Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit ### **General Description** The MAX17613CEVKIT# evaluation kit (EV kit) is a fully assembled and tested circuit board that demonstrates the MAX17613C 4.5V to 60V, 3A, reverse-voltage protector with forward current limit and reverse current block in a 20-pin TQFN-EP package. The EV kit can be configured to demonstrate three current-limit types (Autoretry, Continuous, Latchoff) and different current-limit thresholds (from 0.15A to 3A). For more details about the IC benefits and features, refer to the MAX17613 IC data sheet. #### **Features** - 4.5V to 40V Operating Voltage Range (Remove the TVS Diode to Extend the Operating Voltage Range up to 60V) - Features a 40V TVS Diode (D1) across the Input and Schottky Diode across the Output Terminals - Evaluates Three Current-Limit Types and Current-Limit Threshold - Jumper-Configurable Current Limit - Jumper-Configurable Current-Limit Type - Programmable Startup Blanking Time - Features Fault Indication Signals (FWD, REV) - Proven PCB Layout - Fully Assembled and Tested Ordering Information appears at end of data sheet. #### **Quick Start** #### **Recommended Equipment** - MAX17613CEVKIT# - 60V, 5A DC power supply - 4 Multimeters - Adjustable load (0A-3.5A) - USB-A male to USB-B male cable or 5V DC power supply #### **Equipment Setup and Test Procedure** The EV kit is fully assembled and tested. Follow the steps below to verify board operation: **Caution:** Do not turn on power supply until all connections are completed. - 1) Verify that all jumpers are in their default positions. - 2) Connect the USB cable to J1 from a computer or connect a 5V-DC power supply to TP3. - 3) Verify that LED1 is on. - 4) Verify the JU6 jumper is installed. - 5) Set the 60V DC power supply to 5V and connect to IN (J2). Verify that OUT (J3/TP8) is 5V. - 6) Set the DC power-supply voltage to 24V and connect the adjustable load between OUT and GND terminals and a multimeter in series to measure the current. Gradually increase the load current and verify that the OUT goes down and FWD goes low when the load current increases above 0.3A. - 7) The jumper JU1 can be configured to change the current limit (see <u>Table 1</u>). Verify various current-limit operations by repeating step 6. **CAUTION:** The negative input test should be performed by applying negative input voltage (VIN) across input terminals at J2 only when the output capacitors connected at the OUT terminals are fully discharged and 5V BUS at J1 is not supplied. ### **Detailed Description** The overcurrent threshold is determined by external resistors connected to the SETI pin and is jumper-configurable through jumper JU1. Using jumper JU4, the EV kit circuit can be configured to evaluate Autoretry, Continuous, and Latchoff current-limit types. LED1 on the EV kit indicates availability of logic power for annunciation signals (FWD and REV) and EN. Device offers a programmable startup blanking time that enables charging the large capacitances on the output during startup and when recovering from a fault condition. Connecting a capacitor from the TSTART pin to GND programs the startup blanking time. The EV kit can be configured to enable or disable the IC operation using Jumper JU5. For more details about the IC benefits and features, refer to the MAX17613 IC data sheet. The EV kit provides on-board output capacitors to enable a demonstration of the MAX17613C protection features. #### **Input Power Supply** The EV kit is powered by a user-supplied 4.5V to 60V power supply connected between input connector (J2) terminals. #### **Setting the Current-Limit Threshold** The EV kit features a jumper (JU1) to select the current-limit threshold. Install a jumper as shown in <u>Table 1</u> to change the current-limit threshold. The current limit can be programmed between 0.15A to 3A. The current limit (I_{LIM}) is programmed by the resistor R_{SETI} connected at the SETI pin. Use the following equation to calculate the current-limit setting resistor: $$R_{SETI} = \frac{4500}{I_{LIM}}$$ where, I_{LIM} is the desired current limit in mA and R_{SETI} is in k Ω . Do not use R_{SETI} smaller than 1.5k Ω . #### **Current-Limit Type Selection** The EV kit features a jumper (JU4) to select different current-limit type responses (see <u>Table 2</u>) for jumper settings. For more details about each current-limit type, refer to the MAX17613 IC data sheet. # Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit #### **Enable** Connect a USB-A male connector from the computer to the USB-B female connector, J1, or an external 5V supply to TP3 and GND. This provides 5V to V_{BUS} and to the EN pin (JU5 connects V_{BUS} to EN by default). Choose the JU5 setting to enable or disable operation of the MAX17613C (see <u>Table 3</u>). Driving the EN pin High or Low makes the device enable or disable respectively. Table 1. Current-Limit Threshold (JU1) Settings | SHUNT POSITION CURRENT-LIMIT THRESHOLD | | |--|-----------------------------------| | 1-2 | Adjustable using the resistor pot | | 3-4* | 0.3A | | 5-6 | 1.5A | | 7-8 | 3A | ^{*}Default Position **Table 2. Current-Limit Type Selection** (JU4) | SHUNT POSITION | CURRENT-LIMIT TYPE | |----------------|--------------------| | 1-2 | Latchoff | | 2-3 | Continuous | | Not Installed* | Autoretry | ^{*}Default Position Table 3. Enable (JU5) Settings | SHUNT
POSITION | DESCRIPTION | MAX17613C
OUTPUT | |-------------------|----------------------------------|---------------------| | 1-2* | EN Connected to V _{BUS} | ON | | Not Installed | EN pin
Unconnected | ON | | 2-3 | EN Connected to GND | OFF | ^{*}Default Position # Startup Blanking Time Programming (TSTART) Connecting a capacitor from the TSTART pin to GND programs the startup blanking time. The below equation ensures proper value of C_{TSTART} when connected at the TSTART pin for successful startup of the board especially when OUT is connected to a large capacitance. $$C_{TSTART} \geq \frac{3.33 \times C_{OUT(MAX)} \times V_{IN(MAX)}}{I_{LIM}}$$ # Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit The startup time (t_{TSTART}) is related to the startup capacitor by the following equation: $$t_{TSTART} = 300 \times C_{TSTART}$$ where. C_{TSTART} = TSTART pin capacitance in nF, $C_{OUT(MAX)}$ = Maximum output capacitance in μ F, $V_{IN(MAX)}$ = Maximum input voltage in V, I_{LIM} = Programmed current limit in mA. t_{TSTART} = Startup blanking-time in μ s. ### **Output-Load Capacitor** Use JU6 to connect the OUT pins to the OUT test point (TP8) and output connector J3 (see <u>Table 4</u>). Use jumper JU7 to connect output to 470μ F capacitor (see Table 5). ### Table 4. Output Jumper (JU6) Settings | SHUNT POSITION | DESCRIPTION | |----------------|---------------------------------| | Installed* | OUT is connected to TP8 and J3 | | Not Installed | OUT is not connected TP8 and J3 | ^{*}Default Position ### **Table 5. Output Load Capacitor (JU7) Settings** | SHUNT POSITION DESCRIPTION | | |----------------------------|-----------------------------------| | Installed | OUT is connected to C4 and C7 | | Not Installed* | OUT is not connected to C4 and C7 | ^{*}Default Position ## **MAX17613C EV Kit Performance Report** $(C_{IN} = 0.47 \mu F, C_{OUT} = 4.7 \mu F, V_{IN} = 24 V, T_A = +25 ^{\circ}C,$ Autoretry mode unless otherwise noted.) Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit ## **MAX17613C EV Kit Performance Report (continued)** $(C_{IN} = 0.47 \mu F, C_{OUT} = 4.7 \mu F, V_{IN} = 24 V, T_A = +25 ^{\circ}C,$ Autoretry mode unless otherwise noted.) CONDITIONS: V_{IN} = 24V, I_{LIMIT} = 0.3A, LATCHOFF MODE # Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit ## **Component Suppliers** | SUPPLIER | WEBSITE | |---------------------|---------------------| | Bourns, Inc | www.bourns.com | | Murata Americas | www.murata.com | | Panasonic Corp. | www.panasonic.com | | Little fuse | www.littelfuse.com | | TE connectivity | www.te.com | | SULLINS | www.sullinscorp.com | | LUMEX | www.lumex.com | | KEYSTONE | www.keyelco.com | | Amphenol | www.amphenol.com | | DIODES INCORPORATED | www.diodes.com | Note: Indicate that you are using the MAX17613C when contacting these component suppliers. ## **Ordering Information** | PART | TYPE | | |-----------------|--------|--| | MAX17613CEVKIT# | EV Kit | | # Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit ### MAX17613CEVKIT# EV Kit Bill of Materials | S.No | Designator | Description | Quantity | Manufacturer Part Number | |------|------------------------------|---|----------|---------------------------------| | 1 | C1 | 1μF, SMT Capacitor-X7R/25V (0603) | 1 | Murata GRM188R71E105KA12 | | 2 | C2 | 1μF, SMT Capacitor-X7R/100V (1206) | 1 | Murata GRM31CR72A105KA01 | | 3 | C3 | 4.7μF, SMT Capacitor-X7R/50V (1206) | 1 | Murata GRJ31CR71H475KE11L | | 4 | C7 | 470μF, PTH Aluminum Capacitor-63V | 1 | Panasonic EEUFR1J471B | | 5 | D1 | 40V,600W, TVS Diode (DO-214AA) | 1 | Littlefuse SMBJ40CA | | 6 | D2 | 60V, 5A, Diode (DO-214AB) | 1 | DIODES INCORPORATED B560CQ-13-F | | 7 | D3 | Power Schottky Diode, 60V, 1A (SMA) | 1 | DIODES INCORPORATED B160-13-f | | 8 | LED1 | 2.2V, 20mA, LED (1206) | 1 | Lumex SML-LX1206GC-TR | | 9 | R1 | 1kΩ, SMT Resistor 1% 100PPM (0805) | 1 | | | 10 | R2, R3 | 10kΩ, SMT Resistor 1% 100PPM (0402) | 2 | | | 11 | R4 | 150kΩ, SMT Resistor 1% 100PPM (0402) | 1 | | | 12 | R5, R13 | 4.99kΩ, SMT Resistor 1% 100PPM (0402) | 2 | | | 13 | R6 | 15kΩ, SMT Resistor 1% 100PPM (0402) | 1 | | | 14 | R7 | 3kΩ, SMT Resistor 1% 100PPM (0402) | 1 | | | 15 | R8 | 1.5kΩ, SMT Resistor 1% 100PPM (0402) | 1 | | | 16 | R14 | 20kΩ, SMT Resistor 1% 100PPM (0402) | 1 | | | 17 | R15 | 1.5kΩ, SMT Resistor 1% 100PPM (0402) | 1 | | | 18 | R16 | 50kΩ, 0.5W, Trimmer Potentiometers 10%, 100PPM | 1 | BOURNS 3296W-503LF-ND | | 19 | U1 | 4.5V to 60V, 3A, Reverse-Voltage protector with Forward Current-
Limit | 1 | MAXIM MAX17613CATP+T | | 20 | TP1, TP2, TP4, TP5, TP7, TP9 | Black Test Point | 6 | KEYSTONE 5001 | | 21 | TP3, TP6, TP8 | Red Test Point | 3 | KEYSTONE 5000 | | 22 | SU1, SU3-SU7 | Shunt Connector, Black Closed Top | 6 | SULLINS STC02SYAN | | 23 | J1 | USB B connector | 1 | Amphenol 61729-0010BLF | | 24 | J2, J3 | 2-Pin Green PC Terminal Block | 2 | TE Connectivity 282837-2 | | 25 | JU1 | 2x4 Dual-Row Header | 1 | SULLINS PBC04DAAN | | 26 | JU3, JU6, JU7 | 2-Pin Single-Row Header | 3 | SULLINS PECO2SAAN | | 27 | JU4, JU5 | 3-Pin Single-Row Header | 2 | SULLINS PECO3SAAN | | 28 | C6 | OPEN, SMT Capacitor (0603) | 0 | | | 29 | C4 | OPEN, Capacitor, 470μF, 12.5mm Dia (PTH) | 0 | | | 30 | D4 | OPEN, 40V,600W, TVS Diode (DO-214AA) | 0 | | | Default Jumper Table | | | |----------------------|----------------|--| | Jumper | Shunt Position | | | JU1 | 3-4 short | | | JU3 | Open | | | JU4 | Open | | | JU5 | 1-2 short | | | JU6 | Short | | | JU7 | Open | | Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit ### **MAX17613CEVKIT# EV Kit Schematic** Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit ## MAX17613CEVKIT# EV Kit PCB Layout MAX17613CEVKIT# EV Kit-Top Silkscreen MAX17613CEVKIT# EV Kit-Top Layer MAX17613CEVKIT# EV Kit—Layer 2 Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit ## MAX17613CEVKIT# EV Kit PCB Layout (continued) MAX17613CEVKIT# EV Kit—Layer 3 MAX17613CEVKIT# EV Kit—Bottom Layer Evaluates: MAX17613C - 4.5V to 60V, 3A, Reverse-Voltage Protector with Forward Current Limit ## **Revision History** | REVISION
NUMBER | REVISION
DATE | DESCRIPTION | PAGES
CHANGED | |--------------------|------------------|-----------------|------------------| | 0 | 4/19 | Initial release | | For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Power Management IC Development Tools category: Click to view products by Maxim manufacturer: Other Similar products are found below: EVALZ ADP130-1.8-EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1870-0.3-EVALZ ADP199CB-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZ-REDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250-S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM UCC28810EVM-002 XILINXPWR-083 LMR22007YMINI-EVM LP38501ATJ-EV