

## SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

# PRODUCT SPECIFICATION

# 規格書

**CUSTOMER:** DATE:

(客戶): (日期):2024-06-13

CATEGORY (品名) : ALUMINUM ELECTROLYTIC CAPACITORS

DESCRIPTION (型号) : RD 400V150μF(φ18X35)

VERSION (版本) : 01

Customer P/N :

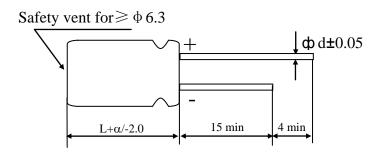
SUPPLIER :

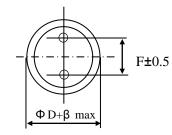
| SUPPLIER         |                 |  |  |  |  |  |  |  |  |  |
|------------------|-----------------|--|--|--|--|--|--|--|--|--|
| PREPARED<br>(拟定) | CHECKED<br>(审核) |  |  |  |  |  |  |  |  |  |
| 莫璐瑶              | 付婷婷             |  |  |  |  |  |  |  |  |  |

| CUSTOMER         |                   |  |  |  |  |  |  |  |  |  |  |
|------------------|-------------------|--|--|--|--|--|--|--|--|--|--|
| APPROVAL<br>(批准) | SIGNATURE<br>(签名) |  |  |  |  |  |  |  |  |  |  |
| ( 150712 )       | (321)             |  |  |  |  |  |  |  |  |  |  |
|                  |                   |  |  |  |  |  |  |  |  |  |  |
|                  |                   |  |  |  |  |  |  |  |  |  |  |
|                  |                   |  |  |  |  |  |  |  |  |  |  |

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

|      |      | SPECIFICAT | ΓΙΟΝ |          | ALTERN  | IATION HIS | STORY    |
|------|------|------------|------|----------|---------|------------|----------|
|      |      | RD SERIE   |      |          |         | RECORDS    |          |
| Rev. | Date | Mark       | Page | Contents | Purpose | Drafter    | Approver |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |
|      |      |            |      |          |         |            |          |


| Version | 01 |  | Page | 1 |
|---------|----|--|------|---|
|---------|----|--|------|---|


## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

## **SAMXON**

### Table 1 Product Dimensions and Characteristics

Unit: mm





| α | L<20 : α=1.5; L≥20 : α=2.0                         |
|---|----------------------------------------------------|
| β | $\Phi$ D<20: β=0.5; $\Phi$ D $\geqslant$ 20: β=1.0 |

\* If it is flat rubber, there is no bulge from the flat rubber surface.

### Table 1:

| N  | SAMXON              | SAMXON WV                            | SAMXON WV Cap. Cap. Temp. $(120\text{Hz}, 600)$ | Leakage<br>Current | Max Ripple<br>Current at 105°C | Load<br>lifetime | Dimension (mm) |      |        | Sleeve |     |     |     |
|----|---------------------|--------------------------------------|-------------------------------------------------|--------------------|--------------------------------|------------------|----------------|------|--------|--------|-----|-----|-----|
| ο. | Part No.            | (Vdc)   (uf)   tolerance   range(°C) | (μA,2min)                                       | 100KHZ             | (Hrs)                          | $D\times\!L$     | F              | фd   | Sieeve |        |     |     |     |
| 1  | ERD157M2GL35RR**R-R | 400                                  | 150                                             | -20%~+20%          | -40~105                        | 0.20             | 1225           | 1911 | 10000  | 18X35  | 7.5 | 0.8 | PET |

| Version 01 | Page | 2 |
|------------|------|---|
|------------|------|---|

**Attachment: Application Guidelines** 

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

## **SAMXON**

12~15

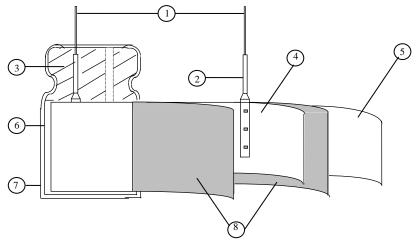
## CONTENTS Sheet Application 4 2. Part Number System 4 3. Construction 5 4. Characteristics 5~10 4.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')"

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

## **SAMXON**

## 1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.


| 2          | 3 4      | 5 6                                              |            | 7                                                | 8           | 9        | 10 11            | 1 12      | 13 14       | 1             | 5 16                                 | 17                                                                      |
|------------|----------|--------------------------------------------------|------------|--------------------------------------------------|-------------|----------|------------------|-----------|-------------|---------------|--------------------------------------|-------------------------------------------------------------------------|
| G          | S        | 105                                              | ľ          | VI                                               | 1 I         | -1       | D 1              | 1         | TC          | 1             | 5 A                                  | P                                                                       |
| SERIE      | S CAI    | PACITAN                                          | CE TOLE    | RANCE                                            | VOLTA       | AGE      | CASE             | SIZE      | TYPE        |               |                                      | EVE<br>ERIAL                                                            |
| rles       | Cap (uF) | Code                                             | Tol. (%)   | Code                                             | Vol. (W.V.) | Code     | Case             |           | Feature     | Code          | SAMXON Produc                        | ct Line                                                                 |
| KF<br>KS   | 0.1      | 104                                              | ±5         | ı                                                | 2.5         | 0D<br>0E | Diameter(Φ)      | Code<br>B | Radial bulk | RR            | For internal use<br>(The product lin |                                                                         |
| GS         | 0.22     | 224                                              | ±10        | К                                                | 4           | 0G       | 3.5              | 1<br>C    | Ammo Tap    | ina           | have H,A,B,C,D,E                     | E,M or                                                                  |
| KM<br>KG   | 0.22     | 224                                              | ±15        | L                                                | 6.3<br>8    | OK       | 5<br>6.3         | D<br>E    |             | $\overline{}$ | 0,1,2,3,4,5,9                        | 9.                                                                      |
| OM<br>GF   | 0.33     | 334                                              | ±20        | м                                                | 10          | 1A       | 8<br>10          | F<br>G    | 2.0mm Pitch | TT            | Sleeve Material                      | Code                                                                    |
| SF         | 0.47     | 474                                              | ±30        | N                                                | 12.5<br>16  | 1B<br>1C | 12.5<br>13       | J         | 2.5mm Pitch | τυ            | PET                                  | Р                                                                       |
| GK         | -        |                                                  | -40        | <del>                                     </del> | 20          | 1D       | 13.5<br>14       | V<br>4    | 3.5mm Pitch | TV            |                                      | =                                                                       |
| SK         | 1        | 105                                              | 0          | w                                                | 25<br>30    | 1E<br>1I | 14.5<br>16       | A<br>K    | E Omm Ditch | тс            |                                      | hes                                                                     |
| SK<br>ERS  | 2.2      | 225                                              | -20<br>0   | A                                                | 32          | 13       | 16.5             | 7<br>L    | 5.0mm Pitch | 10            |                                      | eve                                                                     |
| GY         | 3.3      | 335                                              |            | $\vdash$                                         | 35<br>40    | 1V<br>1G | 18.5<br>20       | 8<br>M    | Lead Cut &  | Form          |                                      | mate                                                                    |
| ERF<br>ERR |          | $\vdash$                                         | -20<br>+10 | С                                                | 42          | 1M       | 22<br>25         | N<br>O    | CB-Type     | СВ            |                                      | ial k                                                                   |
| ERT<br>ERE | 4.7      | 475                                              | -20        | ×                                                | 50          | 1H<br>1L | 30<br>34         | P         | CE-Type     | CE            |                                      | Š                                                                       |
| ERD        | 10       | 106                                              | +40        |                                                  | 63          | 1,1      | 35<br>40         | Q<br>R    |             |               |                                      | t e                                                                     |
| ERH<br>EBD | 22       | 226                                              | -20<br>+50 | s                                                | 71          | 1S<br>1T | 42<br>45         | 4         | HE-Type     | HE            | PVC                                  | 8                                                                       |
| ERA<br>ERB |          | $\vdash$                                         | -10        |                                                  | 80          | 1K       | 51               | 6<br>S    | KD-Type     | KD            |                                      | l be b                                                                  |
| ERC        | 33       | 336                                              | 0          | В                                                | 90          | 1R<br>19 | 63.5<br>76       | T<br>U    | FD-Type     | FD            |                                      | lank                                                                    |
| EFA<br>ENP | 47       | 476                                              | -10<br>+20 | v                                                | 100         | 2A       | 90<br>90         | 8<br>X    | ЕН-Туре     | EH            |                                      | inse                                                                    |
| RW         | 100      | 107                                              | -10        |                                                  | 120         | 2O<br>2B | 100<br>Len. (mm) | Z<br>Code |             |               |                                      | If the sleeve material is PVC, there will be blank in seventeenth digit |
| RY         | 100      | 107                                              | +30        | Q                                                | 150         | 2Z       | 4.5<br>5         | 45<br>05  | PCB Termi   | nal           |                                      | enth                                                                    |
| AP.        | 220      | 227                                              | -10<br>+50 | т                                                | 160         | 2C<br>2P | 5.4<br>7         | 54<br>07  |             | SW            |                                      | dgt                                                                     |
| OP<br>DP   | 330      | 337                                              |            | $\vdash$                                         | 200         | 2D       | 7.7<br>10.2      | 77<br>T2  | Snap-In     | sx            |                                      |                                                                         |
| ETP<br>EHP | 470      | 477                                              | +13<br>+50 | E                                                | 215         | 22<br>2N | 11<br>11.5       | 11<br>1A  |             | sz            |                                      |                                                                         |
| UP         | 470      | 477                                              | -5<br>+15  | F                                                | 230<br>250  | 23<br>2E | 12<br>12.5       | 12<br>1B  |             |               |                                      |                                                                         |
| EKP<br>EPK | 2200     | 228                                              |            |                                                  | 275         | 2T       | 13.5             | 13<br>1C  | Lug         | SG            |                                      |                                                                         |
| EEP<br>EFP | 22000    | 229                                              | -5<br>+20  | G                                                | 300         | 21       | 20<br>25         | 20<br>25  |             | 05            |                                      |                                                                         |
| ESP        |          | <del>                                     </del> | 0          | R                                                | 310<br>315  | 2R<br>2F | 29.5<br>30       | 2J<br>30  |             | 06            |                                      |                                                                         |
| EVP<br>EGP | 33000    | 339                                              | +20        | $\square$                                        | 330<br>350  | 2U<br>2V | 31.5<br>35       | 3A<br>35  | İ           | T5            |                                      |                                                                         |
| EWI        | 47000    | 479                                              | 0<br>+30   | 0                                                | 360         | 2X       | 35.5<br>50       | 3E<br>50  | Screw       | $\vdash$      |                                      |                                                                         |
| WX         | 100000   | 10T                                              | 0          |                                                  | 375<br>385  | 2Q<br>2Y | 100              | 80<br>1L  |             | Т6            |                                      |                                                                         |
| WF         | 150000   | 157                                              | +50        | <u>                                     </u>     | 400         | 2G       | 105<br>110       | 1K<br>1M  |             | D5            |                                      |                                                                         |
| WL         | 150000   | 15T                                              | +5<br>+15  | z                                                | 420<br>450  | 2M<br>2W | 120<br>130       | 1N<br>1P  |             | D6            |                                      |                                                                         |
| VS1        | 220000   | 22T                                              | +5         |                                                  | 500         | 2H       | 140<br>150       | 1Q<br>1R  | '           |               |                                      |                                                                         |
| /T1<br>/TD | 330000   | 33T                                              | +20        | D                                                | 550<br>600  | 25<br>26 | 155<br>160       | 1E<br>15  |             |               |                                      |                                                                         |
| TG         | 4=====   | 4.55                                             | +10<br>+50 | н                                                | 630         | 2,1      | 165<br>170       | 1F<br>1T  |             |               |                                      |                                                                         |
| TL         | 1000000  | 10M                                              | 1          |                                                  |             |          | 180<br>190       | 1U<br>1V  |             |               |                                      |                                                                         |
|            | 1500000  | 15M                                              |            |                                                  |             |          | 200              | 2L<br>2A  |             |               |                                      |                                                                         |
|            | 2200000  | 22M                                              |            |                                                  |             |          | 210<br>220       | 2M<br>2N  |             |               |                                      |                                                                         |
|            |          | $\vdash$                                         |            |                                                  |             |          | 240<br>250       | 2Q<br>2R  |             |               |                                      |                                                                         |
|            | 3300000  | 33M                                              |            |                                                  |             |          | 260<br>270       | 25<br>2T  |             |               |                                      |                                                                         |

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

## **SAMXON**

#### 3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.



| No | Component        | Material                                     |
|----|------------------|----------------------------------------------|
| 1  | Lead line        | Tinned CP wire (Pb Free)                     |
| 2  | Terminal         | Aluminum wire                                |
| 3  | Sealing Material | Rubber                                       |
| 4  | Al-Foil (+)      | Formed aluminum foil                         |
| 5  | Al-Foil (-)      | Etched aluminum foil or formed aluminum foil |
| 6  | Case             | Aluminum case                                |
| 7  | Sleeve           | PET                                          |
| 8  | Separator        | Electrolyte paper                            |

### 4. Characteristics

#### Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature :15°C to 35°C
Relative humidity : 45% to 85%
Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature :  $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

#### Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

| Version 01 |  | Page | 5 |
|------------|--|------|---|
|------------|--|------|---|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

|     | ITEM                            |                                                                                                 |                                                                              |                                                                               | PE                        | RFORN                                    | <b>IANCE</b>                                  |          |                                                    |                     |                            |
|-----|---------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------|------------------------------------------|-----------------------------------------------|----------|----------------------------------------------------|---------------------|----------------------------|
|     | Rated<br>voltage<br>(WV)        |                                                                                                 |                                                                              |                                                                               |                           |                                          |                                               |          |                                                    |                     |                            |
| 4.1 |                                 | WV (V.DC)                                                                                       | 160                                                                          | 200                                                                           | 220                       | 250                                      | 350                                           | 400      | 420                                                | 450                 |                            |
|     | Surge<br>voltage (SV)           | SV (V.DC)                                                                                       | 200                                                                          | 250                                                                           | 270                       | 300                                      | 400                                           | 450      | 470                                                | 500                 |                            |
| 4.2 | Nominal capacitance (Tolerance) | <condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria></condition> | Frequen<br>foltage<br>Fempera                                                | ature :                                                                       | : Not m<br>: 20±2         | ${\mathbb C}$                            | n 0.5Vrr                                      |          |                                                    |                     |                            |
| 4.3 | Leakage<br>current              | <condition> Connecting to minutes, and <criteria> Refer to Table</criteria></condition>         | the cap                                                                      |                                                                               | _                         |                                          |                                               | tor (1   | k Ω ± 1                                            | 0Ω) in              | series for                 |
| 4.4 | tan δ                           | <condition> See 4.2, Nor  <criteria> Refer to Tabl</criteria></condition>                       | m Capa                                                                       | acitance                                                                      | , for me                  | easuring                                 | frequer                                       | ncy, vo  | ltage ar                                           | nd temp             | erature.                   |
| 4.5 | Terminal<br>strength            | 0.51 Over 0.                                                                                    | rength of capacitor rength of apacitor 2~3 sector of learning and 5mm to 4a> | or, appl<br>of Term<br>r, applie<br>conds, a<br>ead wire<br>l less<br>o 0.8mm | inals.  Ed force and then | to bent it bent it rensile (kg 5 (0 10 ( | the term<br>for 90°<br>force N<br>(f)<br>.51) | ninal (1 | -4 mm<br>original<br>Bendin<br>(1)<br>2.5<br>5 (c) | g force (gf) (0.25) | ne rubber) f<br>n within 2 |

| Version | 01 |  | Page | 6 |
|---------|----|--|------|---|
|---------|----|--|------|---|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

|     |                           | <condition< th=""><th></th><th>perature(°C)</th><th></th><th>Tim</th><th>e</th><th></th></condition<>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | perature(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 | Tim                                                                              | e                                         |                                         |
|-----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|
|     |                           | 1                                                                                                                                 | 20=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time to re                                                                                                                      |                                                                                  |                                           | brium                                   |
|     |                           | 2                                                                                                                                 | -40(-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time to re                                                                                                                      |                                                                                  |                                           |                                         |
|     |                           | 3                                                                                                                                 | 20=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time to re                                                                                                                      |                                                                                  |                                           |                                         |
|     |                           | 4                                                                                                                                 | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time to re                                                                                                                      |                                                                                  |                                           |                                         |
|     |                           | 5                                                                                                                                 | 20=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time to re                                                                                                                      |                                                                                  |                                           |                                         |
|     |                           | <criteria></criteria>                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111110 00 10                                                                                                                    |                                                                                  | aur oquari                                |                                         |
|     | Temperature characteristi | a. At +10<br>of its o<br>In step                                                                                                  | 05°C, capacitance roriginal value at +2<br>o 4, tan δ shall be<br>akage current meas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20℃.<br>e within the liı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nit of Item 4                                                                                                                   | 4.4                                                                              | f its spec                                | ified value                             |
| 1.6 | cs                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                  | r no spec                                 | iiica vaiac                             |
|     |                           | b. In step 5, $\tan \delta$ shall be within the limit of Item 4.4<br>The leakage current shall not more than the specified value. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                  |                                           |                                         |
|     |                           | c. In ste                                                                                                                         | ep 2, At -25℃, i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | impedance (Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ratio shall                                                                                                                     | not exc                                                                          | eed the                                   | value of the                            |
|     |                           | following                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                  |                                           |                                         |
|     |                           | table:                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                  |                                           |                                         |
|     |                           | Worl                                                                                                                              | king Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 160 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) 220                                                                                                                           | 350                                                                              | 400                                       | 450                                     |
|     |                           | <b>Z</b> -                                                                                                                        | 25°C/Z-+20°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                               | 5                                                                                | 5                                         | 6                                       |
|     |                           | Capaci                                                                                                                            | itance, tan $\delta$ , and i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | impedance sha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ll be measu                                                                                                                     | red at 12                                                                        | 0Hz.                                      |                                         |
|     |                           | <condition< th=""><th></th><th></th><th></th><th></th><th></th><th></th></condition<>                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                  |                                           |                                         |
|     |                           | According to $105 \% \pm 2$ time hour                                                                                             | to IEC60384-4No. with DC bias volts. (The sum of Daltage) Then the pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tage plus the root of the root | ated ripple<br>peak volta                                                                                                       | current f<br>ge shall                                                            | or Table                                  | e1 load li                              |
|     | Load                      | According to $105 \% \pm 2$ time hour working vo atmospheric                                                                      | to IEC60384-4No. with DC bias volts. (The sum of D ltage) Then the processor of the conditions. The results are supported to the processor of the support of the processor of the support  | tage plus the roce and ripple roduct should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rated ripple<br>peak volta<br>be tested aft                                                                                     | current f<br>ge shall<br>er 16 hou                                               | for Table<br>not exce<br>ars recov        | e1 load li                              |
| 4.7 | life                      | According to $105 \% \pm 2$ time hour working vo atmospheric <b>&lt; Criteria&gt;</b>                                             | to IEC60384-4No. with DC bias volts. (The sum of D litage) Then the processor of the conditions. The reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tage plus the roce and ripple roduct should be result should n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rated ripple<br>peak voltage<br>be tested aft<br>neet the follo                                                                 | current f<br>ge shall<br>er 16 hou<br>owing tab                                  | for Table<br>not exce<br>ars recov        | e1 load li                              |
| 4.7 |                           | According to 105 °C ±2 time hour working vo atmospheric < Criteria > The charac                                                   | to IEC60384-4No. with DC bias voltes. (The sum of D ltage) Then the processor of the conditions. The restriction of the state of the st | tage plus the race of the plus the result should not the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rated ripple<br>peak volta<br>pe tested aft<br>neet the follo<br>requirement                                                    | current f<br>ge shall<br>er 16 hou<br>owing tab                                  | for Table<br>not exce<br>ars recov        | e1 load li                              |
| 4.7 | life                      | According to 105 °C ±2 time hour working vo atmospheric <b><criteria></criteria></b> The charac Leak                              | with DC bias voltes. (The sum of Deltage) Then the process conditions. The reteristic shall meet tage current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tage plus the roce and ripple roduct should be result should not the following Value in 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | peak volta<br>peak volta<br>pe tested aft<br>neet the follo<br>requirement<br>3 shall be sa                                     | current f<br>ge shall<br>er 16 hou<br>owing tab                                  | for Table<br>not exce<br>ars recov        | e1 load li                              |
| 4.7 | life                      | According to 105 ℃ ±2 time hour working vo atmospheric < <b>Criteria&gt;</b> The charac Leak Capa                                 | with DC bias voltes. (The sum of Deltage) Then the process conditions. The restriction shall meet tage current acitance Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tage plus the record of the following  Value in 4.  Within ±2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | peak volta<br>peak volta<br>pe tested aft<br>neet the follo<br>requirement<br>3 shall be sa<br>0% of initi                      | current f<br>ge shall<br>er 16 hou<br>owing tab<br>ats.<br>atisfied<br>al value. | or Table<br>not exce<br>ars recov<br>ble: | el load li<br>ed the rate<br>ering time |
| 4.7 | life                      | According to 105 °C ±2 time hour working vo atmospheric < Criteria> The charac Leak Capa tan 8                                    | with DC bias voltes. (The sum of Deltage) Then the proceedings. The reconditions. The reconditions that the conditions is the state of the conditions of the | tage plus the record ripple roduct should be result should not the following Value in 4.  Within ±2  Not more to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | peak volta, peak volta, peak volta, peak volta, peak tested aft neet the follow requirement 3 shall be sa 0% of initinan 200% o | current f ge shall er 16 hou owing tab  ts.  atisfied al value. f the spec       | or Table not exceurs recovole:            | el load li<br>ed the rate<br>ering time |
| 4.7 | life                      | According to 105 °C ±2 time hour working vo atmospheric < Criteria> The charac Leak Capa tan 8                                    | with DC bias voltes. (The sum of Deltage) Then the process conditions. The restriction shall meet tage current acitance Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tage plus the record ripple roduct should be result should not the following Value in 4.  Within ±2  Not more to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | peak volta<br>peak volta<br>pe tested aft<br>neet the follo<br>requirement<br>3 shall be sa<br>0% of initi                      | current f ge shall er 16 hou owing tab  ts.  atisfied al value. f the spec       | or Table not exceurs recovole:            | el load li<br>ed the rate<br>ering time |
| 4.7 | life                      | According to 105 °C ±2 time hour working vo atmospheric < Criteria> The charac Leak Capa tan 8                                    | to IEC60384-4No. with DC bias voltes. (The sum of D bitage) Then the proceeding the conditions. The restriction of the conditions of the c | tage plus the record ripple roduct should be result should not the following Value in 4.  Within ±2  Not more to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | peak volta, peak volta, peak volta, peak volta, peak tested aft neet the follow requirement 3 shall be sa 0% of initinan 200% o | current f ge shall er 16 hou owing tab  ts.  atisfied al value. f the spec       | or Table not exceurs recovole:            | el load li<br>ed the rate<br>ering time |

| Version | 01 |  | Page | 7 |
|---------|----|--|------|---|
|---------|----|--|------|---|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

|      |                   | <criteria></criteria>                                                                                                     |                                                                                                                                                                                                                                                                 |
|------|-------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                   |                                                                                                                           | meet the following requirements.                                                                                                                                                                                                                                |
|      | Chalf             | Leakage current                                                                                                           | Value in 4.3 shall be satisfied                                                                                                                                                                                                                                 |
| 4.8  | Shelf<br>life     | Capacitance Change                                                                                                        | Within $\pm 20\%$ of initial value.                                                                                                                                                                                                                             |
| 4.0  | test              | tan $\delta$                                                                                                              | Not more than 200% of the specified value.                                                                                                                                                                                                                      |
|      | test              | Appearance                                                                                                                | There shall be no leakage of electrolyte.                                                                                                                                                                                                                       |
|      |                   | Remark: If the capacitors are                                                                                             | stored more than 1 year, the leakage current may                                                                                                                                                                                                                |
|      |                   | increase. Please apply voltag                                                                                             | e through about 1 k $\Omega$ resistor, if necessary.                                                                                                                                                                                                            |
|      |                   | The capacitor shall be submit followed discharge of 5 min. The test temperature shall be submit for the test temperature. | pe 15~35°C.                                                                                                                                                                                                                                                     |
|      |                   | C <sub>R</sub> :Nominal Capacitance ( <b>Criteria&gt;</b>                                                                 | μ ۲)                                                                                                                                                                                                                                                            |
| 4.0  | Surge             | Leakage current                                                                                                           | Not more than the specified value.                                                                                                                                                                                                                              |
| 4.9  | test              |                                                                                                                           | 1                                                                                                                                                                                                                                                               |
|      |                   | Capacitance Change                                                                                                        | Within ±15% of initial value.                                                                                                                                                                                                                                   |
|      |                   | tan 8                                                                                                                     | Not more than the specified value.                                                                                                                                                                                                                              |
|      |                   | Appearance                                                                                                                | There shall be no leakage of electrolyte.                                                                                                                                                                                                                       |
|      |                   | Attention:                                                                                                                |                                                                                                                                                                                                                                                                 |
|      |                   | over voltage as often applied                                                                                             | age at abnormal situation only. It is not applicable to such                                                                                                                                                                                                    |
|      |                   | over voltage as often applied                                                                                             | 1.                                                                                                                                                                                                                                                              |
| 4.10 | Vibration<br>test | perpendicular directions. Vibration frequency range Peak to peak amplitud Sweep rate Mounting method:                     | e : 1.5mm<br>: 10Hz ~ 55Hz ~ 10Hz in about 1 minute<br>greater than 12.5mm or longer than 25mm must be fixed<br>Within 30°                                                                                                                                      |
|      |                   | Criteria> After the test, the follow Inner construction Appearance                                                        | To be soldered  ing items shall be tested:  No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.  No mechanical damage in terminal. No leakage of electrolyte or swelling of the case.  The markings shall be legible. |

| Version 0 |  | Page 8 |
|-----------|--|--------|
|-----------|--|--------|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

|        |                | <condition></condition>                               |                              |                          |             |
|--------|----------------|-------------------------------------------------------|------------------------------|--------------------------|-------------|
|        |                | The capacitor shall be teste                          | d under the following        | conditions: Sn-Cu sold   | er          |
|        |                | Soldering temperature                                 | : 250±3°C                    |                          |             |
|        |                | Dipping depth                                         | : 2mm                        |                          |             |
| 4.11   | Solderability  | Dipping speed                                         | : 25±2.5mm                   | n/s                      |             |
| 1 7.11 | test           | Dipping time                                          | : 3±0.5s                     |                          |             |
|        |                | <c<u>riteria&gt;</c<u>                                |                              |                          |             |
|        |                | Coating quality                                       |                              | n of 95% of the surface  | being       |
|        |                |                                                       | immersed                     |                          |             |
|        |                | <condition></condition>                               |                              |                          |             |
|        |                | Terminals of the capacit                              | or shall be immersed i       | nto solder bath at       |             |
|        |                | $260\pm5^{\circ}\text{C}\text{for}10\pm1\text{secon}$ | nds or 400±10°C for 3        | +1 seconds to 1.5~2.0m   | nm from the |
|        |                | body of capacitor.                                    |                              | v                        |             |
|        | Resistance to  | Then the capacitor shall                              | be left under the norm       | nal temperature and nor  | mal         |
| 4.12   | solder heat    | humidity for 1~2 hours                                |                              | -                        |             |
|        | test           | <criteria></criteria>                                 |                              |                          |             |
|        |                | Leakage current                                       | Not more than the            |                          |             |
|        |                | Capacitance Change                                    | Within $\pm 10\%$ of         |                          | _           |
|        |                | tan $\delta$                                          | Not more than the            |                          |             |
|        |                | Appearance                                            | I nere snam be no i          | eakage of electrolyte.   | _           |
|        |                | <condition></condition>                               |                              |                          |             |
|        |                | Temperature Cycle:                                    |                              |                          |             |
|        |                | According to IEC 60384-                               | 4No.4.7methods, capa         | citor shall be placed in | an oven,    |
|        |                | the condition according                               | as below:                    | ,                        |             |
|        |                |                                                       | nperature                    | Time                     |             |
|        |                | (1)+20°C                                              |                              | ≤3 Minutes               |             |
|        | Change of      | (2)Rated low temperate                                | ure(-25℃)                    | $30\pm2$ Minutes         |             |
| 4.13   | temperature    | (3)Rated high temperat                                | ture (+105°C)                | $30\pm2$ Minutes         |             |
|        | test           | (1) to (3)=1 cycle, tota                              | l 5 cycle                    |                          |             |
|        |                |                                                       |                              |                          |             |
|        |                | <criteria></criteria>                                 | 1 . C .11 . '                |                          |             |
|        |                | The characteristic shall                              |                              |                          |             |
|        |                | Leakage current                                       | Not more than the s          |                          |             |
|        |                | tan δ                                                 | Not more than the s          | •                        |             |
|        |                | Appearance                                            | I nere shall be no le        | akage of electrolyte.    |             |
|        |                | <condition></condition>                               |                              |                          |             |
|        |                | Humidity Test: According to IEC60384-4                | 1No 1 12 methods son         | acitor chall             |             |
|        |                | be exposed for $500 \pm 8$ ho                         |                              |                          |             |
|        |                | $40\pm2^{\circ}$ C, the characterist                  | _                            |                          | nt          |
|        | Domm b t       | +0 ± 2 €, the characterist                            | ic change shan meet ti       | no ronowing requireme    | 111.        |
| 4.14   | Damp heat test | <criteria></criteria>                                 |                              |                          |             |
|        | tost           |                                                       | Not more than the spec       | cified value             |             |
|        |                |                                                       | Within $\pm 20\%$ of initial |                          |             |
|        |                | 1 0                                                   | Not more than 120% of        |                          |             |
|        |                |                                                       | There shall be no leak       | -                        |             |
|        |                | Appearance                                            | THEIC SHAII DE HU ICAK       | age of electrolyte.      |             |
| I —    | <u>l</u>       |                                                       |                              |                          |             |

| Version | 01 |  | Page | 9 |
|---------|----|--|------|---|
|---------|----|--|------|---|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

| 4.15 | Vent<br>test           | Condition> The following test only apply with vent. D.C. test The capacitor is connected current selected from below <table 3=""></table>                                            | with its po<br>table is ap<br>Current (A)<br>1<br>10 | larity reve        | rsed to a D | C power so | ource. Then a |
|------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|-------------|------------|---------------|
|      |                        | Condition> The maximum permissible at 120Hz and can be applited Table-1 The combined value of Derated voltage and shall not shall not prequency Multipliers:  Coefficient  Cap. (μF) | ied at maxi<br>.C voltage                            | mum operand the pe | ating tempe | erature    |               |
|      | Maximum                | 1~5.6                                                                                                                                                                                | 0.20                                                 | 0.40               | 0.80        | 1.00       |               |
| 4.16 | permissible<br>(ripple | 6.8~180                                                                                                                                                                              | 0.40                                                 | 0.75               | 0.90        | 1.00       |               |
| 7.10 | current)               | 220~                                                                                                                                                                                 | 0.50                                                 | 0.85               | 0.94        | 1.00       |               |
|      | ,                      |                                                                                                                                                                                      | eient:                                               |                    |             |            |               |

| Version 01 Page 10 |  |
|--------------------|--|
|--------------------|--|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

## **SAMXON**

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

|                   | Substances                                     |  |  |  |
|-------------------|------------------------------------------------|--|--|--|
|                   | Cadmium and cadmium compounds                  |  |  |  |
| Heavy metals      | Lead and lead compounds                        |  |  |  |
|                   | Mercury and mercury compounds                  |  |  |  |
|                   | Hexavalent chromium compounds                  |  |  |  |
|                   | Polychlorinated biphenyls (PCB)                |  |  |  |
| Chloinated        | Polychlorinated naphthalenes (PCN)             |  |  |  |
| organic           | Polychlorinated terphenyls (PCT)               |  |  |  |
| compounds         | Short-chain chlorinated paraffins(SCCP)        |  |  |  |
|                   | Other chlorinated organic compounds            |  |  |  |
|                   | Polybrominated biphenyls (PBB)                 |  |  |  |
| Brominated .      | Polybrominated diphenylethers(PBDE) (including |  |  |  |
| organic           | decabromodiphenyl ether[DecaBDE])              |  |  |  |
| compounds         | Other brominated organic compounds             |  |  |  |
| Tributyltin comp  | oounds(TBT)                                    |  |  |  |
| Triphenyltin con  | npounds(TPT)                                   |  |  |  |
| Asbestos          |                                                |  |  |  |
| Specific azo con  | npounds                                        |  |  |  |
| Formaldehyde      |                                                |  |  |  |
| Beryllium oxide   |                                                |  |  |  |
| Beryllium copp    | er                                             |  |  |  |
| Specific phthalat | es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)          |  |  |  |
| Hydrofluorocarb   | on (HFC), Perfluorocarbon (PFC)                |  |  |  |
| Perfluorooctane   | sulfonates (PFOS)                              |  |  |  |
| Specific Benzotr  | iazole                                         |  |  |  |

| Version | 01 |  | Page | 11 | ĺ |
|---------|----|--|------|----|---|
|---------|----|--|------|----|---|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

## **SAMXON**

#### **Attachment: Application Guidelines**

#### 1.Circuit Design

#### 1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
  - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
  - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
  - a) At higher frequencies capacitance and impedance decrease while tanδ increases.
  - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).

#### 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

#### 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

#### (1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

#### (2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

#### (3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

#### (4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

#### (5) Pulse Current

The pulse current cannot exceed 10 times the rated ripple current at 120Hz.

#### 1.4 Using Two or More Capacitors in Series or Parallel

#### (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

#### (2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

#### 1.5 Capacitor Mounting Considerations

#### (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

#### (2) Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

#### (3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

#### (4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

#### (5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

| Version | 01 |  | Page | 12 |
|---------|----|--|------|----|
|---------|----|--|------|----|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

## SAMXON

#### (6) Wiring Near the Pressure Relief Vent

Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.

(7) Circuit Board patterns Under the Capacitor

Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

#### 1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.

#### 1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

#### CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

- (1) Provide protection circuits and protection devices to allow safe failure modes.
- (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

#### 2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about 1kΩ.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately  $1k\Omega$ .
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result

#### 2.2 Capacitor Insertion

- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before inserting.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

#### 2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

#### 2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

#### 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

|  | Version | 01 |  | Page | 13 |
|--|---------|----|--|------|----|
|--|---------|----|--|------|----|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

## **SAMXON**

#### 2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

#### 2.7 Circuit Board Cleaning

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

Alkali solvents : could attack and dissolve the aluminum case.

Petroleum based solvents: deterioration of the rubber seal could result.

Xylene : deterioration of the rubber seal could result.

Acetone : removal of the ink markings on the vinyl sleeve could result.

- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

#### 2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

#### 3. Precautions for using capacitors

3.1 Environmental Conditions

Capacitors should not be stored or used in the following environments.

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

#### 3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

#### 4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

#### 5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a  $1000\Omega$ , current limiting resistor for a time period of 30 minutes . If the expired date of products date code is over eighteen months, the products should be return to confirmation.

#### 5.1 Environmental Conditions

| version of rage 14 |
|--------------------|
|--------------------|

## ELECTROLYTIC CAPACITOR SPECIFICATION RD SERIES

## **SAMXON**

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

#### 6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

| Version | 01 |  | Page | 15 |
|---------|----|--|------|----|
|---------|----|--|------|----|

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below:

ECE-A1EGE220 NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB
NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC ES5107M016AE1DA 227RZS050M 477RZS050M
UVX1V222MHA1CA VTL100S10 VTL470S10 511D336M250EK5D ECE-A1CF471 ERZA630VHN182UP54N GF100/25 GF220/35
NEV1000M6.3DE NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF
NEV4700M35HI NEV4.7M100BA NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB NEVH2.2M160AB NEVH3.3M350BC
TER330M50GM 477KXM035MGBWSA ESMG160ETD221MF11D ESMG160ETD101ME11D NEV1500M25-BULK NEV470M50FF-BULK NEV330M25DE-BULK NEV3300M16FH-BULK NEV100M100EE-BULK VHT470M50-BULK VHT100M50-BULK
VHT2200M35-BULK LKMD1401H221MF B41888G6108M000