

Q6012LTH1LED Series

Agency App	roval
Agency	Agency File Number
91	L Package : E71639

Main Features			
Symbol	Value	Unit	
I _{T(RMS)}	12	А	
V _{DRM} /V _{RRM}	600	V	
DIAC V _{BO}	33 to 43	V	

Schematic Symbol

Additional Information

Description

The Quadrac is an internally triggered Triac designed for AC switching and phase control applications. It is a Triac and DIAC in a single package, which saves user expense by eliminating the need for separate Triac and DIAC components.

Q6012LTH1LED series is designed to meet low load current characteristics typical in LED lighting applications.

By keeping holding current at 8mA maximum, this Quadrac series is characterized and specified to perform best with LED loads. The Q6012LTH1LED series is best suited for LED dimming controls to obtain the lowest levels of light output with a minimum probability of flickering.

Q6012LTH1LED series is offered in the industry standard TO-220AB package with an isolated mounting tab that makes it best suited for adding an external heat sink.

Features	Benefits
 As low as 8mA max holding current 	 Provides full control of light out put at the extreme low end of load conditions.
 UL Recognized TO- 220AB package 	 2500V _{AC} min isolation between mounting tab and active terminals
 110°C rated junction temperature 	 Improves margin of safe operation with less heat sinking required
 di/dt performance of 70A/µs 	 Enable survivability of typically LED load operating characteristics
QUADRAC version	 Simplicity of circuit desig

- includes intergrated DIAC
- b

RoHS .

- afe eat
- ics
- esign & layout

Applications

Excellent for AC switching and phase control applications such as lighting and motor speed controls. Typical applications are AC solid-state switches, light dimmers with LED loads, small low current motor in power tools, and low current motors in home/brown goods appliances.

Internally constructed isolated package is offered for ease of heat sinking with highest isolation voltage.

Absolute Maximum Ratings

Symbol	Param	Value	Unit	
I _{T(RMS)}	RMS forward current	Tc = 90°C	12	A
		single half cycle; f = 50Hz; T _J (initial) = 25°C	110	Α
I _{TSM} Peak non-repetitive surge current	reak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	120	
l²t	l ² t value for fusing	t _p = 8.3ms	60	A ² s
di/dt	Critical rate-of-rise of on-state current	f = 60Hz; T _J =110°C	70	A/µs
I _{GM}	Peak gate current	T _J = 110°C	1.5	A
T _{stg}	Storage temperature range		-40 to 150	°C
Tj	Operating junction temperature range		-40 to 110	°C

Electrical Characteristics (T_J = 25°C, unless otherwise specified) – Alternistor Quadrac

Symbol	Test Conditions		Value	Unit
I _H	I _τ = 20mA (initial)	MAX.	8	mA
dv/dt	$V_{\rm D} = V_{\rm DRM}$; gate open; $T_{\rm J} = 110^{\circ} \rm C$	MIN.	45	V/µs
dv/dt(c)	$di/dt(c) = 0.54 \times I_{T(rms)} / ms; T_{J} = 110^{\circ}C$	MIN.	2	V/µs
t _{gt}	(note 1)	TYP.	3	μs

(1) Reference test circuit in figure 7 and waveform in figure 8; $C_{_T}$ = 0.1 μF with 0.1 μs rise time.

Trigger DIAC Specifications Symbol **Test Conditions** Value Unit $\Delta V_{\rm BO}$ MAX. 3 V Breakover Voltage Symmetry MIN. 33 V V_{BO} Breakover Voltage, forward and reverse MAX. 43 $[\Delta V \pm]$ Dynamic Breakback Voltage, forward and reverse (note 1) MIN. 5 V I_{BO} Peak Breakover Current MAX. 25 uА μF MAX. 0.1 C_{T} Trigger Firing Capacitance

(1) Reference test circuit in figure 7 and waveform in figure 8.

Static Characteristics					
Symbol	Test Conditions			Value	Unit
V _{TM}	$I_{T} = 1.41 \times I_{T_{(rms)}} A; t_{p} = 380 \mu s$		MAX.	1.6	V
		T _J = 25°C		10	
I _{DRM} / I _{RRM}	V _{drm} / V _{rrm}	T _J = 110°C	MAX.	1000	μA

Thermal Resistances				
Symbol	Parameter	Value	Unit	
R _{θ(J-C)}	Junction to case (AC)	2.3	°C/W	
R _{θ(J-A)}	Junction to ambient	50	°C/W	

Figure 3: Power Dissipation vs. RMS On-State Current (Typical)

Figure 5: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal Load: Resistive BMS On-State Current: II I: Maxim

RMS On-State Current: $[I_{_{T(RMS)}}]$: Maximum Rated Value at Specific Case Temperature

Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Figure 7: Test Circuit

Figure 8: Test Circuit Waveform

Figure 9: Peak Output Current vs Triggering Capacitance (Per Figure 7)

Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp) (T_L) to peak		5°C/second max	
$T_{S(max)}$ to T_{L}	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260°C +0/-5	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exceed		280°C	

Physical Specifications		
Terminal Finish	1005 Matte Tin-plated	
Body Material	UL Recognized epoxy meeting flammability classification 94v-0	
Lead Material	Copper Alloy	

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications			
Test	Specifications and Conditions		
High Temperature Voltage Blocking	MIL-STD-750: Method 1040, Condition A Rated V _{DRM} (VAC-peak), 110°C, 1008 hours		
Temperature Cycling	MIL-STD-750: Method 1051 -40°C to 150°C, 15-minute dwell, 100 cycles		
Biased Temperature & Humidity	EIA/JEDEC: JESD22-A101 320VDC, 85°C, 85%RH, 1008 hours		
High Temp Storage	MIL-STD-750: Method 1031 150°C, 1008 hours		
Low-Temp Storage	-40°C, 1008 hours		
Resistance to Solder Heat	MIL-STD-750: Method 2031 260°C, 10 seconds		
Solderability	ANSI/J-STD-002, Category 3, Test A		
Lead Bend	MIL-STD-750: Method 2036, Condition E		

Environmental Specifications

Dimensions - TO-220AB (L-Package) - Isolated Mounting Tab

М

Note: Maximum torque to be applied to mounting tab is 8 in-lbs. (0.904 Nm).

Dimension	Incl	hes	Millim	neters
Dimension	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
Ν	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

Product Selector

Part Number	Туре	Package
Q6012LTH1LED	Alternistor Quadrac	TO-220L

Packing Options Part Number Packing Mode Marking Weight **Base Quantity** Q6012LTH1LEDTP Q6012LTH1 2.2 g Tube 500 (50 per tube)

Part Numbering System

Part Marking System

© 2016 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 05/02/16

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by Littelfuse manufacturer:

Other Similar products are found below :

 CTA08-1000CW
 CTB24-800BW
 CTA08-1000C
 CTA12-800BWPT
 CTA16-1000B
 CTB24-800B
 BT137-600-0Q
 5615
 OT415Q
 2N6075A

 NTE5629
 NTE5688
 CTB08-400CW
 D31410
 BTA425Z-800BTQ
 KS100N12
 TOPT16-800C0,127
 OT408,135
 BT134-800E
 BT136D

 BTB16Q-600BW
 Z0409MF
 BTA04-600B
 BTA06-600BRG
 BTA06-800BWRG
 BTA08-600BRG
 BTA08-600,127

 MAC97A6,116
 BT137-600E,127
 BTB16-600CW3G
 BTB16-600CW3G
 Z0109MN,135
 T825T-6I
 T1220T-6I
 NTE5638
 ACST1235-8FP

 BT136X-600E,127
 MAC4DLM-1G
 BT134-600D,127
 BTA08-600BW3G
 NTE56017
 NTE56018
 NTE56059
 NTE5608

 NTE5609
 NTE56020
 NTE56022
 NTE56022
 NTE56020
 NTE56022