

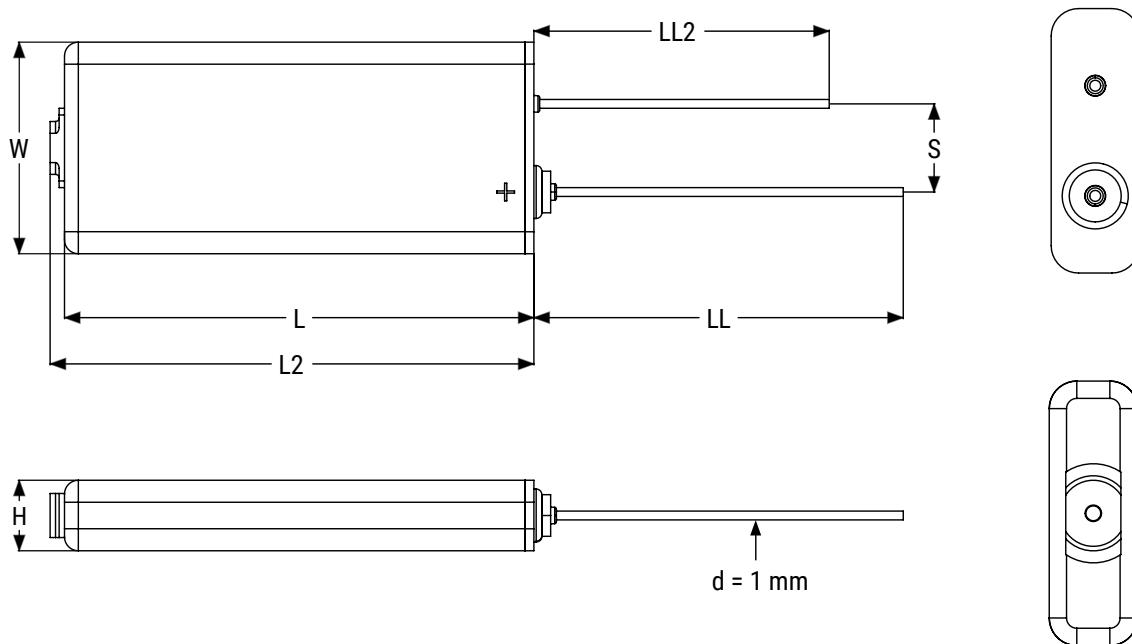
Overview

The KEMET APL90 is an AEC-Q200 qualified aluminum polymer rectangular capacitor, designed to fulfill 48V automotive applications and related platforms requiring compactness under low profile or low footprint application needs. It offers high capacitance, high ripple current performance and robust vibration resistance. Rated at 125°C, the APL90 offers excellent volumetric efficiency in a shape that lends itself to stacking into modules. Its shape, allows for easy use with a heat sink from the large surface area of the aluminum case or along its thickness, as like offers a solution for applications requiring very low profiles. These capacitors can then be mounted in horizontal or vertical position both allowing heat-sink to benefit space usage. Also, systems needing high energy efficient 48V power supplies, like the ones required for high end data centers, can also benefit with the usage of this product.

Applications

Typical applications are mainly in the field of automotive, such as DC-link on 48V inverters for MHEV, DC-Link on 48V systems motor drives as water pumps, power steering or cooling fans. Also, input capacitors for 48V systems data centers power supplies. Lower voltages (25VDC, 35VDC and 50VDC) are available upon request supporting new design platforms.

Benefits


- Rectangular shape for good volumetric efficiency and modular stacking options
- Easy use of multiple heat sink options - allowing I_{AC} optimization
- Height restriction solution / Compactness
- Life of 2,000 hours at +125°C [(V_R) and (I_R) applied]
- AEC-Q200 qualified for automotive applications
- High vibration up to 20 g
- Excellent ripple current capability - Up to 26A
- Excellent surge voltage capability
- Optimized designs available on request

Part Number System

APL90	A	112	LH	063
Series	Termination	Capacitance Code (μ F)	Size Code	Rated Voltage (VDC)
Aluminum Polymer Rectangular	See Termination Table	First two digits represent significant figures. Third digit specifies number of zeros.	See Dimension Table	063 = 63

Termination Style and Dimensions – Millimeters

Size Code	Dimensions* in mm							Approximate Weight (Grams)
	H	W	L	L2	LL	LL2	S	
	±0.5	±0.5	±0.5	± 2	± 2	± 2	± 1	
LH	8.0	24.0	53.8	54.9	42.0	40.0	10.0	14

Case - Aluminum

Leads - Copper wire with tin electroplate

Performance Characteristics

Item	Performance Characteristics	
Capacitance Range	1,100 μ F	
Rated Voltage	63 VDC	
Operating Temperature	−55 to +125°C	
Storage Temperature Range	−55 to +125°C	
Capacitance Tolerance	$\pm 20\%$ select values at 100 Hz/+20°C	
Operational Lifetime	Rated voltage, +125°C, Rated ripple current 2,000 hours	
Leakage Current	<p>$I < 0.01 CV (\mu A)$</p> <p>Leakage current performance is in line with wet and hybrid polymer electrolytic capacitor's behaviour. Leakage current limit is calculated under same principle being 1/20 x lower than conventional solid polymer capacitors.</p> <p>C = rated capacitance (μF), V = rated voltage (VDC). Voltage applied for 5 minutes at +20°C</p>	
Typical ESL	The series inductance (ESL) depends on wire length and mounting conditions. ESL of 4 nH at 1 MHz for approx. 5mm wire terminals.	
Vibration Test Specifications	Procedure	Requirements
	1.5 mm displacement amplitude or 20 g maximum acceleration. Vibration applied for three directions of 4-hour sessions at 10 – 2,000 Hz. (Capacitor clamped by body.)	No visible capacitor body damage. Deviations in capacitance from initial measurements must not exceed $\Delta C/C \pm 5\%$

Surge Voltage

Test Condition	Voltage (VDC)
	63
≤ 30 second surge followed by a no load period of 330 seconds, 1,000 cycles at +125°C	72.45

Test Method & Performance

Endurance Life Test	
Conditions	Performance
Temperature	+125°C
Test Duration	2,000 hours
Ripple Current	Rated ripple current specified in table
Voltage	The sum of DC voltage and the peak AC voltage must not exceed the rated voltage of the capacitor
Shelf Life Test	
Temperature	+125°C
Test Duration	1,000 hours
Ripple Current	Rated ripple applied
Voltage	No voltage applied
The following specifications will be satisfied when the capacitor is tested at +20°C (±5°C)	
Capacitance Change	Within 15% of the initial value
Equivalent Series Resistance	Does not exceed 2x initial measured value
Leakage Current	Does not exceed leakage current limit

Shelf Life and Re-Ageing

The capacitance, ESR and impedance of a capacitor will not change significantly after extended storage periods, however the leakage current will very slowly increase.

After long periods of storage, it could be a benefit to re-age the capacitors as common practice for Aluminum capacitors. Leakage current performance is in line with wet and hybrid electrolytic capacitor's behaviour. Leakage current limit is calculated under same principle.

Reliability

Reliability

The reliability of a component can be defined as the probability that it will perform satisfactorily under a given set of conditions for a given length of time. In practice, it is impossible to predict with absolute certainty how any individual component will perform. Therefore, we must utilize probability theory. It is also necessary to clearly define the level of stress involved (e.g., operating voltage, ripple current, temperature, and time.) Finally, the meaning of satisfactory performance must be defined by specifying a set of conditions, which determine the end of life of the component.

End of Life Definition

Catastrophic failure: short circuit, open circuit or safety vent operation

Parametric failure:

- Change in capacitance $> \pm 15\%$
- Leakage current $>$ initial specified limit
- ESR $> 2 \times$ ESR Limit

Mechanical Data

Polarity & Reversed Voltage

Aluminium electrolytic capacitors manufactured for use in DC applications contain an anode foil and a cathode foil. As such, they are polarized devices and must be connected with the +Ve to the anode foil and the -Ve to the cathode foil. If this were to be reversed, then the electrolytic process that took place in forming the oxide layer on the anode would be recreated in trying to form an oxide layer on the cathode. In forming the cathode foil in this way, heat would be generated and gas given off within the capacitor, usually leading to failure.

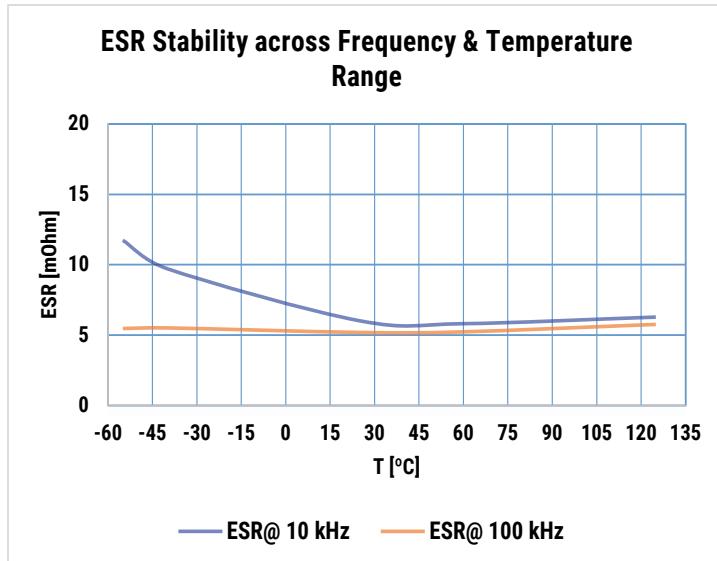
The cathode foil already possesses a thin stabilized oxide layer. This thin oxide layer is equivalent to a forming voltage of approximately 2 V. As a result, the capacitor can withstand a voltage reversal of up to 1.5 V for short periods. Above this voltage, the formation process will commence.

Mounting Position

The capacitor can be mounted upright or inclined to a horizontal position. For the vibration specifications to be valid, the capacitor must always be clamped by the body. The leads and connection tabs cannot provide the support necessary to stabilize the capacitor.

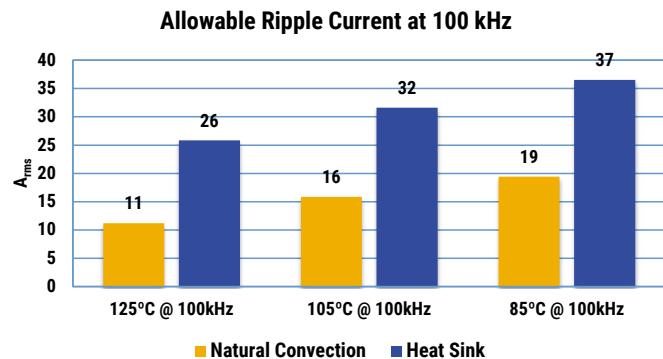
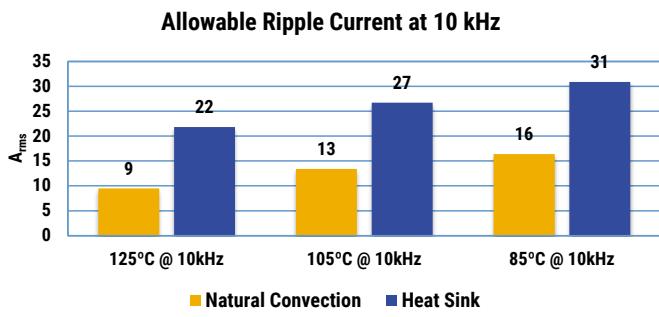
Installing

As general principle, KEMET recommends:


- The maximum rated temperature of the capacitor must not be exceeded.
- Ensure that the voltage across each capacitor does not exceed its rated voltage.
- Ensure electrical insulation between the capacitor case, negative terminal, positive terminal and PCB.
- Verify the correct polarization of the capacitor on the board.
- Do not cover the safety vent.
- Due to its rectangular shape, our APL90 product families offer the ability of stack capacitors, getting a modular arrangement. Also, easy use of heat sink condition is allowed to improve ripple current capability. More technical information related with this benefit can be checked under our specific Application Notes for Rectangular Aluminum Products.

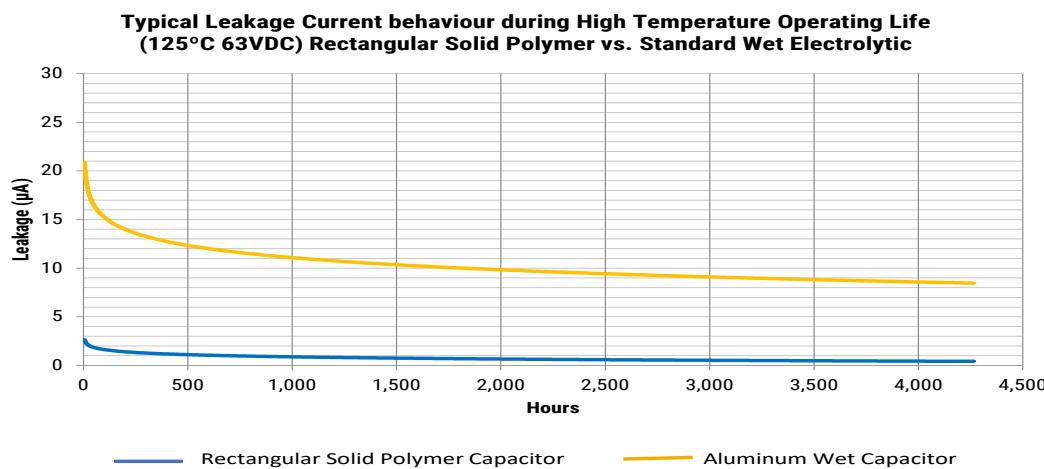
Electrical Performance

Temperature stability characteristics



Due to a solid polymer technology, Solid Polymer Aluminum Capacitors feature higher conductivity. This results in a lower ESR which, coupled with high capacitance allows an aluminum polymer capacitor to replace several standard electrolytic capacitors, reducing the number of components and maximizing board space.

The ESR at high frequency (from 10kHz to 100kHz) of polymer capacitors is nearly constant within its operating temperature range, while the ESR of a standard electrolytic capacitor noticeably changes with temperature.

Ripple Current and Heat sink condition


As a result of a lower ESR, solid polymer aluminum capacitors are able to withstand higher ripple currents during normal operation. Specially, the rectangular shape allows for a very efficient usage of a heat sink condition, promoting a very easy way to double the ripple current capability under compact application conditions.

Electrical Performance cont.

Leakage current behavior in time

When during application, this KEMET polymer technology capacitor shows very low leakage current values, as the results of KEMET material process development designed for Thermal and Electrical efficiency without compromising leakage current behaviour.

Environmental Compliance

As an environmentally conscious company, KEMET is working continuously with improvements concerning the environmental effects of both our capacitors and their production.

In Europe (RoHS Directive) and in some other geographical areas like China, legislation has been put in place to prevent the use of some hazardous materials, such as lead (Pb), in electronic equipment. All products in this catalog are produced to help our customers' obligations to guarantee their products and fulfill these legislative requirements. The only material of concern in our products has been lead (Pb), which has been removed from all designs to fulfill the requirement of containing less than 0.1% of lead in any homogeneous material.

KEMET will closely follow any changes in legislation world wide and makes any necessary changes in its products, whenever needed.

Some customer segments such as medical, military, and automotive electronics may still require the use of lead in electrode coatings. To clarify the situation and distinguish products from each other, a special symbol is used on the packaging labels for RoHS compatible capacitors.

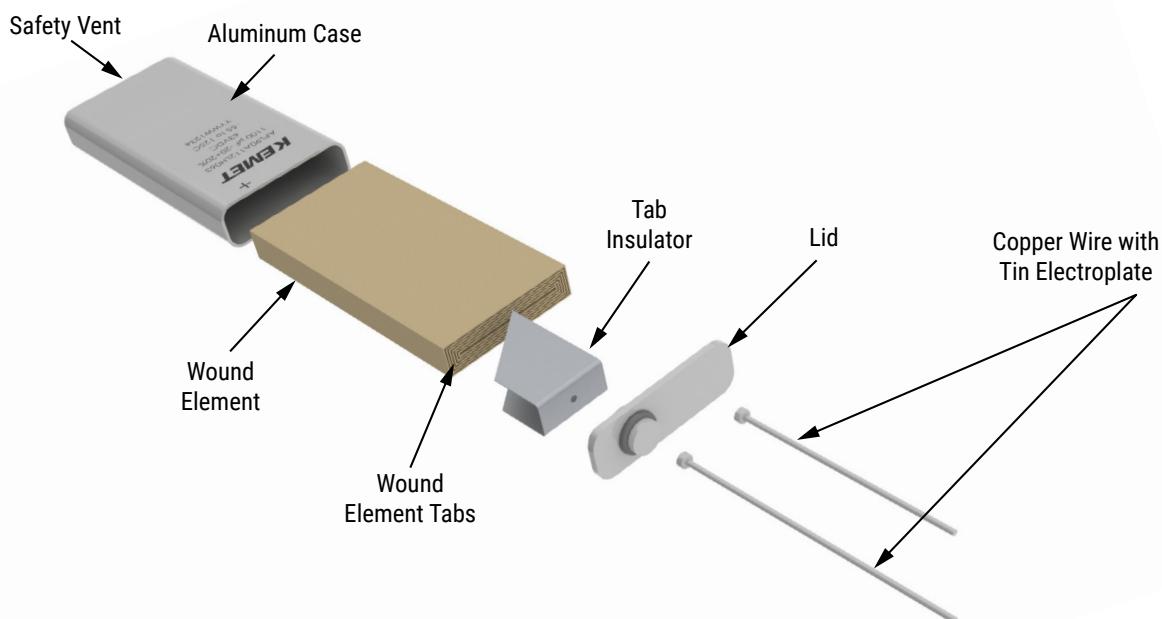
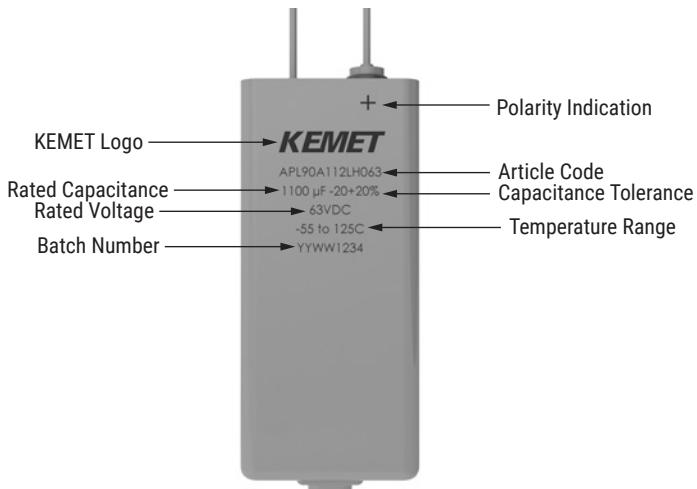

Due to customer requirements, there may appear additional markings such as lead-free (LF) or lead-free wires (LFW) on the label.

Table 1 – Ratings & Part Number Reference


Rated Voltage (VDC)	Rated Capacitance 100 Hz, 20°C (μF)	Size Code	Case Size W x L (mm)	Ripple Current				ESR Maximum		Part Number
				10 kHz, 125°C (A) ¹	100 kHz, 125°C (A) ¹	10 kHz, 125°C (A) ²	100 kHz, 125°C (A) ²	10 kHz, 20°C (mOhms)	100 kHz, 20°C (mOhms)	
63	1,100	LH	24 x 53.8	9.5	11.2	21.8	25.8	10.5	7.5	APL90A112LH063

¹ Natural Convection - Ambient Temperature² Capacitor-mounted with low thermal resistance path (heat-sink) - Capacitor case Temperature

Construction

Marking

**Print shown is representative*

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

KEMET requires its products to be packaged and shipped on pallets. This is because KEMET's products are specifically designed to be packed onto pallets during shipment. If for any reason, the products are removed from pallets by the shipping party and shipped to the end customer, then additional external protection is required. In this instance, an external box with two carton layers and an upwards orientation sticker must be used by the shipping party, with the empty space filled with filling material, and afterwards sealing the box. If this packing and packaging guideline is not followed by the shipping party, the shipping party, and not KEMET, will be held responsible for any packaging, packing and/or product damages upon delivery of the products to the end customer. KEMET hereby disclaims any liability for damages to the products or otherwise that have been, or threaten to be, inflicted, result from or are in any way related to the packaging, packing or damage by the shipping party in contravention of the packing and packaging guidelines herein.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for [Aluminium Organic Polymer Capacitors](#) category:

Click to view products by [Kemet manufacturer:](#)

Other Similar products are found below :

[750-1809](#) [SEAU0A0102G](#) [PCZ1V221MCL1GS](#) [HHXD500ARA470MHA0G](#) [NPXB1001B271MF](#) [NPXB1101B391MF](#) [NPXC0571B221MF](#)
[NPXC0701B331MF](#) [NPXB0901B391MF](#) [NPXD0701A471MF](#) [HHXD630ARA330MJA0G](#) [HHXD350ARA270MF61G](#)
[HHXD630ARA100MF61G](#) [HHXD350ARA101MHA0G](#) [HHXD250ARA101MF80G](#) [HHXD350ARA680MF80G](#) [APXJ160ARA221MF61G](#)
[HHXD160ARA151MF80G](#) [APXJ160ARA271MF80J](#) [RS81C271MDN1CG](#) [APSF6R3ELL821MF08S](#) [PM101M016E058PTR](#)
[PM101M025E077PTR](#) [SPZ1EM221E10P25RAXXX](#) [SPV1VM471G13O00RAXXX](#) [SPV1VM101E08O00RAXXX](#)
[SPZ1VM821G18O00RAXXX](#) [SPV1HM331G15O00RAXXX](#) [SVZ1EM221E09E00RAXXX](#) [PM101M035E077PTR](#) [HV1A227M0605PZ](#)
[HV1C107M0605PZ](#) [HV1C227M0607PZ](#) [HV1H107M0810PZ](#) [HV1E107M0607PZ](#) [HV1V106M0605PZ](#) [HV1V476M0605PZ](#)
[HV1H227M1010PZ](#) [HV0J337M0607PZ](#) [HV1A477M0607PZ](#) [HV1E566M0605PZ](#) [HV1V227M0810PZ](#) [HV0J108M0810PZ](#)
[M2101M035C070RT](#) [SVZ1CM471FBRE00RAXXX](#) [6R3AV5K221M0645C](#) [160AVEA101M0645L20](#) [160AVCA101M0606E27](#)
[100AVEA101M0645](#) [BC025M471PT8*12L-1A43R5T](#)