

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/498

Devices Qualified Level

2N6306 2N6308

JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	2N6306	2N6308	Units
Collector-Emitter Voltage	V_{CEO}	250	350	Vdc
Collector-Base Voltage	V_{CBO}	500	700	Vdc
Emitter-Base Voltage	V_{EBO}	8.0		Vdc
Collector Current	I_{C}	8.0		Adc
Base Current	I_{B}	4.0		Adc
Total Power Dissipation @ $T_C = +25^{\circ}C^{(1)}$	D	12	25	W
@ $T_C = +100^0 C^{(1)}$	P_{T}	62	2.5	W
Operating & Storage Temperature Range	Top, Tstg	-65 to	+200	°C

¹⁾ Between $T_C = +25^{\circ}C$ and $T_C = +175^{\circ}C$, linear derating factor average = 0.833 W/ $^{\circ}C$

*See Appendix A for Package Outline

ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTI	CS				
Characteristics		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage					
$I_C = 100 \text{ mAdc}$	2N6306	$V_{(BR)CEO}$	250		Vdc
	2N6308		350		
Collector-Emitter Cutoff Current					
$V_{CE} = 500 \text{ Vdc}; V_{BE} = 1.5 \text{ Vdc}$	2N6306	I_{CEX}		5.0	μAdc
$V_{CE} = 700 \text{ Vdc}; V_{BE} = 1.5 \text{ Vdc}$	2N6308			5.0	
Collector-Emitter Cutoff Current					
$V_{CE} = 250 \text{ Vdc}$	2N6306	I_{CEO}		50	μAdc
$V_{CE} = 350 \text{ Vdc}$	2N6308			50	
Emitter-Base Cutoff Current		T			μAdc
$V_{EB} = 8 \text{ Vdc}$		I_{EBO}		5.0	

2N6306, 2N6308 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characterist	ics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)					
Forward-Current Transfer Ratio					
$I_C = 3.0 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$	2N6306		15	75	
	2N6308		12	60	
$I_C = 8.0 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$	2N6306	$h_{ m FE}$	4		
	2N6308		3		
$I_C = 0.5 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$	2N6306		15		
. 02	2N6308		12		
Base-Emitter Voltage					
$V_{CE} = 5.0 \text{ Vdc}; I_{C} = 3.0 \text{ Adc}$	2N6306	$V_{\mathrm{BE}(\mathrm{on})}$		1.3	Vdc
	2N6308			1.5	
Base-Emitter Saturated Voltage					
$I_B = 2.0 \text{ Adc}; I_C = 8.0 \text{ Adc}$	2N6306	$V_{BE(sat)}$		2.3	Vdc
$I_B = 2.67 \text{ Adc}; I_C = 8.0 \text{ Adc}$	2N6308			2.5	
Collector-Emitter Saturated Voltage					
$I_B = 2.0 \text{ Adc}; I_C = 8.0 \text{ Adc}$	2N6306			5.0	
$I_B = 2.67 \text{ Adc}; I_C = 8.0 \text{ Adc}$	2N6308	$V_{CE(sat)}$		5.0	Vdc
$I_B = 0.6 \text{ Adc}; I_C = 3.0 \text{ Adc}$	2N6306	, ,		0.8	
	2N6308			1.5	
DYNAMIC CHARACTERISTICS					
Magnitude of Common-Emitter Small-S	ignal Short-Circuit				
Forward Current Transfer Ratio		$ h_{fe} $			
$I_C = 0.3 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1 \text{ MHz}$			5	30	
Small-Signal Short-Circuit Forward Cur	rent Transfer Ratio	1.			
$I_C = 0.5 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}, f = 1.0 \text{ kHz}$		h_{fe}	5		
Output Capacitance		G			
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 100 \text{ kHz}$.0 MHz	C_{obo}		250	pF
SWITCHING CHARACTERISTIC	S				
Turn-On Time		t			
$V_{CC} = 125 \text{ Vdc}; I_C = 3.0 \text{ Adc}; I_B = 0.6 \text{ Adc}$		^t on		0.6	μs
Turn-Off Time		t ee			
$V_{CC} = 125 \text{ Vdc}$; $I_C = 3.0 \text{ Adc}$; $I_{B1} = 0.6 \text{ Adc}$; $I_{B2} = 1.5 \text{ Adc}$		^t off		3.0	μs
SAFE OPERATING AREA	, 22	L		ı	

DC Tests

 $T_C = +25^{\circ}C$; t = 1 s, 1 cycle (See Figure 2 and 3 of MIL-PRF-19500/498)

Test 1

 $V_{CE} = 15.6 \text{ Vdc}, I_C = 8 \text{ Adc}$

Test 2

 $V_{CE} = 37 \text{ Vdc}, I_C = 3.4 \text{ Adc}$

Test 3

2N6306 $V_{CE} = 200 \text{ Vdc}, I_C = 65 \text{ mAdc}$ $V_{CE} = 300 \text{ Vdc}, I_C = 25 \text{ mAdc}$ 2N6308

2.) Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Microchip manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460

2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA

2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E

US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E

NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13

NTE15 NTE16001