

TRANSISTOR (PNP)

FEATURES

- Ideally suited for automatic insertion
- For Switching and AF Amplifier Applications

MAXIMUM RATINGS (T_A=25[°]C unless otherwise noted)

Symbol	Parameter	Value	Units	
V _{CBO}	Collector-Base Voltage			
	BC856	-80	V	
	BC857	-50	V	
	BC858	-30		
V _{CEO}	Collector-Emitter Voltage		٧	
	BC856	-65		
	BC857	-45		
	BC858	-30		
V _{EBO}	Emitter-Base Voltage	-5	V	
Ic	Collector Current –Continuous	-0.1	Α	
Pc	Collector Power Dissipation	200	mW	
TJ	Junction Temperature	150	℃	
T _{stg}	Storage Temperature	-65-150	℃	

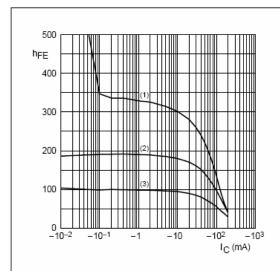
DEVICE MARKING

BC856A=3A; BC856B=3B;

BC857A=3E;BC857B=3F;BC857C=3G; BC858A=3J; BC858B=3K; BC858C=3L

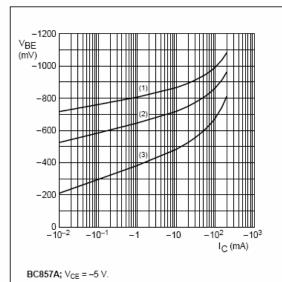
SOT-23

- 1. BASE
- 2. EMITTER
- 3. COLLECTOR


ELECTRICAL CHARACTERISTICS (Tamb=25°C unless otherwise specified)

Parameter		Symbol	Test conditions	MIN	MAX	UNIT
Collector-base breakdown voltage BC856				-80		
BC857		V_{CBO}	I _C = -10μΑ, I _E =0	-50		V
	BC858			-30		
Collector-emitter breakdown voltage BC856				-65		
	BC857	$V_{\sf CEO}$	I_C = -10mA, I_B =0	-45		V
	BC858			-30		
Emitter-base breakdown voltage		V_{EBO}	I _E = -1μΑ, I _C =0	-5		V
Collector cut-off current	BC856		V _{CB} = -70 V , I _E =0			
	BC857	I _{CBO}	V_{CB} = -45 V , I_E =0		-0.1	μΑ
	BC858		V_{CB} = -25 V , I_{E} =0			
Collector cut-off current	BC856		V _{CE} = -60 V , I _B =0			
	BC857	I _{CEO}	V_{CE} = -40 V , I_{B} =0		-0.1	μΑ
	BC858		V _{CE} = -25 V , I _B =0			
Emitter cut-off current		I _{EBO}	V _{EB} = -5 V , I _C =0		-0.1	μΑ
DC current gain BC856A	A, 857A,858A			125	250	
BC856E	3, 857B,858B	h _{FE}	V_{CE} = -5V, I_{C} = -2mA	220	475	
BC8	57C,BC858C			420	800	
Collector-emitter saturation voltage		V _{CE} (sat)	I _C =-100mA, I _B = -5 mA		-0.5	V
Base-emitter saturation voltage		V _{BE} (sat)	I _C = -100mA, I _B = -5mA		-1.1	V
Transition frequency		f⊤	V _{CE} = -5 V, I _C = -10mA f=100MHz	100		MHz
Collector capacitance		C _{ob}	V _{CB} =-10V, f=1MHz		4.5	pF

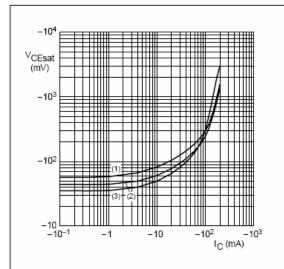
Date:2011/05


Typical Characteristics

BC857A; V_{CE} = -5 V.

- (1) T_{amb} = 150 °C.
- (2) T_{amb} = 25 °C.
- (3) T_{amb} = -55 °C.

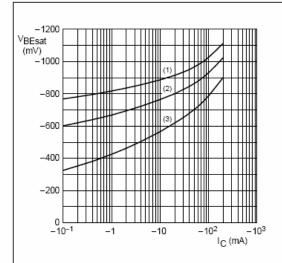
Fig.2 DC current gain as a function of collector current; typical values.



(1) $T_{amb} = -55 \,^{\circ}\text{C}$.

(2) T_{amb} = 25 °C.

(3) T_{amb} = 150 °C.


Fig.3 Base-emitter voltage as a function of collector current; typical values.

BC857A; I_C/I_B = 20.

- (1) T_{amb} = 150 °C.
- (2) T_{amb} = 25 °C.
- (3) T_{amb} = −55 °C.

Fig.4 Collector-emitter saturation voltage as a function of collector current; typical values.

BC857A; I_C/I_B = 20.

(1) T_{amb} = −55 °C.

(2) T_{amb} = 25 °C.

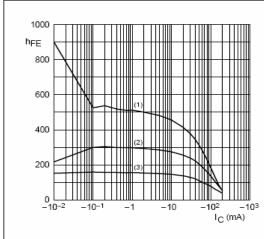
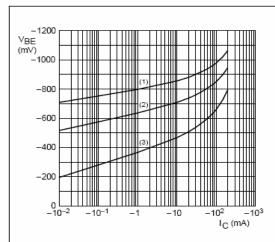

(3) T_{amb} = 150 °C.

Fig.5 Base-emitter saturation voltage as a function of collector current; typical values.

JinYu

semiconductor

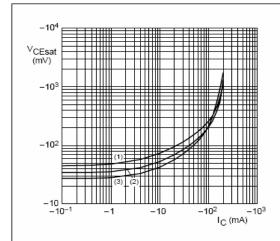

BC857B; $V_{CE} = -5 V$.

(1) T_{amb} = 150 °C.

(2) T_{amb} = 25 °C.

(3) T_{amb} = −55 °C.

Fig.6 DC current gain as a function of collector current; typical values.

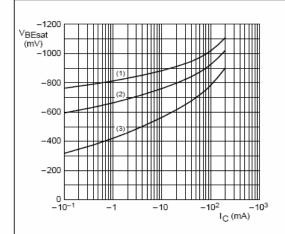

BC857B; $V_{CE} = -5 \text{ V}$.

(1) T_{amb} = −55 °C.

(2) T_{amb} = 25 °C.

(3) T_{amb} = 150 °C.

Fig.7 Base-emitter voltage as a function of collector current; typical values.

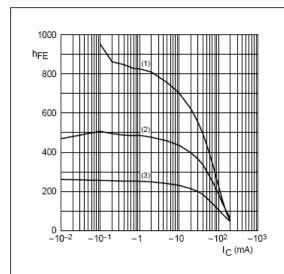


BC857B; I_C/I_B = 20.

(1) T_{amb} = 150 °C.

(2) T_{amb} = 25 °C. (3) T_{amb} = −55 °C.

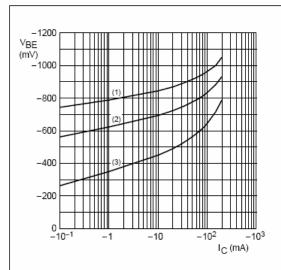
Fig.8 Collector-emitter saturation voltage as a function of collector current; typical values.


BC857B; I_C/I_B = 20.

(1) T_{amb} = −55 °C. (2) T_{amb} = 25 °C.

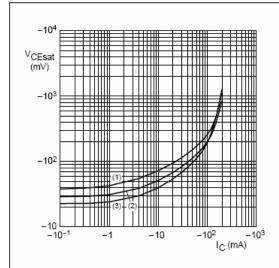
(3) T_{amb} = 150 °C.

Fig.9 Base-emitter saturation voltage as a function of collector current; typical values.



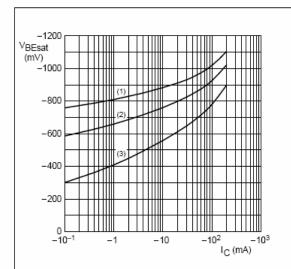
BC857C; $V_{CE} = -5 V$.

- (1) T_{amb} = 150 °C.
- (2) T_{amb} = 25 °C.
- (3) T_{amb} = -55 °C.


Fig.10 DC current gain as a function of collector current; typical values.

BC857C; V_{CE} = -5 V.

- (1) $T_{amb} = -55 \,^{\circ}C$.
- (2) T_{amb} = 25 °C.
- (3) T_{amb} = 150 °C


Fig.11 Base-emitter voltage as a function of collector current; typical values.

BC857C; I_C/I_B = 20.

- (1) T_{amb} = 150 °C.
- (2) T_{amb} = 25 °C.
- (3) T_{amb} = −55 °C.

Fig.12 Collector-emitter saturation voltage as a function of collector current; typical values.

BC857C; I_C/I_B = 20.

- (1) T_{amb} = −55 °C.
- (2) T_{amb} = 25 °C.
- (3) T_{amb} = 150 °C.

Fig.13 Base-emitter saturation voltage as a function of collector current; typical values.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Jinyu manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B