APS for COTS+ High Reliability Applications

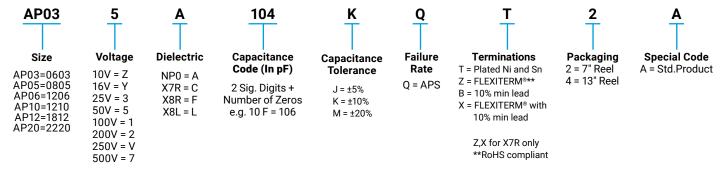
General Specifications Surface Mount NPO, X7R and X8R/L MLCCs

AVX's APS COTS+ series of multilayer ceramic capacitors offers the customer a high reliability solution with an ultralow failure rate, <1ppb, in a variety of case sizes and voltages. The APS range encompasses a wide range of dielectric types to meet the customer's requirements from low temperature/voltage capacitance change dielectric, NP0, to high preforming capacitance voltage X7R to high temperature reliability dielectrics, X8R/L.

APS capacitors have a wider capacitance range than MIL spec parts that satisfies the need for higher CV demands and board space saving requirements. Each production lot is extensively tested and removes the requirement for customer specific drawings. The testing regime uses many of the MIL-STD test methods as per MIL-PRF-55681 and has a field failure rate of less than 1 ppb. The APS testing series uses AVX's unique in-house maverick testing detection system that eliminates infant mortality failures.

Applications suitable for APS include Industrial, Telecommunications, Aviation, and Military. The APS is available with a range of different termination finishes, Flexiterm®, Nickel / Tin and Tin with Pb1. Flexiterm® technology delivers improved thermo-mechanical stress resistance.

AVX'S APS RELIABILITY TEST SUMMARY


- · 100% Visual Inspection
- DPA
- IR, DF, Cap, DWV
- Maverick Lot Review
- · Thermal Shocl
- 85/85 Testing
- · Additional Life Testing
- · C of C with every Order
- · Quarterly Data Package

FEATURES

- The APS range has been extensively reliability tested as standard resulting in an ultralow failure rate, ≤1ppb
- The APS range is available with Flexiterm® that deliver's high thermo-mechanical stress resistance.
- High CV range enabling board space saving requirements.

Dielectric	Temperature/Percentage Cap Change
NP0	-30ppm +30ppm from -55°C + 125°C
X7R	-15% +15% from -55°C to + 125°C
X8R	-15% +15% from -55°C to + 150°C
X8L	-15% +40% from -55°C to + 150°C

HOW TO ORDER

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Number.

APS COTS+ NP0 Series

Size	AP	03 = 060	03	AP	05 = 08	05		AF	06 = 12	06			AP10	= 1210	
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
100 10pF	G	G	G	J	J	J	J	J	J	J	J				
120 12	G	G	G	J	J	J	J	J	J	J	J				
150 15	G	G	G	J	J	J	J	J	J	J	J				
180 18	G	G	G	J	J	J	J	J	J	J					
220 22	G	G	G	J	J	J	J	J	J	J					
270 27	G	G	G	J	J	J	J	J	J	J					
330 33	G	G	G	J	J	J	J	J	J	J					
390 39	G	G	G	J	J	J	J	J	J	J					
470 47	G	G	G	J	J	J	J	J	J	J					
510 51	G	G	G	J	J	J	J	J	J	J					
560 56	G	G	G	J	J	J	J	J	J	J					
680 68	G	G	G	J	J	J	J	J	J	J					
820 82	G	G	G	J	J	J	J	J	J	J					
101 100	G	G	G	J	J	J	J	J	J	J					
121 120	G	G	G	J	J	J	J	J	J	J					
151 150	G	G	G	J	J	J	J	J	J	J					
181 180	G	G	G	J	J	J	J	J	J	J					
221 220	G	G	G	J	J	J	J	J	J	J					
271 270	G	G	G	J	J	J	J	J	J	J					
331 330	G	G	G	J	J	J	J	J	J	J					
391 390	G	G		J	J	J	J	J	J	J					
471 470	G	G		J	J	J	J	J	J	J					
561 560				J	J	J	J	J	J	J					
681 680				J	J	J	J	J	J	J					
821 820				J	J	J	J	J	J	J					
102 1000				J	J	J	J	J	J	J		J	J	J	J
122 1200												J	J	M	M
152 1500												J	J	M	M
182 1800 222 2200												J	J	M	M
												J	J	IVI	IVI
272 2700 332 3300															
392 3900															
472 4700															
103 10nF															
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
											J00 V				
Size	AP	03 = 060	JS	AP05 = 0805				AF	06 = 12	00		AP10 = 1210			

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z		
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79		
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)		
	PAPER						EMBOSSED								

TS 16949, ISO 9001Certified

APS COTS+ X7R Series

	Size		AP	03 = 06	503			AP	05 = 0	805				AP06 =	1206				AP10 :	= 1210)	AP12	= 1812	AP	20 = 22	220
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
102	Cap 1000	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	K	K			
182	(pF) 1800	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
222	2200	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
332	3300	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
472	4700	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103	0.01	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
123	0.012	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
153	0.015	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
183	0.018	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
223	0.022	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
273	0.027	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
333	0.033	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
473	0.047	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	K	K	K			
563	0.056	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
683	0.068	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
823	0.082	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
104	0.1	G	G	G			J	J	М	М		J	J	J	М	J		K	K	K	М	K	K			
124	0.12						J	J	М	N		J	J	М	М			K	K	K	Р	K	K			
154	0.15						М	N	М	N		J	J	М	М			K	K	K	Р	K	K			
224	0.22						М	N	М	N		J	М	М	Q			М	М	М	Р	М	М			
334	0.33						N	N	М	N		J	М	Р	Q			Р	P	Р	Q	X	X			
474	0.47						N	N	М	N		М	М	Р	Q			Р	Р	Р	Q	X	Х			
684	0.68						N	N	N			М	Q	Q	Q			Р	P	Q	Х	Х	Х			
105	Cap 1.0						N	N	N*			М	Q	Q	Q*			Р	Q	Q	Z*	Х	X			
155	(μF) 1.5											Q	Q	Q				Р	Q	Z	Z	Х	Х			
225	2.2											Q	Q	Q				Х	Z	Z	Z*	Z	Z			
335	3.3											Q						Χ	Z	Z	Z	Z				
475	4.7											Q						Χ	Z	Z		Z*				
106	10																	Z	Z*						Z	Z*
226	22																							Z		
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
	Size		AP	03 = 06	503			AP	05 = 0	805				AP06 =	1206				AP10 :	= 1210)	AP12 = 1812 AP20 = 2220			220	

^{*}Not currently available with lead plating finish, contact plant for further information.

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER								EMBO	SSED			

TS 16949, ISO 9001Certified

APS COTS+ X8R/L Series

X8R

	SIZE	AP03 =	: 0603	AP05 :	= 0805	AP06 =	1206	
,	WVDC	25V	50V	25V	50V	25V	50V	
	_	-			30 V	237	300	
331	Cap 330	G	G	J	J			
471	(pF) 470	G	G	J	J			
681	680	G	G	J	J			
102	1000	G	G	J	J	J	J	
152	1500	G	G	J	J	J	J	
222	2200	G	G	J	J	J	J	
332	3300	G	G	J	J	J	J	
472	4700	G	G	J	J	J	J	
682	6800	G	G	J	J	J	J	
103	Cap 0.01	G	G	J	J	J	J	
153	(μF) 0.015	G	G	٦	J	J	J	
223	0.022	G	G	J	J	J	J	
333	0.033	G	G	J	J	J	J	
473	0.047	G	G	J	J	J	J	
683	0.068	G		N	N	M	М	
104	0.1			N	N	M	М	
154	0.15			N	N	M	М	
224	0.22			N		М	М	
334	0.33					М	М	
474	0.47					М		
684	0.68							
105	1							
	WVDC	25V	50V	25V	50V	25V 50V		
	SIZE	060			05	120		

X8L

	SIZE		AP03 = 0603	•		AP05 = 080	- E	AP06 = 1206					
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V		
331	Cap 330		G	G		J	J						
471	(pF) 470		G	G		J	J						
681	680		G	G		J	J						
102	1000		G	G		J	J						
152	1500		G	G		J	J			J	J		
222	2200		G	G		J	J			J	J		
332	3300		G	G		J	J			J	J		
472	4700		G	G		J	J			J	J		
682	6800		G	G		J	J			J	J		
103	Cap 0.01		G	G		J	J			J	J		
153	(μF) 0.015	G	G		J	J	J			J	J		
223	0.022	G	G		J	J	J			J	J		
333	0.033	G	G		J	J	N			J	J		
473	0.047	G	G		J	J	N			٦	J		
683	0.068	G	G		J	J				٦	J		
104	0.1	G	G		J	J				٦	М		
154	0.15				J	N		J	J	J	Q		
224	0.22				N	N		J	J	J	Q		
334	0.33				N			J	М	Р	Q		
474	0.47				N			М	М	Р			
684	0.68							М					
105	1							М					
1	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V		
	SIZE 0603					0805			12	06			

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

TS 16949, ISO 9001Certified

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Kyocera AVX manufacturer:

Other Similar products are found below:

D55342E07B523DR-T/R NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0402XPO220J50TRPF

NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF

NMC0402X7R392K50TRPF NMC0603NPO1R8C50TRPF NMC0603NPO201J50TRPF NMC0603NPO330G50TRPF

NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF

NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC
L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-P1206X7R103K1KVTRPLPF NMC-Q0402NPO8R2D200TRPF

C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00

1812J2K00332KXT CCR06CG153FSV CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C

CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J

CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J

CGA2B2C0G1H6R8D