vs. Temperature

4.2
4.1
\
Q\\
4
——
— I 55y
~ 39
T 50V
= \\\ ~ 45V
2 3.8 \\\\ 4.0V
£ 3.
T ~——_[ 36V
37 [~ 3.3V
1 .7y
3.6
35
-60 -40 -20 0 20 40 60 80 100
Temperature
Figure 28-39. Calibrated 4MHz RC Oscillator Frequency vs. V¢
4.2
44 -40 °C
\ — | 25 °C
/
N 39 _— 85 °C
=
F 38 /
3.7
36 /
35
25 3 35 4 45 5 55

Vee (V)

AT 32A [DATASHEET 306
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-40. Calibrated 4MHz RC Oscillator Frequency vs. Osccal Value

-40 °C

7 / 25 °C
V
// 85 °C

\

Frc (MHz)
\
\
\

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

Figure 28-41. Calibrated 2MHz RC Oscillator Frequency vs. Temperature

21
2.05
\
\
2
\ \
s 195 \\\ 50V
r ~ 45V
' I ~ 36V
T L 33V
1.85 \
~ 2.7V
1.8
-60 -40 -20 0 20 40 60 80 100

Temperature

AT 32A [DATASHEET 307
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-42. Calibrated 2MHz RC Oscillator Frequency vs. V¢

2.1

| ___—-40°C
— 25°C

85°C

W
\

FRC (MHZ)
©

/
/

Vec (V)

Figure 28-43. Calibrated 2MHz RC Oscillator Frequency vs. Osccal Value

4
-40 °C

3.5
25 °C
3 / 85 °C
A/

25
- =
N
s /'A/
LE): //

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

ATmega32A [DATASHEET] 308
A t m eL 8155D-AVR-10/2013



Figure 28-44. Calibrated 1MHz RC Oscillator Frequency vs. Temperature

1.04
1.02
\
\
\
\
; \\\
\
0 \\\\\\\ 55V
§ 0.98 I — \\\\\\ ~ 50V
o — — L
i I 45V
('R
0.96 E— " 4.0V
— ~ 3.6V
\\\\ 3.3V
0.94
~ 2.7V
0.92
-60 -40 -20 0 20 40 60 80 100
Temperature
Figure 28-45. Calibrated 1MHz RC Oscillator Frequency vs. V¢
1.04
1.02 -40 °C

25°C

/
1 P L

0.96
0'94 /
0.92
2.5 3 3.5 4 45 5 55

Vee (V)

AT 32A [DATASHEET 309
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-46. Calibrated 1MHz RC Oscillator Frequency vs. Osccal Value

2
1,8 / -40 °C
/| 25 °C
1,6
/' | 85°C
1,4
1,2 /
1 /
08 /
| =]

0,6

Frc (MHz)

0,4

0,2

0

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

28.11 Current Consumption of Peripheral Units

Figure 28-47. Brownout Detector Current vs. V¢

20
18 -40 °C
25 °C

16  — 85°C
14 ] ///

S ——

o 8
6
4
2
0

25 3 3.5 4 4.5 5 55
Vee (V)
Atmel Sl el ovAnsl I



Figure 28-48. ADC Current vs. V¢ (AREF = AVCC)

350 85 °C
25°C

300 /
-40 °C
250 /;/

2 200 ——F

150

Icc (u

100

50

2.5 3 3.5 4 4.5 5 5.5
Vec (V)

Figure 28-49. AREF External Reference Current vs. V¢

200
85 °C

25°C
/ / -40 °C

150
/

100
/

lcc (UA)

50

25 3 3.5 4 4.5 5 5.5
Vec (V)

AT 32A [DATASHEET 311
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-50. Analog Comparator Current vs. V¢

100
90
80
85°C
70
= 25°C
2 60 -40 °
38 | 7-47é 0°C
50
40
30
20
25 3 35 4 45 5 55
Vee (V)
Figure 28-51. Programming Current vs. V¢
9
8 -40 °C
7
25°C
6
85°C
z5
E 4 \_’\____/
3 —
2
1
0
25 3 35 4 45 5 55

Vee (V)

AT 32A [DATASHEET 312
Atmel megas2A [ ]

8155D-AVR-10/2013



28.12 Current Consumption in Reset and Reset Pulsewidth

Figure 28-52. Reset Supply Current vs. Low Frequency
(0.1 - 1.0MHz, Excluding Current Through The Reset Pull-up)

25 55V
— | 50V

— | | 45V

z

£

; 15 — — — ;.gg
—— | —T 1 1+—T1 133y

T 1 — 27V

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (MHz)

Figure 28-53. Reset Supply Current vs. Frequency
(1 - 16MHz, Excluding Current Through The Reset Pull-up)

5.5V
" / 5.0V
12 / 4.5V
10
- _ 40v
E s
8 / 36V
6
4
=27V
2
0 ]
0 2 4 6 8 10 12 14 16

Frequency (MHz)

AT 32A [DATASHEET 313
Atmel megas2A [ ]

8155D-AVR-10/2013



Figure 28-54. Minimum Reset Pulse Width vs. V¢

800

700

600

500

400

Pulsewidth (ns)

~ | T [ s5°C

300 — 55 °C
200 -40 °C

100

0
25 3 3.5 4 45 5 55 6

Vee (V)

ATmega32A [DATASHEET] 314
A t m eL 8155D-AVR-10/2013



29. Register Summary

Atmel

Address Name Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
$3F ($5F) SREG | T H S \ N Y4 C 8
$3E ($5E) SPH = = = = SP11 SP10 SP9 SP8 11
$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO 11
$3C ($5C) OCRO Timer/Counter0 Output Compare Register 86
$3B ($5B) GICR INTL INTO INT2 - - - IVSEL IVCE 48, 71
$3A ($5A) GIFR INTF1 INTFO INTF2 = — — — — 71
$39 ($59) TIMSK OCIE2 TOIE2 TICIEL OCIE1A OCIE1B TOIE1 OCIEOQ TOIEO 87,117, 136
$38 ($58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOVO 87,117, 136
$37 ($57) SPMCR SPMIE RWWSB — RWWSRE BLBSET PGWRT PGERS SPMEN 264
$36 ($56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN — TWIE 202
$35 ($55) MCUCR SE SM2 SM1 SMO ISC11 ISC10 1ISCO1 1ISC00 36, 69
$34 ($54) MCUCSR JTD 1ISC2 - JTRF WDRF BORF EXTRF PORF 42, 70, 251
$33 ($53) TCCRO FOCO WGMO00 COMO01 COMO00 WGMO1 CS02 CS01 CS00 84
$32 ($52) TCNTO Timer/CounterO (8 Bits) 86

OSCCAL Oscillator Calibration Register 32
$310 ($51)™ - -

OCDR On-Chip Debug Register 232
$30 ($50) SFIOR ADTS2 ADTS1 ADTSO - ACME PUD PSR2 PSR10 66,90,137,206,226
$2F ($4F) TCCR1A COM1AL COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 112
$2E ($4E) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 114
$2D ($4D) TCNT1H Timer/Counterl — Counter Register High Byte 116
$2C ($4C) TCNTI1L Timer/Counterl — Counter Register Low Byte 116
$2B ($4B) OCR1AH Timer/Counterl — Output Compare Register A High Byte 116
$2A ($4A) OCRI1AL Timer/Counterl — Output Compare Register A Low Byte 116
$29 ($49) OCR1BH Timer/Counterl — Output Compare Register B High Byte 116
$28 ($48) OCRI1BL Timer/Counterl — Output Compare Register B Low Byte 116
$27 ($47) ICR1H Timer/Counterl — Input Capture Register High Byte 116
$26 ($46) ICR1L Timer/Counterl — Input Capture Register Low Byte 116
$25 ($45) TCCR2 FOC2 | WGM20 | COM21 COM20 WGM21 CS22 Cs21 CS20 132
$24 ($44) TCNT2 Timer/Counter2 (8 Bits) 135
$23 ($43) OCR2 Timer/Counter2 Output Compare Register 135
$22 ($42) ASSR — — — — AS2 TCN2UB OCR2UB TCR2UB 135
$21 ($41) WDTCR = = = WDTOE WDE WDP2 WDP1 WDPO 43

$200 ($40)(2) UBRRH URSEL — — — UBRR[11:8] 171
UCSRC URSEL UMSEL UPM1 UPMO USBS UCSZ1 UCSZ0 UCPOL 170

$1F ($3F) EEARH — — — — — — EEAR9 EEARS 20
$1E ($3E) EEARL EEPROM Address Register Low Byte 20
$1D ($3D) EEDR EEPROM Data Register 21
$1C ($3C) EECR — — — — EERIE EEMWE EEWE EERE 21
$1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAO 66
$1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDAl DDAO 66
$19 ($39) PINA PINA7 PINAG PINAS PINA4 PINA3 PINA2 PINA1 PINAO 66
$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO 67
$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO 67
$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO 67
$15 ($35) PORTC PORTC7 PORTC6 PORTCS5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO 67
$14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO 67
$13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO 67
$12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO 67
$11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO 67
$10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO 68
$OF ($2F) SPDR SPI Data Register 145
$OE ($2E) SPSR SPIF WCOL = = — — — SPI2X 145
$0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO 143
$0C ($2C) UDR USART /O Data Register 167
$0B ($2B) UCSRA RXC TXC UDRE FE DOR PE U2x MPCM 168
$0A ($2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 169
$09 ($29) UBRRL USART Baud Rate Register Low Byte 171
$08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACISO 206
$07 ($27) ADMUX REFS1 REFS0O ADLAR MUX4 MUX3 MUX2 MUX1 MUXO 222
$06 ($26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO 224
$05 ($25) ADCH ADC Data Register High Byte 225
$04 ($24) ADCL ADC Data Register Low Byte 225
$03 ($23) TWDR Two-wire Serial Interface Data Register 203
$02 ($2_2) TWAR TWAB TWAS TWA4 TWA3 TWAZ TWA;L TWAQ TWGCE 204
$01 ($21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 = TWPS1 TWPSO 203
§00 ‘gZOI TWBR Two-wire Serial Interface Bit Rate Register 201

ATmega32A [DATASHEET] 315

8155D-AVR-10/2013



Notes: 1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debug-
ger specific documentation for details on how to use the OCDR Register.
2. Refer to the USART description for details on how to access UBRRH and UCSRC.
3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

4. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the 1/0 Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.

AT 32A [DATASHEET 316
Atmel megas2A [ ]

8155D-AVR-10/2013



30. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd « Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd« Rd+Rr+C Z,C,N\V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl - Rdh:Rdl + K Z,CN\V,S 2
SUB Rd, Rr Subtract two Registers Rd <~ Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd < Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd« Rd-Rr-C Z,C,N,\V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd« Rd-K-C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl < Rdh:Rdl - K Z,CN,\V,S 2
AND Rd, Rr Logical AND Registers Rd < Rd e Rr ZN\V 1
ANDI Rd, K Logical AND Register and Constant Rd < Rd ¢ K ZN\V 1
OR Rd, Rr Logical OR Registers Rd < Rd v Rr ZN,V 1
ORI Rd, K Logical OR Register and Constant Rd < Rdv K ZN\V 1
EOR Rd, Rr Exclusive OR Registers Rd < Rd ® Rr ZN,V 1
COM Rd One's Complement Rd « $FF — Rd Z,C,NV 1
NEG Rd Two’'s Complement Rd « $00 - Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd < Rdv K ZN\V 1
CBR Rd,K Clear Bit(s) in Register Rd < Rd e ($FF - K) Z,N,V 1
INC Rd Increment Rd« Rd+1 ZN\V 1
DEC Rd Decrement Rd« Rd-1 ZNV 1
TST Rd Test for Zero or Minus Rd <~ Rd « Rd ZNV 1
CLR Rd Clear Register Rd « Rd ® Rd ZN\V 1
SER Rd Set Register Rd « $FF None 1
MUL Rd, Rr Multiply Unsigned R1:RO « Rd x Rr z,C 2
MULS Rd, Rr Multiply Signed R1:RO < Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0O «- Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:RO « (RdxRr)<<1 zC 2
FMULS Rd, Rr Fractional Multiply Signed R1:RO «— (RdXx Rr) <<'1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:RO « (RdxRr)<<1 z,C 2
BRANCH INSTRUCTIONS

RIMP k Relative Jump PC«PC+k +1 None 2
1IIMP Indirect Jump to (Z) PC«Z None 2
JMP k Direct Jump PC « k None 3
RCALL k Relative Subroutine Call PC« PC+k+1 None 3
ICALL Indirect Call to (Z) PC«Z None 3
CALL k Direct Subroutine Call PC <k None 4
RET Subroutine Return PC « Stack None 4
RETI Interrupt Return PC « Stack | 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd=Rr) PC« PC+2o0r3 None 1/2/3
CP Rd,Rr Compare Rd - Rr Z,N,V,CH 1
CPC Rd,Rr Compare with Carry Rd-Rr-C Z,N,V,CH 1
CPI Rd,K Compare Register with Inmediate Rd - K Z,N,V,CH 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC « PC +20r3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC «~ PC + 2 or 3 None 1/2/3
SBIC P, b Skip if Bit in 1/0 Register Cleared if (P(b)=0) PC <~ PC+2o0r3 None 1/21/3
SBIS P,b Skip if Bit in I/O Register is Set if (P(b)=1) PC« PC+2o0r3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC«-PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC«—PC+k + 1 None 1/2
BREQ k Branch if Equal if (Z=1)thenPC« PC+k+1 None 1/2
BRNE k Branch if Not Equal if (Z=0)then PC« PC+k+1 None 1/2
BRCS k Branch if Carry Set if C=1)then PC« PC+k+1 None 1/2
BRCC k Branch if Carry Cleared if (C=0)then PC« PC+k+1 None 1/2
BRSH k Branch if Same or Higher if (C=0)then PC« PC+k+1 None 1/2
BRLO k Branch if Lower if C=1)then PC« PC+k+1 None 1/2
BRMI k Branch if Minus if (N=1)then PC« PC+k+1 None 1/2
BRPL k Branch if Plus if (N=0)then PC« PC+k+1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N®V=0)thenPC« PC+k+1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N®V=1)then PC« PC+k+1 None 1/2
BRHS k Branch if Half Carry Flag Set if(H=1)then PC« PC+k+1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H=0)then PC« PC+k+1 None 1/2
BRTS k Branch if T Flag Set if (T=1)then PC« PC+k +1 None 1/2
BRTC k Branch if T Flag Cleared if (T=0)then PC« PC+k+1 None 1/2
BRVS k Branch if Overflow Flag is Set if(V=1)thenPC« PC+k+1 None 1/2

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

317



Mnemonics Operands Description Operation Flags #Clocks
BRVC k Branch if Overflow Flag is Cleared if (V=0)thenPC« PC+k+1 None 1/2
BRIE k Branch if Interrupt Enabled if(1=1)thenPC« PC+k+1 None 1/2
BRID k Branch if Interrupt Disabled if (1=0)then PC« PC+k+1 None 1/2
DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd < Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd « Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd « K None 1
LD Rd, X Load Indirect Rd « (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd « (X), X« X+1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X« X-1,Rd « (X) None 2
LD Rd, Y Load Indirect Rd « (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd« (Y), Y« Y+1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y« Y-1,Rd <« (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd « (Y +Q) None 2
LD Rd, Z Load Indirect Rd « (2) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd « (2), Z« Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z<«Z-1,Rd« (2) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd « (Z+q) None 2
LDS Rd, k Load Direct from SRAM Rd « (k) None 2
ST X, Rr Store Indirect (X) « Rr None 2
ST X+, Rr Store Indirect and Post-Inc. X) <~ R, X« X+1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X« X-1,(X) < Rr None 2
ST Y, Rr Store Indirect (Y) <« Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. Y)«<RrnY«Y+1 None 2
ST -Y,Rr Store Indirect and Pre-Dec. Y« Y-1,(Y)«<Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y+q) «Rr None 2
ST Z, Rr Store Indirect (Z) < Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z)«Rr,Z«7Z+1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z«Z-1,(Z)« Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z+q) < Rr None 2
STS k, Rr Store Direct to SRAM (k) « Rr None 2
LPM Load Program Memory RO « (2) None 3
LPM Rd, Z Load Program Memory Rd « (2) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd « (2), Z « Z+1 None 3
SPM Store Program Memory (Z) « R1:RO None -
IN Rd, P In Port Rd « P None 1
ouT P, Rr Out Port P« Rr None 1
PUSH Rr Push Register on Stack Stack « Rr None 2
POP Rd Pop Register from Stack Rd « Stack None 2
BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in /0 Register 1/0(P,b) «— 1 None 2
CBI P,b Clear Bit in I/0 Register 1/0(P,b) « 0 None 2
LSL Rd Logical Shift Left Rd(n+1) <~ Rd(n), Rd(0) «- 0 Z,C NV 1
LSR Rd Logical Shift Right Rd(n) « Rd(n+1), Rd(7) « 0 Z,CNV 1
ROL Rd Rotate Left Through Carry Rd(0)«—C,Rd(n+1)« Rd(n),C«Rd(7) Z,C,NV 1
ROR Rd Rotate Right Through Carry Rd(7)«-C,Rd(n)«- Rd(n+1),C«-Rd(0) Z,CN,V 1
ASR Rd Arithmetic Shift Right Rd(n) « Rd(n+1), n=0:6 Z,C,NV 1
SWAP Rd Swap Nibbles Rd(3:0)«—Rd(7:4),Rd(7:4)«Rd(3:0) None 1
BSET s Flag Set SREG(s) « 1 SREG(s) 1
BCLR s Flag Clear SREG(s) « 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T < Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) « T None 1
SEC Set Carry C«1 C 1
CLC Clear Carry C«0 C 1
SEN Set Negative Flag N« 1 N 1
CLN Clear Negative Flag N« 0 N 1
SEZ Set Zero Flag Z«1 Y4 1
CLZ Clear Zero Flag Z<«0 z 1
SEI Global Interrupt Enable l«1 | 1
CLI Global Interrupt Disable <0 | 1
SES Set Signed Test Flag S« 1 S 1
CLS Clear Signed Test Flag S« 0 S 1
SEV Set Twos Complement Overflow. Vel \ 1
CLV Clear Twos Complement Overflow V<0 Vv 1
SET Set T in SREG T« 1 T 1
CLT Clear T in SREG T« 0 T 1
SEH Set Half Carry Flag in SREG He1 H 1
CLH Clear Half Carry Flag in SREG H«O0 H 1

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

318



Mnemonics Operands Description Operation Flags #Clocks
MCU CONTROL INSTRUCTIONS

NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1
BREAK Break For On-Chip Debug Only None N/A

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

319



31. Ordering Information

Speed (MHz) Power Supply Ordering Code® Package® Operational Range
ATmega32A-AU 44A
SATmega32A-AUR® 44A )
Industrial
ATmega32A-PU 40P6 (-40°C to 85°C)
ATmega32A-MU 44M1
16 27V - 5.5V ATmega32A-MUR®) 44M1
ATmega32A-AN 44A
ATmega32A-ANRC) 44A Extended
ATmega32A-MN 44M1 (-40°C to 105°C)¥
ATmega32A-MNR®) 44M1

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.

3. Tape & Reel
4. See Appendix A ATmega32A 105°C

Package Type

44A 44-lead, 10 x 10 x 1.0mm, Thin Profile Plastic Quad Flat Package (TQFP)
40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)
44M1 44-pad, 7 x 7 x 1.0mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

Atmel

ATmega32A [DATASHEET] 320

8155D-AVR-10/2013



32. Packaging Information

32.1 44A
PIN 1 IDENTIFIER
AR
PINT —| L W
= = B
e i f— =
475 EI E1 E
IR
e D —
¢ B 1
A/T\ii(ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ \7 L V *
A A1J A2 LA
—| |- L
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
A - - 1.20
Al 0.05 - 0.15
A2 0.95 1.00 1.05
D 11.75 12.00 12.25
D1 9.90 10.00 10.10 Note 2
E 11.75 12.00 12.25
Notes:
1. This package conforms to JEDEC reference MS-026, Variation ACB. El 9.90 10.00 10.10 | Note 2
2. Dimensions D1 and E1 do not include mold protrusion. Allowable B 0.30 0.37 0.45
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum c 0.09 017 020
plastic body size dimensions including mold mismatch. : ©.17) .
3. Lead coplanarity is 0.10mm maximum. L 0.45 0.60 0.75
e 0.80 TYP
2010-10-20
hard Park TITLE DRAWING NO. REV.
AImEl, gzisjoosgc Ca'g 9P5a1r3\1/vay 44A, 44-lead, 10 x T0mm body size, 1.0mm body thickness, 44A C
© ! 0.8 mm lead pitch, thin profile plastic quad flat package (TQFP)
ATmega32A [DATASHEET] 321
Atmel

8155D-AVR-10/2013



32.2 40P6

PIN
111 M rrr 111

(] =

LI oo LT

]
T:Wi R

ki
COMMON DIMENSIONS

c \ / 02~ 15° REF (Unit of Measure = mm)
= SYMBOL| MIN NOM | MAX | NOTE
|<— eB —>| A - - 4.826
Al 0.381 - -
D 52.070 - 52.578 | Note 2
E 15.240 - 15.875
E1 13.462 - 13.970 | Note 2
B 0.356 - 0.559
Notes: B1 1.041 - 1.651
1. This package conforms to JEDEC reference MS-011, Variation AC. L 3.048 - 3.556
2. Dimensions D and E1 do not include mold Flash or Protrusion. c 0203 _ 0.381
Mold Flash or Protrusion shall not exceed 0.25mm (0.010"). : :
eB 15.494 - 17.526
e 2.540 TYP
09/28/01
TITLE DRAWING NO. |REV.
ATMEL 2325 Orchard Parkway | 4506 40-jead (0.600"/15.24mm Wide) Plastic Dual 40P6 5
> San Jose, CA 95131 Inline Package (PDIP)

AT 32A [DATASHEET 322
Atmel megas2A [ ]

8155D-AVR-10/2013



32.3 44M1
< @ >
— I
O\_ !
Marked Pin# 1 1D q
d
u
u
(E] '
d
u
u
u
d
A P—SEATING PLANE
TOP VIEW @
->
K] P
[L]> - .
— R N Pin #1 Corner SIDE VIEW
7 \
:JUUUUUUUUUU \ _
. 1 ! optiona Pnit COMMON DIMENSIONS
[ == N = -2 (Unit of Measure = mm)
=] N s
— sl SYMBOL| MIN | NOM | MAX | NOTE
= = g A 080 | 090 | 1.00
— (= OptionB o A1 - 002 | 0.05
Chamf
- = (C 0.30) A3 0.20 REF
vy D ) b 0.18 0.23 0.30
— (e
D 6.90 7.00 710
T L0
K nanaaannna Pin #1 D2 | 500 | 520 | 540
*‘ L—IEI *‘ L—IEI o) E 690 | 7.00 | 7.10
BOTTOM VIEW E2 | 500 | 520 | 5.40
0.50 BSC
0.59 0.64 0.69
Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3. K 0.20 0.26 0.41
9/26/08
TITLE GPC DRAWING NO. |REV.
‘ I“El® packagedrawings @atmel.com | pitch 0.50mm,5.20mm exposed pad, thermally ZWS 44M1 H
enhanced plastic very thin quad flat no
lead package (VQFN)

AT 32A [DATASHEET 323
Atmel megas2A [ ]

8155D-AVR-10/2013



33. Errata

33.1 ATmega32A,rev. Gto rev. |
* First Analog Comparator conversion may be delayed
* Interrupts may be lost when writing the timer registers in the asynchronous timer
* IDCODE masks data from TDI input
* Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising V¢, the first Analog Comparator conversion will take longer than
expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator before the first
conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous
Timer/Counter register (TCNTX) is 0x00.

Problem Fix/Workaround
Always check that the asynchronous Timer/Counter register neither have the value OxFF nor 0x00 before writ-

ing to the asynchronous Timer Control Register (TCCRXx), asynchronous Timer Counter Register (TCNTX), or
asynchronous Output Compare Register (OCRX).

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by all-ones
during Update-DR.

Problem Fix / Workaround
— If ATmega32A is the only device in the scan chain, the problem is not visible.
— Select the Device ID Register of the ATmega32A by issuing the IDCODE instruction or by entering the
Test-Logic-Reset state of the TAP controller to read out the contents of its Device ID Register and

possibly data from succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega32A while reading the Device ID Registers of preceding devices of the boundary scan chain.

— If the Device IDs of all devices in the boundary scan chain must be captured simultaneously, the
ATmega32A must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register triggers an
unexpected EEPROM interrupt request.

Problem Fix / Workaround
Always use OUT or SBI to set EERE in EECR.

AT 32A [DATASHEET 324
Atmel megas2A [ ]

8155D-AVR-10/2013



34. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in
this section are referring to the document revision.

34.1 Rev. 8155D —-10/13

Added nominal values for symbol B, C and L in the TQFP-44 package drawing, “44A” on page
321.

34.2 Rev. 8155C - 02/11

1. Updated the datashee according to the Atmel new brand style guide (new logo, last page, etc).

2. Inserted note in “Performing Page Erase by SPM” on page 241 .

3 Note 6 and Note 7 below Table 27-2, “Two-wire Serial Bus Requirements,” on page 281 have
been removed.

4. Updated “Ordering Information” on page 320 to include Tape & Reel and 105°C devices.

5. Updated all “Typical Characteristics” .

34.3 Rev. 8155B - 07/09

1. Updated “Errata” on page 324.

2. Updated the last page with Atmel’'s new addresses.

34.4 Rev. 8155A - 06/08

1. Initial revision (Based on the ATmega32/L datasheet 2503N-AVR-06/08)

Changes done compared ATmega32/L datasheet 2503N-AVR-06/08:

- Updated description in “Stack Pointer” on page 11.

- All Electrical characteristics is moved to “Electrical Characteristics” on page 296.
- Register descriptions are moved to sub sections at the end of each chapter.

- Test limits of Reset Pull-up Resistor (Rgs7) in “DC Characteristics” on page 296.
- New graphs in “Typical Characteristics” on page 306.

- New “Ordering Information” on page 339.

AT 32A [DATASHEET 325
Atmel megas2A [ ]

8155D-AVR-10/2013



AT 32A [DATASHEET 326
Atmel megas2A [ ]

8155D-AVR-10/2013



Table of Contents

FRALUIES ot 1

1 Pin ConfigurationsS .....oooeuiiiiiiiiiiiiii e e e e e e e e e e e e eaaaanen 2
2 © 1V 7= = P 3
2.1 [ oTod 1 - To - o o PP 3

2.2 T I TSl o) o) U 4

G T (=TS o U 1 o = PP 5
4 Data ReteNTION ..ouueiiiiii e 5
5 About Code EXamPIES ...ccooiiiiiii i 6
6  AVR CPU COr ot e e e eens 7
6.1 OVEIVIBW ittt ettt ettt e ettt e s sttt e e skttt e e s s bbbt e e s snbbe e e e e s snbbb e e e e s nnneneaenan 7

6.2 ALU — Arithmetic LOGIC UNIt .....uuuiiieieiiieec e e e e e e e e 8

6.3 S =0 S (T 1 (= SRS 8

6.4 General Purpose Register File ..........ooooiiiiiiiiiicc e 9

6.5 SEACK POINLET ..t snaaeeees 11

6.6 Instruction EXeCUtion TiMING .....ceereiiiiieeoiiiiiiiiiiieeer e e e e e e e s esssneernereerreeeeee e 12

6.7 Reset and Interrupt HaNAIING ......oevvviiiiiiiiiieeee e 13

A ANV = 1Y =10 0 Lo T = SO 15
7.1 OVEIVIBW ..ttt ettt e ettt ettt e e s ettt et e e s bbbt e e s sttt et e e s s bbb e e e e s snbbbeeeesnnneneeas 15

7.2 In-System Reprogrammable Flash Program Memory ........cccccccevveeeeeeeneiiinnnnn, 15

7.3 ST RNV = = W 1Y =T o 0o Y 15

7.4 EEPROM Data MEMOIY ....oooeiiiiiiiiiiiiiiiiiiies s e e e e e e e e e e e e e e e eeeeeenereenennnnnnnanns 17

7.5 (1L 1Y =0 310 Y PP PUPPRTPPRRN 19

7.6 REgiISter DESCIIPLION ...iiiiiiiiiee it ettt e e e et e e e s s bt e e e s sneraeeeenan 19

8 System Clock and ClIock OPLtioNS ......eceeiiiiiiieieeeeeeeeeeee e 24
8.1 Clock Systems and their Distribution ..........ccccoocvveiiiiii e 24

8.2 ClOCK SOUICES ..eeiiiiiiiiiie ettt sttt s st e e e s e e e s bt e e e s anneneeas 25

8.3 Default CIOCK SOUMCE ......uviiiie ittt ettt e et e e e s straeeeenan 25

8.4 Crystal OSCHlAOr ...ciiieiiiee it e e seeaees 25

8.5 Low-frequency Crystal OSCIlIAtor ............oooiiiiiiieiiiiiiee e 27

8.6 External RC OSCIlIAIOr .........coiiiiiiiiiieiiiiiie ettt niaaee e 27

8.7 Calibrated Internal RC OSCIllAtor .........c..evvviiiiiiiiieiiiiiiiee e 28

8.8 EXTEINAL CIOCK w.iiiiiiiiiiiie ettt e e et e e e s sntbeeeeeeas 29

8.9 TiMer/Counter OSCIllATOr .........uvviiiiiiiii e 30

ATmega32A [DATASHEET i
Atmel gasAl ]

8155D-AVR-10/2013



8.10  RegiSter DESCIIPLON ....vviiieiiiiiiie ettt e e e e 31
9 Power Management and Sleep MOUES ........ccccvvvieeiiiiiiiiiiicie 32
9.1 SIEEP MOUES ....veiiieiiiiiiie ettt e e e s e e e e bbb e e e s snaree s 32
9.2 [AI€ MOAE ...t 32
9.3 ADC Noise RedUCtion MOUE .........c.ceeiiiieiiiiie e e 33
9.4 POWET-AOWN MOOE ..ot 33
9.5 POWET-SAVE MOUE ....oooiiiiiiiii it 33
9.6 STANADY MOUE ..eiiiiiiiiiiie e et e e nnaaee s 33
9.7 Extended Standby MOOE .........ccuviiiiiiiiiiiee e 34
9.8 Minimizing Power CONSUMPLION .....ocuvviiieiiiiiiiee st e s siieee et ee e eiraeee e 34
9.9 REQiISter DESCIIPLION ..iiiiiiiiiiee ittt e et e e et e e e s s bt e e e s snbbeeeaeean 35
10 System Control and RESEL ........ooiviiiiiiiiiiii e 37
10.1  ReSetting the AVR ..o 37
10.2  RESELSOUICES ...cocoiiiiiitiiie ittt 37
10.3  Internal Voltage REfEIENCE ......cccoiiiiiiiieiiiiiiiee e 40
IO TR VA1 (ol oo [o o N N 1 1= TSP 41
10.5  ReQIStEr DESCHPLION ...uuviiiiiiiiiiiie ittt e e s e bae e e s e ebae e e e e eneees 41
11 INTEITUPTS oo e e e e e e e e r e e e e 44
11.1  Interrupt Vectors in ATMEGA32A .......oeiiiiiiiiiiee it 44
N A = L To 153 () gl BT od ] ) o ] o H PRSP 47
12 1O POTTS oottt 49
12,1 OVEIVIEW oeeiieiiiie ettt etttk e st e bt e s ek e e e ab e e snb e e e s be e e s abne e e snneeenans 49
12.2  Ports as General Digital 1/O .........oocuiiiiiiiiiiie e 50
12.3  Alternate Port FUNCHONS ......coocuiiiiiiieiiiie it 54
D2 S = L To 153 () gl BT Tod ] ) o ] o H PRSP 63
13 EXEernal INTEITUPES ..ottt e e 66
IR 700 R = L= To [ 153 () gl BT Tod ] ) o o H PSP 66
14 8-bit Timer/CounterO With PWM ... 69
T4.1  FEALUIES ..oiiiiiiiiiiii ittt e e 69
L4.2  OVEIVIEW .ottt ettt ettt e e st e bt e e ek e e s an e e e snb e e e s be e e s abne e e snbeeennns 69
14.3  Timer/Counter CIOCK SOUICES .....ccuvieiiiiieiiiieeiiee ettt 70
144 COUNET UNIT .eiiiiiiiiieiiie ettt e b e e 70
145  Output ComMPAre UNI ......eiiiiiiiiiie ittt s snbae e e 71
14.6  Compare Match OUIPUL UNIT ....cooiiiiiiiieiiiiiiee st 72
14.7  MoOdES Of OPEIAtION .....uvviieiiiiiiiie e it e et e e sttt e e e et ar e e s e s ebae e e e s aneees 73
Atmel ATmega32A [DATASHEET] i

8155D-AVR-10/2013



14.8  Timer/Counter Timing DIagrams ..........oveiiiiiiieeiiiiiieee et 77
I T = Lo 153 () gl BT Tod ] ) o o H PRSPPI 79
15 Timer/CounterO and Timer/Counterl Prescalers ........ccccoccveeeevvenneeennn. 83
15,1 OVEIVIEW oeeiieiiiiieiiee ettt ettt et e et e ek e e e e hn e e e snb e e e e be e e e abne e e snneeenaes 83
15.2  Internal ClIOCK SOUICE .......cueiiiiiiieiiiie ettt 83
15.3  PreSCaler RESEL ......oiiiiiiiiiiie ittt 83
15.4  EXternal CIOCK SOUICE ......cuiiiiiiiiiiiiie ittt 83
155  ReQIStEr DESCHPLON ...vuviiiiiiiiiiiie ittt et e et e e s s sebae e e e e eneees 85
16 16-Dit TIMEr/COUNTEIL ....oiiiiiiiiiiiiiiieie e 86
16,1 FEALUIES ..oiiiiiiiiiiii i 86
L16.2  OVEIVIEW .oeeiieiiiii ettt ettt ettt ekt e e st e et et e s ek e e e s an e e sn b n e e e be e e s abne e e snbeeenns 86
16.3  AcCCEeSSING 16-Dit REGISIEIS ....vviiiiiiiiiiiie i 88
16.4  Timer/Counter CIOCK SOUICES ......cueieiiiiieiiiieeiiee ettt 91
16.5  COUNET UNIT .oiiiiiiiiieiiie ettt r e 91
16.6  INPUL Capture UNIT ..o.cooeeiiieiiiiiiee et s s e e e 92
16.7  Compare Match OUIPUL UNIT ....cooiiiiiiiiiiiiiiiee e 96
16.8  MOdES Of OPEIAtiON ......eeeiiiiiiiiiiieeiiiiiite e ettt et e e e e re e e s e snbae e e e e eneees 97
16.9  Timer/Counter Timing DIagrams ........ccceeiiiiiiieeiiiiiiee et 104
16.10 RegIStEr DESCHPLION ...vvviiieiiiiiiiee ittt e et re e e et e e e st ee e e s stbeeeeesanees 105
17 8-bit Timer/Counter2 with PWM and Asynchronous Operation ....... 112
17.1  FEALUIES ..oiiiiiiiiiiiiiie i 112
L17.2  OVEIVIEW ..oetiieiiiieiitie ettt ekttt ettt e e b e e s b et e st e e e s nbn e e sbr e e s anreeenns 112
17.3  Timer/Counter CIOCK SOUICES ......cuvveiiirieiiiiiieiieee st et 113
17.4  COUNEE UNIT .oiiiiiiiiiciiic ettt rr e nnnee e 113
17.5  Output ComMPAare UNIt .....cieoiiiiiiies et e e 114
17.6  Compare Match OUIPUL UNIE ......ooiiiiieeiiiiiiieee et 116
17.7  Modes Of OPEratiON .......ccceiiiiiiiieeiiiiiie ettt e e e e e e e e nneees 116
17.8  Timer/Counter Timing DIagrams ........ccoeiiiiiiieeiiiiiiee et 120
17.9  Asynchronous Operation of the Timer/COUNter ..........cccccevviiiveeeeiiiieeeeeeiinn, 122
17.10  TiIimMer/CouNnter PreSCAIET ........cccviiiiiiiiiieiiiiee st 124
17.11 ReQISter DESCHPLION ...vvviiieiiiiiiiee it ee e sttt et ee e e et e e e s st e e e s sbbeeeeesanees 124
18 SPI — Serial Peripheral Interface .......ccccccoiiiiiiiiiiiiiieeeeeeee 129
18,1  FEALUIES ..oiiiiiiiiiiiiiie e e 129
18.2  OVEIVIEW ..oitiieiiiieitit ettt ettt ettt ettt et e e st e e s bt e s sbe e e s be e e e snbe e e snre e e s anneeans 129
18.3  SS PiN FUNCHONAIY .....v.veeveceeeeeeeeeeee oo ene e 134
Atmel ATmega32A [DATASHEET] ii

8155D-AVR-10/2013



18.4  Data MOUES .....oiieiiiiieiiiie ettt 136
S T U 10 L N 138
191 FEALUIES ..oiiiiiiiiiiiiiie e 138
19.2  OVEIVIEW ..eitiieiiiie ittt ettt ettt ettt et e e st e e s bt e s ebe e e s abn e e e snb e e e anreeesnnneeans 138
19.3  ClOCK GENEIALION ....ooiiiiiiiiiiieeiiie ettt ettt e s nnnee e 140
19.4  Frame FOrMALS .........oooiiiiiiiiiiiiiee e 142
19.5  USART INHANIZALION ....eeeiiiiiiiiiiie et 143
19.6  Data Transmission — The USART TranSMitter ..........cccceeriveeiniieeenieneniineeenns 144
19.7 Data Reception — The USART RECEIVEN ......cccvvieeeiiiiiiiieeiiiiiiee et 147
19.8  Asynchronous Data RECEPLON ......c..ceeeiiiiiieeeiiiiiiie et 151
19.9  Multi-processor Communication Mode ...........cccccveeiiiiiiiieeeiiiiiee e 154
19.10 Accessing UBRRH/ UCSRC REQISIEIS ......coveiiiiiiiieeiiiiiie e iiiiee et e e 154
19.11 RegISter DESCHPLION ..vviiiiiiiiiiiiee e ittt e et e e e st e e e s srbaeeeesnnees 156
19.12 Examples of Baud Rate Setting ......cc.ceveeiiiiiiieiiiiiiie et sriiiee e 161
20 Two-wire Serial INterface .........ccoooiiiiiiiiiii e 165
20.1  FEAUIMNES ..ottt 165
20.2  Two-wire Serial Interface Bus Definition ..........cccceoiiiieiiiieniiie e 165
20.3 Data Transfer and Frame FOrMaLt ..........ccccoiiireiiiiiniiie e 166
20.4  Multi-master Bus Systems, Arbitration and Synchronization .............ccccce...u. 168
20.5  Overview of the TWI MOAUIE .......coceiiiiiiiiiii e 170
20.6  USING The TWI oottt seaaee e 172
20.7  TransmiSSiON MOOES ......ccocuiiiiiiiiiiiee ittt sree e 174
20.8  Multi-master Systems and Arbitration ...........cccoicvviieee i 185
20.9  RegiSter DESCIIPLON ...iiuiiiiiiiiiiiiie ettt e et e e st e e e s st ee e e snreeeeeeans 187
21 ANalog COMPArator .....oooooiiiiiiiii e 191
211 OVEIVIEW oot ettt ettt ettt e sttt e bt e skt et e e e st e e et e e s nb et e snbe e e snbneeannees 191
21.2  Analog Comparator Multiplexed INPUL .........ooooiiiiiiiieniiiiiee e 191
21.3  RegiSter DESCIIPLON ...iiuiiiiiiiiiiiiee ettt et e et e e e s s e e e e snbreeeeeans 192
22 Analog to Digital CONVEIter ......cccciiiiiiiiiiiieeeeeeee e 194
22. 1 FEAMUIMNES ..ttt 194
22.2  OVEIVIEW eiiiiieitie ettt ettt sttt e bt e ket et e e st e e et e s s e e e nnbe e e nnbe e e e nneas 194
P T O o 1= - 1110 ] [ PSP PP 195
22,4 Starting @ CONVEISION ......ciieiiiiiieeesiiiiiee e s iiieee e e s atbeeeeesstbreeeesssbreeeesanreeeeesans 196
22,5 Prescaling and Conversion TIMING ........oocueeeeeriiirieeesiiieeeee e siieeeeessinneeee s 197
22.6  Changing Channel or Reference Selection .........ccccccocviieeeiiiiiiieee i 200
Atmel ATmega32A [DATASHEET] iv

8155D-AVR-10/2013



22.7  ADC NOISE CANCEIET ....eiiiiiiiiiiii ettt 201
22.8  ADC CONVErSION RESUIL ......veiiiiiieiiiie et 204
22.9  RegiSter DESCIIPLION ...iiuviiiiiiiiiiiee ettt e et e et e e st e e e e s e ee e s snraeeeeeans 206
23 JTAG Interface and On-chip Debug System ..........cccooiiiiiiiiiiiiiinnne. 211
23. 1 FEAMUIMNES ..ttt 211
23,2 OVEIVIEW oiiiieitie ettt etttk e bt e skt e ettt e s bt e et e s s et e nnb e e e snbe e e e nnees 211
23.3  TAP —TeSt ACCESS POIt ......oiiiiiiiiiiiiiei 211
23,4 TAP CONIOIET .eeiiiiiiiiiete ettt e e 213
23.5 Using the Boundary-scan Chain ........cccccooiuiiieiiiiiiiiiie e 214
23.6  Using the On-chip Debug SyStem .........coocoiiiiiiiiiiiiee e 214
23.7  On-chip Debug Specific JTAG INSIIUCLIONS ......cccvvvieeiiiiiieee st 215
23.8  Using the JTAG Programming Capabilities ..........ccccceevviiiiieeiiiiiiieeeeiiiiieeeens 215
23.9  RegiSter DESCIIPLON ...iiuviiieiiiiiiiee ettt e ettt e et ee e st e e e s st ee e s snbeeeeeeans 216
P22 I K =11 o] oo | =T o] 0|2 R PRPORPPRR 216
24 |EEE 1149.1 (JTAG) BOUNAry-SCaN ....coevriiiiiiiiiiiieeeeaeeeeeeee i 216
24.1  FEAMUIMNES ..ottt 216
24,2 OVEIVIEW .iiiieiiie e ittee ettt ettt sttt et e sttt e sttt e st e e et e e e s s e e e nnbe e e nnbeeeennees 216
24.3  Dat@ REQISIEIS ...iviiiie ettt ettt e st e e s st e e e s st e e e s eee e e e 217
24.4  Boundary-scan Specific JTAG INSIIUCLIONS .......ceevveeviiiiiieee i 218
245  Boundary-SCan Chain .........cocciiiiieiiiiiieee e e e ee e 219
24,6 ATmega32A Boundary-SCan OFdEr .......ccccccveeeriiiiieieeiiiiiieeessiieee e s snieeee e 229
24.7  Boundary-scan Description Language Files ........ccccccoviiieeeeiiiiiiee e 234
24.8  RegiSter DESCIIPLON ...iiuviiiieiiiiiiee et e et e e st e e e s s ee e e snbneeeeeans 234
25 Boot Loader Support — Read-While-Write Self-Programming ......... 235
25.1  FEAMUIMNES ..ttt e 235
25,2 OVEIVIEW oviiiieiiie ittt ettt et et e ke e s bt e e s n e e e snb e e ebneesbne e e snnee s 235
25.3  Application and Boot Loader Flash Sections ..........cccccccvvveeiiiiiiiineeiiiiiiee e 235
25.4  Read-While-Write and no Read-While-Write Flash Sections ..........c..ccocee. 235
25.5  BO0Ot LOAdEr LOCK BitS ....cccviiiiiiieiiiie ettt 238
25.6  Entering the Boot Loader Program ..........cccccceeiiiiiiieeeiiiieee e ssiiiee e e siieeee e 239
25.7  Addressing the Flash during Self-Programming ...........cccccceevviiiiienesiniieeeennnns 240
25.8  Self-Programming the FIash ..o 241
25.9  RegiSter DESCIIPLION ...iiuuiiiiiiiiiiiee ettt e s ertiee e et e e st e e e e st e e e e snbreeeeeans 246
26 Memory Programming .....ooooooooiiimimiiiiiieiieeeee e e e e 248
26.1  Program And Data Memory LOCK BitS ........ccccccoeviiiiieiiiiiiiieeeiiiieee e siieee e 248
Atmel ATmega32A [DATASHEET] v

8155D-AVR-10/2013



26.2  FUSE BIIS tiiiiiiiiiie ittt 249
26.3  SIgNALUIE BYLES ...ueiiiiiiiiiiiiie ittt 250
26.4  Calibration BYLE .......ccciicuiiiiiiiiiiiee sttt e e esiiee et e e e et e e ee e e 250
26.5  PAJE SIZE .ieeiiiiiiiiiiie et 250
26.6  Parallel Programming Parameters, Pin Mapping, and Commands ............... 251
26.7  Parallel Programming ........ccooiieeieeoiiiieeeeeiiieee e siieeeesssieeeeesssseeeeessnnsseeeesans 252
26.8  SPI Serial DOWNIOAAING ....ccoivviiiieiiiiiiee ettt e ettt e e e st e e e s sibaee e e s sbaeeeeesanes 260
26.9  SPI Serial Programming Pin Mapping .....c.cceeeiiiiiiiieeiiiiiieeesiniiieeeessineeee e 261
26.10 Programming via the JTAG INterface ........ccccccviiiiiieiiiiiiiie e 265
27 Electrical CharaCteriStiCS ........cccociiiiiiiiiiiie e 277
27.1  Absolute Maximum RatiNGS® .......cooiiiiiiiiiiiiiie et e e nereee e 277
27.2  DC CharaCteriStCS ....cccveeiiiiiieiiieesiiee st e st et e st e s sine e e sbe e e sre e e s snneeans 277
27.3  SPEEA Grates .....eeeeiiiiiiiiiiie ittt ettt a e 279
27.4  CIOCK CharaCteriStiCS .....eeeivereiiiieiiiieeriiee e st ettt et e e e e nneee e 279
27.5  System and Reset CharaCteriStiCS .........occvvvieiiiiiiiieee i 280
27.6  Two-wire Serial Interface CharacteriStiCS .........cccvvvreriiieiniie e 280
27.7  SPITIMING CharacCteriStiCS .......uuviiiiiiiiiiieiiiiiiie e 282
27.8  ADC CharaCteriStCS ....cveeervereiieieiiiieeriieeesiree et e st e e snre e sbe e e sreeesnnneeans 284
28 Typical CharacCteriStiCS .......ccoiiiiiiiiiiiiiiiie e 287
28.1  ACtIVE SUPPIY CUIMENT ...eeiiieiiiiiiie ettt e e e e srrreee e e e 287
28.2  1dIe SUPPIY CUITENT .oieiiiiiiie ettt st e e e e st e e e e s snnbeeeee e e 290
28.3  Power-down SUpPly CUITENE .....uuviieiiiiiiie e iiieeee et et e e et e e snreeeee e 293
28.4  Power-save SUPPIY CUITENE ..uueiiieiiiiiiee et e e s stieee e e s st e e e s stbeeeeesstreeeeesanes 294
28.5  Standby SUPPIY CUITENT ....cooiiiiiiee ittt e e e e e srraeee e e e 295
28.6  PINPUIFUP oeieiiieiiiieiie ettt e e e e 295
28.7  PINDIIVEr SIrength .....ocueeeiiiiiiiee et e e 297
28.8  Pin Thresholds and HYSIErESIS ......ccvveeiiiiiiiiiee ettt 299
28.9 BOD Thresholds and Analog Comparator OffSet ..........ccccceviiiiieeeiiiiiiienennnns 302
28.10 Internal OSCIllator SPEEMA .........eeiiiiiiiiiiee e 304
28.11 Current Consumption of Peripheral Units ..........cccccoeiiiiiiniiiiiiiiee e 310
28.12 Current Consumption in Reset and Reset Pulsewidth ...........cccccceiviiiiennnns 313
29 ReQISTer SUMMANY ..cooiiiiiiiiiiiii et e e e e 315
30 INStruction Set SUMMAIY .....ccooiiiiiiiiiii e 317
31 Ordering INfOrmation .......ooooiiiiiii e 320
32 Packaging INformation ... 321
Atmel ATmega32A [DATASHEET] Vi

8155D-AVR-10/2013



32,1 AAA ettt 321

32.2  AOPB ..ot bttt ettt a e b 322

32.3  AAML (oot 323

B3 EITAlA cooeiiiii e 324
33.1 ATMeEga32A, reV. G IO FEV. | oo e 324

34 Datasheet ReviSion HISTOIY ......cccccciiiiiiiiiiiiiiieeeeeeeeee e 325
34.1  ReV. 8155D — 10/13 .ocooiiieieiiieieieietei ettt 325

34.2  REV. 8155C — 02/11 ..ocvouiieiiiiieieieieiee ettt 325

34.3  ReV. 8155B — 07/09 ...c.coviveviiiieriiiieiesieieie ettt sttt enenas 325

34.4  REV. 8155A — 06/08 .....cocveviiiieriiiietesieieie sttt nens 325

Table Of CONTENTS ... e i

Atmel

ATmega32A [DATASHEET]

8155D-AVR-10/2013

Vii



/ltmeL Enabling Unlimited Possibilities®

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

1600 Technology Drive Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Bldg
San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku
USA 418 Kwun Tong Roa D-85748 Garching b. Munich Tokyo 141-0032

Tel: (+1) (408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1) (408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) (3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) (3) 6417-0370

Fax: (+852) 2722-1369

© 2013 Atmel Corporation. All rights reserved. / Rev.: 8155D-AVR-10/2013

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR® and others are registered trademarks or trademarks of Atmel Corporation or
its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.



X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 8-bit Microcontrollers- MCU category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
CY8C20524-12PVXIT MB95F013KPMC-G-SNE2 MB95F263K PF-G-SNE2 MB95F264KPFT-G-SNE2 MB95F398KPM C-G-SNE2
MBO95F478KPMC2-G-SNE2 MB95F564KPF-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696K PM C-G-SNE2 M B95F698K PM C2-G-SNE2
MB95F698KPM C-G-SNE2 MB95F818KPMC1-G-SNE2 901015X CY8C3MFIDOCK-125 403708R MB95F354EPF-G-SNE2
MB95F564KWQN-G-SNE1 MB95F636K P-G-SH-SNE2 MB95F694KPM C-G-SNE2 MB95F778IPMC1-G-SNE2 MB95F818KPMC-G-SNE2
LC87/FOGOBAUJA-AH CP8361BT CG8421AF MB95F202KPF-G-SNE2 DF36014FPV 5962-876840/MUA MB95F318EPM C-G-SNE2
MB94F601APMC1-GSE1 MB95F656EPF-G-SNE2 LC78615E-01US-H LC87FSWCBAVU-QIP-H MB95F108AJSPMC-G-INE1 73S1210F-
68M/F/PJ MB89F538-101PMC-GE1 LC87F7/DC8AVU-QIP-H MB95F876KPMC-G-SNE2 MB88386PMC-GS-BNDE1 LC87FBKO08AU-
SSOP-H LC87F2C64AU-QFP-H MB95F636KNWQN-G-118-SNE1 MB95F136NBSTPFV-GS-N2E1 LC87FSNC8AVU-QIP-E
LC87F76C8AU-TQFP-E LC87F2G08AU-SSOP-E CPB8085AT MB95F564K PF-G-UNE2 MC9S08PA4VWJ MC9S08QG8CDTE
MC9S08SH4CWJR



https://www.x-on.com.au/category/semiconductors/integrated-circuits-ics/embedded-processors-controllers/microcontrollers-mcu/8-bit-microcontrollers-mcu
https://www.x-on.com.au/manufacturer/microchip
https://www.x-on.com.au/mpn/cypress/cy8c2052412pvxit
https://www.x-on.com.au/mpn/cypress/mb95f013kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f263kpfgsne2
https://www.x-on.com.au/mpn/cypress/mb95f264kpftgsne2
https://www.x-on.com.au/mpn/cypress/mb95f398kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f478kpmc2gsne2
https://www.x-on.com.au/mpn/cypress/mb95f564kpfgsne2
https://www.x-on.com.au/mpn/cypress/mb95f636kwqngsne1
https://www.x-on.com.au/mpn/cypress/mb95f696kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f698kpmc2gsne2
https://www.x-on.com.au/mpn/cypress/mb95f698kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f818kpmc1gsne2
https://www.x-on.com.au/mpn/hitachi/901015x
https://www.x-on.com.au/mpn/cypress/cy8c3mfidock125
https://www.x-on.com.au/mpn/intel/403708r
https://www.x-on.com.au/mpn/cypress/mb95f354epfgsne2
https://www.x-on.com.au/mpn/cypress/mb95f564kwqngsne1
https://www.x-on.com.au/mpn/cypress/mb95f636kpgshsne2
https://www.x-on.com.au/mpn/cypress/mb95f694kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb95f778jpmc1gsne2
https://www.x-on.com.au/mpn/cypress/mb95f818kpmcgsne2
https://www.x-on.com.au/mpn/onsemiconductor/lc87f0g08aujaah
https://www.x-on.com.au/mpn/cypress/cp8361bt
https://www.x-on.com.au/mpn/cypress/cg8421af
https://www.x-on.com.au/mpn/cypress/mb95f202kpfgsne2
https://www.x-on.com.au/mpn/renesas/df36014fpv
https://www.x-on.com.au/mpn/e2v/59628768407mua
https://www.x-on.com.au/mpn/cypress/mb95f318epmcgsne2
https://www.x-on.com.au/mpn/cypress/mb94f601apmc1gse1
https://www.x-on.com.au/mpn/cypress/mb95f656epfgsne2
https://www.x-on.com.au/mpn/onsemiconductor/lc78615e01ush
https://www.x-on.com.au/mpn/onsemiconductor/lc87f5wc8avuqiph
https://www.x-on.com.au/mpn/cypress/mb95f108ajspmcgjne1
https://www.x-on.com.au/mpn/maxim/73s1210f68mfpj
https://www.x-on.com.au/mpn/maxim/73s1210f68mfpj
https://www.x-on.com.au/mpn/cypress/mb89f538101pmcge1
https://www.x-on.com.au/mpn/onsemiconductor/lc87f7dc8avuqiph
https://www.x-on.com.au/mpn/cypress/mb95f876kpmcgsne2
https://www.x-on.com.au/mpn/cypress/mb88386pmcgsbnde1
https://www.x-on.com.au/mpn/onsemiconductor/lc87fbk08aussoph
https://www.x-on.com.au/mpn/onsemiconductor/lc87fbk08aussoph
https://www.x-on.com.au/mpn/onsemiconductor/lc87f2c64auqfph
https://www.x-on.com.au/mpn/cypress/mb95f636knwqng118sne1
https://www.x-on.com.au/mpn/cypress/mb95f136nbstpfvgsn2e1
https://www.x-on.com.au/mpn/onsemiconductor/lc87f5nc8avuqipe
https://www.x-on.com.au/mpn/onsemiconductor/lc87f76c8autqfpe
https://www.x-on.com.au/mpn/onsemiconductor/lc87f2g08aussope
https://www.x-on.com.au/mpn/cypress/cp8085at
https://www.x-on.com.au/mpn/cypress/mb95f564kpfgune2
https://www.x-on.com.au/mpn/nxp/mc9s08pa4vwj
https://www.x-on.com.au/mpn/nxp/mc9s08qg8cdte
https://www.x-on.com.au/mpn/nxp/mc9s08sh4cwjr

