

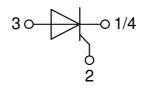
Thyristor

1600 V

57 A

 V_{T} 1.2 V

Single Thyristor


Part number

MCO50-16io1

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability

Applications:

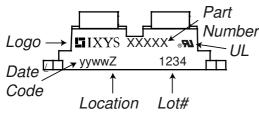
- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter AC power control
- Lighting and temperature control

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper
- internally DCB isolated
- Advanced power cycling

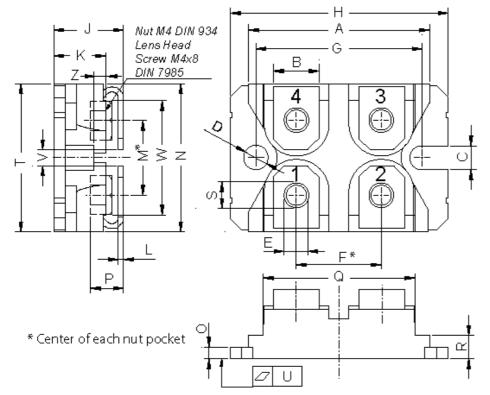
Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

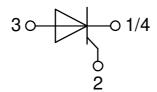

Thyristo		0			Ratings	1	١,,,
Symbol	Definition	Conditions	T 0500	min.	typ.	max.	Un
V _{RSM/DSM}	max. non-repetitive reverse/forwa		$T_{VJ} = 25^{\circ}C$			1700	1
V _{RRM/DRM}	max. repetitive reverse/forward bloom		$T_{VJ} = 25^{\circ}C$			1600	
I _{R/D}	reverse current, drain current	$V_{R/D} = 1600 \text{ V}$	$T_{VJ} = 25^{\circ}C$			50	μ
		$V_{R/D} = 1600 \text{ V}$	$T_{VJ} = 125^{\circ}C$			3	m
V _T	forward voltage drop	$I_T = 50 \text{ A}$	$T_{VJ} = 25^{\circ}C$			1.27	,
		I _T = 100 A				1.53	<u> </u>
		$I_{T} = 50 \text{ A}$	$T_{VJ} = 125$ °C			1.20	
		$I_T = 100 A$				1.50	,
I _{TAV}	average forward current	$T_C = 80^{\circ}C$	$T_{VJ} = 150$ °C			57	
I _{T(RMS)}	RMS forward current	180° sine				90	
V _{T0}	threshold voltage		T _{vJ} = 150°C			0.88	ļ ,
r _T	slope resistance } for power lo	ess calculation only				6	m۵
R _{thJC}	thermal resistance junction to cas	e				0.72	K/V
R _{thCH}	thermal resistance case to heatsin	nk			0.2		K/V
P _{tot}	total power dissipation		T _C = 25°C			170	٧
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VI} = 45^{\circ}C$			740	
- 15W	5	t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			800	,
		t = 10 ms; (50 Hz), sine	T _{v.i} = 150°C			630	
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			680	
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			2.74	1
	value for rushing	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			2.66	kA ²
		t = 0.5 ms, (60 Hz), sine t = 10 ms; (50 Hz), sine	$V_{R} = 0 V$ $T_{VJ} = 150 ^{\circ}C$			1.99	1
		. , , , ,					į.
_	iunation consoltance	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$		20	1.93	
C,	junction capacitance	V _R = 400 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		32	10	p
P_{GM}	max. gate power dissipation	$t_P = 30 \mu s$	$T_{c} = 150^{\circ}C$			10	۷
_		$t_{P} = 300 \mu s$				1	۷
P _{GAV}	average gate power dissipation					0.5	٧
(di/dt) _{cr}	critical rate of rise of current	$T_{VJ} = 150 ^{\circ}\text{C}; f = 50 \text{Hz}$ re	•			100	A/μ
		$t_P = 200 \mu s; di_G/dt = 0.3 A/\mu s; -$!
		$I_G = 0.3 A; V = \frac{2}{3} V_{DRM}$ no	on-repet., $I_T = 50 \text{ A}$			500	A/µ
$(dv/dt)_{cr}$	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 150$ °C			1000	V/µ
		R _{GK} = ∞; method 1 (linear volta	ge rise)				! !
V _{GT}	gate trigger voltage	V _D = 6 V	$T_{VJ} = 25^{\circ}C$			1.4	١
			$T_{VJ} = -40$ °C			1.6	١
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			80	m/
			$T_{VJ} = -40$ °C			200	m/
V _{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DBM}$	T _{vJ} = 150°C			0.2	١
I _{GD}	gate non-trigger current	5 5				5	m/
I _L	latching current	t _p = 10 μs	T _{vJ} = 25°C			450	m
	Ŭ	$I_{\rm g} = 0.3 \text{A}; \text{di}_{\rm g}/\text{dt} = 0.3 \text{A}/\mu \text{s}$,
I _H	holding current	$V_{D} = 6 \text{ V } R_{GK} = \infty$	$T_{VJ} = 25$ °C			100	m
	gate controlled delay time	$V_{D} = \frac{1}{2} V_{DRM}$	$T_{VJ} = 25 ^{\circ}\text{C}$			2	i
t _{gd}	gate controlled delay tille	$I_{G} = 72 V_{DRM}$ $I_{G} = 0.3 A; di_{G}/dt = 0.3 A/\mu s$				۷	μ
	turn-off time		150		-		
t _q		$V_R = 100 \text{ V}; I_T = 50 \text{A}; V = \frac{2}{3}$					μ

Package	Package SOT-227B (minibloc)			Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal 10					150	Α
T _{VJ}	virtual junction temperatur	re			-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
$\mathbf{M}_{_{T}}$	terminal torque				1.1		1.5	Nm
d _{Spp/App}	oroonaga diatanaa an aurt	face Latriking diatance through air	terminal to terminal	10.5	3.2			mm
$d_{Spb/Apb}$	creepage distance on sun	face striking distance through air	terminal to backside	8.6	6.8			mm
V _{ISOL}	isolation voltage	t = 1 second	$t = 1$ second $t = 1$ minute 50/60 Hz, RMS; lisoL ≤ 1 mA		3000			٧
1002		t = 1 minute			2500			٧

¹⁾ I_{hus} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.



Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCO50-16io1	MCO50-16io1	Tube	10	500598


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150$ °C
$I \rightarrow V_0$)— <u>R</u> o	Thyristor		
V _{0 max}	threshold voltage	0.88		V
R _{0 max}	slope resistance *	4.1		mΩ

Outlines SOT-227B (minibloc)

Dim.	Millir	meter	Inches			
DIM.	min max		min	max		
Α	31.50	31.88	1.240	1.255		
В	7.80	8.20	0.307	0.323		
С	4.09	4.29	0.161	0.169		
D	4.09	4.29	0.161	0.169		
Е	4.09	4.29	0.161	0.169		
F	14.91	15.11	0.587	0.595		
G	30.12	30.30	1.186	1.193		
Н	37.80	38.23	1.488	1.505		
J	11.68	12.22	0.460	0.481		
K	8.92	9.60	0.351	0.378		
L	0.74	0.84	0.029	0.033		
M	12.50	13.10	0.492	0.516		
N	25.15	25.42	0.990	1.001		
0	1.95	2.13	0.077	0.084		
Р	4.95	6.20	0.195	0.244		
Q	26.54	26.90	1.045	1.059		
R	3.94	4.42	0.155	0.167		
S	4.55	4.85	0.179	0.191		
Т	24.59	25.25	0.968	0.994		
U	-0.05	0.10	-0.002	0.004		
V	3.20	5.50	0.126	0.217		
W	19.81	21.08	0.780	0.830		
Z	2.50	2.70	0.098	0.106		

Thyristor

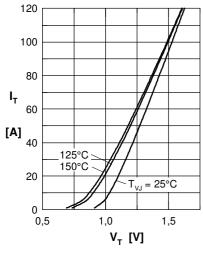


Fig. 1 Forward characteristics

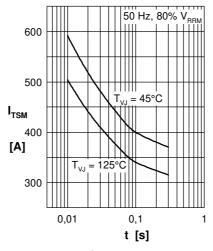


Fig. 2 Surge overload current

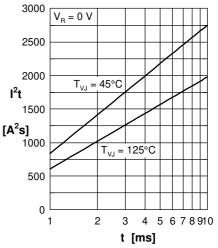


Fig. 3 I²t versus time (1-10 ms)

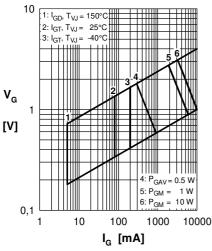


Fig. 4 Gate trigger characteristics

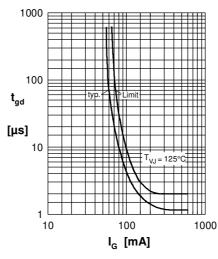


Fig. 5 Gate controlled delay time

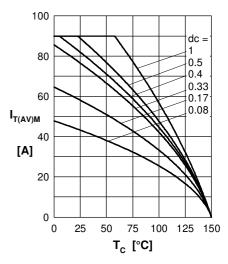


Fig. 6 Max. forward current at case temperature

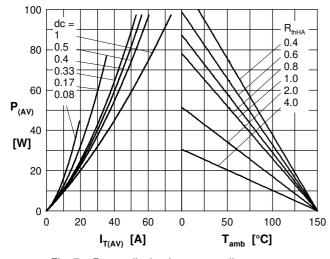


Fig. 7a Power dissipation versus direct output current Fig. 7b and ambient temperature

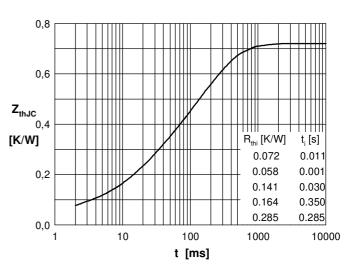


Fig. 8 Transient thermal impedance junction to case

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

<u>M252511FV</u> <u>DD2</u>	60N12K-A	DD380N16A	DD89N1600K-	\underline{A} $\underline{APT2X21D0}$	C60J <u>APT58M</u>	80J B522F-2-Y	YEC MSTC90-1	<u>16</u> <u>25.163.0653.1</u>
25.163.2453.0 25.3	163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
25.330.4753.1 25.3	330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	<u>T485F</u> <u>T485H</u>
T512F-YEB T513	F T514F T	554 <u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
25.332.4353.1 25.3	350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0								