General Specifications

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, AVX launched FLEXITERM®. FLEXITERM® is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM®, AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM® will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

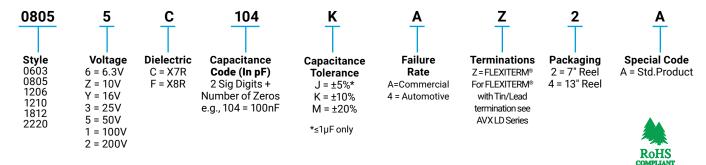
PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test guaranteed
- Increased temperature cycling performance, 3000 cycles and beyond
- Flexible termination system
- Reduction in circuit board flex failures
- Base metal electrode system
- Automotive or commercial grade products available
- AECQ200 Qualified
- Approved to VW 80808 Specification

APPLICATIONS

High Flexure Stress Circuit Boards

· e.g. Depanelization: Components near edges of board.


Variable Temperature Applications

- · Soft termination offers improved reliability performance in applications where there is temperature variation.
- · e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Specifications and Test Methods

KYOCERa

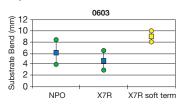
PERFORMANCE TESTING

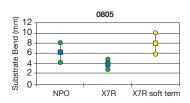
AEC-0200 Qualification:

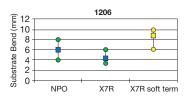
Created by the Automotive Electronics

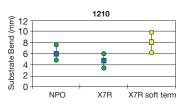
Specification defining stress test qualification for passive components

Testing:


Key tests used to compare soft termination to AEC-Q200 qualification:


- **Bend Test**
- Temperature Cycle Test

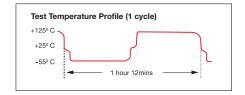



BOARD BEND TEST RESULTS

AEC-Q200 Vrs AVX FLEXITERM® Bend Test

TABLE SUMMARY

Typical bend test results are shown below:

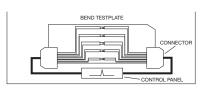


TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance


BOARD BEND TEST PROCEDURE

According to AEC-Q200

Test Procedure as per AEC-Q200: Sample size: 20 components

Span: 90mm Minimum deflection spec: 2 mm

- Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment

MOUNTING 41110

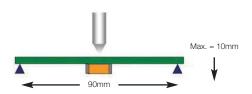

Fig 1 - PCB layout with electrical connections

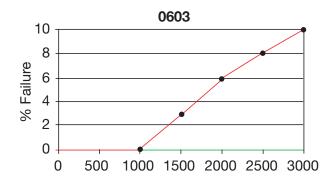
Fig 2 - Board Bend test equipment

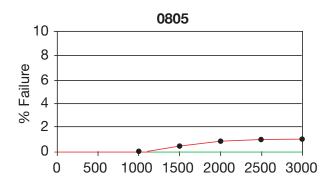
AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

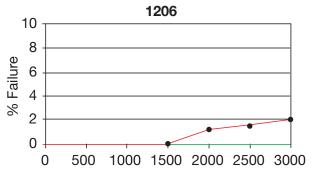
Bend Test

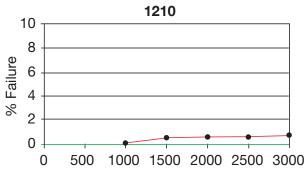
The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:

- · The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife



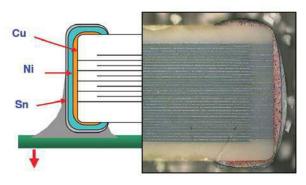

- · The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm


Specifications and Test Methods



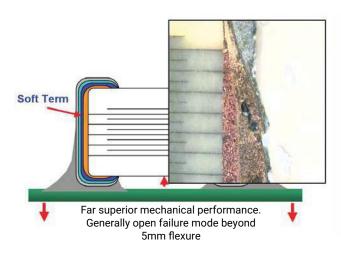
BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS

Green = Soft Term MLCC (Flexiterm) Red = Standard MLCC


Soft Term - No Defects up to 3000 cycles

AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles.

FLEXITERM® TEST SUMMARY


- Qualified to AEC-Q200 test/specification with the exception of using AVX 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).
- · FLEXITERM® provides improved performance compared to standard termination systems.
- Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
 - 0% Failure up to 3000 cycles
 - No ESR change up to 3000 cycle

WITHOUT SOFT TERMINATION

Major fear is of latent board flex failures.

WITH SOFT TERMINATION

Capacitance Range X8R Dielectric

	SIZE	06	03	08	305	1206				
Sc	oldering	Reflow	//Wave	Reflov	v/Wave	Reflow/Wave				
	WVDC	25V	50V	25V	50V	25V	50V			
	Cap 270	G	G							
	(pF) 330	G	G	J	J					
471	470	G	G	J	J					
681	680	G	G	J	J					
102	1000	G	G	J	J	J	J			
152	1500	G	G	J	J	J	J			
182	1800	G	G	J	J	J	J			
222	2200 2700	G G	G	J	J	J	J			
332	3300	G	G G	J	J	J	J			
392	3900	G	G	J	J	J	J			
472	4700	G	G	J	J	J	J			
562	5600	G	G	J	J	J	J			
682	6800	G	G	J	J	Ĵ	J			
822	8200	Ğ	Ğ	Ĵ	Ĵ	Ĵ	J			
	Cap 0.01	G	G	J	J	J	J			
	(µF) 0.012	G	G	J	J	J	J			
153	0.015	G	G	J	J	J	J			
183	0.018	G	G	J	J	J	J			
223	0.022	G	G	J	J	J	J			
273	0.027	G	G	J	J	J	J			
333	0.033	G	G	J	J	J	J			
393	0.039	G	G	J	J	J	J			
473	0.047	G	G	J	J	J	J			
563 683	0.056 0.068	G G		N N	N	M	M			
823	0.068	G		N N	N N	M M	M			
104	0.082			N N	N N	M	M M			
124	0.12			N	N N	M	M			
154	0.12			N	N	M	M			
184	0.18			N	i i	M	M			
224	0.22			N		M	M			
274	0.27					M	М			
334	0.33			İ		М	М			
394	0.39					М				
474	0.47					М				
684	0.68									
824	0.82									
105	1	05) (50)/	051/	F0)/	05)/	F0) /			
	WVDC	25V	50V	25V	50V	25V 50V				
	SIZE	06	03	08	305	12	06			

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max. Thickness	0.33 (0.013)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
			PAPER			, í		` ′	ЕМВО	SSED			

TS 16949, ISO 9001Certified

020117

Capacitance Range X7R Dielectric

Size			0402	2	0603					0805					1206						1210				18	12	2220							
	Solderi	na	Ref	ow/\	Vave					Reflow/Wave					Reflow/Wave					Reflow Only				Reflo	v Only	Reflow Only								
	WVDO					10V	16V				200V	250V	16V	25V				250V	16V	25V				250V	1500V						100 V			
221	Cap	220		С	С										-	С																		
271	(pF)	270		Č	C																													
331	(4.)	330		c	c																													
391		390	C	C	C																													
471		470	С	С	C																													
561		560	С	С	С		İ																					İ						
681		680	С	С	С										İ																			
821		820	С	С	С																				İ									
102		1000	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
182		1800	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
222		2200	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
332		3300		С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
472		4700		С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
103	Cap	0.01	С				G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
123	(µF)	0.012					G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
153		0.015					G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
183		0.018	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
223		0.022	С			_	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
273		0.027	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
333		0.033	С	_		-	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
473		0.047		_		-	G	G	G				J	J	J	N	N	N	J	J	J	М	J	J		K	K	K	K	N	N			
563		0.056			<u> </u>	-	G	G	G				J	J	J	N	-		J	J	J	M	J	J		K	K	K	M	N	N			
683		0.068		-	-	-	G	G	G	-	-	_	J	J	J	N	-	_	J	J	J	M	J	J		K	K	K	M	N	N			
823 104		0.082				-	G	G	G	-			J	J	J	N			J	J	J	M	J	J		K	K	K	M	N	N			
124		0.12	С	-	-	<u> </u>	G	G	G	-			J	J	J	N N	-		J	J	J M	M	J	J	-	K	K	K	M P	N N	N N			
154		0.12		-	-	-	-						J M	J N	N	N	-		J	J	M	M				K	K	K	P	N	N			
224		0.13		-	-	G	J		J		-		M	N	N	N	-	_	J	M	M	0				M	M	M	P	N	N			
334		0.22		<u> </u>	 	G	J	J	J				N	N	N	N			J	M	P	0		<u> </u>	-	P	P	P	0	X	X			
474		0.33	\vdash	<u> </u>	<u> </u>	J	J	J		-	 		N	N	N	N		<u> </u>	M	M	P	Q		—	 	P	P	P	Q	X	X			
684		0.47		\vdash	 	J	3						N	N	N	N			M	Q	0	0	<u> </u>	<u> </u>	 	Р	P	Q	X	X	X			
105		1				\vdash	\vdash						N	N	N	N			M	Q	ŏ	Ô				P	Q	Q	Z	X	X			
155		1.5			<u> </u>	t							N	N	<u> </u>	<u> </u>			0	Q	Q	<u> </u>				P	ō	Z	Z	X	X			
225		2.2				t	t						N	N		t			Q	Q	Q					X	Z	Z	Z	Z	Z			
335		3.3			\vdash	\vdash	\vdash				†								ŏ	Q	_		\vdash			X	Z	Z	Z	_ <u></u>				
475		4.7				i –													ō	Q						X	Z	Z	Z					Z
106		10				i –																				Z	Z	Z					Z	Z
226		22													İ																	Z		
	WVD0	Ċ	16V	25V	50V	10V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	500V	16V	25V	50V	100 V	50V	100 V	25V	50V	100 V
	Size			0402			•		06							805	•					120					12			18			2220	
0.02																																		

	Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z		
ſ	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79		
	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)		
				PAPER			EMBOSSED									

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Kyocera AVX manufacturer:

Other Similar products are found below:

M39014/02-1225V M39014/22-0631 C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J C1005X5R0G225M 726632-1

CDR35BX104BKUR\M500 M39014/220214 CHP1-100-8202-G-LF674A 1206B103K501NT 0402N820J101CT 1206N221J202CT 1206N220J501CT 0603X155K6R3CT 1206N3R9C102CT 1206N151J500CT 1206N103J101CT 0603B152K201CT RF18N5R0B500CT 0603B472K201CT 0603N1R0C251CT 0805B153K201CT 1210B333K101CT CC0100JRNPO8BN100 CC0100JRNPO6BN101 CC0805KRX7R0BB821 CC0402JRNPO9BN301 CC0100JRNPO7BN100 CC0805KKX7R0BB105 AC0805KKX7R6BB475 CC0805FRNPO9BN750 CC0805KKX7R7BB824 CC0805KRX7RBBB561 CQ0402DRNPO9BN5R6 AF0100FR-07200KL CC0201FRNPO9BN200 CC0805CRNPO0BN5R0 CC0805GKNPO9BN472 CC1206JKX7R9BB474 CC0805GRNPO0BN391 CC1206JRX7R8BB474 CC0201CRNPO8BN8R0 CC0201BRNPO8BNR70 CC0201JRX7R7BB332 CC0805GRNPO9BN201 CC0100KRX5R6BB103 CC0402GRNPO9BN102 CC1206ZRY5V6BB105 CC0805KRNPO9BN180