
101 Innovation Drive
San Jose, CA 95134
www.altera.com

DDR3 SDRAM High-Performance

 Controller User Guide

MegaCore Version: 8.0
Document Date: May 2008

Operations Part Number

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide

UG-01021-2.0

Altera Corporation MegaCore Version 8.0 iii

Contents

Chapter 1. About This MegaCore Function
Release Information ... 1–1
Device Family Support ... 1–1
Features ... 1–2
General Description ... 1–2
MegaCore Verification .. 1–3
Performance and Resource Utilization ... 1–4
Installation and Licensing .. 1–4

OpenCore Plus Evaluation .. 1–5
OpenCore Plus Time-Out Behavior ... 1–6

Chapter 2. Getting Started
Design Flow .. 2–1
Select Flow .. 2–3
SOPC Builder Flow .. 2–3

Specify Parameters ... 2–4
Complete the SOPC Builder System .. 2–4
Simulate the System ... 2–6

MegaWizard Plug-In Manager Flow .. 2–7
Specify Parameters ... 2–7
Simulate the Example Design ... 2–10

Compile the Example Design .. 2–11
Program a Device and Implement the Design .. 2–13

Chapter 3. Parameter Settings
Memory Settings .. 3–1
PHY Settings ... 3–1
Controller Settings ... 3–1

Chapter 4. Functional Description
Block Description ... 4–1

Control Logic .. 4–2
Latency ... 4–3
ECC ... 4–4

Example Design ... 4–8
Interfaces & Signals ... 4–9

Interface Description .. 4–9
Signals .. 4–18

Additional Information

iv MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide

Contents

Revision History ... Info–i
How to Contact Altera ... Info–i
Typographic Conventions .. Info–ii

Appendix A. ECC Register Description

Appendix B. Latency

Altera Corporation MegaCore Version 8.08.0 1–1
May 2008

1. About This MegaCore
Function

Release
Information

Table 1–1 provides information about this release of the DDR3 SDRAM
High-Performance Controller MegaCore® functions.

Altera verfies that the current version of the Quartus® II software
compiles the previous version of each MegaCore function. The MegaCore
IP Library Release Notes and Errata report any exceptions to this
verification. Altera does not verify compilation with MegaCore function
versions older than one release.

Device Family
Support

MegaCore functions provide either full or preliminary support for target
Altera® device families, as described below:

■ Full support means the MegaCore function meets all functional and
timing requirements for the device family and may be used in
production designs

■ Preliminary support means the MegaCore function meets all
functional requirements, but may still be undergoing timing analysis
for the device family; it may be used in production designs with
caution

Table 1–1. DDR3 SDRAM High-Performance Controller Release Information

Item Description

Version 8.0

Release Date May 2008

Ordering Codes IP-SDRAM/DDR3

Product IDs 00C2
00CO (altmemphy Megafunction)

Vendor ID 6AF7

1–2 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Features

Table 1–2 shows the level of support offered by the DDR3 SDRAM High-
Performance controller to each of the Altera device families.

Features ■ Integrated error correction coding (ECC) function
■ Power-up calibrated on-chip termination (OCT) support
■ Half-rate support for Stratix III and IV devices
■ SOPC Builder ready
■ Automatically generated memory simulation model simplifies

simulation flow
■ Support for altmemphy megafunction
■ Support for industry-standard DDR3 SDRAM devices and modules
■ Optional support for self-refresh and power-down commands
■ Optional support for auto-precharge read and auto-precharge write

commands
■ Optional user-controller refresh
■ Optional Avalon® Memory-Mapped (Avalon-MM) local interface
■ Easy-to-use MegaWizard® interface
■ Support for OpenCore Plus evaluation
■ IP functional simulation models for use in Altera-supported VHDL

and Verilog HDL simulators

General
Description

The Altera DDR3 SDRAM High-Performance Controller MegaCore
functions provide simplified interfaces to industry-standard DDR3
SDRAM. The MegaCore functions work in conjunction with the Altera
altmemphy megafunction.

f For more information on the altmemphy megafunction, refer to the
External DDR Memory PHY Interface Megafunction User Guide
(ALTMEMPHY).

Figure 1–1 on page 1–3 shows a system-level diagram including the
example design that the DDR3 SDRAM High-Performance Controller
MegaCore functions create for you.

Table 1–2. Device Family Support

Device Family Support

Stratix® III Preliminary

Stratix IV Preliminary

Other device families No support

Altera Corporation MegaCore Version 8.0 1–3
May 2008 DDR3 SDRAM High-Performance Controller User Guide

About This MegaCore Function

Figure 1–1. System-Level Diagram

The MegaWizard Plug-In Manager generates an example design that
instantiates an example driver and your DDR3 SDRAM high-
performance controller custom variation. The controller instantiates an
instance of the altmemphy megafunction which in turn instantiates a PLL
and DLL. You can optionally instantiate the DLL outside the altmemphy
megafunction in order to share the DLL between multiple instances of the
altmemphy megafunction. The example design is a fully-functional
design that you can simulate, synthesize, and use in hardware. The
example driver is a self-test module that issues read and write commands
to the controller and checks the read data to produce the pass/fail and
test complete signals.

MegaCore
Verification

MegaCore verification involves simulation testing. Altera performs
extensive random, directed tests with functional test coverage using
industry-standard Denali models to ensure the functionality of the DDR3
SDRAM high-performance controller. In addition, Altera has carried out
a wide variety of gate-level tests of the DDR3 SDRAM high-performance
controller to verify the post-compilation functionality of the controller.

DDR3 SDRAMExample Driver

DDR3 SDRAM
InterfacePass or Fail

Local
Interface

Example Design

Control
Logic

(Encrypted)

DDR3 SDRAM
Controller

altmemphy
Megafunction

1–4 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Performance and Resource Utilization

Performance
and Resource
Utilization

Table 1–3 shows typical performance results for the DDR3 SDRAM high-
performance controller using the Quartus® II software, version 8.0.

1 The performance of the MegaCore function in Stratix IV devices
are similar to the performance in Stratix III devices..

f For more information on device performance, see the relevant device
handbook.

Table 1–4 shows typical sizes for the DDR3 SDRAM high-performance
controller on Stratix III devices.

Installation and
Licensing

The DDR3 SDRAM High-Performance Controller MegaCore functions
are part of the MegaCore IP Library, which is distributed with the
Quartus® II software and downloadable from the Altera® website,
www.altera.com.

f For system requirements and installation instructions, refer to Quartus II
Installation & Licensing for Windows or Quartus II Installation & Licensing
for UNIX & Linux Workstations.

Table 1–3. Typical Performance

Device Rate
 System fMAX

(MHz)

Stratix III Half Rate 400 (1)

Note to Table 1–3:
(1) Pending device characterization.

Table 1–4. Typical Size—Stratix III & IV Devices

Local Data
Width (Bits)

Memory Width
(Bits)

Combinational
ALUTs Logic Registers

Memory

M9K MLAB

32 8 1,746 1,375 1 0

64 16 1,946 1,611 2 0

256 64 3,045 3,015 8 0

Altera Corporation MegaCore Version 8.0 1–5
May 2008 DDR3 SDRAM High-Performance Controller User Guide

About This MegaCore Function

Figure 1–2 shows the directory structure after you install the DDR3
SDRAM High-Performance Controller MegaCore functions, where
<path> is the installation directory. The default installation directory on
Windows is c:\altera\80; on UNIX and Solaris it is /opt/altera/80.

Figure 1–2. Directory Structure

You need to purchase a license for the MegaCore function only when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

After you purchase a license for DDR3 SDRAM High-Performance
Controller MegaCore function, you can request a license file from the
Altera web site at www.altera.com/licensing and install it on your
computer. When you request a license file, Altera emails you a license.dat
file. If you do not have Internet access, contact your local Altera
representative.

OpenCore Plus Evaluation

With Altera’s free OpenCore Plus evaluation feature, you can perform the
following actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function
or AMPPSM megafunction) within your system

■ Verify the functionality of your design, as well as evaluate its size
and speed quickly and easily

■ Generate time-limited device programming files for designs that
include MegaCore functions

■ Program a device and verify your design in hardware

ip
Contains the MegaCore IP Library.

common
Contains the shared components.

ddr3_high_perf
Contains the DDR3 SDRAM high-performance controller files.

doc
Contains all the documentation for the DDR3 SDRAM high-performance
controller.

lib
Contains encrypted lower-level design files and other support files.

<path>
Installation directory.

1–6 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Installation and Licensing

You need to purchase a license for the megafunction only when you are
completely satisfied with its functionality and performance, and want to
take your design to production.

f For more information on OpenCore Plus hardware evaluation using the
DDR3 SDRAM high-performance controller, refer to AN 320: OpenCore
Plus Evaluation of Megafunctions.

OpenCore Plus Time-Out Behavior

OpenCore Plus hardware evaluation can support the following two
modes of operation:

■ Untethered—the design runs for a limited time
■ Tethered—requires a connection between your board and the host

computer. If tethered mode is supported by all megafunctions in a
design, the device can operate for a longer time or indefinitely

All megafunctions in a device time out simultaneously when the most
restrictive evaluation time is reached. If there is more than one
megafunction in a design, a specific megafunction’s time-out behavior
may be masked by the time-out behavior of the other megafunctions.

1 For MegaCore functions, the untethered timeout is 1 hour; the
tethered timeout value is indefinite.

Your design stops working after the hardware evaluation time expires
and the local_ready output goes low.

Altera Corporation MegaCore Version 8.08.0 2–1
May 2008

2. Getting Started

Design Flow Figure 2–1 shows the stages for creating a system with the DDR3 SDRAM
High-Performance Controller MegaCore® function and the Quartus® II
software. The sections in this chapter describe each stage.

1 You can alternatively use the IP Advisor to start your DDR3
SDRAM High-Performance Controller MegaCore design. On
the Quartus II Tools menu, point to Advisors, and then click IP
Advisor. The IP Advisor guides you through a series of
recommendations for selecting, parameterizing, evaluating and
instantiating a DDR3 SDRAM High-Performance Controller
MegaCore function into your design. It then guides you through
a complete Quartus II compilation of your project.

2–2 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Design Flow

Figure 2–1. Design Flow

Specify Parameters

Select Design Flow

MegaWizard Plug-In
Manager Flow

SOPC Builder
Flow

Compile the
Example Design

Program Device and
Implement Design

Add Constraints

Simulate the
Example Design

Specify Parameters

Simulate System

Complete SOPC
Builder System

Perform Post-Compilation
Timing Analysis

Altera Corporation MegaCore Version 8.0 2–3
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Getting Started

Select Flow You can parameterize the DDR3 SDRAM High-Performance Controller
MegaCore function using either one of the following flows:

■ SOPC Builder flow
■ MegaWizard Plug-in Manager flow

Table 2–1 summarizes the advantages offered by the different
parameterization flows.

SOPC Builder
Flow

The SOPC Builder flow allows you to add the DDR3 SDRAM High-
Performance Controller MegaCore function directly to a new or existing
SOPC Builder system. You can also easily add other available
components to quickly create an SOPC Builder system with a DDR3
SDRAM High-Performance Controller, such as the Nios II processor,
external memory controllers, and scatter/gather DMA controllers. SOPC
Builder automatically creates the system interconnect logic and system
simulation environment.

Table 2–1. Advantages of the Parameterization Flows

SOPC Builder Flow MegaWizard Plug-in Manager Flow

● Automatically-generated simulation
environment

● Create custom components and
integrate them via the component
wizard

● All components are automatically
interconnected with the
Avalon-MM interface

● Design directly from the DDR3
SDRAM interface to peripheral
device(s)

● Achieves higher-frequency
operation

f For Information About Refer To

SOPC Builder Volume 4 of the Quartus II Handbook

How to use controllers with SOPC
Builder

 AN517: Using High-Performance DDR,
DDR2 and DDR3 SDRAM With SOPC
Builder

The Quartus II software Quartus II Help

2–4 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

SOPC Builder Flow

Specify Parameters

To specify DDR3 SDRAM High-Performance Controller parameters
using the SOPC Builder flow, follow these steps:

1. In the Quartus II software, create a new Quartus II project with the
New Project Wizard.

2. On the Tools menu click SOPC Builder.

3. For a new system, specify the system name and language.

4. Add DDR3 SDRAM High-Performance Controller to your system
from the System Contents tab.

1 The DDR3 SDRAM High-Performance Controller is in the
SDRAM folder under the Memories and Memory
Controllers folder.

5. Specify the required parameters on all pages in the Parameter
Settings tab.

f For detailed explanation of the parameters, refer to the
“Parameter Settings” on page 3–1.

6. Click Finish to complete the DDR3 SDRAM High-Performance
Controller MegaCore function and add it to the system.

Complete the SOPC Builder System

To complete the SOPC Builder system, follow these steps:

7. In SOPC Builder, select Nios II Processor and click Add.

8. On the Nios II Processor page, in the Core Nios II tab, select
altmemddr for Reset Vector and Exception Vector .

9. Change the Reset Vector Offset and the Exception Vector Offset to
an Avalon address that is not written to by the altmemphy
megafunction during its calibration process.

Altera Corporation MegaCore Version 8.0 2–5
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Getting Started

c The altmemphy megafunction performs memory interface
calibration every time it is reset and in doing so writes to
addresses 0x0 to 0x47. If you want your memory contents to
remain intact through a system reset, you should avoid using
the memory addresses below 0x48. This step is not necessary, if
you reload your SDRAM memory contents from flash every
time you reset.

To calculate the Avalon-MM address equivalent of the memory
address range 0x0 to 0x47, you should multiply the memory
address by the width of the memory interface data bus in bytes.
For example, if your external memory data width is 8 bits, then
the Reset Vector Offset should be 0x60 and the Exception
Vector Offset should be 0x80.

10. Click Finish.

11. In SOPC Builder expand Interface Protocols and expand Serial.

12. Select JTAG UART and click Add.

13. Click Finish.

1 If there are warnings about overlapping addresses, on the
System menu click Auto Assign Base Addresses.

1 If you enable ECC and there are warnings about
overlapping IRQs, on the System menu click Auto Assign
IRQs.

14. For this example system, ensure all the other modules are clocked
on the altmemddr_sysclk, to avoid any unnecessary clock-
domain crossing logic.

15. Click Generate.

External Memory
Interface Width Reset Vector Offset Exception Vector

Offset

8 0x60 0x80

16 0xA0 0xC0

32 0x120 0x140

64 0x240 0x260

2–6 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

SOPC Builder Flow

16. To ensure the automatically-generated constraints function
correctly, you must ensure the pin names and pin group
assignments match, otherwise the design may not fit when you
compile your design. You can either create your own top-level
design file or edit the altmemddr_example_top.v file to replace the
example driver and the DDR3 SDRAM High-Performance
controller and instantiate your SOPC Builder-generated system.

Simulate the System

During system generation, SOPC Builder optionally generates a
simulation model and testbench for the entire system, which you can use
to easily simulate your system in any of Altera's supported simulation
tools. SOPC Builder also generates a set of ModelSim Tcl scripts and
macros that you can use to compile the testbench, IP functional
simulation models, and plain-text RTL design files that describe your
system in the ModelSim simulation software.

f For Information About Refer To

Simulating SOPC Builder systems Volume 4 of the Quartus II Handbook

AN 351 :Simulating Nios II Systems

Altera Corporation MegaCore Version 8.0 2–7
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Getting Started

MegaWizard
Plug-In Manager
Flow

The MegaWizard Plug-In Manager flow allows you to customize the
DDR3 SDRAM High-Performance Controller MegaCore function, and
manually integrate the function into your design.

Specify Parameters

To specify DDR3 SDRAM High-Performance Controller parameters
using the MegaWizard Plug-in Manager flow, follow these steps:

1. In the Quartus II software, create a new Quartus II project with the
New Project Wizard.

1 Ensure you select Yes for Do you want to assign a specific
device? to choose a specific device.

2. On the Tools menu click MegaWizard Plug-In Manager and follow
the steps to start the MegaWizard Plug-In Manager.

1 The DDR3 SDRAM High-Performance Controller
MegaCore function is in the Interfaces folder under the
Memory Controllers folder.

3. Specify the parameters on all pages in the Parameter Settings tab.

f For detailed explanation of the parameters, refer to the
“Parameter Settings” on page 3–1.

4. On the EDA tab, turn on Generate Simulation Model to generate
an IP functional simulation model for the MegaCore function in the
selected language.

An IP functional simulation model is a cycle-accurate VHDL or
Verilog HDL model produced by the Quartus II software.

c Use the simulation models only for simulation and not for
synthesis or any other purposes. Using these models for
synthesis creates a nonfunctional design.

f For Information About Refer To

MegaWizard Plug-In Manager Quartus II Help

Quartus II software

2–8 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

SOPC Builder Flow

1 Some third-party synthesis tools can use a netlist that
contains only the structure of the MegaCore function, but
not detailed logic, to optimize performance of the design
that contains the MegaCore function. If your synthesis tool
supports this feature, turn on Generate netlist.

c The memory model generated by the wizard cannot be used if
you have chosen Full Calibration (long simulation time). You
must use a memory-vendor provided memory model.

5. On the Summary tab, select the files you want to generate. A grey
checkmark indicates a file that is automatically generated. All other
files are optional.

f For more information about the files generated in your
project directory, see Table 2–2.

6. Click Finish to generate the MegaCore function and supporting
files.

1 The Quartus II IP File (.qip) is a file generated by the
MegaWizard interface or SOPC Builder that contains
information about a generated IP core. You are prompted to add
this .qip file to the current Quartus II project at the time of file
generation. In most cases, the .qip file contains all of the
necessary assignments and information required to process the
core or system in the Quartus II compiler. Generally, a single
.qip file is generated for each MegaCore function and for each
SOPC Builder system. However, some more complex SOPC
Builder components generate a separate .qip file, so the system
.qip file references the component .qip file.

7. After you review the generation report, click Exit to close the
MegaWizard Plug-In Manager.

1 When prompted to add the .qip files to your project, click Yes.
The addition of the .qip files enables their visibility to the
Nativelink. The Nativelink needs the .qip files to include
libraries for simulation.

Altera Corporation MegaCore Version 8.0 2–9
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Getting Started

Table 2–2 describes the generated files and other files that may be in your
project directory. The names and types of files specified in the
MegaWizard Plug-In Manager report vary based on whether you created
your design with VHDL or Verilog HDL.

8. After you review the generation report, click Exit to close the
MegaWizard Plug-In Manager.

Table 2–2. Generated Files Note (1)

Filename Description

<variation name>.bsf Quartus II symbol file for the MegaCore function variation.
You can use this file in the Quartus II block diagram editor.

<variation name>.html MegaCore function report file.

<variation name>.ppf This XML file describes the MegaCore pin attributes to the
Quartus II Pin Planner. MegaCore pin attributes include
pin direction, location, I/O standard assignments, and drive
strength. If you launch IP Toolbench outside of the Pin
Planner application, you must explicitly load this file to use
Pin Planner.

<variation name>.vo or .vho VHDL or Verilog HDL gate-level simulation model.

<variation name>.vhd, or .v A MegaCore function variation file, which defines a VHDL
or Verilog HDL top-level description of the custom
MegaCore function. Instantiate the entity defined by this
file inside of your design. Include this file when compiling
your design in the Quartus II software.

<variation
name>_auk_ddr3_hp_controller_wrapper.vo or
.vho

VHDL or Verilog HDL IP functional simulation model.

<variation name>_sequencer_wrapper.vo or
.vho

VHDL or Verilog HDL IP functional simulation model.

<variation name>_bb.v Verilog HDL black-box file for the MegaCore function
variation. Use this file when using a third-party EDA tool to
synthesize your design.

<variation name>_example_driver.vhd, or .v Example driver.

<variation name>_example_top.vhd, or .v Example design.

<variation name>_example_top_tb.vhd, or .v Example testbench.

<variation name>_mem_model.v Memory model.

<variation name>_pin_assignments.tcl The pin assignments constraints script.

<variation name>.qip Contains Quartus II project information for your MegaCore
function variations.

Notes to Table 2–2:
(1) <variation name> is the name you give to the controller you create with the Megawizard.

2–10 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

SOPC Builder Flow

9. Set the <variation name>_example_top.v or .vhd file to be the project
top-level design file.

Now, simulate the example design (see “Simulate the Example Design”
on page 2–10) and compile (see “Compile the Example Design” on
page 2–11).

Simulate the Example Design

You can simulate the example design with the MegaWizard Plug-In
Manager-generated IP functional simulation models. The MegaWizard
Plug-In Manager generates a VHDL or Verilog HDL testbench for your
example design and a simulation model of the memory you are targeting,
which are in the testbench directory in your project directory.

You can use the IP functional simulation model with any
Altera-supported VHDL or Verilog HDL simulator.

You can perform a simulation in a third-party simulation tool from
within the Quartus II software, using NativeLink.

f For more information on NativeLink, refer to the Simulating Altera IP
Using NativeLink chapter in volume 3 of the Quartus II Handbook.

To set up simulation in the Quartus II software using NativeLink, follow
these steps:

1. Create a custom variation with an IP functional simulation model.

2. Check that the absolute path to your third-party simulator
executable is set. On the Tools menu click Options and select EDA
Tools Options.

3. Set the top-level entity to the example project.

a. On the File menu, click Open.

b. Browse to <variation name>_example_top and click Open.

c. On the Project menu, click Set as top-level entity.

4. On the Processing menu, point to Start and click Start Analysis &
Elaboration.

5. On the Assignments menu click Settings, expand EDA Tool
Settings and select Simulation.

Altera Corporation MegaCore Version 8.0 2–11
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Getting Started

a. Select a simulator under Tool name.

b. In NativeLink settings, select Compile test bench and click
Test Benches.

6. Click New.

7. Enter a name for the Test bench name.

8. Enter the name of the automatically generated testbench, <variation
name>_example_top_tb, in Top level module in test bench.

9. Enter the name of the top-level instance in Design instance name in
test bench.

10. Under Simulation period, set End simulation at to 500 µs.

11. Add the testbench files and automatically-generated memory model
files. In the File name field browse to the location of the memory
model and the testbench, click OK and then click Add. The
testbench is <variation name>_example_top_tb.v; memory model is
<variation name>_mem_model.v.

12. In the New Testbench Settings dialog box, click OK.

13. Click OK.

14. On the Tools menu point to EDA Simulation Tool and click Run
EDA RTL Simulation.

Compile the
Example Design

To use the Quartus II software to compile the example design and
perform post-compilation timing analysis, follow these steps:

1. Enable the TimeQuest timing analyzer.

a. On the Assignments menu click Timing Analysis Settings,
select Use TimeQuest Timing Analyzer during compilation,
and click OK.

b. Add the Synopsys design constraints file, <variation
name>_phy_ddr_timing.sdc, to your project. On the Project
menu click Add/Remove Files in Project and browse to select
the file.

c. Add the .sdc file for the example top-level design, <variation
name>_example_top.sdc, to your project. This file is only
required if you are using the example top level.

2–12 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Compile the Example Design

2. Use one of the following procedures to specify I/O standard
assignments for pins:

a. If you have a single DDR3 SDRAM interface, and your top-
level pins have default naming shown in the example design,
run <variation name>_pin_assignments.tcl. The script assigns
the memory interface pins, the correct I/O standard, and
avoids the Quartus II fitter failing.

or

b. If your design contains pin names that do not match the design
example, follow these steps:

● On the Assignments menu, click Pins. Right-click in the Groups
or All Pins window and click Create/Import Megafunction.

● Select Import an existing custom megafunction and navigate to
<variation name>.ppf.

● The <variation name>_pin_assignments.tcl and <variation
name>_dq_groups.tcl scripts run automatically.

3. Set the top-level entity to the example project.

a. On the File menu, click Open.

b. Browse to <variation name>_example_top and click Open.

c. On the Project menu, click Set as top-level entity..

4. On the Processing menu, point to Start and click Start Analysis &
Synthesis.

5. Assign the pin locations to the pins in your design.

a. Use either the Pin Planner or Assignment Editor to assign the
clock source pin manually. Also choose which DQS pin groups
should be used by assigning each DQS pin to the required pin.
The Quartus II Fitter then automatically places the respective
DQ signals onto suitable DQ pins within each group.

or

b. Manually specify all DQ and DQS pins to align your project
with your PCB requirements.

or

Altera Corporation MegaCore Version 8.0 2–13
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Getting Started

c. Manually specify all project pin locations to align your project
with your PCB requirements.

1 When you are assigning pins, ensure that you set an
appropriate I/O standard for the non-memory interfaces,
like the clock source and the reset inputs. For example, for
DDR3 SDRAM, select 1.5 V. Also select in which bank or
side of the device you want the Quartus II software to place
them.

6. Set the output pin loading for all memory interface pins.

7. Select your required I/O driver strength (derived from simulation)
to ensure that you correctly drive each signal or ODT setting and do
not suffer from overshoot or undershoot.

8. To compile the design, on the Processing menu, click Start
Compilation.

9. If you want to generate a detailed DDR3 SDRAM interface timing
analysis report, run the DDR Report. On the Tools menu click
TimeQuest Timing Analyzer and on the Tasks pane, double-click
Report DDR.

Program a
Device and
Implement the
Design

After you have compiled the example design, you can perform gate-level
simulation (see “Simulate the Example Design” on page 2–10) or
program your targeted Altera device to verify the example design in
hardware.

To implement your design based on the example design, replace the
example driver in the example design with your own logic.

2–14 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Program a Device and Implement the Design

Altera Corporation MegaCore Version 8.08.0 3–1
May 2008

3. Parameter Settings

Memory
Settings

The Memory Settings page provides the same options as the altmemphy
megafunction Memory Settings page.

f For more information on the memory settings, refer to the External DDR
Memory PHY Interface Megafunction User Guide (ALTMEMPHY).

PHY Settings Board skew is the skew across all the memory interface signals, which
includes clock, address, command, data, mask, and strobe signals.

f For more information on the PHY settings, refer to the External DDR
Memory PHY Interface Megafunction User Guide (ALTMEMPHY).

Controller
Settings

Figure 3–1 shows the controller settings page.

3–2 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Controller Settings

Figure 3–1. Controller Settings

Table 3–1 shows the controller settings.

Table 3–1. Controller Settings

Parameter Range Description

Enable error correction
and detection logic

On or off Turn on to add the optional error correction coding (ECC) to the
design, see “ECC” on page 4–4.

Enable user auto-refresh
controls

On or off Turn on for user control of the refreshes, see “User Refresh
Control” on page 4–14.

Enable auto-precharge
control

On or off Turn on if you need fast random access, see “Auto-Precharge
Commands” on page 4–17

Altera Corporation MegaCore Version 8.0 3–3
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Parameter Settings

Enable power down
controls

On or off Turn on to enable the controller to allow you to place the external
memory device in a power-down mode, see “Self-Refresh and
Power-Down Commands” on page 4–16

Enable self-refresh
controls

On or off Turn on to enable the controller to allow you to place the external
memory device in a self-refresh mode, see “Self-Refresh and
Power-Down Commands” on page 4–16

Local Interface Protocol Native or Avalon
Memory-
Mapped

Specifies the local side interface between the user logic and the
memory controller. The Avalon® Memory-Mapped (MM) interface
allows you to easily connect to other Avalon-MM peripherals.

Table 3–1. Controller Settings

Parameter Range Description

3–4 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Controller Settings

Altera Corporation MegaCore Version 8.08.0 4–1
May 2008

4. Functional Description

The DDR3 SDRAM High-Performance Controller MegaCore function
instantiates encrypted control logic and the altmemphy megafunction.
The controller accepts read and write requests from the user on its local
interface, using either the Avalon® Memory-Mapped (Avalon-MM)
interface protocol or the Native interface protocol. It converts these
requests into the necessary SDRAM commands, including any required
bank management commands. Each read or write request on the
Avalon-MM or Native interface maps to one SDRAM read or write
command. Since the controller uses a memory burst length of 4, read and
write requests are always of length 1 on the local interface if the controller
is in half rate. In full rate, the controller accepts requests of size 1 or 2 on
the local interface. Requests of size 2 on the local interface produce better
through-put as whole memory burst is used.

The bank management logic in the controller keeps a row open in every
bank in the memory system. For example, a controller configured for a
double-sided, 4-bank DDR3 SDRAM DIMM keeps an open row in each
of the 8 banks. The controller allows you to request an auto-precharge
read or auto-precharge write, allowing control over whether to keep that
row open after the request. Maximum efficiency can be achieved by
issuing reads and writes to the same bank, with the last access to that
bank being an auto-precharge read or write. The controller does not do
any access re-ordering.

f For more information on the altmemphy megafunction, refer to the
External DDR Memory PHY Interface Megafunction User Guide
(ALTMEMPHY).

Block
Description

Figure 4–1 on page 4–2 shows a block diagram of the DDR3 SDRAM
high-performance controller.

4–2 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Block Description

Figure 4–1. DDR3 SDRAM High-Performance Controller Block Diagram

Control Logic

Bus commands control SDRAM devices using combinations of the
mem_ras_n, mem_cas_n, and mem_we_n signals. For example, on a
clock cycle where all three signals are high, the associated command is a
no operation (NOP). A NOP command is also indicated when the chip
select signal is not asserted. Table 4–1 shows the standard SDRAM bus
commands.

The DDR3 SDRAM high-performance controller must open SDRAM
banks before they access addresses in that bank. The row and bank to be
opened are registered at the same time as the active (ACT) command. The

local_addr
local_be

local_burstbegin
local_read_req

local_refresh_req
local_size

local_wdata
local_write_req

local_powerdn_req
local_self_rfsh_req

mem_a
mem_ba
mem_cas_n
mem_cke
mem_clk
mem_clk_n
mem_cs_n
mem_dm
mem_dq
mem_dqs
mem_dqsn
mem_odt
mem_ras_n
mem_reset_n
mem_we_n

local_init_done
local_rdata

local_rdata_valid
local_ready

local_refresh_ack
local_wdata_req

local_powerdn_ack
local_self_rfsh_ack

Control
Logic

(Encrypted)

DDR3 SDRAM High-
Performance Controller

altmemphy
Megafunction

Table 4–1. Bus Commands

Command Acronym ras_n cas_n we_n

No operation NOP High High High

Active ACT Low High High

Read RD High Low High

Write WR High Low Low

Precharge PCH Low High Low

Auto refresh ARF Low Low High

Load mode register LMR Low Low Low

Altera Corporation MegaCore Version 8.0 4–3
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

DDR3 SDRAM high-performance controller closes the bank and opens
the bank again if it needs to access a different row. The precharge (PCH)
command closes only a bank.

The primary commands used to access SDRAM are read (RD) and write
(WR). When the WR command is issued, the initial column address and
data word is registered. When a RD command is issued, the initial
address is registered. The initial data appears on the data bus 5 to 11 clock
cycles later. This delay is the column address strobe (CAS) latency and is
due to the time required to read the internal DRAM core and register the
data on the bus. The CAS latency (of 6) depends on the speed of the
SDRAM and the frequency of the memory clock. In general, the faster the
clock, the more cycles of CAS latency are required. After the initial RD or
WR command, sequential reads and writes continue until the burst
length is reached. DDR3 SDRAM devices support fixed burst lengths of 4
or 8 data cycles or a the on-the-fly mode where the controller can request
a burst of 4 or 8 for each read or write command. This on-the-fly mode is
the only mode supported. The auto-refresh command (ARF) is issued
periodically to ensure data retention. This function is performed by the
DDR3 SDRAM high-performance controller.

The load mode register command (LMR) configures the SDRAM mode
register. This register stores the CAS latency, burst length, and burst type.

f For more information, refer to the specification of the SDRAM that you
are using.

Latency

There are two types of latency that you must consider for memory
controller designs—read and write latencies. We define the read and
write latencies as follows.

■ Read latency is the time it takes for the read data to appear at the
local interface after you initiate the read request signal to the
controller.

■ Write latency is the time it takes for the write data to appear at the
memory interface after you initiate the write request signal to the
controller.

Latency calculations are made with the following assumptions:

■ Reading and writing to the rows that are already open
■ The local_ready signal is asserted high (no wait states)
■ No refresh cycles occur before transaction
■ The latency is defined using the local side frequency and absolute

time (ns)

4–4 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Block Description

1 For the half-rate controller the local side frequency is half the
memory interface frequency.

Altera defines the read and write latencies in terms of the local interface
clock frequency and by the absolute time for the memory controllers.

Table 4–2 shows read and write latency derived from the write and read
latency definitions for half-rate controllers and for Stratix III and
Stratix IV devices.

1 The exact latency depends on your precise configuration. You
should obtain precise latency from simulation, but this figure
may vary in hardware because of the automatic calibration
process.

f Refer to Appendix B, Latency for more detailed information.

ECC

The optional error correction coding (ECC) comprises an encoder and a
decoder-corrector, which can detect and correct single-bit errors and
detect double-bit errors. The ECC uses an 8-bit ECC for each 64-bit
message. The ECC has the following features:

■ Hamming code ECC that encodes every 64-bits of data into 72-bits of
codeword with 8-bits of Hamming code parity bits

■ Latency:
● Maximum of 1 or 2 clock delay during writes
● Minimum 1 or 3 clock delay during reads

■ Detects and corrects all single-bit errors. Also the ECC sends an
interrupt when the user-defined threshold for a single-bit error is
reached.

■ Detects all double-bit errors. Also, the ECC counts the number of
double-bit errors and sends an interrupt when the user-define
threshold for double-bit error is reached.

■ Accepts partial writes
■ Creates forced errors to check the functioning of the ECC
■ Powers up in a sensible state

Table 4–2. Typical Latency

Controller
Rate

Frequency
(MHz)

Latency
Type

Latency
(Cycles) Latency (ns)

Half 400 Read 23 115

Write 13.5 67.5

Altera Corporation MegaCore Version 8.0 4–5
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

Figure 4–2 shows the ECC block diagram.

Figure 4–2. ECC Block Diagram

The ECC comprises the following blocks:

■ The encoder—encodes the 64-bit message to a 72-bit codeword
■ The decoder-corrector—decodes and corrects the 72-bit codeword if

possible
■ The ECC controller—controls multiple encoder and decoder-

correctors, so that the ECC can handle different bus widths. Also, it
controls the following functions of the encoder and decoder-
corrector:
● Interrupts:

• Detected and corrected single-bit error
• Detected double-bit error
• Single-bit error counter threshold exceeded
• Double-bit error counter threshold exceeded

● Configuration registers:
• Single-bit error detection counter threshold
• Double-bit error detection counter threshold
• Capture status for first encountered error or most recent

error
• Enable deliberate corruption of ECC for test purposes.

● Status registers:
• Error address
• Error type: single-bit error or double-bit error
• Respective byte error ECC syndrome

● Error signal—an error signal corresponding to the data word is
provided with the data and goes high if a double-bit error that
cannot be corrected occurs in the return data word.

Decoder-
Corrector

ECC
Controller

Encoder

Write
Message

N x 64 Bits

ECC

Write
Codeword
N x 72 Bits

Read
Message

N x 64 Bits

32 Bits

Read
Codeword
N x 72 Bits

N x 72 Bits DDR3
SDRAM

Memory
Controller

To Local
Interface

From Local
Interface

To and From
Local Interface

4–6 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Block Description

● Counters:
• Detected and/or corrected single-bit errors
• Detected double-bit errors

f For more information on the ECC registers, see Appendix A, ECC
Register Description.

The ECC can instantiate multiple encoders, each running in parallel, to
encode any width of data words assuming they are integer multiples of
64.

The ECC operates between the local (Native or Avalon-MM interface)
and the memory controller.

The ECC has an N × 64-bit (where N is an integer) wide interface, between
the local interface and the ECC, for receiving and returning data from the
local interface. This interface can be a Native interface or an Avalon-MM
slave interface, you select the type of interface in the MegaWizard
interface.

The ECC has a second interface between the local interface and the ECC,
which is a 32-bit wide Avalon-MM slave to control and report the status
of the operation of the ECC controller.

The encoded data from the ECC is sent to the memory controller using a
N × 72-bit wide Avalon-MM master interface, which is between the ECC
and the memory controller.

When testing the DDR3 SDRAM high-performance controller, you can
turn off the ECC.

Interrupts

The ECC issues an interrupt signal when one of the following scenarios
occurs:

■ The single-bit error counter reaches the set maximum single-bit error
threshold value.

■ The double-bit error counter reaches the set maximum double-bit
error threshold value.

The error counters increment every time the respective event occurs for
all N parts of the return data word. This incremented value is compared
with the maximum threshold and an interrupt signal is sent when the
value is equal to the maximum threshold. The ECC clears the interrupts
when you write a 1 to the respective status register. You can mask the
interrupts from either of the counters using the control word.

Altera Corporation MegaCore Version 8.0 4–7
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

Partial Writes

The ECC supports partial writes. Along with the address, data, and burst
signals, the Avalon-MM interface also supports a signal vector that is
responsible for byte-enable. Every bit of this signal vector represents a
byte on the data-bus. Thus, a 0 on any of these bits is a signal for the
controller not to write to that particular location—a partial write. For
partial writes, the ECC performs the following steps:

■ Stalls further read or write commands from the Avalon-MM
interface when it receives a partial write condition.

■ Simultaneously sends a self-generated read command, for the partial
write address, to the memory controller.

■ Upon receiving a return data from the memory controller for the
particular address, the ECC decodes the data, checks for errors, and
then sends it to the ECC controller.

■ The ECC controller merges the corrected or correct dataword with
the incoming information.

■ Sends the updated dataword to the encoder for encoding and then
sends to the memory controller with a write command.

■ Releases the stall of commands from the Avalon-MM interface,
which allows it to receive new commands.

The following corner cases can occur:

■ A single-bit error during the read phase of the read-modify-write
process. In this case, the single-bit error is corrected first, the single-
bit error counter is incremented and then a partial write is performed
to this corrected decoded data word.

■ A double-bit error during the read phase of the read-modify-write
process. In this case, the double-bit error counter is incremented and
an interrupt is sent through the Avalon-MM interface. The new write
word is not written to its location. A separate field in the interrupt
status register highlights this condition.

Partial Bursts

Some DIMMs do not have the DM pins and so do not support partial
bursts. A minimum of four words must be written to the memory at the
same time. In cases of partial burst write, the ECC offers a mechanism
similar to the partial write.

In cases of partial bursts, the write data from the native interface is stored
in a 64-bit wide FIFO buffer of maximum burst size depth, while in
parallel a read command of the corresponding addresses is sent to the
DIMM. Further commands from native interface are stalled until the
current burst is read, modified, and written back to the memory
controller.

4–8 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Example Design

ECC Latency

Using the ECC results in the following latency changes.

For a local burst length of 1, the write latency increases by one clock cycle;
the read latency increases by one clock cycle (including checking and
correction).

A partial write results in a read followed by write in the ECC controller,
so latency depends on the time the controller takes to fetch the data from
the particular address.

For a single-bit error, the automatic correction of memory takes place
without stalling the read cycle (if enabled), which stalls further
commands to the ECC controller, while the correction takes place.

Example Design The MegaWizard® Plug-In Manager helps you create an example design
that shows you how to instantiate and connect the DDR3 SDRAM high-
performance controller. The example design consists of the DDR3
SDRAM high-performance controller and some driver logic to issue read
and write requests to the controller. The example design is a working
system that you can compile and use for both static timing checks and
board tests.

Figure 4–3 shows the testbench and the example design.

Figure 4–3. Testbench & Example Design

Example Driver

altmemphy

Control
Logic

clock_source

test_complete

pnf

Example Design

Testbench

DDR3 SDRAM Controller Wizard-
Generated

 Memory Model

DLL

PLL

Altera Corporation MegaCore Version 8.0 4–9
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

Table 4–3 describes the files that are associated with the example design
and the testbench.

The example driver is a self-checking test generator for the DDR3
SDRAM high-performance controller. It uses a state machine to write
data patterns to a range of column addresses, within a range of row
addresses in all memory banks. It then reads back the data from the same
locations, and checks that the data matches. The pass not fail (pnf) output
transitions low if any read data fails the comparison. There is also a
pnf_per_byte output, which shows the comparison on a per byte basis.
The test_complete output transitions high for a clock cycle at the end
of the write or read test sequence. After this transition the test restarts
from the beginning.

The data patterns used are generated using an 8-bit LFSR per byte, with
each LFSR having a different initialization seed.

When test_complete is detected high, a test finished message is
printed out, which shows whether the test has passed.

f For more details on how to run the simulation script, see “Simulate the
Example Design” on page 2–10.

Interfaces &
Signals

This section describes the following topics:

■ “Interface Description” on page 4–9
■ “Signals” on page 4–18

Interface Description

This section describes the following local-side interface requests:

■ “Writes” on page 4–10

Table 4–3. Example Design & Testbench Files

Filename Description

<variation name>_example_top_tb.v or .vhd Testbench for the example design.

<variation name>_example_top.v or .vhd Example design.

<variation name>_example_driver.v or .vhd Example driver.

<variation name>_mem_model.v or .vhd Wizard-generated memory model.

<variation name> .v or .vhd Top-level description of the custom MegaCore function.

<variation name>.qip Contains Quartus II project information for your MegaCore
function variations.

4–10 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Interfaces & Signals

■ “Reads” on page 4–13
■ “User Refresh Control” on page 4–14
■ “Self-Refresh and Power-Down Commands” on page 4–16
■ “Auto-Precharge Commands” on page 4–17
■ “Initialization Timing” on page 4–18

1 These interface requests are for the native interface. For the
Avalon™ Memory-Mapped (Avalon-MM) interface see the
Avalon Memory-Mapped Interface Specification.

Writes

Figure 4–4 on page 4–11 shows three back-to-back write requests of size
2, to sequential addresses. The DDR3 SDRAM controller supports the on-
the-fly burst mode. This mode allows you to request bursts of length 1 or
2 on the local side interface (equivalent to 4 or 8 on the DDR3 SDRAM
side interface).

Altera Corporation MegaCore Version 8.0 4–11
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

Figure 4–4. Writes

The following sequence corresponds with the numbered items in
Figure 4–4.

1. The user logic requests the first write, by asserting the
local_write_req, local_burstbegin, size and address
signals for this write. In this example, the request is a burst of length
2 (8 on the DDR3 SDRAM side) to address 0. The local_ready
signal is asserted, which indicates that the controller has accepted
this request, and the user logic can request another read or write in

phy_clk

2

0 1000 0 1008 0 01010

0

0

0 2 3 0

3 0

1000 0 1008 0 01010

F

0A1B 2C3D 4E5F 6A7B 8C9D AEBF

0A1B 2C3D 4E5F 6A7B 8C9D AEBF

0002 0004

local_ready

local_address

local_write_req

local_read_req

local_burstbegin

local_size

local_wdata

local_be

Controller Command Output

Controller Avalon-MM
Interface

ddr_a

ddr_ba

ddr_cs_n

ddr_ras_n

ddr_cas_n

ddr_we_n

Controller Data Interface

ctl_dqs_burst

ctl_wdata_valid

ctl_wdata

ctl_dm

ALTMEMPHY Outputs

mem_clk

mem_a

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_dq

mem_dqs

mem_dm

[1] [3][2] [5][6] [7][4]

4–12 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Interfaces & Signals

the following clock cycle. If the local_ready signal is not asserted,
the user logic must keep the write request, size, and address signals
asserted. For this burst of length 2, you must present the second beat
of write data in the next clock cycle.

1 local_be is active high; mem_dm is active low. To map
local_wdata and and local_be to mem_dq and
mem_dm, consider the following full rate example with 32-
bit local_wdata and 16-bit mem_dq.

local_wdata = <22334455> <667788AA> <BBCCDDEE>
local_be = <1100> <0110> <1010>

These values map to:

mem_dq = <4455><2233><88AA><6677><DDEE><BBCC>
mem_dm = <1 1> <0 0> <0 1> <1 0> <0 1> <0 1>

2. The user logic requests a second write to a sequential address, of
size 2 (8 on the DDR3 SDRAM side). The local_ready signal
remains asserted, which indicates that the controller has accepted
the request.

3. The user logic requests the third write. The controller is able to
buffer up to four requests so the local_ready signal stays high
and the request is accepted.

4. The controller issues the necessary bank activation command and
the three write commands sequentially to the altmemphy
megafunction, which converts these commands from half-rate to
full-rate and issues them to the memory device.

5. The controller asserts the signals that control how long the DQS
(ctl_dqs_burst) and DQ (ctl_wdata_valid) outputs are
enabled for. The ctl_dqs_burst and ctl_wdata_valid signals
are two bits wide so that the controller can control how many full-
rate mem_clk cycles the DQS and DQ signals are enabled for, even
though the controller is operating on the half-rate clock. In this
example, the DQS outputs are enabled for 13 full-rate clock cycles
(to account for the DQS preamble) and the DQ is enabled for 12 full-
rate clock cycles. The write data (ctl_wdata) and mask (ctl_dm)
are issued at the same time as the ctl_wdata_valid.

6. The altmemphy megafunction issues the bank activation and write
commands to the memory device.

Altera Corporation MegaCore Version 8.0 4–13
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

7. The altmemphy megafunction issues the DQS, DQ and DM signals
to write the data to the memory device.

Reads

Figure 4–5 shows shows three read requests of size 2. The DDR3 SDRAM
controller supports the on-the-fly burst mode. This mode allows you to
request bursts of length 1 or 2 on the local side interface (equivalent to 4
or 8 on the DDR3 SDRAM side interface).

Figure 4–5. Reads

phy_clk

local_ready

local_address

local_write_req

local_read_req

local_burstbegin

local_size

local_rdata

local_rdata_valid

Controller Command Output

Controller Avalon-MM
Interrface

ddr_a

ddr_ba

ddr_cs_n

ddr_ras_n

ddr_cas_n

ddr_we_n

Controller Data Outputs

ctl_doing_read

ctl_rdata_valid

Outputs from the PHY

mem_clk

mem_a

mem_cs_n

mem_ras_n

mem_cas_n

mem_we_n

mem_dq

mem_dqs

mem_dm

[1] [3][2] [5] [6][4]

ctl_rdata

00

2

0

0

0 3 0

0 3

1000 0 1008 0 1010

0 1000 0 1008 0 1010

02 04

4–14 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Interfaces & Signals

The following sequence corresponds with the numbered items in
Figure 4–5 on page 4–13.

1. The user logic requests the three back-to-back reads of size 2 (8 on
the DDR3 SDRAM side) by asserting the local_read_req,
local_burstbegin, local_size and local_address signals
for each read. The local_ready signal is asserted, which indicates
that the controller has accepted each request, and the user logic can
request another read or write in the following clock cycle. If the
local_ready signal is not asserted, the user logic must keep the
read request, size, and address signals asserted.

2. The controller issues the necessary bank activation command and
the three read commands sequentially to the altmemphy
megafunction, which converts these commands from half-rate to
full-rate and issues them to the memory device.

3. The controller asserts the ctl_doing_read signals to indicate to
the altmemphy megafunction when and for how long to enable to
the capture registers.

4. The altmemphy megafunction issues the bank activation and read
commands to the memory device.

5. The memory device returns the read data for the addresses
requested after the CAS latency along with the DQS strobe signal
that the altmemphy megafunction uses to capture the read data.

6. The controller issues the read data to the user logic, marking it valid
with the local_rdata_valid signal. The for the subsequent read
requests.The exact number of clock cycles between the controller
accepting the request and returning the data depends on the
number of other requests pending in the controller, the state the
memory is in, and the timing requirements of the memory (for
example, the CAS latency).

User Refresh Control

Figure 4–6 on page 4–15 shows the user refresh control interface. This
feature allows you to control when the controller issues refreshes to the
memory. This feature allows better control of worst case latency and
allows refreshes to be issued in bursts to take advantage of idle periods.

Altera Corporation MegaCore Version 8.0 4–15
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

Figure 4–6. User Refresh Control

Note to Figure 4–6:
(1) DDR3 Command shows the command that the command signals are issuing.

The following sequence corresponds with the numbered items in
Figure 4–6.

1. The user logic asserts the refresh request signal to indicate to the
controller that it should perform a refresh. The state of the read and
write requests signal does not matter as the controller gives priority
to the refresh request (although it completes any currently active
reads or writes).

2. The controller asserts the refresh acknowledge signal to indicate
that it has issued a refresh command to the altmemphy
megafunction. This signal is still available even if the Enable user
auto-refresh controls option is not switched on, allowing the user
logic to track when the controller issues refreshes.

3. The user logic keeps the refresh request signal asserted to indicate
that it wishes to perform another refresh request.

The controller again asserts the refresh acknowledge signal to indicate
that it has issued a refresh. At this point the user logic deasserts the
refresh request signal and the controller continues with the reads and
writes in its buffers.

clk

reset_n

local_refresh_req

local_refresh_ack

ddr_cs_n

ddr_cke

ddr_a

ddr_ba

DDR3 Command

ddr_ras_n

ddr_cas_n

ddr_we_n

FF 00 FF 00 FF 00 FF00

FF

0000 0400 00000400

0

NOP PCH NOP ARF NOP ARF NOPARF

DDR3 SDRAM Interface

Local Interface

[1] [2] [4][3]

4–16 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Interfaces & Signals

Self-Refresh and Power-Down Commands

This feature allows you to direct the controller to put the external
memory device into a low-power state. There are two possible low-power
states: self-refresh and power down. The controller supports both and
manages the necessary memory timings to ensure that the data in the
memory is maintained at all times.

The local interface input pins (local_powerdn_req, and
local_self_rfsh_req) allow you to direct the controller to place the
memory device in power-down or self-refresh mode, respectively. The
local interface output pins (local_powerdn_ack, and
local_self_rfsh_ack) allow the controller to acknowledge the
request and also indicate the current state of the memory.

If either local_powerdn_ack or local_self_rfsh_ack signal is
asserted, the memory is in the relevant low-power mode. Both pairs of
signals follow the same basic protocol as shown in Figures 4–7 and 4–8 on
page 4–17. The self-refresh pair of signals follows the same timing and
behavior as the power-down pair. The only difference is that the
local_refresh_ack signal is not asserted in self-refresh mode as the
controller does not refresh the memory when the memory is in self-
refresh mode.

You must not assert both request signals at the same time. Undefined
behavior occurs if both local_powerdn_req and
local_self_rfsh_req are asserted simultaneously.

Altera Corporation MegaCore Version 8.0 4–17
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

Figure 4–7. Power-Down Mode .

Notes to Figure 4–7
(1) The user synchronously asserts the request signal to indicate that the controller should put the memory into the

power-down state as soon as possible.
(2) Once the controller is able to issue the correct commands to put the memory into the power-down state, it responds

by asserting the acknowledge signal.
(3) If you direct the controller to hold the memory in power-down mode for longer than a refresh cycle, the controller

wakes the memory briefly to issue a refresh command at the required time. The local_refresh_ack signal
indicates that this has happened - it is asserted for one clock cycle at approximately the same time as the refresh
command is issued. If Enable user auto-refresh controls is turned on, you must issue refresh requests via the
local_refresh_req input at the appropriate time, even if the user has also requested power-down mode.

(4) The controller holds the memory in power-down mode until you deassert the request signal.
(5) The controller deasserts the acknowledge signal once it has released the memory from the power-down state and

once the required timing parameters are met.

Figure 4–8. Self-Refresh Mode

Notes to Figure 4–8
(1) You synchronously assert the request signal to indicate that the controller should put the memory into the self-

refresh state as soon as possible.
(2) Once the controller is able to issue the correct commands to put the memory into the self-refresh state, it responds

by asserting the acknowledge signal.
(3) The controller holds the memory in self-refresh mode until you deassert the request signal.
(4) The controller deasserts the acknowledge signal once it has released the memory from the self-refresh state and once

the required timing parameters are met.

Auto-Precharge Commands

The auto-precharge read and auto-precharge write commands allow you
to indicate to the memory device that this read or write command is the
last access to the currently open row. The memory device automatically

clk

local_powerdn_req

local_powerdn_ack

local_refresh_ack

(1)

(2)

(3)

(4)

(5)

clk

local_self_rfsh_req

local_self_rfsh_ack

(1)

(2)

(3)

(4)

4–18 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Interfaces & Signals

closes (auto-precharges) the page it is currently accessing so that the next
access to the same bank is quicker. This command is particularly useful
for applications that require fast random accesses.

Request an auto-precharge by asserting the local_autopch input at the
same time you assert the local_read_req or local_write_req
signal. The timing and rules of the local_autopch input follow the
basic Avalon interface specifications. You can assert it anytime, but once
you have asserted it, the signal must stay asserted until the
local_ready signal is high, which indicates that the current request has
been accepted.

1 If your MegaCore variation is configured to support local burst
sizes greater than one, note that local_autopch is ignored
unless you request for a complete burst. It is not possible to auto-
precharge a partial burst to the memory.

Initialization Timing

The DDR3 SDRAM high-performance controller relies on the altmemphy
megafunction for initialization.

f For more information, refer to the External DDR Memory PHY Interface
Megafunction User Guide (ALTMEMPHY).

When altmemphy has finished calibrating, the memory controller asserts
the local_init_done signal, which shows that it has initialized the
memory devices.

Signals

Table 4–4 shows the clock and reset signals.

Table 4–4. Clock and Reset Signals (Part 1 of 2)

 Name Direction Description

global_reset_n Input The asynchronous reset input to the controller. All other reset
signals are derived from resynchronized versions of this signal.
This signal holds the complete altmemphy, including the PLL, in
reset while low.

pll_ref_clk Input The reference clock input to PLL.

Altera Corporation MegaCore Version 8.0 4–19
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

phy_clk Output The system clock that the altmemphy provides to the user. All
user inputs to and outputs from the DDR3 high-performance
controller must be synchronous to this clock.

reset_phy_clk_n Output The reset signal that the altmemphy provides to the user. It is
asserted asynchronously and deasserted synchronously to
phy_clk clock domain.

dll_reference_clk Output Reference clock to feed to an externally instantiated DLL.

reset_request_n Output Reset request output that indicates when the PLL outputs are not
locked. Use this as a reset request input to any system-level reset
controller you may have. This signal is always low while the PLL
is locking, and so any reset logic using it is advised to detect a
reset request on a falling edge rather than by level detection.

soft_reset_n Input Soft reset input for PLL. This causes a complete reset of the
whole system.

NOTE: soft_reset_n is edge detected.

oct_ctl_rs_value Input altmemphy signal that specifies the serial termination value.
Should be connected to the ALT_OCT MegaFunction output
“Seriesterminationcontrol”.

oct_ctl_rt_value Input altmemphy signal that specifies the parallel termination value.
Should be connected to the ALT_OCT MegaFunction output
“Parallelterminationcontrol”.

dqs_delay_ctrl_import Input Allows the use of DLL in another altmemphy instance in this
altmemphy instance. Connect the export port on the
altmemphy instance with a DLL to the import port on the other
altmemphy instance.

Table 4–4. Clock and Reset Signals (Part 2 of 2)

 Name Direction Description

4–20 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Interfaces & Signals

Table 4–5 shows the DDR3 SDRAM high-performance controller local
interface signals.

Table 4–5. Local Interface Signals (Part 1 of 3)

Signal Name Direction Description

local_addr[] Input Memory address at which the burst should start. The width of this bus
is sized using the following equation:

For one chip select:
width = bank bits + row bits + column bits – 1

For multiple chip selects:
width = chip bits + bank bits + row bits + column bits – 1

For half-rate controllers, two least significant bits (LSB) of the column
address on the memory side are ignored, because the local data
width is four times that of the memory data bus width

local_be[] Input Byte enable signal, which you use to mask off individual bytes during
writes.

local_burstbegin Input Avalon burst begin strobe, which indicates the beginning of an
Avalon burst. This signal is only available when the local interface is
an Avalon-MM interface. Unlike all other Avalon-MM signals, the
burst begin signal does not stay asserted if local_ready is
deasserted.

local_read_req Input Read request signal.
You cannot assert read request and write request signal at the same
time.

local_refresh_req Input User controlled refresh request. If Enable user auto-refresh
controls is turned on, local_refresh_req becomes available
and you are responsible for issuing sufficient refresh requests to
meet the memory requirements. This option allows complete control
over when refreshes are issued to the memory including ganging
together multiple refresh commands. Refresh requests take priority
over read and write requests unless they are already being
processed.

local_size[] Input Controls the number of beats in the requested read or write access
to memory, encoded as a binary number. The DDR3 SDRAM high-
performance controller supports burst lengths of 1 and 2 on the local
side interface.

local_wdata[] Input Write data bus. The width of local_wdata is four times the
memory data bus for half rate controller.

local_write_req Input Write request signal.
You cannot assert read request and write request signal at the same
time.

Altera Corporation MegaCore Version 8.0 4–21
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

local_init_done Output Memory initialization complete signal, which is asserted once the
controller has completed its initialization of the memory. Read and
write requests are still accepted before local_init_done is
asserted, however they are not issued to the memory until it is safe
to do so.

local_rdata[] Output Read data bus. The width of local_rdata is four times that of the
memory data bus.

local_rdata_error Output Asserted if the current read data has an error. This signal is only
available if the Enable error detection and correction logic is
turned on.

local_rdata_valid Output Read data valid signal. The local_rdata_valid signal indicates
that valid data is present on the read data bus. The timing of
local_rdata_valid is automatically adjusted to cope with your
choice of resynchronization and pipelining options.

local_ready Output The local_ready signal indicates that the DDR3 SDRAM high-
performance controller is ready to accept request signals. If
local_ready is asserted in the clock cycle that a read or write
request is asserted, that request has been accepted. The
local_ready signal is deasserted to indicate that the DDR3
SDRAM high-performance controller cannot accept any more
requests.

local_refresh_ack Output Refresh request acknowledge, which is asserted for one clock cycle
every time a refresh is issued. Even if the Enable user auto-refresh
controls option is not selected, local_refresh_ack still
indicates to the local interface that the controller has just issued a
refresh command.

local_wdata_req Output Write data request signal, which indicates to the local interface that it
should present valid write data on the next clock edge.

local_autopch_req Input User control of precharge. If Enable auto precharge control is
turned on, local_autopch_req becomes available and you can
request the controller to issue an auto-precharge write or auto-
precharge read command. These commands cause the memory to
issue a precharge command to the current bank at the appropriate
time without an explicit precharge command from the controller. This
is particularly useful if you know the current read or write is the last
one you intend to issue to the currently open row. The next time you
need to use that bank, the access could be quicker as the controller
does not need to precharge the bank before activating the row you
wish to access.

Table 4–5. Local Interface Signals (Part 2 of 3)

Signal Name Direction Description

4–22 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Interfaces & Signals

Table 4–6 shows the DDR3 SDRAM interface signals.

local_powerdn_req Input User control of the power down feature. If Enable power down
controls option is enabled, you can request that the controller place
the memory devices into a power-down state as soon as it can
without violating the relevant timing parameters and responds by
asserting the local_powerdn_ack signal. You can hold the
memory in the power-down state by keeping this signal asserted.
The controller brings the memory out of the power-down state to
issue periodic auto-refresh commands to the memory at the
appropriate interval if you hold it in the power-down state. You can
release the memory from the power-down state at any time by
deasserting the local_powerdn_ack signal once it has
successfully brought the memory out of the power-down state.

local_powerdn_ack Output Power-down request acknowledge signal. This signal is asserted and
deasserted in response to the local_powerdn_req signal from
the user.

local_self_rfsh_req Input User control of the self-refresh feature. If Enable self-refresh
controls option is enabled, you can request that the controller place
the memory devices into a self-refresh state by asserting this signal.
The controller will place the memory in the self-refresh state as soon
as it can without violating the relevant timing parameters and
responds by asserting the local_self_rfsh_ack signal. You
can hold the memory in the self-refresh state by keeping this signal
asserted. You can release the memory from the self-refresh state at
any time by deasserting the local_self_rfsh_req signal and
the controller responds by deasserting the
local__self_rfsh_ack signal once it has successfully brought
the memory out of the self-refresh state.

local_self_rfsh_ack Output Self refresh request acknowledge signal. This signal is asserted and
deasserted in response to the local_self_rfsh_req signal
from the user.

Table 4–5. Local Interface Signals (Part 3 of 3)

Signal Name Direction Description

Table 4–6. DDR3 SDRAM Interface Signals (Part 1 of 2)

Signal Name Direction Description

mem_dq[] Bidirectional Memory data bus. This bus is half the width of the local read and write data
busses.

mem_dqs[] Bidirectional Memory data strobe signal, which writes data into the DDR3 SDRAM and
captures read data into the Altera device.

mem_dqs_n[] Bidirectional Memory data strobe signal, which writes data into the DDR3 SDRAM and
captures read data into the Altera device.

Altera Corporation MegaCore Version 8.0 4–23
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Functional Description

Table 4–7 shows the ECC controller signals.

mem_clk (1) Bidirectional Clock for the memory device.

mem_clk_n (1) Bidirectional Inverted clock for the memory device.

mem_a[] Output Memory address bus.

mem_ba[] Output Memory bank address bus.

mem_cas_n Output Memory column address strobe signal.

mem_cke[] Output Memory clock enable signals.

mem_cs_n[] Output Memory chip select signals.

mem_dm[] Output Memory data mask signal, which masks individual bytes during writes.

mem_odt[] Output Memory on-die termination control signal.

mem_ras_n Output Memory row address strobe signal.

mem_reset_n Output Memory reset signal.

mem_we_n Output Memory write enable signal.

Note to Table 4–6:
(1) The mem_clk signals are output only signals from the FPGA. However, in the Quartus II software they must be

defined as bidirectional (INOUT) I/Os to support the mimic path structure that the ALTMEMPHY megafunction
uses.

Table 4–6. DDR3 SDRAM Interface Signals (Part 2 of 2)

Signal Name Direction Description

Table 4–7. ECC Controller Signals

Signal Name Direction Description

ecc_addr[] Input Address for ECC controller.

ecc_be[] Input ECC controller byte enable.

ecc_interrupt Output Interrupt from ECC controller.

ecc_rdata[] Output Return data from ECC controller.

ecc_read_req Input Read request for ECC controller.

ecc_wdata[] Input ECC controller write data.

ecc_write_req Input Write request for ECC controller.

4–24 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Interfaces & Signals

Altera Corporation MegaCore Version 8.08.0 Info–i
May 2008

Additional Information

Revision History The following table shows the revision history for this user guide.

How to Contact
Altera

For the most up-to-date information about Altera® products, see the
following table.

Date Version Changes Made

May 2008 8.0 ● Added a section on ECC
● Added more detailed ECC information (Appendix A)
● Added more detailed latency information (Appendix B)
● Added Stratix IV support

October 2007 7.2 First release.

Contact (1) Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:
(1) You can also contact your local Altera sales office or sales representative.

Info–ii MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Typographic Conventions

Typographic
Conventions

The following table shows the typographic conventions that this
document uses.

Table Info–1. Typographic Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
file names, file name extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Altera Corporation MegaCore Version 8.0 --A–1
May 2008

Appendix A. ECC Register
Description

This appendix describes the ECC registers and then describes the register
bits.

Table A–1 shows the ECC registers.

Table A–1. ECC Registers (Part 1 of 3)

Name Address Size
(Bits) Attribute Default Description

Control word
specifications

00 32 R/W 0000000F This register contains all commands
for the ECC functioning.

Maximum single-bit error
counter threshold

01 32 R/W 00000001 The single-bit error counter
increments (when a single-bit error
occurs) until the maximum threshold,
as defined by this register. When this
threshold is crossed, the ECC
generates an interrupt.

Maximum double-bit error
counter threshold

02 32 R/W 00000001 The double-bit error counter
increments (when a double-bit error
occurs) until the maximum threshold,
as defined by this register. When this
threshold is crossed, the ECC
generates an interrupt.

Current single-bit error
count

03 32 RO 00000000 The single-bit error counter
increments (when a single-bit error
occurs) until the maximum threshold.
You can find the value of the count by
reading this status register.

Current double-bit error
count

04 32 RO 00000000 The double-bit error counter
increments (when a double-bit error
occurs) until the maximum threshold.
You can find the value of the count by
reading this status register.

Last or first single-bit
error error address

05 32 RO 00000000 This status register stores the last
single-bit error error address. It can
be cleared using the control word
clear. If bit 10 of the control word is set
high, the first occurred address is
stored.

A–2 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Last or first double-bit
error error address

06 32 RO 00000000 This status register stores the last
double-bit error error address. It can
be cleared using the control word
clear. If bit 10 of the control word is set
high, the first occurred address is
stored.

Last single-bit error error
data

07 32 RO 00000000 This status register stores the last
single-bit error error data word. As the
data word is an Nth multiple of 64, the
data word is stored in a 2N-deep, 32-
bit wide FIFO buffer with the least
significant 32-bit sub word stored first.
It can be cleared individually by using
the control word clear.

Last single-bit error
syndrome

08 32 RO 00000000 This status register stores the last
single-bit error syndrome, which
specifies the location of the error bit
on a 64-bit data word. As the data
word is an Nth multiple of 64, the
syndrome is stored in a N deep, 8-bit
wide FIFO buffer where each
syndrome represents errors in every
64-bit part of the data word. The
register gets updated with the correct
syndrome depending on which part of
the data word is shown on the last
single-bit error error data register. It
can be cleared individually by using
the control word clear.

Last double-bit error error
data

09 32 RO 00000000 This status register stores the last
double-bit error error data word. As
the data word is an Nth multiple of 64,
the data word is stored in a 2N deep,
32-bit wide FIFO buffer with the least
significant 32-bit sub word stored first.
It can be cleared individually by using
the control word clear.

Interrupt status register 0A 5 RO 00000000 This status register stores the
interrupt status in four fields (see
Table A–3). These status bits can be
cleared by writing a 1 in the
respective locations.

Interrupt mask register 0B 5 WO 00000001 This register stores the interrupt mask
in four fields (see Table A–4).

Table A–1. ECC Registers (Part 2 of 3)

Name Address Size
(Bits) Attribute Default Description

Altera Corporation MegaCore Version 8.0 A–3
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Table A–2 shows the control word specification register.

Single-bit error location
status register

0C 32 R/W 00000000 This status register stores the
occurrence of single-bit error for each
64-bit part of the data word in every
bit (see Table A–5). These status bits
can be cleared by writing a 1 in the
respective locations.

Double-bit error location
status register

0D 32 R/W 00000000 This status register stores the
occurrence of double-bit error for
each 64-bit part of the data word in
every bit (see Table A–6). These
status bits can be cleared by writing a
1 in the respective locations.

Table A–1. ECC Registers (Part 3 of 3)

Name Address Size
(Bits) Attribute Default Description

Table A–2. Control Word Specification Register

Bit Name Direction Description

0 Count single-bit error Decoder-corrector When 1, count single-bit errors.

1 Correct single-bit error Decoder-corrector When 1, correct single-bit errors.

2 Double-bit error enable Decoder-corrector When 1, detect all double-bit errors and
increment double-bit error counter.

3 Reserved N/A Reserved for future use

4 Clear all status registers Controller When 1, clear counters single-bit error and
double-bit error status registers for first and
last error address.

5 Reserved N/A Reserved for future use

6 Reserved N/A Reserved for future use

7 Counter clear on read Controller When 1, enables counters to clear on read
feature.

8 Corrupt ECC enable Controller When 1, enables deliberate ECC corruption
during encoding, to test the ECC.

9 ECC corruption type Controller When 0, creates single-bit errors in all ECC
codewords; when 1, creates double-bit
errors in all ECC codewords.

10 First or last error Controller When 1, stores the first error address rather
than the last error address of single-bit error
or double-bit error.

11 Clear interrupt Controller When 1, clears the interrupt.

A–4 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Table A–3 shows the interrupt status register.

Table A–4 shows the interrupt mask register.

Table A–5 shows the single-bit error location status register.

Table A–3. Interrupt Status Register

Bit Name Description

0 Single-bit error When 1, single-bit error occurred.

1 Double-bit error When 1, double-bit error occurred.

2 Maximum single-bit error When 1, single-bit error maximum threshold
exceeded.

3 Maximum double-bit error When 1, double-bit error maximum threshold
exceeded.

4 Double-bit error during read-
modify-write

When 1, double-bit error occurred during a read
modify write condition. (partial write).

Others Reserved Reserved.

Table A–4. Interrupt Mask Register

Bit Name Description

0 Single-bit error When 1, masks single-bit error.

1 Double-bit error When 1, masks double-bit error.

2 Maximum single-bit error When 1, masks single-bit error maximum
threshold exceeding condition.

3 Maximum double-bit error When 1, masks double-bit error maximum
threshold exceeding condition.

4 Double-bit error during read-
modify-write

 When 1, masks interrupt when double-bit error
occurs during a read-modify-write condition.
(partial write).

Others Reserved Reserved.

Table A–5. Single-Bit Error Location Status Register

Bit Name Description

Bits N – 1 down to 0 Interrupt When 0, no single-bit error; when 1, single-bit
error occurred in this 64-bit part.

Others Reserved Reserved.

Altera Corporation MegaCore Version 8.0 A–5
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Table A–6 shows the double-bit error location status register.

Table A–6. Double-Bit Error Location Status Register

Bit Name Description

Bits N-1 down to 0 Cause of
Interrupt

When 0, no double-bit error; when 1, double-
bit error occurred in this 64-bit part.

Others Reserved Reserved.

A–6 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Altera Corporation MegaCore Version 8.0 --B–1
May 2008

Appendix B. Latency

When designing for memory controllers, you must consider read and
write latencies. Altera® defines read and write latencies as follows:

■ Read Latency—the amount of time it takes for the read data to
appear at the user (local) interface after you initiate the read request.

■ Write Latency—the amount of time it takes for the write data to
appear at the memory interface after you initiate the write request.

Altera assumes the following basic assumptions when calculating
latency:

■ Reading and writing occurs to rows that are already open
■ The local_ready signal is asserted high (no wait states)
■ No refresh cycles occur before the transaction
■ Latency is defined using the user (local) side frequency and absolute

time (ns)

1 For the half-rate controller, the user (local) side frequency is half
of the memory interface frequency.

Altera defines the read and write latencies in terms of the local interface
clock frequency and by the absolute time for the memory controllers.

The latency for the high-performance controller comprises many
different stages of the memory interface. Figure B–1 shows a typical
memory interface read latency path showing the read latency from the
time a local_read_req assertion is detected by the controller up to
data available to be read from the DRAM module.

B–2 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Figure B–1. Typical Read Latency Path

Table B–1 shows the different stages that make up the whole read latency,
shown in Figure B–1.

From Figure B–1, the read latency in the high-performance controllers is
made up of four components:

Read latency = controller latency + command output latency +
 CAS latency + PHY read data input latency
= T1 + T2 + T3 + T4

Similarly, the write latency in the high-performance controllers is made
up of three components:

Shifted
DQS Clk

High-
Performance

Controller

PLLphy_clk

local_rdata

local_read_req

control_doing_rd

PLL
0° or 180°

PHY

FPGA Device Memory Device

Latency T3
(includes CAS

latency)

Latency T1

local_addr
mem_cs_n

mem_dq []

mem_dqs []

Latency T2
Address/Command Generation

Core I/O

Alignment and
Synchronization

Capture

Shifted
DQS Clock

Resynchronization
 Clock

Half-
rate

DPRAM

Read Datapath
Latency T4

mem_clk []

mem_clk_n []

Table B–1. High Performance Controller Latency Stages and Descriptions

Latency Number Latency Stage Description

T1 Controller local_read_req or local_write_req signal assertion
to ddr_cs_n signal assertion.

T2 Command Output ddr_cs_n signal assertion to mem_cs_n signal assertion.

T3 CAS or WL Read command to DQ data from the memory or write command
to DQ data to the memory.

T4 altmemphy
read data input

Read data appearing on the local interface.

T2 + T3 Write data latency Write data appearing on the memory interface.

Altera Corporation MegaCore Version 8.0 B–3
May 2008 DDR3 SDRAM High-Performance Controller User Guide

Write latency = controller latency + write data latency
 = T1 + T2 + T3

You can separate the controller and PHY read data input latency into
latency that occurred in the input/output element (IOE) and latency that
occurred in the FPGA fabric.

Tables B–2 and B–3 show a typical latency that can be achieved in
Stratix III and Stratix IV devices.
The exact latency for your memory controller depends on your precise
configuration. You should obtain precise latency from simulation, but
this figure may vary slightly in hardware because of the automatic
calibration process.

Table B–2. Typical Read Latency in Stratix III & IV High-Performance Controller Note (1), (2)

Memory
Standard

Frequency
(MHz)

Interface
Mode

Controller
Latency

(3)

Address and
Command
Latency

CAS
Latency

Read Data
Latency

Total Read
Latency (4)

FPGA IO FPGA I/O Cycles Time
(ns)

DDR3
SDRAM 400 Half rate 6 4 1 3 7 2 23 115

Notes to Table B–2:
(1) These are typical latency values using the assumptions listed in the beginning of the section. Your actual latency

may be different than shown. You need to perform your own simulation for your actual latency.
(2) Numbers shown may have been rounded up to the nearest higher integer.
(3) The controller latency value is from the Altera high-performance controller.
(4) Total read latency is the sum of controller, address and command, CAS, and read data latencies.

B–4 MegaCore Version 8.0 Altera Corporation
DDR3 SDRAM High-Performance Controller User Guide May 2008

Table B–3. Typical Write Latency in Stratix III & IV High-Performance Controller Note (1), (2)

Memory
Standard

Frequency
(MHz)

Interface
Mode

Controller
Latency

(3)

Address and
Command
Latency

Memory
Write

Latency
(4)

Total Write
Latency (5)

FPGA I/O Cycles Time
(ns)

DDR3
SDRAM 400 Half rate 6 4 1 2.5 13.5 67.5

Notes to Table B–3:
(1) These are typical latency values using the assumptions listed in the beginning of the section. Your actual latency

may be different than shown. You need to perform your own simulation for your actual latency.
(2) Numbers shown may have been rounded up to the nearest higher integer.
(3) The controller latency value is from the Altera high-performance controller.
(4) Memory write latency is per memory device specification. This is the latency from when you provide the

command to write to when you need to provide data at the memory device.
(5) Total write latency is the sum of controller, address and command, and memory write latencies.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Intel manufacturer:

Other Similar products are found below :

RAPPID-567XFSW SRP004001-01 SW163052 SYSWINEV21 Core429-SA WS01NCTF1E W128E13 SW89CN0-ZCC IPS-EMBEDDED

IP-UART-16550 MPROG-PRO535E AFLCF-08-LX-CE060-R21 WS02-CFSC1-EV3-UP SYSMAC-STUDIO-EIPCPLR LIB-PL-PC-N-

1YR-DISKID LIB-PL-A-F SW006026-COV 1120270005 1120270006 MIKROBASIC PRO FOR FT90X (USB DONGLE) MIKROC PRO

FOR FT90X (USB DONGLE) MIKROC PRO FOR PIC (USB DONGLE LICENSE) MIKROBASIC PRO FOR AVR (USB DONGLE LICEN

MIKROBASIC PRO FOR FT90X MIKROC PRO FOR DSPIC30/33 (USB DONGLE LI MIKROPASCAL PRO FOR ARM (USB DONGLE

LICE MIKROPASCAL PRO FOR FT90X MIKROPASCAL PRO FOR FT90X (USB DONGLE) MIKROPASCAL PRO FOR PIC32 (USB

DONGLE LI SW006021-2H ATATMELSTUDIO 2400573 2702579 2988609 2702546 SW006022-DGL 2400303 2701356 VDSP-21XX-

PCFLOAT VDSP-BLKFN-PC-FULL 88970111 DG-ACC-NET-CD 55195101-102 SW1A-W1C MDK-ARM PCI-EXP1-E3-US PCI-T32-

E3-US SW006021-2NH SW006021-1H SW006021-2

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/development-software
https://www.x-on.com.au/manufacturer/intel
https://www.x-on.com.au/mpn/nxp/rappid567xfsw
https://www.x-on.com.au/mpn/lantronix/srp00400101
https://www.x-on.com.au/mpn/microchip/sw163052
https://www.x-on.com.au/mpn/omron/syswinev21
https://www.x-on.com.au/mpn/microsemi/core429sa
https://www.x-on.com.au/mpn/omron/ws01nctf1e
https://www.x-on.com.au/mpn/omron/w128e13
https://www.x-on.com.au/mpn/toshiba/sw89cn0zcc
https://www.x-on.com.au/mpn/intel/ipsembedded
https://www.x-on.com.au/mpn/intel/ipuart16550
https://www.x-on.com.au/mpn/advantech/mprogpro535e
https://www.x-on.com.au/mpn/iei/aflcf08lxce060r21
https://www.x-on.com.au/mpn/omron/ws02cfsc1ev3up
https://www.x-on.com.au/mpn/omron/sysmacstudioeipcplr
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microchip/libplaf
https://www.x-on.com.au/mpn/microchip/sw006026cov
https://www.x-on.com.au/mpn/molex/1120270005
https://www.x-on.com.au/mpn/molex/1120270006
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforpicusbdonglelicense
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforavrusbdonglelicen
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikrocprofordspic3033usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/microchip/sw0060212h
https://www.x-on.com.au/mpn/microchip/atatmelstudio
https://www.x-on.com.au/mpn/phoenixcontact/2400573
https://www.x-on.com.au/mpn/phoenixcontact/2702579
https://www.x-on.com.au/mpn/phoenixcontact/2988609
https://www.x-on.com.au/mpn/phoenixcontact/2702546
https://www.x-on.com.au/mpn/microchip/sw006022dgl
https://www.x-on.com.au/mpn/phoenixcontact/2400303
https://www.x-on.com.au/mpn/phoenixcontact/2701356
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdspblkfnpcfull
https://www.x-on.com.au/mpn/crouzet/88970111
https://www.x-on.com.au/mpn/digiinternational/dgaccnetcd
https://www.x-on.com.au/mpn/honeywell/55195101102
https://www.x-on.com.au/mpn/idec/sw1aw1c
https://www.x-on.com.au/mpn/keil/mdkarm
https://www.x-on.com.au/mpn/lattice/pciexp1e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/microchip/sw0060212nh
https://www.x-on.com.au/mpn/microchip/sw0060211h
https://www.x-on.com.au/mpn/microchip/sw0060212

