MAX40660 Evaluation Kit ### **General Description** The MAX40660 evaluation kit (EV kit) is a fully assembled electrical demonstration kit that provides a proven design to evaluate the MAX40660 trans-impedance amplifiers. Note that the MAX40660 EV kit provides an electrical interface to the IC that is similar, but not the same as a photodiode. The MAX40660 EV kit PCB comes with a MAX40660ATB/ VY+ installed. #### **Features** - Easy Electrical Evaluation of the MAX40660 - EV Kit Designed for 50Ω Interfaces - -40°C to +125°C Temperature Range - Tested 10-TDFN-EP MAX40660ATB/VY+ device **Evaluates: MAX40660** - Accommodates Easy-to-Use components - Proven PCB Layout - Fully Assembled and Tested Ordering Information appears at end of data sheet. #### **MAX40660 EV Kit Photo** #### **Quick Start** #### **Required Equipment** - +3.6V, 100mA DC Power Supply - Signal Source Up to 1GHz - 500MHz to 2.5GHz Oscilloscope #### **Procedure** The MAX40660 EV kit is fully assembled and tested. Follow the below to verify board operation: # Caution: Do not turn on the power supply or the electronic load until all the connections are complete. - Connect a +3.3V supply and ground to VIN_SUPPLY connector and GND return pad of the EV kit, respectively. Disable the output of the power supply. - Install a shunt on 2-3 of jumper J1 to enable the TIA. (Installing a shunt on 1-2 of jumper J1 will force the TIA into low-power disable mode.) - 3) Install a shunt on 2-3 of jumper J2 to selects the low gain mode ($25k\Omega$ transimpedance) (Installing a shunt on 1-2 of jumper J2) selects the high gain mode ($50k\Omega$ transimpedance)). - 4) Connect a signal source to IN_AC (J4) edge-mount SMA input. Set the signal amplitude to 12.5mV_{P-P} (4.4mV_{RMS} or -34dBm), which corresponds to 5μA_{P-P}. Set the frequency to 300MHz. Disable the signal generator output. - 5) Connect OUT1+ (J7) and OUT- (J6) edge-mount SMA outputs to the 50Ω inputs of a high-speed oscilloscope. - 6) Verify all the shunts are in default positions, as shown in Table 1. **Table 1. Jumper Function** | JUMPER
LABEL | POSITION | FUNCTIONS | | |-----------------|----------|---|--| | | 2-3* | Enables U1. Active Mode | | | J1 | 1-2 | Disables U1 or Low Power
Disable Mode | | | J2 | 2-3* | Low Gain Mode Selected (25kΩ Transimpedance) | | | | 1-2 | High Gain Mode Selected (50kΩ Transimpedance) | | ^{*}Default position Enable the power supply and signal generator output. Observe for outputs from OUT+ and OUT- on the oscilloscope. Evaluates: MAX40660 - 8) The differential signal at the oscilloscope should be approximately 62.5mV_{P-P} at 300MHz. - Enable the power supply and signal generator output. Observe for outputs from OUT+ and OUT- on the oscilloscope. - The differential signal at the oscilloscope should be approximately 125mV_{P-P} at 300MHz. ### **Detailed Description of Hardware** The MAX40660 accepts AC and DC-coupled input from a high-speed photodiode. The EV kit facilitates evaluation of the MAX40660 TIA without a photodiode. The MAX40660 TIA is designed to be used with optical transceiver systems when the detector's (APD, PIN diodes) cathode connected to the IN input of the IC. The device is to be used when AC input currents are flowing out of the device at IN input of the IC. When an APD with negative bias voltage is connected to the TIA input the signal current flows out of the amplifier's summing node. The input current flows through an internal load resistor to develop a voltage that is then applied to the input of the second stage. An internal clamp circuit protects against input currents up to 100mA up to 100ns and up to 2A for 10ns pulses at low duty cycles. For more information about the device, please refer to the IC data sheet. #### Theory of Operation The MAX40660 EV kit provides photodiode emulation using a simplified electrical photodiode model. The model provides a 50Ω electrical input termination, and resistors that convert the high-speed input voltage to high-speed current. A DC path is provided to model the average photodiode current. #### **Test Interface** The MAX40660 outputs are back terminated with 50Ω . When terminating the outputs to 50Ω oscilloscope, the ac-coupling capacitors C6 and C7 are present and resistor R0 is not installed. When interfacing with subsequent amplifiers or LVDS- capable devices, ac-coupling capacitors (C6,C7) and 100Ω resistor (R0) are installed when the subsequent device has internal bias. Replace C6 and C7 ac coupling capacitors with 0Ω resistors in case of DC coupling into the device. ## Input and OFFSET Input DC Evaluation The MAX40660 EV kit features DC evaluation of IN input and OFFSET input. When evaluating the MAX40660's IN input in DC mode at I_DC_IN (J3) using a calibrator with voltage output option, 0Ω is installed at resistor R3, capacitors CIN1 and CIN2 are removed. Current value set in microamperes will provide a differential voltage output function of transimpedance selected. When evaluating the MAX40660's IN input in DC mode at I_DC_IN (J3) using a calibrator with voltage output option, 0Ω is installed at resistor R3, and capacitor C8, CIN1 and CIN2 are removed. Resistors R1 and R2 sets the input resistance (Rs), the bias voltage at IN (VIN) is 855mV. The voltage value set at the calibrator will dictate the input current by the following equation: $$I_{IN}(\mu A) = [V_{CAL-SET}(V) - V_{IN}(V)]/R_S - (1)$$ Current value in microamperes will provide a differential voltage output function of transimpedance selected. When evaluating the MAX40660's IN input in DC mode at I_OFFSET(J5) using a calibrator with current output option, resistor R4 is replaced with 0Ω . Current value set in microamperes will provide a differential voltage output function of transimpedance selected. When evaluating the MAX40660's IN input in DC mode at I_DC_IN (J3) using a calibrator with voltage output option, capacitor C9 is removed. Resistor R4 sets the input resistance and the bias voltage at OFFSET (V_{OFFSET}) is 855mV. The voltage value set at the calibrator will dictate the input current by the following equation: $I_{IN(\mu A)} = [V_{CAL-SET}(V) - V_{OFFSET}(V)]/R4 - (2)$ Current value in microamperes will provide a differential voltage output function of transimpedance selected. The outputs are observed with ac-coupling capacitors C6 and C7 replaced with 0Ω and resistor R0 with 100Ω installed. The transimpedance is measured with ac-coupled setup, hence with the above method the transimpedance observed will seem to be twice as what it is. Evaluates: MAX40660 More information about the transfer function curve for IN and OFFSET input can be referred to TOC9 and TOC10 in datasheet. This is useful in determining the load line curve for optimized performance for a given diode. #### **Current Pulse Measurements** To perform pulse measurements, the current pulses are created by providing a voltage pulse at the J4 input. The input series resistance combination (R1+R2) respectively determines the amplitude of the current pulse. Both AC and DC coupling at the IN input may be used for this test. When using DC blocking capacitors, C1 and C2 is used in conjunction with the test. When providing the input voltage pulse at IN_AC edge mount SMA , the DC blocking capacitors C1 and C2 are replaced with 0Ω short to DC couple the input to the MAX40660. Make sure resistor R3 is not installed. The following resistor settings $R_S = (R1 + R2)$ is shown in <u>Table 2</u> to create the large signal current amplitude pulses. To generate < 100µA small signal currents, see Equation 1. #### Noise measurements Remove the input resistors and shunt capacitor before attempting noise measurement. With the input resistors and shunt capacitor removed, the total capacitance at the IN-input is equal to 0.5pF. Table 2. Different Values of R_S (R1+R2) for Different Input Current Pulse Amplitudes. | INPUT SERIES RESISTANCE R_S (Ω) | GENERATOR INPUT
HIGH VOLTAGE (V) | GENERATOR INPUT LOW VOLTAGE (V) | GENERATED INPUT CURRENT
STEP FROM IN (mA) | |--|-------------------------------------|---------------------------------|--| | | 0.855 | 0.65 | 1 | | 1 | 0.855 | 0.15 | 10 | | ı | 0.855 | -1.06 | 50 | | | 0.855 | -2.46 | 100 | ### **Ordering Information** | PART | TYPE | | | |----------------|--------|--|--| | MAX40660EVKIT# | EV kit | | | #Denotes RoHS compliant www.maximintegrated.com Maxim Integrated | 3 ## **MAX40660 EV Kit Bill of Materials** | ITEM | REF_DES | DNI/DNP | QTY | MFG PART# | MANUFACTURER | VALUE | DESCRIPTION | | |-------|---------------------------|---------|-----|--|---|-----------------|---|--| | 1 | C1, CIN1 | - | 2 | C0402C101J5GAC;
NMC0402NPO101J;
CC0402JRNPO9BN101;
GRM1555C1H101JA01;
C1005C0G1H101J050BA;
CGA2B2C0G1H101J050BA | KEMET;
NIC COMPONENTS CORP.;
YAGEO PHICOMP;
MURATA;TDK;TDK | 100PF | CAPACITOR; SMT (0402); CERAMIC CHIP; 100PF; 50V; TOL = 5%; TG = -55°C TO +125°C; TC = C0G | | | 2 | C2 | - | 1 | C0402X7R500-222KNE;
GRM155R71H222KA01 | VENKEL LTD.;MURATA | 2200PF | CAPACITOR; SMT (0402); CERAMIC CHIP; 2200PF; 50V;
TOL = 10%; TG = -55°C TO +125°C; TC = X7R | | | 3 | C3 | - | 1 | C0402X5R100-105KNE;
GRM155R61A105KE15 | VENKEL LTD.;MURATA | 1UF | CAPACITOR; SMT (0402); CERAMIC CHIP; 1UF; 10V;
TOL = 10%; MODEL =; TG = -55°C TO +85°C; TC = X5R | | | 4 | C4, C6-C8 | - | 4 | GRM155R61C104KA88 | MURATA | 0.1UF | CAPACITOR; SMT (0402); CERAMIC; 0.1UF; 16V; TOL = 10%;
MODEL = GRM SERIES; TG = -55°C to +85°C; TC = X5R | | | 5 | C5 | _ | 1 | C0402X5R6R3-225MNP;
C0402C225M9PAC;
GRM155R60J225ME15;
VJMK105BJ225MV | VENKEL;KEMET;MURATA;
TAIYO YUDEN | 2.2UF | CAPACITOR; SMT; 0402; CERAMIC; 2.2µF; 6.3V; 20%; X5R; -55°C to +85°C; 0 ±15% °C MAX. | | | 6 | CIN2 | - | 1 | CGA2B3X7R1H104K050BB;
C1005X7R1H104K050BB;
GRM155R71H104KE14;
GCM155R7H1104KE02;
C1005X7R1H104K050BE;
UMK105B7104KV-FR;
CGA2B3X7R1H104K050BE | TDK;TDK;MURATA;MURATA;
TDK;TAIYO YUDEN;TDK | 0.1UF | CAPACITOR; SMT (0402); CERAMIC CHIP; 0.1UF; 50V;
TOL = 10%; TG = -55°C TO +125°C; TC = X7R | | | 7 | GND1, GND2,
VIN_SUPPLY | - | 3 | 9020 BUSS | WEICO WIRE | MAXIMPAD | EVK KIT PARTS; MAXIM PAD; WIRE; NATURAL; SOLID;
WEICO WIRE; SOFT DRAWN BUS TYPE-S; 20AWG | | | 8 | J1, J2 | _ | 2 | PCC03SAAN | SULLINS | PCC03SAAN | CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY;
STRAIGHT THROUGH; 3PINS; -65°C TO +125°C | | | 9 | J3, J5 | - | 2 | 131-3701-266 | JOHNSON COMPONENTS | 131-3701-266 | CONNECTOR; MALE; THROUGH HOLE;
SMB JACK VERTICAL PCB MOUNT; STRAIGHT; 5PINS | | | 10 | J4, J6, J7 | - | 3 | 32K243-40ML5 | ROSENBERGER | 32K243-40ML5 | CONNECTOR; FEMALE; SMT; SMA JACK PCB;
RIGHT ANGLE; 2PINS | | | 11 | L1 | _ | 1 | BLM15BD601SN1 | MURATA | 600 | INDUCTOR; SMT (0402); FERRITE-BEAD; 600; TOL = ±25%; 0.2A | | | 12 | MH1-MH4 | _ | 4 | P440.375 | GENERIC PART | N/A | MACHINE SCREW; SLOTTED; PAN; 4-40IN; 3/8IN; NYLON | | | 13 | MH1-MH4 | _ | 4 | 1902B | GENERIC PART | N/A | STANDOFF; FEMALE-THREADED; HEX; 4-40IN; 3/8IN; NYLON | | | 14 | R1, R2 | _ | 2 | ERJ-2RKF1241 | PANASONIC | 1.24K | RESISTOR; 0402; 1.24K ; 1%; 100PPM; 0.10W; THICK FILM | | | 15 | R4, RCL | _ | 2 | ERJ-2GE0R00 | PANASONIC | 0 | RESISTOR; 0402; 0Ω; 0%; JUMPER; 0.10W; THICK FILM | | | 16 | RT | - | 1 | TNPW040249R9BE;
RG1005P-49R9-B-T;
ERA-2AEB49R9 | SUSUMU CO LTD.;
PANASONIC;VISHAY | 49.9 | RESISTOR; 0402; 49.9 Ω ; 0.1%; 25PPM; 0.063W; THICK FILM | | | 17 | SU1, SU2 | - | 2 | S1100-B;SX1100-B;
STC02SYAN | KYCON;KYCON;
SULLINS ELECTRONICS CORP. | SX1100-B | TEST POINT; JUMPER; STR; TOTAL LENGTH = 0.24IN; BLACK; INSULATION = PBT; PHOSPHOR BRONZE CONTACT = GOLD PLATED | | | 18 | U1 | - | 1 | MAX40660ATB/VY+ | MAXIM | MAX40660ATB/VY+ | EVKIT PART - IC; TRANSIMPEDANCE AMPLIFIER WITH 100 MILLI-AMPERE INPUT CURRENT CLAMP FOR AUTOMOTIVE LIDAR; PACKAGE OUTLINE DRAWING: 21-100317; PACKAGE CODE: T1033Y+4C | | | 19 | PCB | - | 1 | MAX40660 | MAXIM | PCB | PCB:MAX40660 | | | 20 | C9, C12 | DNP | 0 | C0402X5R100-105KNE;
GRM155R61A105KE15 | VENKEL LTD.;MURATA | 1UF | CAPACITOR; SMT (0402); CERAMIC CHIP; 1µF; 10V; TOL = 10%;
MODEL = ; TG = -55°C TO +85°C; TC = X5R | | | 21 | C10 | DNP | 0 | C0402C101J5GAC;
NMC0402NPO101J;
CC0402JRNPO9BN101;
GRM1555C1H101JA01;
C1005C0G1H101J050BA;
CGA2B2C0G1H101J050BA | KEMET;
NIC COMPONENTS CORP.;
YAGEO PHICOMP;
MURATA;TDK;TDK | 100PF | CAPACITOR; SMT (0402); CERAMIC CHIP; 100PF; 50V; TOL = 5%; TG = -55°C TO +125°C; TC = C0G | | | 22 | C11 | DNP | 0 | C0402X7R500-222KNE;
GRM155R71H222KA01 | VENKEL LTD.;MURATA | 2200PF | CAPACITOR; SMT (0402); CERAMIC CHIP; 2200PF; 50V;
TOL = 10%; TG = -55°C TO +125°C; TC = X7R | | | 23 | R0 | DNP | 0 | ERJ-2RKF1000 | PANASONIC | 100 | RESISTOR; 0402; 100 ; 1%; 100PPM; 0.10W; THICK FILM | | | 24 | R3 | DNP | 0 | ERJ-2GE0R00 | PANASONIC | 0 | RESISTOR; 0402; 0Ω; 0%; JUMPER; 0.10W; THICK FILM | | | 25 | CD | DNP | 0 | N/A | N/A | OPEN | PACKAGE OUTLINE 0402 NON-POLAR CAPACITOR | | | TOTAL | · | | 38 | | | | | | www.maximintegrated.com Maxim Integrated | 4 ### **MAX40660 EV Kit Schematic** www.maximintegrated.com Maxim Integrated | 5 ## **MAX40660 EV Kit PCB Layout Diagrams** MAX40660 EV Kit PCB Layout—Top Silkscreen MAX40660 EV Kit PCB Layout—Top Layer MAX40660 EV Kit PCB Layout—Layer 2 Ground ## **MAX40660 EV Kit PCB Layout Diagrams (continued)** MAX40660 EV Kit PCB Layout—Bottom Layer MAX40660 EV Kit PCB Layout—Bottom Silkscreen ## MAX40660 Evaluation Kit ## **Revision History** | REVISION
NUMBER | REVISION
DATE | DESCRIPTION | | |--------------------|------------------|-----------------|---| | 0 | 5/19 | Initial release | _ | For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. Evaluates: MAX40660 ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Amplifier IC Development Tools category: Click to view products by Maxim manufacturer: Other Similar products are found below: AD8033AKS-EBZ AD8044AR-EBZ AD744JR-EBZ AD8023AR-EBZ AD848JR-EBZ ADA4922-1ACP-EBZ EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ ADA4950-1YCP-EBZ MAX2634EVKIT ISL28158EVAL1Z MADL-011014-001SMB AD8137YCP-EBZ EVAL-ADA4523-1ARMZ EVAL01-HMC1013LP4E MCP6XXXEV-AMP3 MCP6XXXEV-AMP4 MCP6XXXEV-AMP2 ISL28006FH-100EVAL1Z 551012922-001/NOPB EVAL-ADCMP603BCPZ AMC1200EVM AD8417RM-EVALZ DEM-OPA-SOT-1A DEM-OPA-SO-1C DEM-BUF-SOT-1A OPA2836IDGSEVM AD633-EVALZ AD8418R-EVALZ ISL28433SOICEVAL1Z ISL28233SOICEVAL1Z ISL28208SOICEVAL2Z ISL28207SOICEVAL2Z ISL28006FH-50EVAL1Z ISL28005FH-50EVAL1Z 120257-HMC613LC4B DC1591A DC1150A DC1115A DC954A-C DC306A-A DC1192A 131679-HMC813LC4B OPA2835IDGSEVM LMH730220/NOPB MAAP-011246-1SMB 118329-HMC627ALP5 125932-HMC874LC3C