
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-MC_RIOPHY-2.13

User Guide

RapidIO MegaCore Function

Document last updated for Altera Complete Design Suite version:
Document publication date:

10.1
December 2010

Subscribe

RapidIO MegaCore Function User Guide

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Contents

Chapter 1. About This MegaCore Function
Features . 1–1

RapidIO IP Core Features . 1–2
Supported Transactions . 1–3

Device Family Support . 1–4
IP Core Verification . 1–5

Simulation Testing . 1–5
Hardware Testing . 1–5
Interoperability Testing . 1–6

Performance and Resource Utilization . 1–6
Modular Configurations . 1–10
Calculate Estimated ALUTs for Specific Modules . 1–11

Release Information . 1–12
Installation and Licensing . 1–12

OpenCore Plus Evaluation . 1–13
OpenCore Plus Time-Out Behavior . 1–13

Chapter 2. Getting Started
Design Flows . 2–1

MegaWizard Plug-In Manager Design Flow . 2–2
SOPC Builder Design Flow . 2–2
Qsys Design Flow . 2–3

MegaWizard Plug-in Manager Design Flow . 2–3
Specifying Parameters . 2–3
Simulating the Design . 2–4

SOPC Builder Design Flow . 2–4
Specifying Parameters . 2–5
Completing the SOPC Builder System . 2–6
Simulating the System . 2–7

Qsys Design Flow . 2–7
Specifying Parameters . 2–8
Completing the Qsys System . 2–9
Simulating the System . 2–10

Specifying Constraints . 2–10
Compiling the Full Design and Programming the FPGA . 2–11
Simulating with ModelSim . 2–12

Simulating with ModelSim on Windows . 2–12
Simulating with ModelSim on Linux . 2–13

Instantiating Multiple RapidIO IP Cores . 2–13
Clock and Signal Requirements for Devices with Transceivers . 2–13
Sourcing Multiple Tcl Scripts . 2–14

Chapter 3. Parameter Settings
Physical Layer Settings . 3–1

Device Options . 3–1
Mode Selection . 3–2
Transceiver Selection . 3–2
Transceiver Configuration Using the Transceiver Parameter Editor . 3–2

iv Contents

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Synchronizing Transmitted ackID . 3–4
Sending Link-Request Reset-Device on Fatal Errors . 3–5
Number of Link-Request Attempts Before Declaring Fatal Error . 3–5

Data Settings . 3–5
Baud Rate . 3–5
Reference Clock Frequency . 3–6
Receive Buffer . 3–6
Transmit Buffer . 3–6

Receive Priority Retry Thresholds . 3–6
Transport and Maintenance Settings . 3–7

Transport Layer . 3–7
Enable Transport Layer . 3–7
Device ID Width . 3–7
Avalon-ST Pass-Through Interface . 3–7
Destination ID Checking . 3–8

Input/Output Maintenance Logical Layer Module . 3–8
Maintenance Logical Layer . 3–8
Transmit Address Translation Windows . 3–8

Port Write . 3–9
Port Write Tx Enable . 3–9
Port Write Rx Enable . 3–9

I/O and Doorbell Settings . 3–9
I/O Logical Layer Interfaces . 3–9
I/O Slave Address Width . 3–9
I/O Read and Write Order Preservation . 3–9
Avalon-MM Master . 3–10
Avalon-MM Slave . 3–10
Doorbell Slave . 3–10

Capability Registers Settings . 3–10
Device Registers . 3–10

Device ID . 3–10
Vendor ID . 3–11
Revision ID . 3–11

Assembly Registers . 3–11
Assembly ID . 3–11
Vendor ID . 3–11
Revision ID . 3–11
Extended Features Pointer . 3–11

Processing Element Features . 3–11
Bridge Support . 3–12
Memory Access . 3–12
Processor Present . 3–12

Switch Support . 3–12
Enable Switch Support . 3–12
Number of Ports . 3–12
Port Number . 3–12

Data Messages . 3–12
Source Operation . 3–13
Destination Operation . 3–13

EDA Settings . 3–13
Simulation Libraries . 3–13

File . 3–13
Description . 3–13
Generate Simulation Model . 3–13

Contents v

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Timing and Resource Estimation . 3–13
Summary . 3–14

Chapter 4. Functional Description
Interfaces . 4–1

RapidIO Interface . 4–1
Atlantic Interface . 4–1
Avalon Memory Mapped (Avalon-MM) Master and Slave Interfaces . 4–1

Avalon-MM Interface Byte Ordering . 4–2
Avalon Streaming (Avalon-ST) Interface . 4–2
XGMII External Transceiver Interface . 4–3

Clocking and Reset Structure . 4–3
Clocking for RapidIO IP Cores with Only a Physical Layer . 4–3

Reference Clock . 4–5
Baud Rates . 4–6

Reset for RapidIO IP Cores with Only a Physical Layer . 4–7
Clocking for RapidIO IP Cores with Physical, Transport, and Logical Layers 4–7
Reset for RapidIO IP Cores with Physical, Transport, and Logical Layers . 4–11

Physical Layer . 4–12
Features . 4–12
Physical Layer Architecture . 4–14
Low-level Interface Receiver . 4–14

Receiver Transceiver . 4–15
CRC Checking and Removal . 4–15

Low-Level Interface Transmitter . 4–15
Transmitter Transceiver in Variations With an Internal Transceiver . 4–16

Protocol and Flow Control Engine . 4–16
Atlantic Interface . 4–17
Atlantic Interface Receive Buffer and Control Block . 4–19

Priority Threshold Values . 4–19
Receive Buffer . 4–20

Atlantic Interface Transmit Buffer and Control Block . 4–21
Transmit and Retransmit Queues . 4–21
Transmit Buffer . 4–21
Forced Compensation Sequence Insertion . 4–22

Transport Layer . 4–22
Receiver . 4–23
Transaction ID Ranges . 4–24
Transmitter . 4–25

Logical Layer Modules . 4–25
Concentrator Register Module . 4–26
Maintenance Module . 4–29

Maintenance Register . 4–31
Maintenance Slave Processor . 4–31
Maintenance Master Processor . 4–34
Port-Write Processor . 4–35
Maintenance Module Error Handling . 4–36

Input/Output Logical Layer Modules . 4–37
Input/Output Avalon-MM Master Module . 4–37
RapidIO Packet Data wdptr and Data Size Encoding in Avalon-MM Transactions 4–40
Input/Output Avalon-MM Master Module Timing Diagrams . 4–44
Input/Output Avalon-MM Slave Module . 4–45
Avalon-MM Burstcount and Byteenable Encoding in RapidIO Packets . 4–52
Input/Output Avalon-MM Slave Module Timing Diagrams . 4–56

vi Contents

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Doorbell Module . 4–57
Doorbell Module Block Diagram . 4–57
Preserving Transaction Order . 4–58
Doorbell Message Generation . 4–58
Doorbell Message Reception . 4–60

Avalon-ST Pass-Through Interface . 4–60
Pass-Through Interface Examples . 4–61

Error Detection and Management . 4–65
Physical Layer Error Management . 4–65

Protocol Violations . 4–66
Fatal Errors . 4–66

Logical Layer Error Management . 4–66
Maintenance Avalon-MM Slave . 4–67
Maintenance Avalon-MM Master . 4–68
Port-Write Reception Module . 4–69
Port-Write Transmission Module . 4–69
Input/Output Avalon-MM Slave . 4–69
Input/Output Avalon-MM Master . 4–70

Avalon-ST Pass-Through Interface . 4–71

Chapter 5. Signals
Physical Layer Signals . 5–1

Atlantic Interface Signals . 5–4
Status Packet and Error Monitoring Signals . 5–5
Multicast Event Signal . 5–6
Receive Priority Retry Threshold-Related Signals . 5–7
Transceiver Signals . 5–7
Register-Related Signals . 5–9

Transport and Logical Layer Signals . 5–9
Clock and Reset Signals . 5–9
Avalon-MM Interface Signals . 5–9
Avalon-ST Pass-Through Interface Signals . 5–12
Error Management Extension Signals . 5–15
Packet and Error Monitoring Signal for the Transport Layer . 5–16

Chapter 6. Software Interface
Physical Layer Registers . 6–4
Transport and Logical Layer Registers . 6–11

Capability Registers (CARs) . 6–11
Command and Status Registers (CSRs) . 6–16
Maintenance Interrupt Control Registers . 6–17
Receive Maintenance Registers . 6–18
Transmit Maintenance Registers . 6–19
Transmit Port-Write Registers . 6–19
Receive Port-Write Registers . 6–20
Input/Output Master Address Mapping Registers . 6–21
Input/Output Slave Mapping Registers . 6–22
Input/Output Slave Interrupts . 6–23
Transport Layer Feature Register . 6–25
Error Management Registers . 6–26
Doorbell Message Registers . 6–28

Contents vii

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Chapter 7. Testbenches
Testbench for Variations with Only a Physical Layer . 7–1
Testbench for a Variation with Physical, Transport, and Logical Layers . 7–3

Reset, Initialization, and Configuration . 7–5
Maintenance Write and Read Transactions . 7–7
SWRITE Transactions . 7–8
NWRITE_R Transactions . 7–9
NWRITE Transactions . 7–10
NREAD Transactions . 7–10
Doorbell Transactions . 7–11
Doorbell and Write Transactions With Transaction Order Preservation . 7–12
Port-Write Transactions . 7–13
Transactions Across the Avalon-ST Pass-Through Interface . 7–14

Chapter 8. SOPC Builder Design Example
Create a New Quartus II Project . 8–3
Run SOPC Builder . 8–4

Add and Parameterize the RapidIO Component . 8–4
Add and Connect Other System Components . 8–6

Add the DMA Controller . 8–7
Add the On-Chip Memory . 8–7
Add the On-Chip FIFO Memory . 8–7

Connect Clocks and the System Components . 8–8
Display Clock Information and Connect Unconnected Clocks . 8–8
Connect System Components . 8–9
Assign Addresses and Set the Clock Frequency . 8–10

Generate the System . 8–11
Simulate the System . 8–11
Compile and Program the Device . 8–12

Appendix A. Initialization Sequence

Appendix B. XGMII Interface Timing
RapidIO XGMII Interface . B–1
Timing Constraints . B–5

Setting Quartus II tSU and tH Checks . B–6
Example . B–6

Appendix C. Porting a RapidIO Design from the Previous Version of the Software
Upgrading a RapidIO Design Without Changing Tools . C–1
Upgrading an SOPC Builder Design with a RapidIO Component to a Qsys System C–1

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–2
Typographic Conventions . Info–2

viii Contents

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

1. About This MegaCore Function

The RapidIO interconnect—an open standard developed by the RapidIO Trade
Association—is a high-performance packet-switched interconnect technology
designed to pass data and control information between microprocessors, digital signal
processors (DSPs), communications and network processors, system memories, and
peripheral devices.

The Altera® RapidIO MegaCore® function targets high-performance, multicomputing,
high-bandwidth, and coprocessing I/O applications. Figure 1–1 shows an example
system implementation.

Features
This section outlines the features and supported transactions of the RapidIO IP core.

Figure 1–1. Typical RapidIO Application

DSP
ASSP

DSP
ASSP

CPU

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

DSP

In
te

rf
ac

e

B
rid

ge

FPGA

C
on

tr
ol

le
r

Proprietary,
CPRI, OBSAI,

Ethernet,
UTOPIA, etc.

RapidIO
MegaCore
Function

DSP
ASSP

Serial

Switch
RapidIO

System Interconnect

1–2 Chapter 1: About This MegaCore Function
Features

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

RapidIO IP Core Features
The RapidIO IP core has the following features:

■ Compliant with RapidIO Trade Association, RapidIO Interconnect Specification,
Revision 2.1, August 2009, available from the RapidIO Trade Association website
at www.rapidio.org

■ Successfully passed RIOLAB’s Device Interoperability Level-3 (DIL-3) testing

■ Supports 8-bit or 16-bit device IDs

■ Supports incoming and outgoing multi-cast events

■ Physical layer features

■ 1x/4x serial with integrated transceivers in selected device families and
support for external transceivers

■ All four standard serial data rates supported: 1.25, 2.5, 3.125, and 5.0 gigabaud
(Gbaud)

■ Receive/transmit packet buffering, flow control, error detection, packet
assembly, and packet delineation

■ Automatic freeing of resources used by acknowledged packets

■ Automatic retransmission of retried packets

■ Scheduling of transmission, based on priority

■ Reset controller—fatal error does not require manual resetting

■ Optional automatic resetting of link partner after detection of fatal errors

■ Support for synchronizing with link partner’s expected ackID after reset

■ Full control over integrated transceiver parameters

■ Configurable number of recovery attempts after link response time-out before
declaring fatal error

■ Transport layer features

■ Supports multiple Logical layer modules

■ A round-robin outgoing scheduler chooses packets to transmit from various
Logical layer modules

■ Logical layer features

■ Generation and management of transaction IDs

■ Automatic response generation and processing

■ Request to response time-out checking

■ Capability registers (CARs) and command and status registers (CSRs)

■ Direct register access, either remotely or locally

■ Maintenance master and slave Logical layer modules

Chapter 1: About This MegaCore Function 1–3
Features

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ Input/Output Avalon® Memory-Mapped (Avalon-MM) master and slave
Logical layer modules with burst support

■ Message Passing

■ Avalon streaming (Avalon-ST) interface for custom implementation of message
passing

■ Doorbell module supporting 16 outstanding DOORBELL packets with time-out
mechanism

■ Support for preservation of transaction order between outgoing DOORBELL
messages and I/O write requests

■ New registers and interrupt indicate NWRITE_R transaction completion

■ Support for preservation of transaction order between outgoing I/O read
requests and I/O write requests from Avalon-MM interfaces

■ SOPC Builder support

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

■ Support for OpenCore Plus evaluation

Supported Transactions
The RapidIO IP core supports the following RapidIO transactions:

■ NREAD request and response

■ NWRITE request

■ NWRITE_R request and response

■ SWRITE request

■ MAINTENANCE read request and response

■ MAINTENANCE write request and response

■ MAINTENANCE port-write request

■ DOORBELL request and response

1–4 Chapter 1: About This MegaCore Function
Device Family Support

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Device Family Support
Table 1–1 defines the device support levels for Altera IP cores.

Table 1–2 shows the level of support offered by the Rapid IO IP core for each Altera
device family.

Table 1–1. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with
preliminary timing models for this device family. The IP core
meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be
used in production designs with caution.

HardCopy Companion—The IP core is verified with
preliminary timing models for the HardCopy companion
device. The IP core meets all functional requirements, but
might still be undergoing timing analysis for the HardCopy
device family. It can be used in production designs with
caution.

Final support—The IP core is verified with final timing
models for this device family. The IP core meets all
functional and timing requirements for the device family and
can be used in production designs.

HardCopy Compilation—The IP core is verified with final
timing models for the HardCopy device family. The IP core
meets all functional and timing requirements for the device
family and can be used in production designs.

Table 1–2. Device Family Support

Device Family Support

Arria® GX Final

Arria II GX Final

Cyclone® II Final

Cyclone III Final

Cyclone III LS Preliminary

Cyclone IV GX (1) Preliminary

HardCopy® II HardCopy Compilation

HardCopy III HardCopy Companion

HardCopy IV E HardCopy Companion

HardCopy IV GX HardCopy Companion

Stratix® II Final

Stratix II GX Final

Stratix III Final

Stratix IV Final

Stratix IV GT Final

Other device families No support

Note to Table 1–2:

(1) The RapidIO IP core supports only the EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 Cyclone IV GX
devices.

Chapter 1: About This MegaCore Function 1–5
IP Core Verification

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

IP Core Verification
Before releasing a version of the RapidIO IP core, Altera runs comprehensive
regression tests in the current version of the Quartus® II software. These tests use the
MegaWizard™ Plug-in Manager, SOPC Builder, and the Qsys system integration tool
to create the instance files. These files are tested in simulation and hardware to
confirm functionality.

Altera also performs interoperability testing to verify the performance of the IP core
and to ensure compatibility with ASSP devices.

The RapidIO IP core v9.0 successfully passed RIOLAB’s Device Interoperability
Level-3 (DIL-3) testing in 2009.

Simulation Testing
Altera verifies the RapidIO IP core using the following industry-standard simulators:

■ ModelSim® simulator

■ VCS in combination with the Synopsys Native Testbench (NTB)

The test suite contains testbenches that use the RapidIO bus functional model (BFM)
from the RapidIO Trade Association to verify the functionality of the IP core.

The regression suite tests various functions, including the following functionality:

■ Link initialization

■ Packet format

■ Packet priority

■ Error handling

■ Throughput

■ Flow control

Constrained random techniques generate appropriate stimulus for the functional
verification of the IP core. Functional coverage metrics measure the quality of the
random stimulus, and ensure that all important features are verified.

Hardware Testing
Altera tests and verifies the RapidIO IP core in hardware for different platforms and
environments.

The hardware tests cover serial 1x and 4x variations running at 1.25, 2.5, 3.125, and
5.0 Gbaud, and processing the following traffic types:

■ NREADs of various size payloads—4 bytes to 256 bytes

■ NWRITEs of various size payloads—4 bytes to 256 bytes

■ NWRITE_Rs of a few different size packets

■ SWRITEs

■ Port-writes

■ DOORBELL messages

1–6 Chapter 1: About This MegaCore Function
Performance and Resource Utilization

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

■ MAINTENANCE reads and writes

The hardware tests also cover the following control symbol types:

■ Status

■ Packet-accepted

■ Packet-retry

■ Packet-not-accepted

■ Start-of-packet

■ End-of-packet

■ Link-request, Link-response

■ Stomp

■ Restart-from-retry

■ Multicast-event

Interoperability Testing
Altera performs interoperability tests on the RapidIO IP core, which certify that the
RapidIO IP core is compatible with third-party RapidIO devices.

Altera performs interoperability testing with processors and switches from various
manufacturers including:

■ Texas Instruments Incorporated

■ Tundra Semiconductor Corporation

■ Integrated Device Technology, Inc. (IDT)

Testing of additional devices is an on-going process.

In addition, the RapidIO IP core v9.0 successfully passed RIOLAB’s Device
Interoperability Level-3 (DIL-3) testing in 2009.

Performance and Resource Utilization
This section contains tables showing IP core variation size and performance examples.
“Modular Configurations” on page 1–10 outlines ways you can reduce resource
utilization to create smaller IP core variations.

Table 1–3, Table 1–4, and Table 1–5 list the resources and expected performance for
selected variations that use these modules:

■ Physical layer with 8 KByte transmit buffers and 4 KByte receive buffers

■ Transport layer

■ Input/Output Avalon-MM master and slave

The numbers of LEs, combinational ALUTs, and logic registers in Table 1–3, Table 1–4,
and Table 1–5 are rounded up to the nearest 100.

Chapter 1: About This MegaCore Function 1–7
Performance and Resource Utilization

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 1–3 shows results obtained using the Quartus II software v9.1 for the following
devices:

■ Cyclone II (EP2C50F484C6)

■ Cyclone III (EP3C55F780C6)

Table 1–4 shows results obtained using the Quartus II software v10.0 for the
Cyclone IV GX device EP4CGX75DF27C6.

Table 1–5 shows results obtained using the Quartus II software v9.1 for the following
devices:

■ Arria GX (EP1AGX60DF780C6)

■ Arria II GX (EP2AGX65DF25C4)

Table 1–3. Serial RapidIO FPGA Resource Utilization I

Device
Parameters

LEs
Memory:

M4K or M9K
(1)Layers Lane Baud Rate (Gbaud)

Cyclone II

Physical layer only
1× 3.125 with external

SERDES 6,400 48

4× 1.250 with external
SERDES 9,500 55

Physical and
Transport layers,
and
I/O master and slave

1× 3.125 with external
SERDES 11,200 87

4× 1.250 with external
SERDES 14,400 95

Cyclone III

Physical layer only
1× 3.125 with external

SERDES 6,600 35

4× 1.250 with external
SERDES 9,600 42

Physical and
Transport layers,
and
I/O master and slave

1× 3.125 with external
SERDES 11,300 66

4× 1.250 with external
SERDES 14,400 76

Note to Table 1–3:

(1) M4K for Cyclone II devices, M9K for Cyclone III devices.

Table 1–4. Serial RapidIO FPGA Resource Utilization II

Device

Parameters

LEs Memory:
M9KLayers Lane Baud Rate

(Gbaud)

Cyclone IV GX

Physical layer only
1× 3.125 7,300 33

4× 2.500 11,000 32

Physical and
Transport layers,
and
I/O master and slave

1× 3.125 12,000 68

4× 2.500 15,000 68

1–8 Chapter 1: About This MegaCore Function
Performance and Resource Utilization

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

■ Stratix II (EP2S30F672C3)

■ Stratix II GX (EP2SGX30DF780C3)

■ Stratix III (EP3SE260F1517C2)

■ Stratix IV (EP4SGX230DF29C2)

Table 1–5. Serial RapidIO FPGA Resource Utilization III (Part 1 of 2)

Device

Parameters

Combinational
 ALUTs

Logic
Registers

Memory

Layers Mode Baud Rate (Gbaud)

M4K
or

M9K
(1)

M512

 Arria GX

Physical
layer
only

1x 3.125 3,800 3,800 38 8

4x 2.5 6,300 6,000 35 9

Physical and
Transport
layers, and
I/O master and
slave

1x 3.125 6,900 7,000 76 9

4x 2.5 8,900 9,500 72 12

 Arria II GX

Physical
layer
only

1x 3.125 3,600 3,900 33 —

4x 3.125 5,100 5,600 32 —

Physical and
Transport
layers, and
I/O master and
slave

1x 3.125 6,100 7,000 64 —

4x 3.125 8,400 9,800 66 —

Stratix II

Physical
layer
only

1x 3.125 with external
SERDES 3,900 3,900 38 10

4x 3.125 with external
SERDES 6,000 6,000 44 12

Physical and
Transport
layers, and
I/O master and
slave

1x 3.125 with external
SERDES 7,000 7,100 75 12

4x 3.125 with external
SERDES 9,200 9,600 80 16

Stratix II GX

Physical
layer
only

1x 3.125 3,900 3,900 37 9

4x 3.125 5,600 5,600 36 8

Physical and
Transport
layers, and
I/O master and
slave

1x 3.125 6,900 7,000 74 11

4x 3.125 8,900 9,300 72 12

Chapter 1: About This MegaCore Function 1–9
Performance and Resource Utilization

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 1–6 shows the recommended device family speed grades for the supported link
widths and internal clock frequencies. In all cases, Altera recommends that you set
Quartus II Analysis & Synthesis Optimization Technique to Speed.

f For information about how to apply the Speed setting, refer to volume 1 of the
Quartus II Handbook.

Stratix III

Physical
layer
only

1x 3.125 with external
SERDES 3,700 3,900 32 —

4x 3.125 with external
SERDES 6,100 7,300 34 —

Physical and
Transport
layers, and
I/O master and
slave

1x 3.125 with external
SERDES 6,100 7,200 59 —

4x 3.125 with external
SERDES 8,600 11,300 61 —

Stratix IV GX

Physical
layer
only

1x
3.125 3,700 4,000 27 —

5.0 3,700 4,000 27 —

4x
3.125 5,900 6,200 26 —

5.0 5,300 6,100 29 —

Physical and
Transport
layers, and
I/O master and
slave

1x
3.125 6,100 7,100 56 —

5.0 6,300 7,100 56 —

4x
3.125 8,200 9,800 57 —

5.0 7,600 9,800 61 —

Note to Table 1–5:

(1) M9K for Arria II GX, Stratix III, and Stratix IV devices, M4K for all others.

Table 1–5. Serial RapidIO FPGA Resource Utilization III (Part 2 of 2)

Device

Parameters

Combinational
 ALUTs

Logic
Registers

Memory

Layers Mode Baud Rate (Gbaud)

M4K
or

M9K
(1)

M512

Table 1–6. Recommended Device Family and Speed Grades (Note 1) (Part 1 of 2)

Device
Family

Mode 1x 4x

Rate 1.25
Gbaud

2.5
Gbaud

3.125
Gbaud

5.0
Gbaud

1.25
Gbaud

2.5
Gbaud

3.125
Gbaud

5.0
Gbaud

fMAX
31.25
MHz

62.50
MHz

78.125
MHz

125
MHz

62.5
MHz

125
MHz

156.25
MHz

250
MHz

Arria GX (2) -6 -6 -6 (3) -6 -6 (4) (3) (3)

Arria II GX -4, -5, -6 -4, -5, -6 -4, -5, -6 (3) -4, -5, -6 -4, -5 -4, -5 (3)

Stratix II,
Stratix II GX -3, -4, -5 -3, -4, -5 -3, -4, -5 (3) -3, -4, -5 -3, -4 -3 (5) (3)

Stratix III -2, -3, -4 -2, -3, -4 -2, -3, -4 (3) -2, -3, -4 -2, -3, -4 -2, -3 (3)

Stratix IV -2, -3, -4 -2, -3, -4 -2, -3, -4 -2, -3, -4 -2, -3, -4 -2, -3, -4 -2, -3, -4 -2 (6)

1–10 Chapter 1: About This MegaCore Function
Performance and Resource Utilization

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Modular Configurations
You can use the RapidIO parameter editor to quickly generate a RapidIO IP core
variation optimized for your specific application. Applications that require only a
Physical layer benefit from the small footprint of Altera’s RapidIO Physical layer
solution. Applications that require a full three-layer solution can be built by adding
the Transport layer and enabling only the Logical layer modules required to support
the application. This flexibility lets you choose between functionality and resource
usage. Table 1–7 contains a short list of typical variations showing the functionality
supported and the resource consumption.

Cyclone II,
Cyclone III -6, -7, -8 -6, -7, -8 -6, -7 (3) -6, -7, -8 (3) (3) (3)

Cyclone IV GX
(7) -6, -7, -8 -6, -7, -8 -6, -7 (3) -6, -7, -8 -6 (8) (3) (3)

Notes to Table 1–6:

(1) In this table, the entry -n indicates that both the industrial speed grade In and the commercial speed grade Cn are supported for this device
family, RapidIO mode, and baud rate.

(2) Only the -6 speed grade is available for the Arria GX device family.
(3) Not supported for this device family.
(4) Altera does not recommend implementation of 4x RapidIO IP core variations with lane speeds of 2.5 Gbaud in the smallest member of the

Arria GX device family (EP1AGX20). For other devices in the Arria GX family, you can use the Design Space Explorer in the Quartus II software
to find the optimal Fitter settings for your design to meet the timing constraints. Following the Timing Advisor's recommendations, including
optimizing for speed and using LogicLock regions may be necessary to meet timing, especially for more complex variations.

(5) 4x 3.125 Gbaud is possible in a -4 speed grade Stratix II and Stratix II GX device only with the smallest Rx and Tx buffer sizes.
(6) The 4× 5.0 Gbaud variation is supported for Stratix IV GX -2 speed grade devices only. Altera recommends that you use multiple seeds in the

Quartus II Design Space Explorer to find the optimal Fitter settings for your design to meet the timing constraints. Following the Timing
Advisor's recommendations, including optimizing for speed and using LogicLock regions may be necessary to meet timing, especially for more
complex variations implemented in the largest devices.

(7) The RapidIO IP core supports only the EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 Cyclone IV GX devices.
(8) Some simple Cyclone IV GX ×4 variations, such as physical-layer-only variations, may meet timing at 2.5 Gbaud in -7 speed grade devices, after

following the Timing Advisor’s recommendations.

Table 1–6. Recommended Device Family and Speed Grades (Note 1) (Part 2 of 2)

Device
Family

Mode 1x 4x

Rate 1.25
Gbaud

2.5
Gbaud

3.125
Gbaud

5.0
Gbaud

1.25
Gbaud

2.5
Gbaud

3.125
Gbaud

5.0
Gbaud

fMAX
31.25
MHz

62.50
MHz

78.125
MHz

125
MHz

62.5
MHz

125
MHz

156.25
MHz

250
MHz

Table 1–7. Modular Configurations (Part 1 of 2)

Variation Functionality
Total Increment

Over PHY

ALUTs M4K ALUTs M4K

Physical layer (PHY) Refer to the Physical layer features in “Features”
on page 1–1 3,806 29 — —

Physical and Transport Layer
with:

Maintenance slave module Source MAINTENANCE transactions 4,869 33 1,063 4

Maintenance master module Terminate MAINTENANCE transactions 4,496 32 690 3

I/O slave module Source I/O write/read transactions 5,806 56 2,000 27

Chapter 1: About This MegaCore Function 1–11
Performance and Resource Utilization

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 1–7 shows that the variation with only the Physical layer provides the smallest
footprint with an ALUT count of 3,806. Three-layer variations optimized for minimal
resource usage start at an ALUT count of 4,202. These variations include the Physical
and Transport layers and the Avalon-ST interface. The numbers in Table 1–7 are for 1×
RapidIO serial variations with 4 KByte transmit buffers and 4 KByte receive buffers,
supporting a data rate of 3.125 Gbaud and targeting the Stratix II GX family.

Calculate Estimated ALUTs for Specific Modules
The example in this section illustrates how to estimate the number of ALUTs for a
variation with a specific layer configuration. In this example, the application requires
the I/O slave and I/O master Logical layer modules. The ALUT consumption is not
calculated as the sum of 5,806 and 5,201 ALUTs because the ALUT usage for the
Physical layer and Transport layer is already accounted for in both calculations and
would be incorrectly counted twice. Instead, perform calculations as shown in the
following example:

1. Using the ALUT count for the Transport layer with I/O slave module, subtract the
ALUT count of the Physical layer module. The result is found in the Increment
Over PHY column.

5,806 - 3,806 = 2,000 ALUTs

2. Starting with the ALUT count for the Transport layer with an I/O master module,
subtract the ALUT count of the Physical layer module.

5,201 - 3,806 = 1,395 ALUTs

3. Add the Physical layer ALUT count to the layer results from the previous
calculations to get the final ALUT count.

3,806 + 2,000 + 1,395 = 7,201 ALUTs

The preceding example is an estimate of the ALUT count for a variation with the
Physical layer, Transport layer, and a Logical layer containing both I/O master and
slave modules. You can perform similar calculations for other combinations.

I/O master module Terminate I/O write/read transactions 5,201 42 1,395 13

Doorbell receive module Terminate DOORBELL messages 4,292 33 486 4

Doorbell transmit module Source DOORBELL messages 4,738 37 932 8

Avalon-ST interface
Provide the user direct access to the Transport
layer, allowing the user to implement custom
Logical layer modules

4,202 31 396 2

Table 1–7. Modular Configurations (Part 2 of 2)

Variation Functionality
Total Increment

Over PHY

ALUTs M4K ALUTs M4K

1–12 Chapter 1: About This MegaCore Function
Release Information

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Release Information
Table 1–8 provides information about this release of the RapidIO IP core.

Altera verifies that the current version of the Quartus II software compiles the
previous version of each IP core. Any exceptions to this verification are reported in the
MegaCore IP Library Release Notes and Errata. Altera does not verify compilation with
IP core versions older than the previous release.

Installation and Licensing
The RapidIO IP core is part of the Altera MegaCore IP Library, which is distributed
with the Quartus II software and downloadable from the Altera website,
www.altera.com.

Figure 1–2 shows the directory structure after you install the RapidIO IP core, where
<path> is the installation directory. The default installation directory on Windows is
C:\altera\<version number>; on Linux it is /opt/altera<version number>.

You can use Altera’s free OpenCore Plus evaluation feature to evaluate the IP core in
simulation and in hardware before you purchase a license. You must purchase a
license for the IP core only when you are satisfied with its functionality and
performance, and you want to take your design to production.

Table 1–8. RapidIO Release Information

Item Description

Version 10.1

Release Date December 2010

Ordering Code IP-RIOPHY

Product ID 0095

Vendor ID 6AF7

Figure 1–2. Directory Structure

<path>

rapidio
Contains the RapidIO MegaCore function files

lib
Contains encrypted lower-level design files

common
Contains shared components

Installation directory

ip
Contains the Altera MegaCore IP Library and third-party IP cores

altera
Contains the Altera MegaCore IP Library

Chapter 1: About This MegaCore Function 1–13
Installation and Licensing

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

After you purchase a license for the RapidIO IP core, you can request a license file
from the Altera website at www.altera.com/licensing and install it on your computer.
When you request a license file, Altera emails you a license.dat file. If you do not have
internet access, contact your local Altera representative.

OpenCore Plus Evaluation
With the Altera free OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of a megafunction (Altera IP core or AMPPSM megafunction)
in your system using the Quartus II software and Altera-supported VHDL and
Verilog HDL simulators.

■ Verify the functionality of your design and evaluate its size and speed quickly and
easily.

■ Generate time-limited device programming files for designs that include IP cores.

■ Program a device and verify your design in hardware.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following two operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely.

All megafunctions in a device time out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction's time-out behavior may be masked by the time-out behavior of
the other megafunctions.

1 For Altera IP cores, the untethered time-out is 1 hour; the tethered time-out value is
indefinite.

Your design stops working after the hardware evaluation time expires.

The RapidIO IP core then behaves as if its Atlantic™ interface signals atxena and
arxena are tied low. All packet transfers through the Physical layer are suppressed.
As a result, the RapidIO IP core cannot transmit new packets (it only transmits the
idle sequence and status control symbols), and cannot read packets from the Physical
layer. If the remote link partner continues to transmit packets, the RapidIO IP core
refuses new packets by sending packet_retry control symbols after its receiver
buffer fills up beyond the corresponding threshold.

f For Information About Refer To

Installation and licensing Altera Software Installation and Licensing

Open Core Plus AN 320: OpenCore Plus Evaluation of Megafunctions

1–14 Chapter 1: About This MegaCore Function
Installation and Licensing

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

2. Getting Started

Design Flows
You can customize the RapidIO IP core to support a wide variety of applications. You
can instantiate this IP core in the MegaWizard Plug-in Manager, in the Qsys system
integration tool, or in SOPC Builder.

The MegaWizard Plug-in Manager flow offers the following advantages:

■ Allows you to parameterize the IP core to create a variation that you can
instantiate manually in your design.

The SOPC Builder flow offers the following advantages:

■ Allows you to integrate other Altera-provided custom components such as DMA
controllers, on-chip memories, and FIFOs in your design.

■ Uses Avalon-MM interfaces.

The Qsys flow offers the following additional advantages over SOPC Builder:

■ Provides visualization of hierarchical designs.

■ Allows greater customization of interconnect elements and pipelining.

■ Provides closer integration with the Quartus II software.

c Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

2–2 Chapter 2: Getting Started
Design Flows

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure 2–1 shows the stages for creating a system with the RapidIO IP core and the
Quartus II software. Each stage is described in detail in subsequent sections.

MegaWizard Plug-In Manager Design Flow
You can use the MegaWizard Plug-in Manager in the Quartus II software to
parameterize a custom IP core variation. When you select the RapidIO IP core in the
MegaWizard Plug-in Manager, the RapidIO parameter editor appears. The RapidIO
parameter editor lets you interactively set parameter values and select optional ports.
This flow is best for manual instantiation of a IP core in your design.

SOPC Builder Design Flow
The SOPC Builder design flow enables you to integrate a RapidIO endpoint in an
SOPC Builder system. The SOPC Builder design flow automatically connects selected
components with the system interconnect, eliminating the requirement to design
low-level interfaces and significantly reducing design time. When you add a RapidIO
IP core instance to your design, a RapidIO parameter editor guides you in selecting
the properties of the RapidIO IP core instance.

Figure 2–1. RapidIO Design Flow

MegaWizard Plug-in
Manager Flow

Instantiate MegaCore
In Design

Specify Constraints

Qsys or
SOPC Builder

Flow

Specify Parameters

Simulate with
 Testbench

Simulate System

Complete Qsys or
SOPC Builder System

Specify Parameters

Compile Design

Program Device

Select Design Flow

Chapter 2: Getting Started 2–3
MegaWizard Plug-in Manager Design Flow

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Qsys Design Flow
The Qsys design flow enables you to integrate a RapidIO endpoint in a Qsys system.
The Qsys design flow allows you to connect component interfaces with the system
interconnect, eliminating the requirement to design low-level interfaces and
significantly reducing design time. When you add a RapidIO IP core instance to your
design, a RapidIO parameter editor guides you in selecting the properties of the
RapidIO IP core instance.

MegaWizard Plug-in Manager Design Flow
The MegaWizard Plug-in Manager flow allows you to customize the RapidIO IP core,
and manually integrate the function in your design.

Specifying Parameters
To specify RapidIO IP core parameters using the MegaWizard Plug-in Manager,
follow these steps:

1. Create a Quartus II project using the New Project Wizard available from the File
menu.

2. Launch the MegaWizard Plug-in Manager from the Tools menu, and follow the
prompts in the MegaWizard Plug-in Manager interface to create a custom
megafunction variation.

1 To select the RapidIO IP core, click
Installed Plug-Ins > Interfaces > RapidIO.

3. Specify the parameters on all pages in the Parameter Settings tab. For details
about these parameters, refer to Chapter 3, Parameter Settings.

4. If you want to generate an IP functional simulation model for the IP core in the
selected language, on the EDA tab, turn on Generate simulation model.

The IP functional simulation model is a cycle-accurate VHDL or Verilog HDL
model produced by the Quartus II software.

c Use the simulation models only for simulation and not for synthesis or any other
purposes. Using these models for synthesis creates a nonfunctional design.

5. Some third-party synthesis tools can use a netlist that contains the structure of this
IP core but no detailed logic to optimize timing and performance of the design
containing it.

To use this feature if your synthesis tool supports it, turn on Generate netlist.

6. On the Summary tab, select the files you want to generate. A gray checkmark
indicates a file that is automatically generated. All other files are optional.

For more information about the files generated in your project directory, refer to
the project files list in the HTML report file in your project directory.

2–4 Chapter 2: Getting Started
SOPC Builder Design Flow

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

7. Click Finish to generate the IP core and supporting files.

You may have to wait several minutes for file generation to complete, especially if
you are generating an IP functional simulation model.

8. If you generate the RapidIO IP core instance in a Quartus II project, you are
prompted to add the Quartus II IP File (.qip) to the current Quartus II project. You
can also turn on Automatically add Quartus II IP Files to all projects.

The .qip is generated by the parameter editor, and contains information about the
generated IP core. In most cases, the .qip contains all of the necessary assignments
and information required to process the IP core or system in the Quartus II
compiler. The MegaWizard Plug-in Manager generates a single .qip for each IP
core.

9. After you review the generation report (<variation name>.html) in your project
directory, click Exit to close the MegaWizard Plug-in Manager.

You can now integrate your custom IP core variation in your design, simulate, and
compile.

When you integrate your RapidIO IP core variation in your design, note the
connection and I/O assignment requirements described in “Completing the SOPC
Builder System” on page 2–6.

Simulating the Design
You can simulate your RapidIO IP core variation using the IP functional simulation
model and the Verilog HDL demonstration testbench. The IP functional simulation
model and testbench files are generated in your project directory. The directory also
includes scripts to compile and run the demonstration testbench. The testbench
demonstrates how to instantiate a model in a design and includes some simple
stimulus to control the user interfaces of the RapidIO interface.

1 A VHDL testbench is not generated. A VHDL IP functional simulation model for the
RapidIO IP core is generated. You can use this model with the Verilog HDL
demonstration testbench for simulation using a mixed language simulator.

SOPC Builder Design Flow
You can use SOPC Builder to build a system that contains your customized RapidIO
IP core. You can easily add other components and quickly create an SOPC Builder

f For Information About Refer To

Quartus II software See the Quartus II Help topics:

“About the Quartus II Software”

“About the MegaWizard Plug-In Manager”
MegaWizard Plug-in Manager

A complete list of models or libraries required
to simulate the RapidIO IP core

<variation name>_run_modelsim.tcl script
provided with the demonstration testbench in
Chapter 7, Testbenches

IP functional simulation models Simulating Altera Designs chapter in volume 3 of
the Quartus II Handbook

Chapter 2: Getting Started 2–5
SOPC Builder Design Flow

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

system. SOPC Builder automatically generates HDL files that include all of the
specified components and interconnections. The HDL files are ready to be compiled
by the Quartus II software to produce output files for programming an Altera device.
SOPC Builder also generates a simulation testbench module that includes basic
transactions to validate the HDL files. Figure 2–2 shows a block diagram of an
example SOPC Builder system.

Specifying Parameters
To specify RapidIO parameters using the SOPC Builder flow, follow these steps:

1. Create a new Quartus II project using the New Project Wizard available from the
File menu.

2. On the Tools menu, click SOPC Builder.

3. For a new system, specify the system name and language.

Figure 2–2. SOPC Builder System

RapidIO
Simulation

Testbench Module

System Interconnect Fabric

DMA On-Chip

Memory

SOPC Builder System

 RapidIO
MegaCore Function

On-Chip
 FIFO

f For Information About Refer To

System interconnect fabric

System Interconnect Fabric for Memory-Mapped Interfaces
and System Interconnect Fabric for Streaming Interfaces
chapters in the SOPC Builder User Guide and the Avalon
Interface Specifications

SOPC Builder SOPC Builder Features and Building Systems with SOPC
Builder sections in the SOPC Builder User Guide

Quartus II software Quartus II Help

2–6 Chapter 2: Getting Started
SOPC Builder Design Flow

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

4. On the System Contents tab, double-click RapidIO to add it to your system. The
RapidIO parameter editor appears.

1 You can find RapidIO by expanding
Interface Protocols >High Speed > RapidIO.

5. Specify the required parameters on all pages in the Parameter Settings tab of the
RapidIO parameter editor in SOPC Builder. For detailed explanations of these
parameters, refer to Chapter 3, Parameter Settings.

6. Click Finish to complete the RapidIO IP core and add it to the system.

Completing the SOPC Builder System
To complete the SOPC Builder system, follow these steps:

1. Add and parameterize any additional components. For a complete SOPC Builder
system design example containing the RapidIO IP core, refer to Chapter 8, SOPC
Builder Design Example.

2. Connect the components using the Connection panel on the System Contents tab.

1 For Arria GX, Arria II GX, Cyclone IV GX, Stratix II GX, and Stratix IV GX designs,
ensure that you connect the calibration clock (cal_blk_clk) to a clock signal with the
appropriate frequency range of 10-125 MHz. The cal_blk_clk ports on other
components that use transceivers must be connected to the same clock signal.

3. By default, clock names are not displayed. To display clock names in the Module
Name column and the clocks in the Clock column in the System Contents tab,
click Filters to display the Filters dialog box. In the Filter list, click All.

1 For Arria II GX and Stratix IV GX designs with high-speed transceivers, you must
add a dynamic reconfiguration block (altgx_reconfig) and connect it as specified in
the Arria II Device Handbook or the Stratix IV Device Handbook. This block supports
offset cancellation. The design compiles without the altgx_reconfig block, but it
cannot function correctly in hardware.

4. If you intend to simulate your SOPC builder system, on the System Generation
tab, turn on Simulation to generate a functional simulation model for your
system.

5. Click Generate to generate the system.

1 Among the files generated by SOPC Builder is the .qip file. This file contains
information about a generated IP core or system. In most cases, the .qip file contains
all of the necessary assignments and information required to process the IP core or
system in the Quartus II compiler. Generally, a single .qip file is generated for each
SOPC Builder system. However, some more complex SOPC Builder components
generate a separate .qip file. In that case, the system .qip file references the
component .qip file.

Chapter 2: Getting Started 2–7
Qsys Design Flow

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

6. For Arria II GX and Stratix IV GX designs, after you generate the system, you must
create assignments for the high-speed transceiver VCCH settings by following
these steps:

a. In the Quartus II window, on the Assignments menu, click Assignment Editor.

b. In the <<new>> cell in the To column, type the top-level signal name for your
RapidIO IP core instance td signal. The default signal name that SOPC Builder
generates is td_rapidio.

c. Double-click in the Assignment Name column and click I/O Standard.

d. Double-click in the Value column and click your standard (for example, 1.5-V
PCML).

e. In the new <<new>> row, repeat steps b to d for your RapidIO IP core instance
rd signal.

Simulating the System
During system generation, SOPC Builder optionally generates an IP functional
simulation model and testbench for the entire system which you can use to simulate
your system easily in any Altera-supported simulation tool. SOPC Builder also
generates a set of ModelSim Tcl scripts and macros that you can use to simulate the
testbench, IP functional simulation models, and clear text RTL design files that
describe your system in the ModelSim simulation software.

A VHDL testbench is not generated. Rather, a VHDL IP functional simulation model
for the RapidIO IP core is generated, which you can use with the Verilog HDL
demonstration testbench for simulation using a mixed language simulator.

1 In the SOPC Builder design flow, if you specify Verilog HDL as the target HDL, a
complete testbench is generated, but if you specify VHDL, only a link loopback
module is generated.

By default, the testbench provided for Verilog HDL SOPC Builder systems only
initializes the link and does no further testing. The testbench provides tasks that you
can use to create a test sequence specific to your SOPC Builder system. For an
example SOPC Builder system with a more complete testbench, refer to Chapter 8,
SOPC Builder Design Example.

f For information about simulating SOPC Builder systems, refer to the SOPC Builder
User Guide and AN 351: Simulating Nios II Embedded Processor Designs.

Qsys Design Flow
You can use Qsys to build a system that contains your customized RapidIO IP core.
You can easily add other components and quickly create a Qsys system. Qsys can
automatically generate HDL files that include all of the specified components and
interconnections. The HDL files are ready to be compiled by the Quartus II software
to produce output files for programming an Altera device.

2–8 Chapter 2: Getting Started
Qsys Design Flow

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure 2–2 shows a block diagram of an example Qsys system.

For information about converting an SOPC Builder system that includes a RapidIO IP
core to a Qsys system, refer to Appendix C, Porting a RapidIO Design from the
Previous Version of the Software.

Specifying Parameters
To specify RapidIO parameters using the Qsys flow, follow these steps:

1. Create a new Quartus II project using the New Project Wizard available from the
File menu.

2. On the Tools menu, click Qsys (Beta).

3. On the System Contents tab, double-click RapidIO to add it to your system. The
RapidIO parameter editor appears.

1 You can find RapidIO by expanding
Interface Protocols >High Speed > RapidIO.

Figure 2–3. Qsys System

RapidIO
Simulation

Testbench Module

System Interconnect

DMA On-Chip

Memory

Qsys System

 RapidIO
MegaCore Function

On-Chip
 FIFO

f For Information About Refer To

System interconnect Qsys Interconnect chapter in volume 1 of the Quartus II
Handbook and the Avalon Interface Specifications

Qsys tool System Design with Qsys section in volume 1 of the
Quartus II Handbook

Quartus II software Quartus II Help

Chapter 2: Getting Started 2–9
Qsys Design Flow

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

4. Specify the required parameters on all tabs of the RapidIO parameter editor. For
detailed explanations of these parameters, refer to Chapter 3, Parameter Settings.

5. Click Finish to complete the RapidIO IP core instance and add it to the system.

1 When you generate a RapidIO IP core in Qsys, you cannot modify the transceiver
settings. After you generate the Qsys system you must make any modifications to the
default values by editing the existing ALTGX megafunction in the MegaWizard
Plug-in Manager.

Completing the Qsys System
To complete the Qsys system, follow these steps:

1. Add and parameterize any additional components.

2. Connect the components using the Connection panel on the System Contents tab.

1 For Arria GX, Arria II GX, Cyclone IV GX, Stratix II GX, and Stratix IV GX designs,
ensure that you connect the calibration clock (cal_blk_clk) to a clock signal with the
appropriate frequency range of 10-125 MHz. The cal_blk_clk ports on other
components that use transceivers must be connected to the same clock signal.

3. If some signals are not displayed, click Filters to display the Filters dialog box. In
the Filter list, click All.

1 For Arria II GX and Stratix IV GX designs with high-speed transceivers, you must
add a dynamic reconfiguration block (altgx_reconfig) and connect it as specified in
the Arria II Device Handbook or the Stratix IV Device Handbook. This block supports
offset cancellation. The design compiles without the altgx_reconfig block, but it
cannot function correctly in hardware.

4. If you intend to simulate your Qsys system, on the Generation tab, turn on
Generate Verilog simulation model to generate a functional simulation model in
the corresponding HDL.

5. Click Generate to generate the system. Qsys generates the system and produces
the <system_name>.qip file that contains the assignments and information required
to process the IP core or system in the Quartus II Compiler.

6. On the Project menu, click Add/Remove Files in Project.

7. In the Settings dialog box, under Category, highlight Files.

8. Browse to the .qip file and add it to your project.

9. For Arria II GX and Stratix IV GX designs, after you generate the system, you must
create assignments for the high-speed transceiver VCCH settings by following the
instructions in step 6 on page 2–7.

10. If you want to modify the high-speed transceiver settings, you must edit the
existing ALTGX megafunction in the MegaWizard Plug-in Manager.

2–10 Chapter 2: Getting Started
Specifying Constraints

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Simulating the System
During system generation, Qsys optionally generates a RapidIO functional simulation
model in the HDL you specify. In addition, you can simulate the static RapidIO link
loopback module that is provided in the Verilog HDL.

f For information about simulating Qsys systems, refer to the System Design with Qsys
section in volume 1 of the Quartus II Handbook.

Specifying Constraints
Altera provides constraint files in Tcl format that you must apply to ensure that the
RapidIO IP core meets design timing requirements.

1 Constraints are not set automatically. You must run the Tcl constraint script to apply
the constraints, in all three design flows.

To use the generated constraint files, follow these steps:

1. Open your Quartus II project in the Quartus II software.

2. On the View menu, point to Utility Windows and then click Tcl Console.

3. In the Qsys flow, browse in your project directory to find the string value of
<instance_name_hash> in the filename path
<project_name>/synthesis/submodules/altera_rapidio_<instance_name_hash>
_constraints.tcl.

4. Source the generated constraint file by typing the following command at the Tcl
console command prompt:

source <variation_name>_constraints.tcl r
In the Qsys flow, instead type the following command:

source \
<project_name>/synthesis/submodules/altera_rapidio_<instance_name_hash>_constraints.tcl r

5. Add the Rapid IO constraints to your project by typing the following command at
the Tcl console command prompt:

add_rio_constraints r
This command adds the necessary logic constraints to your Quartus II project.

In the Qsys flow, you are likely to require the -ref_clk_name, -sys_clk_name, and
-patch_sdc command-line options specified in Table 2–1.

The script automatically constrains the system clocks and the reference clock based on
the data rate chosen. For supported transceivers, Altera recommends that you adjust
the reference clock frequency in the Physical Layer tab of the RapidIO parameter
editor only. However, you can adjust the system clock frequency in the Tcl constraints
script or the generated Synopsys Design Constraint File (.sdc).

The Tcl script assumes that virtual pins and I/O standards are connected to
Altera-provided pin names. For user-defined pin names, you must edit the script after
generation to ensure that the assignments are made properly.

Chapter 2: Getting Started 2–11
Compiling the Full Design and Programming the FPGA

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

The add_rio_constraints command has the following additional options that you
can use:

add_rio_constraints [-no_compile]
[-ref_clk_name <name>] [-sys_clk_name <name>]
[-patch_sdc] [-help]

Table 2–1 explains these options.

f For more information about timing analyzers, refer to the Quartus II Help and the
Timing Analysis section in volume 3 of the Quartus II Handbook.

Compiling the Full Design and Programming the FPGA
You can use the Start Compilation command on the Processing menu in the
Quartus II software to compile your design. After successfully compiling your design,
program the targeted Altera device with the Programmer and verify the design in
hardware.

Table 2–1. add_rio_constraints Options

Constraint Use

-no_compile
Use the -no_compile option to prevent analysis and synthesis. Use this option only if you
performed analysis and synthesis or fully compiled your project prior to using this script. Using this
option decreases turnaround time during development.

-ref_clk_name

The Rapid IO IP core has a top-level reference clock name (<variation>_clk in the Qsys flow by
default, and ref_clk in the other flows). If, in your instantiation, you have connected the reference
clock port of the IP core to a clock named something other than ref_clk (<variation>_clk in the
Qsys flow), you must run the add_rio_constraints command with this option followed by the
name of the clock connected to the reference clock port of the RapidIO IP core. The following
example command illustrates the syntax:

add_rio_constraints -ref_clk_name CLK125

-sys_clk_name

By default, the Avalon system clock name used for the RapidIO IP core is named clk_0. If you
rename this clock in SOPC Builder, or you do not rename this clock to clk_0_clk_in in the Qsys
beta, or you connect the system clock to a clock named something other than clk_0 (or
clk_0_clk_in in the Qsys flow), you must run the add_rio_constraints command with this
option followed by the updated clock name. The following example command illustrates the syntax:

add_rio_constraints -sys_clk_name CLK50

-patch_sdc

This option is only valid when used with the -ref_clk_name or -sys_clk_name option. The
-patch_sdc option patches the generated SDC script with the new clock names. A back-up copy of
the SDC script is created before the patch is made, and any edits that were previously made to the
SDC script are preserved.

-help
Use the -help option for information about the options used with the add_rio_constraints
command.

2–12 Chapter 2: Getting Started
Simulating with ModelSim

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

1 Before compiling your design in the Quartus II software, you must apply the
constraints as described in “Specifying Constraints” on page 2–10.

Simulating with ModelSim
The following sections discuss how to use the testbench and simulate your design on
Windows or Linux.

1 In all cases, the testbench is in Verilog HDL. Therefore, you must have a license to run
mixed language simulations to run the testbench with the VHDL model. In a
VHDL-only environment, you must create your own test environment.

In the SOPC Builder design flow for VHDL, the RapidIO IP core generates a VHDL
link loopback module. In the Qsys design flow, the RapidIO IP core provides a link
loopback module in Verilog HDL.

In addition to the specified model, the testbench scripts use the following clear-text
source files:

■ <variation name>_tb.v is the top-level testbench file.

■ <variation name>_hutil.iv defines testing utilities.

■ <variation name>_demo_hookup.iv connects the two instantiations of the IP cores
and generates the required clock and reset signals.

■ <variation name>_demo_util.iv defines the tasks to read and write on the
Avalon-MM or Atlantic interfaces.

The .iv files are generated only in the MegaWizard Plug-in Manager and SOPC
Builder flows.

For more information about these files, refer to the generated report file
<variation name>.html in your project directory.

Simulating with ModelSim on Windows
This section tells you how to run the run_modelsim.tcl script to simulate the design.
You can run the run_modelsim.tcl script at the Windows command prompt or at the
command prompt of a ModelSim GUI session. If you run the script at the Windows
command prompt, you can view the simulation results by opening the log file in a text
editor. If you use the ModelSim GUI to run the script, progress is reported in the
message window.

To run a simulation using the ModelSim simulator, follow these steps:

1. Start the ModelSim simulator.

2. Change the working directory to <project directory>/testbench/ <variation name>.

f For Information About Refer To

Compiling your design Quartus II Incremental Compilation for Hierarchical and Team-
Based Design chapter in volume 1 of the Quartus II Handbook

Programming the device Device Programming section in volume 3 of the Quartus II
Handbook

Chapter 2: Getting Started 2–13
Instantiating Multiple RapidIO IP Cores

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

3. Type the following command to set up the required libraries, compile the
generated IP Functional simulation model, and exercise the simulation model with
the provided testbench:

do <variation name>_run_modelsim.tcl r

Simulating with ModelSim on Linux
To use the IP functional simulation model on a Linux operating system, run the
<variation name>_run_modelsim.tcl script by typing the following command at the
command prompt:

tclsh ./<variation name>_run_modelsim.tcl r

Instantiating Multiple RapidIO IP Cores
If you want to instantiate multiple RapidIO IP cores, a few additional steps are
required. The following sections outline these steps.

Clock and Signal Requirements for Devices with Transceivers
When your design contains multiple IP cores that use the Arria GX or Stratix II GX
transceiver (ALTGX or ALT2GXB) megafunction or the Arria II GX, Cyclone IV GX, or
Stratix IV GX transceiver (ALTGX) megafunction, you must ensure that the
cal_blk_clk and gxb_powerdown input signals are connected properly.

In any parameterization flow, you must ensure that the cal_blk_clk input to each
RapidIO IP core (or any other megafunction or user logic that uses the ALTGX or
ALT2GXB megafunction) is driven by the same calibration clock source.

When you use Qsys or SOPC Builder to create a system with multiple RapidIO IP core
variations, use the Connection panel to ensure that cal_blk_clk and any other IP core
variations in the system that use transceivers are connected to the cal_blk_clk port
on the RapidIO IP core variation. In SOPC Builder, you must first filter the signals in
the System Contents tab to display the clock connections, as described in steps 1 and
2 on page 8–8.

In any parameterization flow, when you merge multiple RapidIO IP cores in a single
transceiver block, the same signal must drive gxb_powerdown to each of the RapidIO
IP core variations and other megafunctions, IP cores, and user logic that use the
ALTGX or ALT2GXB megafunction.

To successfully combine multiple high-speed transceiver channels in the same quad,
they must have the same dynamic reconfiguration setting. To use the dynamic
reconfiguration capability for one transceiver instantiation but not another, in
Stratix II GX devices, you must set reconfig_clk to 0 and reconfig_togxb to 3’b010
for all transceiver channels that do not use the dynamic reconfiguration capability. If
two IP cores implement dynamic reconfiguration in the same transceiver quad of an
Arria II GX, Cyclone IV GX, Stratix II GX, or Stratix IV GX device, the parameters or
characteristics that you want to control with the dynamic reconfiguration
megafunction instance must be identical.

2–14 Chapter 2: Getting Started
Instantiating Multiple RapidIO IP Cores

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

To support the dynamic reconfiguration block, turn on Analog controls on the
Reconfiguration Settings tab in the transceiver MegaWizard Plug-in Manager.
Arria II GX, Cyclone IV GX, and Stratix IV GX device transceivers require a dynamic
reconfiguration block, to support offset cancellation.

Arria GX devices do not support dynamic reconfiguration. However, the
reconfig_clk and reconfig_togxb ports appear in variations targeted to Arria GX
devices, so you must set reconfig_clk to 0 and reconfig_togxb to 3’b010.

Sourcing Multiple Tcl Scripts
If you use Altera-provided Tcl scripts to specify constraints for IP cores, you must run
the Tcl script associated with each generated RapidIO IP core. For example, if a system
has rio1 and rio2 IP core variations, then you must source rio1_constraints.tcl,
execute the add_rio_constraints command and then source rio2_constraints.tcl and
run the add_rio_constraints command, sequentially, from the Tcl console after
generation.

1 After you compile the design once, you can run the add_rio_constraints command
with the -no_compile option to suppress analysis and synthesis, and decrease
turnaround time during development. More specifically, after you run

source rio1_constraints.tcl; add_rio_constraints r
you can run

source rio2_constraints.tcl; add_rio_constraints -no_compile r
1 In the MegaWizard Plug-in Manager flow, the script contains virtual pins for most

I/O ports on the RapidIO IP core to ensure that the I/O pin count for a device is not
exceeded. These virtual pin assignments must reflect the names used to connect to
each RapidIO instantiation.

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

3. Parameter Settings

You customize the RapidIO IP core by specifying parameters in the RapidIO
parameter editor, which you access from the MegaWizard Plug-in Manager, SOPC
Builder, or the Qsys system integration tool in the Quartus II software.

This chapter describes the parameters and how they affect the behavior of the IP core.
Each section corresponds to a page in the Parameter Settings, EDA, or Summary tabs
in the RapidIO parameter editor.

1 When parameterizing a IP core using the Qsys or SOPC Builder design flow, the EDA
and Summary tabs are not visible. In these design flows, simulation model settings
are inherited from options specified in the Qsys tool or SOPC Builder.

In the RapidIO parameter editor, you use the following pages from the Parameter
Settings tab to parameterize the RapidIO IP core:

■ Physical Layer

■ Transport and Maintenance

■ I/O and Doorbell

■ Capability Registers

In the RapidIO parameter editor that appears in the Qsys flow, these four categories
are in separate tabs. Subsequent sections describe each of these pages or tabs and their
parameters.

f For more information about setting simulation options in SOPC Builder refer to
“About SOPC Builder” in Quartus II Help.

f For more information about setting simulation options in the Qsys tool, refer to the
Creating a System with Qsys chapter in volume 1 of the Quartus II Handbook.

Physical Layer Settings
The Physical Layer page defines the characteristics of the Physical layer based on
these categories: Device Options, Data Settings, and Receive Priority Retry
Threshold.

Device Options
Device Options comprise the following configuration options:

■ Mode Selection

■ Transceiver Selection

■ Configure Transceiver

■ Automatically synchronize transmitted ackID

■ Send link-request reset-device on fatal errors

3–2 Chapter 3: Parameter Settings
Physical Layer Settings

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

■ Link-request attempts

Mode Selection
Mode Selection allows you to specify a 1x Serial or 4x Serial port consisting of one-
or four-lane high-speed data serialization and deserialization.

The 4x variations do not support fallback to 1x mode. You must know whether the IP
core has a 1x or 4x link partner and configure the FPGA accordingly. If fallback to 1x is
required, the FPGA can be programmed with a 4x variation by default and then
reprogrammed to a 1x configuration under system control after failure to synchronize
at 4x.

1 Changing the Mode Selection resets the Transceiver Selection and transceiver
configuration settings to their default values.

Transceiver Selection
You can select any one of the following transceiver options:

■ Stratix II GX PHY

■ Stratix IV GX PHY

■ HardCopy IV GX PHY

■ Arria GX PHY

■ Arria II GX PHY

■ Cyclone IV GX PHY

■ External Transceiver

The Stratix II GX PHY, Stratix IV GX PHY, HardCopy IV GX PHY, Arria GX PHY,
Arria II GX PHY, and Cyclone IV GX PHY options configure the serial RapidIO
variations to use the built-in transceiver blocks of the respective device families.

Selecting External Transceiver allows you to use your RapidIO IP core with any
supported device family except the Cyclone IV GX device family. The RapidIO IP core
does not support the XGMII interface for variations that target a Cyclone IV GX
device. In addition, the Qsys design flow does not support RapidIO IP core variations
with external transceivers.

Transceiver Configuration Using the Transceiver Parameter Editor
In the MegaWizard Plug-in Manager flow and the SOPC Builder flow, for the
Arria GX, Arria II GX, Cyclone IV GX, Stratix II GX, Stratix IV GX, and
HardCopy IV GX transceiver options, you can click Configure Transceiver to set the
analog parameters for the transceiver block. When you click Configure Transceiver,
the transceiver parameter editor appears. The transceiver parameter editor offers
several configuration parameters that you can set, based on board-level conditions,
design constraints, or other application-specific requirements, to ensure the proper
operation of the serial link. Other transceiver parameters are preset to values
compatible with the RapidIO IP core and the selected mode and device family, and
cannot be modified. The default values in this interface specify a transceiver
configuration that is compatible with the RapidIO IP core.

Chapter 3: Parameter Settings 3–3
Physical Layer Settings

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

f For details of the transceiver block and the transceiver parameter editor, refer to the
relevant device handbook. Specifically, refer to the handbook chapters and sections
listed in the following table:

,

Parameter Settings

The transceiver parameter editor Parameter Settings tab has the following four pages:

■ General

■ PLL/Ports

■ Rx Analog

■ Tx Analog

On the General page, you set the device variation, if relevant.

Do not set the RapidIO transceiver input clock frequency in the transceiver parameter
editor. The transceiver input clock is the RapidIO IP core reference clock, whose
frequency you set in the RapidIO parameter editor. For information about how to set
the transceiver input clock frequency, refer to “Reference Clock Frequency” on
page 3–6. Changes you make to the input clock frequency setting in the transceiver
parameter editor are ignored.

On the PLL/Ports page, you determine whether to use an auxiliary transmitter PLL,
set the bandwidth for the transmitter PLL and the receiver CDR block, and specify the
acceptable PPM threshold between the receiver CDR voltage-controlled oscillator and
the input reference clock.

The transmitter or receiver PLL bandwidth is the measure of the PLL’s ability to track
the input clock and jitter, determined by the -3 dB frequency of the PLL’s closed-loop
gain. A higher bandwidth setting provides a faster lock time but tracks more jitter on
the input clock source. A lower bandwidth setting filters out more high frequency
input clock jitter, but increases lock time.

On the Rx Analog page, you select the DC gain and an equalizer control setting to
boost the high frequency components of the incoming signal to compensate for losses
in the channel. You also specify the receiver common-mode voltage and receiver
termination resistance.

For information about Refer to

Arria GX transceiver
megafunction

Arria GX Transceiver User Guide section in volume 2 of the Arria GX
Device Handbook

Arria II GX transceiver
megafunction

Transceiver Architecture for Arria II Devices chapter in volume 2 of the
Arria II Device Handbook

Cyclone IV GX
transceiver megafunction

Cyclone IV GX Transceivers Architecture chapter in volume 2 of the
Cyclone IV Device Handbook

Stratix II GX transceiver
megafunction

Stratix II GX Transceiver User Guide section in volume 2 of the
Stratix II GX Device Handbook

Stratix IV transceiver
megafunction

 Stratix IV Transceiver Architecture chapter in volume 2 of the Stratix IV
Device Handbook

HardCopy IV transceiver
megafunction

HardCopy IV GX Transceiver Architecture chapter in volume 3 of the
HardCopy IV Device Handbook

3–4 Chapter 3: Parameter Settings
Physical Layer Settings

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

On the Tx Analog page, you specify the transmitter buffer power, transmitter
common-mode voltage, transmitter termination resistance, and voltage output
differential, and set the transmitter programmable pre-emphasis settings.
Pre-emphasis boosts the high frequencies in the transmit data signal, which may be
attenuated by the transmission medium. The pre-emphasis maximizes the data eye
opening at the far end receiver, which is particularly useful in lossy transmission
mediums.

Reconfiguration Settings

When you target an Arria II GX, Cyclone IV GX, Stratix II GX, Stratix IV GX, or
HardCopy IV GX device, you can instantiate a transceiver reconfiguration block that
dynamically changes the following physical media attachment (PMA) settings:

■ Pre-emphasis

■ Equalization

■ Offset cancellation (required for Arria II GX, Cyclone IV GX, Stratix IV GX, and
HardCopy IV GX device transceivers)

■ VOD on a per channel basis

For these devices, the transceiver parameter editor has a Reconfiguration Settings
tab. On this tab, preset options generate the required reconfiguration ports, which are
required whether or not you instantiate a dynamic reconfiguration block to connect to
this transceiver. On this tab you can select the starting channel number. For 4×
variations, the starting channel number must be a multiple of four.

1 You must instantiate the transceiver reconfiguration block for a high-speed
transceiver on an Arria II GX, Cyclone IV GX, Stratix IV GX, or HardCopy IV GX
device, because the transceivers on these devices require offset cancellation. Your
Arria II GX, Cyclone IV GX, Stratix IV GX, or HardCopy IV GX design can compile
without this block, but it cannot function correctly in hardware.

f For more information about dynamic reconfiguration, refer to Table 5–12 on page 5–7
or to the Arria II Device Handbook, Stratix II GX Device Handbook, Stratix IV Device
Handbook, or HardCopy IV Device Handbook. For more information about offset
cancellation, refer to the Arria II Device Handbook, Stratix IV Device Handbook, or
HardCopy IV Device Handbook.

Protocol Settings

When you use an Arria GX or Stratix II GX device, the transceiver parameter editor
has one additional tab, the Protocol Settings tab. All options on this tab are preset for
compatibility with the RapidIO IP core, and should not be modified.

Synchronizing Transmitted ackID
The Automatically synchronize transmitted ackID option turns on support for using
an initial ackID value specified by the RapidIO link partner. If the ackID value in the
first seven status control symbols it receives on the link are identical, the RapidIO IP
core uses this value as the starting ackID value for packets it transmits. If this option is
turned off, the starting ackID value is 0.

Chapter 3: Parameter Settings 3–5
Physical Layer Settings

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Sending Link-Request Reset-Device on Fatal Errors
The Send link-request reset-device on fatal errors option specifies that if the
RapidIO IP core identifies a fatal error, it transmits four link-request control symbols
with cmd set to reset-device on the RapidIO link. By default, this option is turned off.
The option is available for backward compatibility, because previous releases of the
RapidIO IP core implement this behavior.

Number of Link-Request Attempts Before Declaring Fatal Error
The Link-request attempts parameter allows you to specify the number of times the
RapidIO IP core sends a link-request reset-device control symbol following a
link-request time-out, before declaring a fatal error. This parameter can have values
1 through 7. The default value after regenerating an existing variation from a previous
release is 1, for backward compatibility with previous releases of the RapidIO IP core.
The default value in a new variation is 7.

Data Settings
Data Settings set the Baud rate, Reference clock frequency, Receive buffer size, and
Transmit buffer size.

1 Changing the Baud rate or the Reference clock frequency resets the Transceiver
Selection and transceiver configuration settings to their default values.

Baud Rate
Baud rate defines the baud rate based on the value that you specify. Table 3–1 shows
the baud rates supported by the RapidIO IP core for each device family. A device
family may include devices at speed grades that do not support all the indicated baud
rates. For information about the speed grades supported for each device family,
RapidIO mode, and baud rate combination, refer to Table 1–6 on page 1–9.

Table 3–1. Serial RapidIO Device Support (Part 1 of 2)

Device Family

Lanes Serial 1x Serial 4x

Baud
Rate

(MBaud)
1250 2500 3125 5000 1250 2500 3125 5000

Arria GX or Cyclone IV GX (1) v v v (2) v v (2) (2)

HardCopy II, HardCopy IV E, or
HardCopy IV GX v v v (2) v v v (2)

Arria II GX, HardCopy III, Stratix II,
Stratix II GX, or Stratix III v v v (2) v v v (2)

Stratix IV v v v v v v v v(3)

3–6 Chapter 3: Parameter Settings
Physical Layer Settings

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Reference Clock Frequency
Reference clock frequency defines the frequency of the reference clock for the
Arria GX, Arria II GX, Cyclone IV GX, Stratix II GX, Stratix IV GX, or
HardCopy IV GX internal transceiver. This option is not available for variations with
external transceivers. The RapidIO parameter editor allows you to select any
frequency supported by the transceiver.

For more information about the reference clock in high-speed transceiver blocks, and
the supported frequencies, refer to “Clocking and Reset Structure” on page 4–3.

Receive Buffer
Receive buffer defines the receive buffer size in KBytes based on the value that you
specify. You can select a receive buffer size of 4, 8, 16, or 32 KBytes.

Transmit Buffer
Transmit buffer defines the transmit buffer size in KBytes based on the value that you
specify. You can select a transmit buffer size of 4, 8, 16, or 32 KBytes.

1 Buffers are implemented in embedded RAM blocks. Depending on the size of the
device used, the maximum buffer size may be limited by the number of available
RAM blocks.

Receive Priority Retry Thresholds
Retry thresholds can be set automatically by turning on Auto-configured from
receiver buffer size, or manually by specifying the thresholds for Priority 0, Priority
1, and Priority 2. To specify valid values for these priority thresholds, follow these
four guidelines:

■ Priority 2 Threshold > 9

■ Priority 1 Threshold > Priority 2 Threshold + 4

■ Priority 0 Threshold > Priority 1 Threshold + 4

■ Priority 0 Threshold < (receive buffer size x 1024/64)

Cyclone II or Cyclone III v v v (2) v (2) (2) (2)

Notes to Table 3–1:

(1) The RapidIO IP core supports only the EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 Cyclone IV GX
devices.

(2) This variation is not supported for this device family.
(3) The 4× 5.0 Gbaud variation is supported for Stratix IV GX -2 speed grade devices only. Altera recommends that

you use multiple seeds in the Quartus II Design Space Explorer to find the optimal Fitter settings for your design
to meet the timing constraints. Following the Timing Advisor's recommendations, including optimizing for speed
and using LogicLock regions, may be necessary to meet timing, especially for more complex variations
implemented in the largest devices.

Table 3–1. Serial RapidIO Device Support (Part 2 of 2)

Device Family

Lanes Serial 1x Serial 4x

Baud
Rate

(MBaud)
1250 2500 3125 5000 1250 2500 3125 5000

Chapter 3: Parameter Settings 3–7
Transport and Maintenance Settings

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Receive priority retry threshold values are numbers of 64-byte buffers. For more
information about retry thresholds, refer to “Atlantic Interface Receive Buffer and
Control Block” on page 4–19.

Transport and Maintenance Settings
The Transport and Maintenance page lets you enable and configure the Transport
layer and Logical layer Input/Output Maintenance modules.

Transport Layer
The Transport Layer parameters determine whether a Transport layer is
implemented, whether the RapidIO IP core uses 8-bit or 16-bit device IDs, and
whether the Transport layer has an Avalon-ST pass-through interface.

Enable Transport Layer
Enable transport layer creates a Transport layer, which is required for the
Maintenance, Input/Output, and Doorbell Logical layer modules, or to enable the
Avalon-ST pass-through interface.

Turning off this option specifies no Transport layer is created. By turning off this
option, you create a Physical-layer-only variation. When using the Qsys or SOPC
Builder design flow, you cannot create a Physical-layer-only variation. In the SOPC
Builder design flow, the option is present but you cannot select it. In the Qsys design
flow, the option is not present.

Device ID Width
The Device ID Width setting specifies a device ID width of 8-bit or 16-bit. RapidIO
packets contain destination ID and source ID fields, which have the specified width. If
this IP core uses 16-bit device IDs, it supports large common transport systems.

This option requires a Transport layer. This option is available only if you turn on
Enable transport layer.

Avalon-ST Pass-Through Interface
Enable Avalon-ST pass-through interface lets you turn on or off the Avalon-ST
pass-through interface. This option requires a Transport layer. This option is available
only if you turn on Enable transport layer.

The Transport layer routes all unrecognized packets to the Avalon-ST pass-through
interface. Unrecognized packets are those that contain Format Types (ftypes) for
Logical layers not enabled in this IP core, or destination IDs not assigned to this
endpoint. However, if you disable Destination ID Checking, the packet is a request
packet with a supported ftype, and the Transport Type (tt) field of the packet
matches the device ID width setting of this IP core, the packet is routed to the
appropriate Logical layer.

1 The destination ID can match this endpoint only if the tt field in the packet matches
the device ID width setting of the endpoint.

3–8 Chapter 3: Parameter Settings
Transport and Maintenance Settings

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Request packets with a supported ftype and correct tt field, but an unsupported
ttype, are routed to the Logical layer supporting the ftype, which allows the
following tasks:

■ An ERROR response can be sent to requests that require a response.

■ An unsupported_transaction error can be recorded in the Error Management
extension registers.

Response packets are routed to a Logical layer module or the Avalon-ST pass-through
port based on the value of the target transaction ID field. For more information, refer
to Table 4–7 on page 4–24, which defines the transaction ID ranges.

Destination ID Checking
Disable Destination ID checking by default lets you turn on or off the option to
route a request packet with a supported ftype but a destination ID not assigned to
this endpoint. The effect of this setting is detailed in the “Avalon-ST Pass-Through
Interface” section.

This option requires a Transport layer. This option is available only if you turn on
Enable transport layer.

You specify the initial value for the option in the RapidIO parameter editor, and
software can change it by modifying the value of the PROMISCUOUS_MODE bit in the Rx
Transport Control register. Refer to Table 6–51 on page 6–25 for information about
this register.

Input/Output Maintenance Logical Layer Module
The Input/Output Maintenance Logical Layer Module specifies the interface to the
Maintenance Logical layer and the number of translation windows.

Maintenance Logical Layer
Maintenance logical layer interface(s) selects which parts of the Maintenance Logical
layer to implement. You can specify any one of the following valid options:

■ Avalon-MM Master and Slave

■ Avalon-MM Master

■ Avalon-MM Slave

■ None

Transmit Address Translation Windows
Number of transmit address translation windows is applicable only if you select an
Avalon-MM Slave as the Maintenance logical layer interface(s). You can specify a
value from 1 to 16 to define the number of transmit address translation windows
supported.

Chapter 3: Parameter Settings 3–9
I/O and Doorbell Settings

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Port Write
The Port Write options control whether the port-write requests are transmitted or
received by the Maintenance Logical layer module. These options are supported only
if the Maintenance Logical layer has an Avalon-MM slave port.

Port Write Tx Enable
Port Write Tx enable turns on or turns off the transmission of port-write requests by
the Maintenance Logical layer module.

Port Write Rx Enable
Port Write Rx enable turns on or turns off the reception of port-write requests by the
Maintenance Logical layer module.

I/O and Doorbell Settings
This page lets you enable and configure the Input/Output and Doorbell Logical layer
modules.

I/O Logical Layer Interfaces
I/O logical layer Interfaces selects whether or not to add a master/slave Avalon-MM
interface. You can specify one of the following options:

■ Avalon-MM Master and Slave

■ Avalon-MM Master

■ Avalon-MM Slave

■ None

I/O Slave Address Width
I/O slave address width specifies the Input/Output slave address width. The default
width is 30 bits.

I/O Read and Write Order Preservation
I/O read and write order preservation controls support for order preservation
between read and write operations (NWRITE, NWRITE_R, SWRITE, and NREAD requests) in
the I/O Avalon-MM Logical layer slave module. By default this feature is turned off.

This option is available only if you set I/O logical layer Interfaces to Avalon-MM
Master and Slave or Avalon-MM Slave.

Whether you turn on this feature or not, as required by the Avalon-MM specification,
each individual Logical layer Avalon-MM slave module preserves response order.
Even if the responses to two requests from the same Logical layer Avalon-MM slave
module arrive in reverse order on the RapidIO link, the Logical layer module enforces
the response order on the Avalon-MM interface. The slave module enforces the order
by maintaining a queue of the Transaction IDs of transactions awaiting responses
from the RapidIO link.

3–10 Chapter 3: Parameter Settings
Capability Registers Settings

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

For more information about the I/O read and write order preservation feature, refer
to “Input/Output Avalon-MM Slave Module” on page 4–45.

Avalon-MM Master
Number of Rx address translation windows is only applicable if you select an I/O
Avalon-MM master as an I/O Logical layer interface. You can specify a value from 1
to 16.

Avalon-MM Slave
Number of Tx address translation windows is only applicable if you select an I/O
Avalon-MM slave as an I/O Logical layer interface. You can specify a value from 1 to
16.

Doorbell Slave
Doorbell Tx enable controls support for the generation of outbound DOORBELL
messages.

Doorbell Rx enable controls support for the processing of inbound DOORBELL
messages. If not enabled, received DOORBELL messages are routed to the Avalon-ST
pass-through interface if it is enabled, or are silently dropped if the pass-through
interface is not enabled.

Prevent doorbell messages from passing write transactions controls support for
preserving transaction order between DOORBELL messages and I/O write request
transactions. This option is available only if you turn on Doorbell Tx enable and set
I/O logical layer Interfaces to Avalon-MM Master and Slave or Avalon-MM Slave.

Capability Registers Settings
The Capability Registers page lets you set values for some of the capability registers
(CARs), which exist in every RapidIO processing element and allow an external
processing element to determine the endpoint’s capabilities through MAINTENANCE
read operations. All CARs are 32 bits wide.

1 The settings on the Capability Registers page do not cause any features to be enabled
or disabled in the RapidIO IP core. Instead, they set the values of certain bit fields in
some CARs.

Device Registers
The Device Registers options identify the device, vendor, and revision level and set
values in the Device Identity (Table 6–12 on page 6–11) and Device Information
(Table 6–13 on page 6–12) CARs.

Device ID
Device ID sets the DEVICE_ID field of the Device Identity register. This option
uniquely identifies the type of device from the vendor specified in the Vendor
Identity field of the Device Identity register.

Chapter 3: Parameter Settings 3–11
Capability Registers Settings

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

1 This DEVICE_ID field of the Device Identity register (Table 6–12) should not be
confused with the DEVICE_ID field in the Base Device ID CSR (Table 6–23 on
page 6–16).

Vendor ID
Vendor ID uniquely identifies the vendor and sets the VENDOR_ID field in the Device
Identity register. Set Vendor ID to the identifier value assigned by the RapidIO
Trade Association to your company.

Revision ID
Revision ID identifies the revision level of the device. This value in the Device
Information register (Table 6–13) is assigned and managed by the vendor specified in
the VENDOR_ID field of the Device Identity register (Table 6–12).

Assembly Registers
The Assembly Registers options identify the vendor who manufactured the assembly
or subsystem of the device. These registers include the Assembly Identity (Table 6–14
on page 6–12) and the Assembly Information (Table 6–15) CARs.

Assembly ID
Assembly ID corresponds to the ASSY_ID field of the Assembly Identity register
(Table 6–14), which uniquely identifies the type of assembly. This field is assigned and
managed by the vendor specified in the ASSY_VENDOR_ID field of the Assembly
Identity register.

Vendor ID
Vendor ID uniquely identifies the vendor who manufactured the assembly. This
value corresponds to the ASSY_VENDOR_ID field of the Assembly Identity register. In
the Qsys design flow, this parameter is labeled Assembly Vendor ID.

Revision ID
Revision ID indicates the revision level of the assembly and sets the ASSY_REV field of
the Assembly Information CAR (Table 6–15). In the Qsys design flow, this parameter
is labeled Assembly Revision ID.

Extended Features Pointer
Extended features pointer points to the first entry in the extended feature list and
corresponds to the EXT_FEATURE_PTR in the Assembly Information CAR.

Processing Element Features
The Processing Element Features CAR (Table 6–16 on page 6–13) identifies the major
features of the processing element.

3–12 Chapter 3: Parameter Settings
Capability Registers Settings

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Bridge Support
Bridge Support, when turned on, sets the BRIDGE bit in the Processing Element
Features CAR and indicates that this processing element can bridge to another
interface such as PCI Express, a proprietary processor bus such as Avalon-MM,
DRAM, or other interface.

Memory Access
Memory Access, when turned on, sets the MEMORY bit in the Processing Element
Features CAR and indicates that the processing element has physically addressable
local address space that can be accessed as an endpoint through non-maintenance
operations. This local address space may be limited to local configuration registers, or
can be on-chip SRAM, or another memory device.

Processor Present
Processor present, when turned on, sets the PROCESSOR bit in the Processing Element
Features CAR and indicates that the processing element physically contains a local
processor such as the Nios® II embedded processor or similar device that executes
code. A device that bridges to an interface that connects to a processor should set the
BRIDGE bit—as described in “Bridge Support”—instead of the PROCESSOR bit.

Switch Support
The Switch Support options define switch support characteristics.

Enable Switch Support
Enable switch support, when turned on, sets the SWITCH bit in the Processing
Element Features CAR (Table 6–16 on page 6–13) and indicates that the processing
element can bridge to another external RapidIO interface. A processing element that
only bridges to a local endpoint is not considered a switch port.

Number of Ports
Number of ports specifies the total number of ports on the processing element. This
value sets the PORT_TOTAL field of the Switch Port Information CAR (Table 6–17 on
page 6–14).

Port Number
Port number sets the PORT_NUMBER field of the Switch Port Information CAR. This is
the number of the port from which the MAINTENANCE read operation accesses this
register.

Data Messages
The Data Messages options indicate which, if any, data message operations are
supported by user logic attached to the pass-through interface, which you must select
on the Transport and Maintenance page.

Chapter 3: Parameter Settings 3–13
EDA Settings

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

1 Turning on one or both of Source Operation and Destination Operation causes
additional input ports to be added to the RapidIO IP core to support reporting of
data-message related errors through the standard Error Management Extension
registers.

For more information, refer to Chapter 5, Signals and Chapter 6, Software Interface.

Source Operation
Source Operation, when turned on, sets the Data Message bit in the Source
Operations CAR (Table 6–18 on page 6–14) and indicates that this endpoint can issue
Data Message request packets.

Destination Operation
Destination Operation, when turned on, sets the Data Message bit in the Destination
Operations CAR (Table 6–19 on page 6–15) and indicates that this endpoint can
process received Data Message request packets.

EDA Settings
The EDA tab specifies the simulation libraries, and lets you turn on or off Generate
simulation model and Generate netlist.

These options are not available when using the Qsys or SOPC Builder design flow.
You can generate simulation models in the Qsys flow by indicating the appropriate
HDL in which to generate a simulation model on the Generation tab in Qsys. You can
generate simulation models in the SOPC Builder flow by turning on the Simulation.
Create project simulator files option on the System Generation tab of SOPC Builder.

Simulation Libraries
Simulation Libraries displays a list of files that includes those needed to run
simulation with the generated IP functional simulation model, and lets you turn on or
off the generation of the simulation model.

File
File specifies one or more simulation library files.

Description
Description characterizes the file specified in the File field.

Generate Simulation Model
Generate simulation model turns on or off the generation of the IP functional
simulation model.

Timing and Resource Estimation
The Timing and Resource Estimation option allows you to generate a netlist file that
can be used by some third-party synthesis tools.

3–14 Chapter 3: Parameter Settings
Summary

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Generate netlist turns on or off the generation of netlist files used by some third-party
synthesis tools to estimate timing and resource usage.

Summary
The Summary tab displays a list of files that are generated when you click Finish.
Files automatically generated have a gray checkmark in the checkbox. To generate
additional files, click in an empty checkbox. To prevent generation of files other than
the automatically generated files, click the checkbox to remove a checkmark. The
Summary tab does not appear in the SOPC Builder design flow.

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

4. Functional Description

Interfaces
The Altera RapidIO IP core supports the following interfaces:

■ RapidIO Interface

■ Atlantic Interface

■ Avalon Memory Mapped (Avalon-MM) Master and Slave Interfaces

■ Avalon Streaming (Avalon-ST) Interface

■ XGMII External Transceiver Interface

RapidIO Interface
The RapidIO interface complies with revision 2.1 of the RapidIO® serial interface
standard described in the RapidIO Trade Association specifications. The protocol is
divided into a three-layer hierarchy: Physical layer, Transport layer, and Logical layer.

f More detailed information about the RapidIO interface specification is available from
the RapidIO Trade Association website at www.rapidio.org.

Atlantic Interface
The Atlantic interface, an Altera protocol, provides access to the Physical layer.
Physical-layer-only variations use the Atlantic interface to support user logic. For 1×
variations, the Atlantic interface is 32 bits wide. For 4× variations, the Atlantic
interface is 64 bits wide.

The Atlantic interface is a full-duplex synchronous protocol. The transmit Atlantic
interface functions as a slave-sink interface. The receive Atlantic interface functions as
a slave-source interface.

f For more information about the Atlantic interface, refer to the FS13: Atlantic Interface
specification.

Avalon Memory Mapped (Avalon-MM) Master and Slave Interfaces
The Avalon-MM master and slave interfaces execute transfers between the RapidIO IP
core and the system interconnect. The system interconnect allows you to use the Qsys
system integration tool or SOPC Builder to connect any master peripheral to any slave
peripheral, without detailed knowledge of either the master or slave interface. The
RapidIO IP core implements both Avalon-MM master and Avalon-MM slave
interfaces.

f For more information about the Avalon-MM interface, refer to Avalon Interface
Specifications.

4–2 Chapter 4: Functional Description
Interfaces

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Avalon-MM Interface Byte Ordering
The RapidIO protocol uses big endian byte ordering, whereas Avalon-MM interfaces
use little endian byte ordering. Table 4–1 shows the byte ordering for the Avalon-MM
and RapidIO interfaces.

No byte- or bit-order swaps occur between the Avalon-MM protocol and RapidIO
protocol, only byte- and bit-number changes. For example, RapidIO Byte0 is
Avalon-MM Byte7, and for all values of i from 0 to 63, bit i of the RapidIO 64-bit
double word[0:63] of payload is bit (63-i) of the Avalon-MM 64-bit double word[63:0].

In variations of the RapidIO IP core that have 32-bit wide Avalon-MM interfaces, the
order in which the two 32-bit words in a double word appear on the Avalon-MM
interface in a burst transaction, is inverted from the order in which they appear inside
a RapidIO packet. The RapidIO 32-bit word with wdptr=0 is the most significant half
of the double word at RapidIO address N, and the 32-bit word with wdptr=1 is the
least significant 32-bit word at RapidIO address N. Therefore, in a burst transaction on
the Avalon-MM interface, the 32-bit word with wdptr=0 corresponds to the
Avalon-MM 32-bit word at address N+4 in the Avalon-MM address space, and must
follow the 32-bit word with wdptr=1 which corresponds to the Avalon-MM 32-bit
word at address N in the Avalon-MM address space. Thus, when a burst of two or
more 32-bit Avalon-MM words is transported in RapidIO packets, the order of the
pair of 32-bit words is inverted so that the most significant word of each pair is
transmitted or received first in the RapidIO packet.

Avalon Streaming (Avalon-ST) Interface
The Avalon-ST interface provides a standard, flexible, and modular protocol for data
transfers from a source interface to a sink interface. The Avalon-ST interface protocol
allows you to easily connect components together by supporting a direct connection
to the Transport layer. The Avalon-ST interface is either 32 or 64 bits wide depending
on the RapidIO lane width. This interface is available to create custom Logical layer
functions like message passing.

Table 4–1. Byte Ordering

 Byte
Lane

(Binary)
1000_0000 0100_0000 0010_0000 0001_0000 0000_1000 0000_0100 0000_0010 0000_0001

RapidIO

Protocol

(Big
Endian)

Byte0[0:7] Byte1[0:7] Byte2[0:7] Byte3[0:7] Byte4[0:7] Byte5[0:7] Byte6[0:7] Byte7[0:7]

32-Bit Word[0:31] 32-Bit Word[0:31]

wdptr=0 wdptr=1

Double Word[0:63]

RapidIO Address N = {29'hn, 3'b000}

Avalon-
MM

Protocol

(Little
Endian)

Byte7[7:0] Byte6[7:0] Byte5[7:0] Byte4[7:0] Byte3[7:0] Byte2[7:0] Byte1[7:0] Byte0[7:0]

Address=
N+7

Address=
N+6

Address=
N+5

Address=
N+4

Address=
N+3

Address=
N+2

Address=
N+1

Address=
N

32-Bit Word[31:0] 32-Bit Word[31:0]

Avalon-MM Address = N+4 Avalon-MM Address = N

64-bit Double Word0[63:0]

Avalon-MM Address = N

Chapter 4: Functional Description 4–3
Clocking and Reset Structure

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

For more information about how this interface functions with the RapidIO IP core,
refer to the “Avalon-ST Pass-Through Interface” on page 4–60.

XGMII External Transceiver Interface
The XGMII interface is the external transceiver interface that connects the RapidIO IP
core to an external transceiver.

The external transceiver interface provides 8-bit transmit and receive datapaths per
serial lane, plus the necessary control and clocking signals to allow bidirectional data
transfers. This interface is similar to the 10-Gigabit Media-Independent Interface
(XGMII) using either HSTL Class 1 or SSTL Class 2 I/O drivers. The XGMII supports
one control signal per 8 bits for the external transceiver encoder, and one control and
one error signal per 8 bits from the external transceiver decoder.

On the transmit side, the 8-bit data (td) and 1-bit control (tc) signals per lane are
transmitted on the rising and falling edges of a center aligned clock, tclk. The
external transmitter should be disabled when the Initialization state machine
(described in section 4.12 of Part 6: LP-Serial Physical Layer Specification of the RapidIO
Interconnect Specification, Revision 2.1) is in the SILENT state and drives the phy_dis
output signal high to request turning off the output driver.

On the receive side, the 8-bit data (rd), 1-bit control (rc), and error (rerr) signals per
lane are received and sampled on the rising and falling edges of a center-aligned
clock, rclk. Separate rclk signals are associated with each lane.

For further details, including timing requirements for the XGMII interface, refer to
Appendix B, XGMII Interface Timing.

Clocking and Reset Structure
Clock domains in the RapidIO IP core depend on whether the IP core has only a
Physical layer or has Physical, Transport, and Logical layers. The first part of this
section describes the clock domains and reset structure for variations that have only a
Physical layer. For information about variations that have Physical, Transport, and
Logical layers, refer to “Clocking for RapidIO IP Cores with Physical, Transport, and
Logical Layers” on page 4–7.

Clocking for RapidIO IP Cores with Only a Physical Layer
In addition to the high-speed clock domains inside the Arria GX, Arria II GX,
Cyclone IV GX, Stratix II GX, or Stratix IV GX transceiver, the RapidIO IP core
contains six clock domains: two transceiver clocks (txgxbclk and rxgxbclk), two
internal global clocks (txclk and rxclk), and two Atlantic interface clocks (atxclk
and arxclk). txclk is the main clock for the transmitter modules in the Physical layer,
and rxclk is the recovered clock that drives the receiver modules in the Physical layer.
An additional clock domain exists for the phy_mnt_s Avalon-MM interface.

4–4 Chapter 4: Functional Description
Clocking and Reset Structure

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure 4–1 shows the clock signals in a RapidIO IP core with internal transceivers. For
information about the clock signals in the XGMII interface of a RapidIO IP core with
external transceivers, refer to Appendix B, XGMII Interface Timing.

RapidIO IP core 4× variations using high-speed transceivers on Arria II GX and
Stratix IV devices are implemented in the transceiver TX bonded mode. All channels
of a 4× variation that uses high-speed transceivers, on any supported device, must
reside in a single transceiver quad. To support this requirement, the starting channel
number for any 4× variation must be a multiple of four.

For RapidIO IP core 4× variations using high-speed transceivers on Arria GX and
Stratix II GX devices, you must ensure that the 0PPM clock group settings are set so
that the IP core uses the internal phase compensation FIFOs within the transceiver
block.

Figure 4–1. Clock Domains in a RapidIO IP Core with Internal Transceivers (Note 1)

Notes to Figure 4–1:

(1) Clock descriptions:

clk Reference clock

txgxbclk Transmitter transceiver clock

rxgxbclk Receiver transceiver clock

txclk Transmitter internal global clock

rxclk Receiver internal global clock (recovered clock)

(2) Input clocks (user supplied)

atxclk (2)

clk (2)

Internal Transceiver

Transmit

Receive

Physical Layer Registers

RapidIO MegaCore Function

Clock Domain
Boundary

Transmitter
Transceiver

Receiver
Transceiver

arxclk (2)

phy_mnt_s_clk

txclktxgxbclk

rxclkrxgxbclk

(2)

Chapter 4: Functional Description 4–5
Clocking and Reset Structure

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

When you generate a custom IP core, the <variation name>_constraints.tcl script
contains the required assignments. For Arria GX and Stratix II GX devices, the
assignments in the generated Tcl script include the appropriate 0PPM clock group
settings automatically. When you run the script, the constraints are applied to your
project.

Reference Clock
The main reference clock, clk, is the incoming reference clock for the Arria GX,
Arria II GX, Cyclone IV GX, Stratix II GX, or Stratix IV GX transceiver’s PLL. This
reference clock can have any of a set of frequencies that the PLL in the transceiver can
convert to the required internal clock speed for the RapidIO IP core baud rate. The
RapidIO parameter editor lets you select one of the supported frequencies.

The ability to program the frequency of the input reference clock allows you to use an
existing clock in your system as the reference clock for the RapidIO IP core.

f For more information about the supported frequencies for the reference clock in
Arria GX and Stratix II GX transceivers, refer to the “Serial RapidIO Mode” section in
the Arria GX ALT2GXB MegaFunction User Guide chapter in volume 2 of the Arria GX
Device Handbook, and to the Arria GX Transceiver Protocol Support and Additional
Features chapter in volume 2 of the Arria GX Device Handbook, or to the Stratix II GX
ALT2GXB Megafunction User Guide chapter in volume 2 of the Stratix II GX Device
Handbook. For more information about the supported frequencies for the reference
clock in Arria II GX and Stratix IV GX transceivers, refer to the Transceiver Clocking in
Arria II Devices chapter in volume 2 of the Arria II Device Handbook and to the ALTGX
Transceiver Setup Guide chapter in volume 3 of the Stratix IV Device Handbook. For
information about the supported frequencies for the reference clock in Cyclone IV GX
devices, refer to the Cyclone IV Transceivers Architecture chapter in the Cyclone IV
Device Handbook.

4–6 Chapter 4: Functional Description
Clocking and Reset Structure

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure 4–2 shows the clock domain relationships and how the transceiver uses the
reference clock.

The PLL generates the high-speed transmit clock and the input clocks to the receiver
high-speed deserializer clock and recovery unit (CRU). The CRU generates the
recovered clock (rxclk) that drives the receiver logic.

The txclk clock is the main clock used in the transmitter modules of the Physical
layer. If the RapidIO IP core uses an external transceiver, txclk is derived from the clk
reference clock by dividing by one, two, or four, depending on the configuration of
the IP core. The division is performed by a flip-flop-based circuit and does not require
a PLL.

Baud Rates
The serial RapidIO specification specifies baud rates of 1.25, 2.5, 3.125, and 5.0 Gbaud.
Table 4–2 shows the relationship between baud rates, transceiver clock rates, and
internal clock rates.

Figure 4–2. Reference Clock and Clock Domains in a RapidIO IP Core with Internal Transceivers (Note 1)

Note to Figure 4–2:

(1) The clock domain for the Physical layer's software interface, the Avalon-MM clock phy_mnt_s_clk, is not shown in this figure.

arxclk

rd

td atxclk

Transceiver RapidIO MegaCore function

S
e

ri
a

l I
n

te
rf

a
ce

s

4

4

PLL

Receiver

txgxbclk

TX Data

rxgxbclk

RX Data

A
tla

n
tic In

te
rfa

ce
s

Reference
Clock

txclk

rxclk
PLL

CRU

Transmitter

Table 4–2. Baud Rates and Clock Rates for Physical-Layer-Only RapidIO IP Core

Baud Rates
(Gbaud)

Transceiver Clocks (MHz)
(txgxbclk/rxgxbclk)

Internal Clocks (MHz)
(txclk/rxclk)

1x mode 4x mode

5.0(1) 250 125 250

3.125(2) 156.25 78.125 156.25 (2)

2.5 125 62.5 125

1.25 62.5 31.25 62.5

Notes to Table 4–2:

(1) This rate is supported for Stratix IV GX devices only.
(2) This rate is not supported for 4x variations in Arria GX and Cyclone IV GX devices.

Chapter 4: Functional Description 4–7
Clocking and Reset Structure

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

f For more information about using high-speed transceiver blocks, refer to the
Transceiver User Guide section in volume 2 of the Arria GX Device Handbook or
Stratix II GX Device Handbook, to volume 2 and volume 3 of the Stratix IV Device
Handbook, or to volume 2 of the Arria II Device Handbook or the Cyclone IV Device
Handbook.

Reset for RapidIO IP Cores with Only a Physical Layer
All reset signals can be asserted asynchronously to any clock. However, most reset
signals must be deasserted synchronously to a specific clock. The Atlantic interface
resets, for example, should be deasserted on the rising edge of the corresponding
clock. Figure 4–4 on page 4–12 shows a circuit that ensures a reset signal lasts at least
one clock period and is deasserted synchronously to the rising edge of the clock.

For more information about the requirements for reset signals, refer to Chapter 5,
Signals.

Variations of the serial RapidIO IP core that use the internal transceiver have a
dedicated reset control module named riophy_reset to handle the specific
requirements of the internal transceiver module. This reset control module is in the
riophy_reset.v clear-text Verilog HDL source file, and is instantiated inside the
top-level module found in the clear text <variation name>_riophy_xcvr.v Verilog HDL
source file.

Variations of the serial RapidIO IP core that use an external transceiver do not require
this special reset control module.

The riophy_reset module controls all of the RapidIO IP core's internal reset signals.
In particular, it generates the recommended reset sequence for the transceiver. The
reset sequence and requirements vary among device families. For details, refer to the
relevant device handbook.

Consistent with normal operation, following the reset sequence, the Initialization
state machine transitions to the SILENT state.

f For details of the RapidIO Initialization state machine, refer to section 4.12 of Part 6:
LP-Serial Physical Layer Specification of the RapidIO Interconnect Specification, Revision
2.1, available at www.rapidio.org.

If two communicating RapidIO IP cores are reset one after the other, one of the IP
cores may enter the Input Error Stopped state because the other IP core is in the SILENT
state while this one is already initialized. The initialized IP core enters the Input Error
Stopped state and subsequently recovers.

Clocking for RapidIO IP Cores with Physical, Transport, and Logical Layers
Variations with Physical, Transport, and Logical layers have three clock inputs. The
variations with internal transceivers have the reference clock, the Avalon system
clock, and the internal transceiver's calibration-block clock. The variations with
external transceivers have the reference clock, the Avalon system clock, and the
external transceiver's input clock.

4–8 Chapter 4: Functional Description
Clocking and Reset Structure

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

The reference clock signal drives the Physical layer. In systems created in SOPC
Builder, it is called clk_<variation name>. In variations created in the MegaWizard
Plug-in Manager or Qsys design flow, it is called clk. Qsys allows you to export the
clk signal with a name of your choice.

For RapidIO IP cores with external transceivers, the reference clock frequency is
determined by the baud rate you specify, the lane width, and the device family. For
RapidIO IP cores with internal transceivers in Arria GX, Arria II GX, Cyclone IV GX,
Stratix II GX, and Stratix IV GX devices, you can specify the reference clock frequency
when you create the RapidIO IP core instance. The choices available to you for this
frequency are determined by the baud rate. For information about how the
transceiver uses the reference clock, refer to “Reference Clock” on page 4–5.

The Avalon system clock drives the Transport and Logical layer modules; its
frequency is nominally the same frequency as the Physical layer's internal clocks
txclk and rxclk, but it can differ by up to ±50% provided the Avalon system clock
meets fMAX limitations. This clock is displayed as clock in the Qsys and SOPC Builder
design flows, and is called sysclk in the MegaWizard Plug-in Manager design flow.
Qsys allows you to export the clock signal with a name of your choice.

In systems created in SOPC Builder, the external transceiver input clock is called
rclk_<variation name>. In variations created in the MegaWizard Plug-in Manager
design flow, it is called rclk. In systems created in the Qsys tool, you cannot configure
the RapidIO IP core to use an external transceiver.

The internal transceiver's calibration-block clock is called cal_blk_clk in the
MegaWizard Plug-in Manager design flow and is also displayed as cal_blk_clk in
the Qsys and SOPC Builder design flows. See Table 4–3 and Table 4–4 for more
information.

The Physical layer's buffers implement clock domain crossing between the Avalon
system clock domain and the Physical layer's clock domains.

In systems created with Qsys and SOPC Builder, the system interconnect manages
clock domain crossing if some of the components of the system run on a different
clock. For optimal throughput, run all the components in the datapath on the same
clock.

Chapter 4: Functional Description 4–9
Clocking and Reset Structure

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

All of the clock inputs for the Logical layer modules must be connected to the same
clock source as the system clock. Figure 4–3 is a block diagram of the clock structure of
variations with Physical, Transport, and Logical layers.

Figure 4–3. Clock Domains in RapidIO IP Core with Transport and Logical Layers (1)

Notes to Figure 4–3:
(1) Clock descriptions:

txgxbclk Transmitter transceiver clock
rxgxbclk Receiver transceiver clock
txclk Transmitter internal global clock
rxclk Receiver internal global clock (recovered clock)
atxclk, arxclk Atlantic interface clocks
phy_mnt_s_clk Avalon-MM interface clock for register access

(2) The reference clock is called clk in variations generated with the MegaWizard Plug-in Manager or Qsys, and
clk_<variation_name> in variations created with SOPC Builder.

(3) The Avalon system clock is called sysclk in variations generated with the MegaWizard Plug-in Manager and clock
in variations created with SOPC Builder or Qsys.

Logical
Layer

Transport
Layer

atxclk

reference clock (2)

Internal Transceiver

 Physical Layer Registers

RapidIO MegaCore Function
(including Transport and Logical layers)

Clock Domain
Boundary

Transmitter
Transceiver

Receiver
Transceiver

arxclk

phy_mnt_s_clk

txclktxgxbclk

rxclkrxgxbclk

Avalon
system
clock

(3)

S
y
s
t
e
m

I
n
t
e
r
c
o
n
n
e
c
t

4–10 Chapter 4: Functional Description
Clocking and Reset Structure

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 4–3 and Table 4–4 provide information about clock rates in the different
RapidIO IP core variations with Physical, Transport, and Logical layers that use
XGMII.

Table 4–3. Clock Frequencies for 1x Variations with all Three Layers Using XGMII

Variations Using XGMII

Baud Rate
(Gbaud)

reference clock
(1), tclk, rclk

(MHz)

 txclk, rxclk
(MHz)

 Avalon system clock (2)

Minimum
(MHz)

Typical
(MHz)

 Maximum (3)
(MHz)

1.25 62.5 31.25 15.625 31.25 46.875

2.5 125 62.5 31.25 62.5 93.75

3.125 156.25 78.125 39.065 78.125 117.19

Notes to Table 4–3:

(1) The reference clock is called clk in variations generated with the MegaWizard Plug-in Manager or Qsys, and
clk_<variation_name> in variations created with SOPC Builder.

(2) The Avalon system clock is called sysclk in variations generated with the MegaWizard Plug-in Manager and
clock in variations created with SOPC Builder or Qsys.

(3) The maximum system clock frequency might be limited by the achievable fMAX and can vary based on the family
and speed grade.

Table 4–4. Clock Frequencies for 4x Variations with all Three Layers Using XGMII

Variations Using XGMII

Baud Rate
(Gbaud)

txclk, rxclk,
reference clock

(1),rclk, tclk
(MHz)

 Avalon System Clock (1) (2)

Minimum (MHz) Typical
(MHz)

 Maximum (2)
(MHz)

1.25 62.5 31.25 62.5 93.75

2.5 (3) 125 62.5 125 187.5

3.125 (4) 156.25 78.125 156.25 234.275

Notes to Table 4–4:

(1) Refer to Table 5–3 and Table 5–4 on page 5–2 for the reference and system clock signal names in the MegaWizard
Plug-in Manager, Qsys, and SOPC Builder design flows.

(2) The maximum system clock frequency might be limited by the achievable fMAX and can vary based on the family
and speed grade.

(3) This rate is not supported for 4× variations in Cyclone II and Cyclone III devices.
(4) This rate is not supported for 4× variations in Arria GX, Cyclone II, and Cyclone III devices.

Chapter 4: Functional Description 4–11
Clocking and Reset Structure

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Reset for RapidIO IP Cores with Physical, Transport, and Logical Layers
RapidIO IP core variations with all three layers have a single main active-low reset
input signal (reset_n). For detailed reset behavior, refer to “Reset for RapidIO IP
Cores with Only a Physical Layer” on page 4–7.

Table 4–5. Clock Frequencies for 1x Variations with all Three Layers Using Internal Transceivers

Arria GX, Arria II GX, Cyclone IV GX, Stratix II GX, and Stratix IV GX Devices

Baud Rate
(Gbaud)

Default reference
clock frequency

(1), (2)
(MHz)

 txclk, rxclk
(MHz)

 Avalon system clock (3)

Minimum
(MHz)

Typical
(MHz)

 Maximum (4)
(MHz)

1.25 62.5 31.25 15.625 31.25 46.875

2.5 125 62.5 31.25 62.5 93.75

3.125 156.25 78.125 39.065 78.125 117.19

5.0 (5) 250 125.0 62.50 125.0 187.50

Notes to Table 4–3:

(1) For information about the allowed reference clock frequencies in Arria GX, Arria II GX, Cyclone IV GX,
Stratix II GX, and Stratix IV GX devices using internal transceivers, refer to “Reference Clock” on page 4–5.

(2) The reference clock is called clk in variations generated with the MegaWizard Plug-in Manager or Qsys, and
clk_<variation_name> in variations created with SOPC Builder.

(3) The Avalon system clock is called sysclk in variations generated with the MegaWizard Plug-in Manager and
clock in variations created with SOPC Builder or Qsys.

(4) The maximum system clock frequency might be limited by the achievable fMAX and can vary based on the family
and speed grade.

(5) The 5.0 Gbaud rate is available only in Stratix IV GX devices.

Table 4–6. Clock Frequencies for 4x Variations with all Three Layers Using Internal Transceivers

Arria GX, Arria II GX, Cyclone IV GX, Stratix II GX, and Stratix IV GX Devices

Baud Rate
(Gbaud)

txclk, rxclk, and
default reference clock

frequency
(1), (2)
(MHz)

 Avalon System Clock (1)

Minimum (MHz) Typical
(MHz)

 Maximum (3)
(MHz)

1.25 62.5 31.25 62.5 93.75

2.5 125 62.5 125 187.5

3.125 (4) 156.25 78.125 156.25 234.275

5.0 (5) 250 125.0 250 250

Notes to Table 4–4:

(1) Refer to Table 5–3 and Table 5–4 on page 5–2 for the reference and system clock signal names in the MegaWizard
Plug-in Manager, Qsys, and SOPC Builder design flows.

(2) For information about the allowed reference clock frequencies in Arria GX, Arria II GX, Cyclone IV GX, and
Stratix II GX, and Stratix IV GX devices using internal transceivers, refer to “Reference Clock” on page 4–5.

(3) The maximum system clock frequency might be limited by the achievable fMAX and can vary based on the family
and speed grade.

(4) This rate is not supported for 4× variations in Arria GX and Cyclone IV GX devices.
(5) The 5.0 Gbaud rate is available only in Stratix IV GX devices.

4–12 Chapter 4: Functional Description
Physical Layer

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

The reset_n input signal can be asserted asynchronously, but must last at least one
Avalon system clock period and be deasserted synchronously to the rising edge of the
Avalon system clock. Figure 4–4 shows a circuit that ensures these conditions.

In systems generated by Qsys and SOPC Builder, this circuit is generated
automatically. However, if your RapidIO IP core variation is not generated by Qsys or
SOPC Builder, you must implement logic to ensure the minimal hold time and
synchronous deassertion of the reset_n input signal to the RapidIO IP core.

The assertion of reset_n causes the whole module to reset. While the module is held
in reset, the Avalon-MM waitrequest outputs are driven high and all other outputs
are driven low. When the module comes out of the reset state, all buffers are empty.
Refer to Chapter 6, Software Interface for the default value of registers after reset.

Physical Layer
This section describes features and blocks of the 1× or 4× serial Physical layer of the
RapidIO IP core. Figure 4–5 on page 4–14 shows a high-level block diagram of the
serial RapidIO IP core’s Physical layer.

Features
The Physical layer has the following features:

■ Port initialization

■ Transmitter and receiver with the following features:

■ One or four lane high-speed data serialization and deserialization (up to
5.0 Gbaud for 1× variations with 32-bit Atlantic interface; up to 5.0 Gbaud for
4× variations with 64-bit Atlantic interface)

■ Clock and data recovery (receiver)

■ 8B10B encoding and decoding

■ Lane synchronization (receiver)

■ Packet/control symbol assembly and delineation

■ Cyclic redundancy code (CRC) generation and checking on packets

■ Control symbol CRC-5 generation and checking

■ Error detection

Figure 4–4. Circuit to Ensure Synchronous Deassertion of reset_n

DD Q Q
rst_nrst_n

VCC

sysclk

rst_n

reset_n

RapidIO
MegaCore
Function

Chapter 4: Functional Description 4–13
Physical Layer

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ Pseudo-random idle sequence generation

■ Idle sequence removal

■ Software interface (status/control registers)

■ Flow control (ackID tracking)

■ Time-out on acknowledgements

■ Order of retransmission maintenance and acknowledgements

■ ackID assignment

■ ackID synchronization after reset

■ Error management

■ Clock decoupling

■ FIFO buffer with level output port

■ Adjustable buffer sizes (4 KBytes to 32 KBytes)

■ Four transmission queues and four retransmission queues to handle packet
prioritization

■ Can be configured to send link-request control symbols with cmd set to
reset-device on fatal error

■ Attempts link-request link-response control symbol pair a configurable
number of times before declaring fatal error, when a link-response is not received

4–14 Chapter 4: Functional Description
Physical Layer

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Physical Layer Architecture
Figure 4–5 shows the architecture of the Physical layer and illustrates the interfaces
that it supports. Dotted lines indicate clock domain boundaries within the layer.

1 SOPC Builder and Qsys do not support a Physical-layer-only variation.

Low-level Interface Receiver
The receiver in the low-level interface receives the input from the RapidIO interface,
and performs the following tasks:

■ Separates packets and control symbols

Figure 4–5. Physical Layer High Level Block Diagram

Notes to Figure 4–5:

(1) These signals exist for all device families with high-speed transceivers.
(2) These signals are only present in Physical-layer-only variations. In variations with a Transport layer, the registers are accessed through the system

maintenance Avalon-MM slave interface.

Receive
Buffer

Transmit

Buffer
Control

Receive
Buffer
Control

td rd

clk
reset_n

RapidIO InterfaceRapidIO Interface

ar
xs

op
ar

xe
op

ar
xe

rr
ar

xm
ty

ar
xd

at

ar
xc

lk
ar

xr
es

et
_n

ar
xe

na
ar

xd
av

ar
xv

al

at
xs

op
at

xe
op

at
xe

rr
at

xm
ty

at
xd

at

at
xc

lk
at

xr
es

et
_n

at
xe

na
at

xd
av

Transmit
Buffer

Atlantic Interface Atlantic Interface

buf_av0

at
xw

le
ve

l

at
xw

le
ve

l

packet_transmitted
packet_cancelled
packet_accepted

packet_retry
packet_not_accepted

packet_crc_error

symbol_error

buf_av1

rxclk

at
xo

vf

buf_av2
buf_av3

phy_mnt_s_chipselect

rx_errdetect
gxbpll_locked

char_err

cal_blk_clk
reconfig_clk
reconfig_togxb
reconfig_fromgxb

(1)

txclk

multicast_event_rx
multicast_event_tx

port_initialized
port_error

phy_mnt_s_clk

ef_ptr[15:0]

port_response_timeout[23:0]

phy_mnt_s_waitrequest
phy_mnt_s_read

phy_mnt_s_address[16:2]
phy_mnt_s_write

phy_mnt_s_readdata[31:0]
phy_mnt_s_writedata[31:0]

Registers

master_enable

gxb_powerdown

Low Level Interface

Transmitter
Transceiver

Transmitter
Receiver

Transceiver

Receiver

Protocol and Flow Control
Engine

(2)

Chapter 4: Functional Description 4–15
Physical Layer

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ Removes idle sequence characters

■ Detects multicast-event and stomp control symbols

■ Detects packet-size errors

■ Checks the control symbol 5-bit CRC and asserts symbol_error if the CRC is
incorrect

Receiver Transceiver
The receiver transceiver is an embedded megafunction within the Arria GX,
Arria II GX, Stratix II GX, or Stratix IV GX device. Serial data from differential input
pins is fed into the CRU to detect clock and data. Recovered data is deserialized into
10-bit code groups and sent to the pattern detector and word-aligner block to detect
word boundaries. Properly aligned 10-bit code groups are then 8B10B decoded into
8-bit characters and converted to 16-bit data in the 8-to-16 demultiplexer.

CRC Checking and Removal
The RapidIO specification states that the Physical layer must add a 16-bit CRC to all
packets. The size of the packet determines how many CRCs are required.

■ For packets of 80 bytes or fewer—header and payload data included—a single
16-bit CRC is appended to the end of the packet.

■ For packets longer than 80 bytes—header and payload data included—two 16-bit
CRCs are inserted; one after the 80th transmitted byte and the other at the end of
the packet.

Two null padding bytes are appended to the packet if the resulting packet size is not
an integer multiple of four bytes.

In variations of the RapidIO IP core that include the Transport layer, the Transport
layer removes the CRC after the 80th byte (if present), but does not remove the final
CRC nor the padding bytes. Therefore, a packet sent to the Avalon-ST pass-through
receiver interface by the Transport layer is two or four bytes longer than the
equivalent packet received by the Transport layer from the Avalon-ST pass-through
interface. When processing the received packets, the Logical layer modules must
ignore the final CRC and padding bytes (if present). In variations of the RapidIO IP
core that include only the Physical layer, the 80th byte CRC of a received packet is not
removed.

The receiver uses the CCITT polynomial x16 + x12 + x5 + 1 to check the 16-bit CRCs that
cover all packet header bits (except the first 6 bits) and all data payload, and flags
CRC and packet size errors.

Low-Level Interface Transmitter
The transmitter in the low-level interface transmits output to the serial RapidIO
interface. This module performs the following tasks:

■ Assembles packets and control symbols into a proper output format

■ Generates the 5-bit CRC to cover the 19-bit symbol and appends the CRC at the
end of the symbol

4–16 Chapter 4: Functional Description
Physical Layer

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

■ Transmits an idle sequence during port initialization and when no packets or
control symbols are available to transmit

■ Transmits outgoing multicast-event control symbols in response to user requests

■ Transmits status control symbols and the rate compensation sequence periodically
as required by the RapidIO specification

The low-level transmitter block creates and transmits outgoing multicast-event
control symbols. Each time the multicast_event_tx input signal changes value, this
block inserts a multicast-event control symbol in the outgoing bit stream as soon as
possible.

In 1.25, 2.5, and 3.125 Gbaud variations, the internal transmitters are not turned off
while the initialization state machine is in the SILENT state. Instead, while in SILENT
state, the transmitters send a continuous stream of K28.5 characters, all of the same
disparity. This behavior causes the receiving end to declare numerous disparity errors
and to detect a loss of lane_sync as intended by the specification.

In 5.0 Gbaud variations, the internal transmitters are turned off while the initialization
state machine is in the SILENT state. This behavior also causes the link partner to
detect the need to reinitialize the RapidIO link.

Transmitter Transceiver in Variations With an Internal Transceiver
The transmitter transceiver is an embedded megafunction within the Arria GX,
Arria II GX, Cyclone IV GX, Stratix II GX, or Stratix IV GX device. The 16-bit parallel
input data to the transmitter is internally multiplexed to 8-bit data and 8B10B
encoded. The 10-bit encoded data is then serialized and sent to differential output
pins.

Protocol and Flow Control Engine
The Physical layer protocol and flow control engine uses a sliding window protocol to
handle incoming and outgoing packets.This block performs the following tasks:

■ Monitors incoming and outgoing packet ackIDs to maintain proper flow

■ Processes incoming control symbols

■ Creates and transmits outgoing control symbols

On the receiver side, this block keeps track of the sequence of ackIDs and determines
which packets are acknowledged and which packets to retry or drop. On the
transmitter side, it keeps track of the sequence of ackIDs, tells the transmit buffer
control block which packet to send, and sets the outgoing packets’ ackID. It also tells
the transmit buffer control block when a packet has been acknowledged—and can
therefore be discarded from the buffers.

The Physical layer protocol and flow control engine ensures that a maximum of 31
unacknowledged packets are transmitted, and that the ackIDs are used and
acknowledged in sequential order.

If the receiver cannot accept a packet due to buffer congestion, a packet-retry control
symbol with the packet’s ackID is sent to the transmitter. The sender then retransmits
all packets starting from the specified ackID. The RapidIO IP core supports
receiver-controlled flow control in both directions.

Chapter 4: Functional Description 4–17
Physical Layer

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

If the receiver or the protocol and flow control block detects that an incoming packet
or control symbol is corrupted or a link protocol violation has occurred, the protocol
and flow control block enters an error recovery process. Link protocol violations
include acknowledgement time-outs based on the timers the protocol and flow
control block sets for every outgoing packet. In the case of a corrupted incoming
packet or control symbol, and some link protocol violations, the block instructs the
transmitter to send a packet-not-accepted symbol to the sender. A link-request
link-response control symbol pair is then exchanged between the link partners and
the sender then retransmits all packets starting from the ackID specified in the
link-response control symbol. The transmitter attempts the link-request
link-response control symbol pair exchange as many times as specified by the value
N that you provided for the Link-request attempts parameter in the RapidIO
parameter editor. If the protocol and control block times out awaiting the response to
the Nth link-request control symbol, it declares a fatal error.

The Physical layer can retransmit any unacknowledged packet because it keeps a
copy of each transmitted packet until the packet is acknowledged with a
packet-accepted control symbol.

When a time-out occurs for an outgoing packet, the protocol and flow control block
treats it as an unexpected acknowledge control symbol, and starts the recovery
process. If a packet is retransmitted, the time-out counter is reset.

Atlantic Interface
The Physical layer sends data to the Transport layer through a slave-source Atlantic
interface, and accepts packet data from the Transport layer through a slave-sink
Atlantic interface. The Atlantic interface data bus is 32 bits wide in 1× variations and
64 bits wide in 4× variations of the RapidIO IP core.

In variations with only the Physical layer, the Atlantic interface is the external
datapath interface. In variations with a Transport layer, the Atlantic interface is used
internally as the datapath interface between the Physical layer and the Transport
layer, and is not visible.

f For more information about the Atlantic interface specification, refer to FS13: Atlantic
Interface.

The Physical layer Atlantic interface asserts the arxdav signal only when at least one
full packet is available to be read from the receive buffer. However, the RapidIO IP
core does not wait for a full packet to arrive on the RapidIO link before it begins
sending the first receive buffer block to the Atlantic interface. If the arxena signal is
asserted when the arxdav signal is not asserted, the first word becomes available on
the Atlantic interface, and the arxval signal is asserted, as soon as the first 64-byte
block of a packet (or the full packet if it is smaller than 64 bytes) is ready to be read
from the receive buffer. Refer to Figure 4–5 on page 4–14 for the Atlantic interface
signals.

For variations that do not implement the Transport layer, to minimize latency, the
RapidIO IP core can start transmitting a packet on the RapidIO link before it is
completely received on the transmit Atlantic interface. The RapidIO IP core also can
start outputting the packet on the receive Atlantic interface before the packet is
completely received from the link partner on the RapidIO interface. In this case, if a

4–18 Chapter 4: Functional Description
Physical Layer

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

packet error is detected after transmission starts from the Atlantic link but before the
entire packet has been received, the receiver Atlantic interface block asserts the arxerr
and arxeop signals and the packet is terminated. User logic should drop and ignore
packets for which the arxerr signal is asserted, because the content of these packets is
not reliable.

Similarly, if the user logic must abort the transmission of a packet that it has started to
transfer to the RapidIO IP core through the transmit Atlantic interface, the user logic
must assert the atxerr and atxeop signals. If the packet transmission has already
started on the RapidIO port, the packet is aborted with a stomp control symbol.

The transmit Atlantic interface has an additional output signal, atxovf, which
indicates a transmit buffer overflow condition. If, in an attempt to start transmitting a
new packet, the user logic asserts atxena and atxsop three clock cycles or more after
atxdav is deasserted, the Atlantic-interface transmit block drops the packet, asserts
atxovf, and ignores further input until the next assertion of atxsop and atxena.

The Atlantic interface uses the arxerr signal to indicate the current packet being sent
to the receive Atlantic interface is invalid. As an Atlantic signal, the arxerr signal is
synchronous to arxclk and is only valid when arxval is asserted. When asserted,
arxerr stays asserted until the end of the packet when arxeop is asserted. The arxerr
signal can be asserted for the following reasons:

■ CRC error—When a CRC error is detected, the packet_crc_error signal is
asserted for one rxclk clock period. If the packet size is at least 64 bytes, the
arxerr signal is asserted. If the packet size is less than 64 bytes, the errored packet
does not reach the receive Atlantic interface.

■ Stomp—The arxerr signal is asserted if a stomp control symbol is received in the
midst of a packet, causing it to be prematurely terminated. If the packet was
interrupted because of a packet-retry control symbol, the arxerr signal is also
asserted for any packet received between the stomp symbol and the following
restart-from-retry symbol.

■ Packet size—If a received packet exceeds the allowable size, it is cut short to the
maximum allowable size (276 bytes total), and arxerr and arxeop are asserted on
the last word.

■ Outgoing symbol buffer full—Under some congestion conditions, there may be no
space in the outgoing symbol buffer for the packet_accepted symbol. In this case,
the packet cannot be acknowledged and must be retried. Thus, arxerr is asserted
to indicate to the downstream circuit that the received packet should be ignored
because it will be retried.

■ Symbol error —If an embedded symbol is errored, arxerr is asserted and the
packet in which it is embedded should be retransmitted by the far end as part of
the error recovery process.

■ Character error—If an errored character (an invalid 10-bit code, or a character of
wrong disparity) or an invalid character (any control character other than the
non-delimiting Start of Control (SC) character inside a packet) is received within a
packet, the arxerr and arxeop signals are asserted and the rest of the packet is
dropped.

Chapter 4: Functional Description 4–19
Physical Layer

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Atlantic Interface Receive Buffer and Control Block
The Atlantic-interface receiver block accepts packet data from the low-level interface
receiver module and stores the data in its receive buffer. The receiver buffer is
partitioned into 64-byte blocks that are allocated from a free queue and returned to the
free queue when no longer needed. As many as five 64-byte blocks may be required to
store a packet.

Priority Threshold Values
The Atlantic-interface receiver block implements the RapidIO specification deadlock
prevention rules by accepting or retrying packets based on three programmable
threshold levels, called Priority Threshold values. The algorithm uses the packet’s
priority field value. The block determines whether to accept or retry a packet based on
its priority, the threshold values, and the number of free blocks available in the
receiver buffer, using the following rules:

■ Packets of priority 0 (lowest priority) are retried if the number of available free
64-byte blocks is less than the Priority 0 Threshold.

■ Packets of priority 1 are retried only if the number of available free 64-byte blocks
is less than the Priority 1 Threshold.

■ Packets of priority 2 are retried only if the number of available free 64-byte blocks
is less than the Priority 2 Threshold.

■ Packets of priority 3 (highest priority) are retried only if the receiver buffer is full.

The default threshold values are:

■ Priority 2 Threshold = 10

■ Priority 1 Threshold = 15

■ Priority 0 Threshold = 20

You can specify other threshold values by turning off Auto-configured from receiver
buffer size on the Physical Layer page in the RapidIO parameter editor.

The RapidIO parameter editor enforces the following constraints to ensure the
threshold values increase monotonically by at least the maximum size of a packet, as
required by the deadlock prevention rules:

■ Priority 2 Threshold > 9

■ Priority 1 Threshold > Priority 2 Threshold + 4

■ Priority 0 Threshold > Priority 1 Threshold + 4

■ Priority 0 Threshold < Number of available buffers

4–20 Chapter 4: Functional Description
Physical Layer

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure 4–6 shows sample threshold values in context to illustrate how they work
together to enforce the deadlock prevention rules.

Receive Buffer
The receive buffer provides clock decoupling between the two clock domains in the
Atlantic-interface receiver block. You can specify a value of 4, 8, 16, or 32 KBytes to
configure the receive buffer size.

The following fatal errors cause the receive buffer to be flushed and any stored
packets to be lost:

■ Receive a port-response control symbol with the port_status set to Error.

■ Receive a port-response control symbol with the port_status set to OK but the
ackid_status set to an ackID that is not pending (transmitted but not
acknowledged yet).

■ Transmitter times out while waiting for link-response.

Figure 4–6. Receiver Threshold Levels

Start retrying priority 0 packets

Start retrying priority 1 packets

Priority 0 Threshold

Priority 1 Threshold

Priority 2 ThresholdStart retrying priority 2 packets

Retry priority 3 packets Buffer Full

Chapter 4: Functional Description 4–21
Physical Layer

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ Receiver times out while waiting for link-request.

The following event also causes the receive buffer to be flushed, and any stored
packets to be lost:

■ Receive four consecutive link-request control symbols with the cmd set to reset-
device.

Atlantic Interface Transmit Buffer and Control Block
The Atlantic-Interface transmitter block accepts packet data from the Atlantic
interface and stores it in the transmit buffer for the RapidIO link low-level interface
transmitter.

To meet the RapidIO specification requirements for packet priority handling and
deadlock avoidance, the Atlantic-interface transmitter block includes four transmit
queues and four retransmit queues, one for each priority level.

Transmit and Retransmit Queues
As packets are written to the transmitter's Atlantic interface, they are added to the end
of the appropriate priority transmit queue. The transmitter always transmits the
packet at the head of the highest priority nonempty queue. After being transmitted,
the transmit buffer moves the packet to the corresponding priority retransmit queue.

When a packet-accepted control symbol is received for a non-acknowledged
transmitted packet, the transmit buffer block removes the accepted packet from its
retransmit queue.

If a packet-retry control symbol is received, all of the packets in the retransmit
queues are returned to the head of the corresponding transmit queues. The
transmitter sends a restart-from-retry symbol, and the transmission resumes with
the highest priority packet available, possibly not the same packet that was originally
transmitted and retried. If higher priority packets have been written to the Atlantic
interface since the retried packet was originally transmitted, they are chosen
automatically to be transmitted before lower priority packets are retransmitted.

The Physical layer protocol and flow control engine ensures that a maximum of 31
unacknowledged packets are transmitted, and that the ackIDs are used and
acknowledged in incrementing order.

Transmit Buffer
The transmit buffer is the main memory in which the packets are stored before they
are transmitted. The buffer is partitioned into 64-byte blocks to be used on a
first-come, first-served basis by the transmit and retransmit queues.

The following fatal errors cause the transmit buffer to be flushed, and any stored
packets to be lost:

■ Receive a link-response control symbol with the port_status set to Error.

■ Receive a link-response control symbol with the port_status set to OK but the
ackid_status set to an ackID that is not pending (transmitted but not
acknowledged yet).

■ Transmitter times out while waiting for link-response.

4–22 Chapter 4: Functional Description
Transport Layer

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

■ Receiver times out while waiting for link-request.

The following event also causes the transmit buffer to be flushed, and any stored
packets to be lost:

■ Receive four consecutive link-request control symbols with the cmd set to
reset-device.

Forced Compensation Sequence Insertion
As packet data is written to the transmit Atlantic interface, it is stored in 64-byte
blocks. To minimize the latency introduced by the RapidIO IP core, transmission of
the packet starts as soon as the first 64-byte block is available (or the end of the packet
is reached, for packets shorter than 64 bytes). Should the next 64-byte block not be
available by the time the first one has been completely transmitted, status control
symbols are inserted in the middle of the packet instead of idles as the true idle
sequence can be inserted only between packets and cannot be embedded inside a
packet. Embedding these status control symbols along with other symbols, such as
packet-accepted symbols, causes the transmission of the packet to be stretched in
time.

The RapidIO specification requires that compensation sequences be inserted every
5,000 code groups or columns, and that they be inserted only between packets. The
RapidIO IP core checks whether the 5,000 code group quota is approaching before the
transmission of every packet and inserts a compensation sequence when the number
of code groups or columns remaining before the required compensation sequence
insertion falls below a specified threshold.

The threshold is chosen to allow time for the transmission of a packet of maximum
legal size—276 bytes—even if it is stretched by the insertion of a significant number of
embedded symbols. The threshold assumes a maximum of 37 embedded symbols, or
148 bytes, which is the number of status control symbols that are theoretically
embedded if the traffic in the other direction consists of minimum-sized packets.

Despite these precautions, in some cases—for example when using an extremely slow
transmit Atlantic or Avalon clock—the transmission of a packet can be stretched
beyond the point where a RapidIO link protocol compensation sequence must be
inserted. In this case, the packet transmission is aborted with a stomp control symbol,
the compensation sequence is inserted, and normal transmission resumes.

When the receive side receives the stomped packet, it marks it as errored by asserting
arxerr. No traffic is lost and no protocol violation occurs, but an unexpected arxerr
assertion occurs.

Transport Layer
The Transport layer is an optional module of the RapidIO IP core. It is intended for
use in an endpoint processing element and must be used with at least one Logical
layer module or the Avalon-ST pass-through interface.

When you create a RapidIO IP core variation using the parameter editor, you can turn
on Enable Transport Layer, as described in “Transport Layer” on page 3–7.

If you do not turn on Enable Transport Layer, you define a Physical-layer-only
variation. If you create a variation without a Transport layer, refer to“Physical Layer”
on page 4–12 for more information.

Chapter 4: Functional Description 4–23
Transport Layer

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

If you select Transport Layer, you can optionally turn on the following two additional
parameters:

■ Enable Avalon-ST pass-through interface—If you turn on this parameter, the
Transport layer routes all unrecognized packets to the Avalon-ST pass-through
interface.

■ Disable Destination ID checking by default—If you turn on this parameter,
request packets are considered recognized even if the destination ID does not
match the value programmed in the Base Device ID CSR—Offset: 0x60. This
feature enables the RapidIO IP core to process multi-cast transactions correctly.

1 In the Qsys and SOPC Builder design flows, Transport Layer is enabled automatically
by default, and cannot be disabled.

The Transport layer module is divided into receiver and transmitter submodules.
Figure 4–7 shows a block diagram of the Transport layer module.

Receiver
On the receive side, the Transport layer module receives packets from the Physical
layer. Packets travel through the Rx buffer, and any errored packet is eliminated. The
Transport layer module routes the packets to one of the Logical layer modules or to
the Avalon-ST pass-through interface based on the packet's destination ID, format
type (ftype), and target transaction ID (targetTID) header fields. The destination ID
matches only if the transport type (tt) field matches.

Figure 4–7. Transport Layer Block Diagram

Rx
Buffer

Logical Layer

Rx

scheduler

Tx

Transport
Layer

Physical Layer

Avalon-ST
Pass Through

4–24 Chapter 4: Functional Description
Transport Layer

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Packets with a destination ID different from the content of the relevant Base Device ID
CSR ID field are routed to the Avalon-ST pass-through interface, unless you disable
destination ID checking and the packet is a request packet with a tt field that matches
the device ID width setting of the IP core. If you disable destination ID checking, the
packet is a request packet with a supported ftype, and the tt field matches the device
ID width setting of the current RapidIO IP core, the packet is routed to the
appropriate Logical layer.

■ Packets with unsupported ftype are routed to the Avalon-ST pass-through
interface. Request packets with a supported ftype and a tt value that matches the
RapidIO IP core’s device ID width, but an unsupported ttype are routed to the
Logical layer supporting the ftype. The Logical layer module then performs the
following tasks:

■ Sends an ERROR response for request packets that require a response.

■ Records an unsupported_transaction error in the Error Management
extension registers.

■ Packets that would be routed to the Avalon-ST pass-through interface, in the case
that the RapidIO IP core does not implement an Avalon-ST pass-through interface,
are dropped. In this case, the Transport layer module asserts the
rx_packet_dropped signal.

■ ftype=13 response packets are routed based on the value of their target
transaction ID (targetTID) field. Each Logical layer module is assigned a range of
transaction IDs (Table 4–7 specifies these ranges). If the transaction ID of a
received response packet is not within one of the ranges assigned to one of the
enabled Logical layer modules, the packet is routed to the pass-through interface.

Packets marked as errored by the Physical layer's assertion of arxerr (for example,
packets with a CRC error or packets that were stomped) are filtered out and dropped
from the stream of packets sent to the Logical layer modules or pass-through
interface. In these cases, the rx_packet_dropped output signal is not asserted.

Transaction ID Ranges
To limit the required storage, a single pool of transaction IDs is shared between all
destination IDs, although the RapidIO specification allows for independent pools for
each Source-Destination pair. Further simplifying the routing of incoming ftype=13
response packets to the appropriate Logical layer module, the Input-Output
Avalon-MM slave module and the Doorbell Logical layer module are each assigned
an exclusive range of transaction IDs that no other Logical layer module can use for
transmitted request packets that expect an ftype=13 response packet. Table 4–7 shows
the transaction ID ranges assigned to various Logical layers.

Table 4–7. Transaction ID Ranges and Assignments (Part 1 of 2)

Range Assignments

0–63 This range of Transaction IDs is used for ftype=8 responses by the Maintenance Logical layer
Avalon-MM slave module.

64–127 ftype=13 responses in this range are reserved for exclusive use by the Input-Output Logical layer
Avalon-MM slave module.

Chapter 4: Functional Description 4–25
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Response packets of ftype=13 with transaction IDs outside the 64–143 range are
routed to the Avalon-ST pass-through interface. Transaction IDs in the 0-63 range
should not be used if the Maintenance Logical layer Avalon-MM slave module is
instantiated because their use might cause the uniqueness of transaction ID rule to be
violated.

If the Input-Output Avalon-MM slave module or the Doorbell Logical layer module is
not instantiated, response packets in the corresponding Transaction IDs ranges for
these layers are routed to the Avalon-ST pass-through interface.

Transmitter
On the transmit side, the Transport layer module uses a round-robin scheduler to
select the Logical layer module to transmit packets. The Transport layer polls the
various Logical layer modules to determine whether a packet is available. When a
packet is available, the Transport layer transmits the whole packet, and then continues
polling the next logical modules.

In a variation with a user-defined Logical layer connected to the Avalon-ST
pass-through interface, you can abort the transmission of an errored packet by
asserting the Avalon-ST pass-through interface gen_tx_error signal and
gen_tx_endofpacket.

f For more information about the Transport layer, refer to Part 3: Common Transport
Specification of the RapidIO Interconnect Specification, Revision 2.1.

Logical Layer Modules
This section describes the features of the Logical layers, and how they integrate and
interact with the Transport and Physical layers to create the three-layer RapidIO
protocol. Figure 4–8 shows a high-level block diagram of the Logical layer, which
consists of the following modules:

■ Concentrator module that consolidates register access.

■ Maintenance module that initiates and terminates MAINTENANCE transactions.

■ I/O slave and master modules that initiate and terminate NREAD, NWRITE, SWRITE,
and NWRITE_R transactions.

■ Doorbell module that transacts RapidIO DOORBELL messages.

128–143 ftype=13 responses in this range are reserved for exclusive use by the Doorbell Logical layer module.

144–255 This range of Transaction IDs is currently unused and is available for use by Logical layer modules
connected to the pass-through interface.

Table 4–7. Transaction ID Ranges and Assignments (Part 2 of 2)

Range Assignments

4–26 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Concentrator Register Module
The Concentrator module provides an Avalon-MM slave interface that accesses all
configuration registers in the RapidIO IP core, including the CARs and CSRs. The
configuration registers are distributed among the implemented Logical layer modules
and the Physical layer module. Figure 4–9 shows how the Concentrator module
provides access to all the registers, which are implemented in different Logical layer
modules. The Concentrator module is automatically included when you include the
Transport layer.

Figure 4–8. RapidIO IP Core Functional Block Diagram

Transport Layer

Physical Layer

System
Maintenance

Maintenance

Avalon-MM

M SS

I/O Slave

RDWR

Doorbell

S

I/O Master

RDWR RD

Concentrator

CSRs
 and
CARs

Legend
S = Slave port
M = Master port
WR = Write port
RD = Read port

SRC

SRC = Source

Logical Layer

RapidIO

Sink

= Dashed lines represent access to register values as shown in Figure 4-9

Maintenance
Master/Slave
Avalon-MM

Input/Output
Master

Avalon-MM

Input/Output
Slave

Avalon-MM

Doorbell
Message

Avalon-MM
Avalon-ST

Pass-Through

Chapter 4: Functional Description 4–27
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

1 Registers in the Doorbell Logical layer module are not accessed through the
Concentrator. Instead, they are accessed directly through the Doorbell module's
Avalon-MM slave interface.

The Concentrator module provides access to the Avalon-MM slave interface and the
RapidIO IP core register set. The interface supports simple reads and writes with
variable latency. Accesses are to 32-bit words addressed by a 17-bit wide byte address.
When accessed, the lower 2 bits of the address are ignored and assumed to be 0, which
aligns the transactions to 4-byte words. The interface supports an interrupt line,
sys_mnt_s_irq. When enabled, the following interrupts assert the sys_mnt_s_irq
signal:

■ Received port-write

■ I/O read out of bounds

■ I/O write out of bounds

■ Invalid write

■ Invalid write burstcount

For details on these and other interrupts, refer to Table 6–26 on page 6–17 and
Table 6–27 on page 6–18.

Figure 4–10 and Figure 4–11 show different ways to access the RapidIO registers.

A local host can access these registers using one of the following methods:

■ Qsys interconnect

■ SOPC Builder system interconnect fabric

■ Custom logic

Figure 4–9. Concentrator Module Provides Configuration Register Access

CARs
and

CSRs

I/O Master I/O SlaveConcentrator

Transport Layer

Physical Layer

Transport Layer

Maintenance

Avalon Slave

System Maintenance
Avalon-MM Slave

4–28 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

A local host can access the RapidIO registers from a Qsys or SOPC Builder system as
illustrated in Figure 4–10. In this figure, a Nios II processor is part of the SOPC Builder
system and is configured as an Avalon-MM master that accesses the RapidIO IP core
registers through the System Maintenance Avalon-MM slave. Alternatively, you can
implement custom logic to access the RapidIO registers as shown in Figure 4–11.

f For implementation details, refer to the SOPC Builder User Guide or the System Design
with Qsys section in volume 1 of the Quartus II Handbook.

Figure 4–10. Local Host Accesses RapidIO Registers from an SOPC Builder System

Maintenance

Master

CARs
and

CSRs

Nios II
Processor

System Interconnect Fabric

SOPC Builder System

I/O Master I/O SlaveConcentrator

System
Maintenance

Avalon-MM Slave

Transport Layer

Physical Layer

Transport Layer

Chapter 4: Functional Description 4–29
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

A remote host can access the RapidIO registers by sending MAINTENANCE transactions
targeted to this local RapidIO IP core. The Maintenance module processes
MAINTENANCE transactions. If the transaction is a read or write, the operation is
presented on the Maintenance Avalon-MM master interface. This interface must be
routed to the System Maintenance Avalon-MM slave interface. This routing can be
done with a Qsys or SOPC Builder system shown by the routing to the Concentrator's
system Maintenance Avalon-MM slave in Figure 4–10. If you do not use a Qsys or
SOPC Builder system, you can create custom logic as shown in Figure 4–11.

Maintenance Module
The Maintenance module is an optional component of the I/O Logical layer. The
Maintenance module processes MAINTENANCE transactions, including the following
transactions:

■ Type 8 – MAINTENANCE reads and writes

■ Type 8 – Port-write packets

Figure 4–11. Custom Logic Accesses RapidIO IP core Registers

CARs
and

CSRs

Custom Logic

I/O Master I/O Slave Concentrator

System
Maintenance

Avalon-MM Slave

Transport Layer

Physical Layer

Transport Layer

Maintenance

Master

local processor interface

4–30 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

When you create your custom RapidIO IP core variation in the parameter editor, you
have the four choices for this module shown in Table 4–8.

1 If you add this module to your variation and select an Avalon-MM Slave interface,
you must also select a Number of Tx address translation windows. A minimum of
one window is required and a maximum of 16 windows are available.

For more information, refer to “Input/Output Maintenance Logical Layer Module”
on page 3–8.

Figure 4–12 shows a high-level block diagram of the Maintenance module and the
interfaces to other supporting modules. The Maintenance module can be segmented
into the following four major submodules:

■ Maintenance register

■ Maintenance slave processor

■ Maintenance master processor

■ Port-write processor

The following interfaces are supported:

■ Avalon-MM slave interface—User-exposed interface

■ Avalon-MM master interface—User-exposed interface

■ Tx interface—Internal interface used to communicate with the Transport layer

■ Rx interface—Internal interface used to communicate with the Transport layer

■ Register interface—Internal interface used to communicate with the Concentrator
Module

Table 4–8. Maintenance Logical Layer Interface Options

Option Use

Avalon-MM Master and
Slave Allows your IP core to initiate and terminate MAINTENANCE transactions

Avalon-MM Master Restricts your IP core to terminating MAINTENANCE transactions

Avalon-MM Slave Restricts your IP core to initiating MAINTENANCE transactions

None Prevents your IP core from initiating or terminating MAINTENANCE transactions

Chapter 4: Functional Description 4–31
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Maintenance Register
The Maintenance Register module implements all of the control and status registers
required by this module to perform its functions. These include registers described in
Table 6–26 on page 6–17 through Table 6–32 on page 6–19. These registers are
accessible through the System Maintenance Avalon-MM interface.

Maintenance Slave Processor
The Maintenance Slave Processor module performs the following tasks:

■ For an Avalon read, composes the RapidIO logical header fields of a MAINTENANCE
read request packet

■ For an Avalon write, composes the RapidIO logical header fields of a MAINTENANCE
write request packet

■ Maintains status related to the composed MAINTENANCE packet

■ Presents the composed MAINTENANCE packet to the Transport layer for transmission

The Avalon-MM slave interface allows you to initiate a MAINTENANCE read or write
operation. The Avalon-MM slave interface supports the following Avalon transfers:

■ Single slave write transfer with variable wait-states

■ Pipelined read transfers with variable latency

1 At any time, there can be a maximum of 64 outstanding MAINTENANCE requests that can
be MAINTENANCE reads, MAINTENANCE writes, or port-write requests.

f Refer to the Avalon Interface Specifications for more details on the supported transfers.

Figure 4–12. Maintenance Module Block Diagram

Transport Layer

maintenance
register

Register
InterfaceConcentrator

System Maintenance
Avalon-MM Slave Interface

slave
processor

master
processor

port_write
processor

Avalon-MM
Slave

Avalon-MM
Slave

Avalon-MM
Master

Tx Interface Rx Interface

Maintenance
Avalon-MM Slave

Interface

Maintenance
Avalon-MM Master

Interface

4–32 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure 4–13 shows the signal relationships for four write transfers on the Avalon-MM
slave interface.

Figure 4–14 shows the signal relationships for two read transfers on the Avalon-MM
interface.

Reads and writes on the Avalon-MM slave interface are converted to RapidIO
maintenance reads and writes. The following fields of a MAINTENANCE type packet are
assigned by the Maintenance module:

■ prio

■ tt

■ ftype is assigned a value of 4'b1000

■ dest_id

■ src_id

■ ttype is assigned a value of 4'b0000 for reads and a value of 4'b0001 for writes

■ rdsize/wrsize field is fixed at 4'b1000, because only 4-byte reads and writes are
supported

■ source_tid

Figure 4–13. Write Transfers on the Avalon-MM Slave Interface

Note to Figure 4–13:

(1) Refer to Table 5–3 on page 5–2 for the system clock signal names in the MegaWizard Plug-in Manager, Qsys, and SOPC Builder design flows.

system clock (1)

mnt_s_chipselect

mnt_s_waitrequest

mnt_s_write

mnt_s_address

mnt_s_writedata

0x4 0x8 0xC 0x10

32’hACACACAC 32’h5C5C5C5C 32’hBEEFBEEF 32’hFACEFACE

Figure 4–14. Read Transfers on the Avalon-MM Slave Interface

mnt_s_chipselect

mnt_s_read

mnt_s_address

mnt_s_readdata

mnt_s_readerror

0x14 0x4C

system clock

mnt_s_readdatavalid

mnt_s_waitrequest

Chapter 4: Functional Description 4–33
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ hop_count

■ config_offset is generated by using the values programmed in the Tx
Maintenance Address Translation Window registers, as described in Table 6–28
through Table 6–35.

■ wdptr

Each window is enabled if the window enable (WEN) bit of the Tx Maintenance Window
n Mask register (Table 6–30 on page 6–19) is set. Each window is defined by the
following registers:

■ A base register: Tx Maintenance Mapping Window n Base (Table 6–29 on page 6–19)

■ A mask register: Tx Maintenance Mapping Window n Mask (Table 6–30)

■ An offset register: Tx Maintenance Mapping Window n Offset (Table 6–31)

■ A control register: Tx Maintenance Mapping Window n Control (Table 6–32)

For each defined and enabled window, the Avalon-MM address's least significant bits
are masked out by the window mask and the resulting address is compared to the
window base. If the addresses match, config_offset is created based on the
following equation:

If (mnt_s_address & mask) == base
then config_offset = (offset[23:3] & mask[23:3])|

 (mnt_s_address[23:3] & ~mask[23:3])

where:

■ mnt_s_address[31:0] is the Avalon-MM slave interface address

■ config_offset[20:0] is the outgoing RapidIO register double-word offset

■ base[31:0] is the base address register

■ mask[31:0] is the mask register

■ offset[23:0] is the window offset register

If the address matches multiple windows, the lowest number window register set is
used.

The following fields are inserted from the control register of the mapping window
that matches.

■ prio

■ dest_id

■ hop_count

The tt value is determined by your selection of device ID width at the time you create
this RapidIO IP core variation. The source_tid is generated internally and the wdptr
is assigned the negation of mnt_s_address[2].

For a MAINTENANCE Avalon-MM slave write, the value on the mnt_s_writedata[31:0]
bus is inserted in the payload field of the MAINTENANCE write packet.

4–34 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Maintenance Master Processor
This module performs the following tasks:

■ For a MAINTENANCE read, converts the received request packet to an Avalon read
and presents it across the Maintenance Avalon-MM master interface.

■ For a MAINTENANCE write, converts the received request packet to an Avalon write
and presents it across the Maintenance Avalon-MM master interface.

■ Performs accounting related to the received RapidIO MAINTENANCE read or write
operation.

■ For each MAINTENANCE request packet received from remote endpoints, generates a
Type 8 Response packet and presents it to the Transport layer for transmission.

The Avalon-MM master interface supports the following Avalon transfers:

■ Single master write transfer

■ Pipelined master read transfers

f Refer to Avalon Interface Specifications for details on the supported transfers.

Figure 4–15 shows the signal relationships for a sequence of four write transfers on
the Maintenance Avalon-MM master interface.

Figure 4–16 shows the signal relationships for a sequence of three read requests
presented on the Maintenance Avalon-MM master interface.

Figure 4–15. Write Transfers on the Maintenance Avalon-MM Master Interface

Note to Figure 4–15:

(1) Refer to Table 5–3 on page 5–2 for the system clock signal names in the MegaWizard Plug-in Manager, Qsys, and SOPC Builder design flows.

4 8 C 10

ACACACAC 5C5C5C5C BEEFBEEF FACEFACE

mnt_m_write

mnt_m_writedata

mnt_m_address

mnt_m_waitrequest

system clock

Figure 4–16. Timing of a Read Request on the Maintenance Avalon-MM Master Interface

mnt_m_read

mnt_m_address

mnt_m_readdatavalid

mnt_m_readdata

 system clock

0x10 0x14 0x18

mnt_m_waitrequest

Chapter 4: Functional Description 4–35
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

When a MAINTENANCE packet is received from a remote device, it is first processed by
the Physical layer. After the Physical layer processes the packet, it is sent to the
Transport layer. The Maintenance module receives the packet on the Rx interface. The
Maintenance module extracts the fields of the packet header and uses them to
compose the read or write transfer on the Maintenance Avalon-MM master interface.
The following packet header fields are extracted:

■ ttype

■ rdsize/wrsize

■ wdptr

■ config_offset

■ payload

The Maintenance module only supports single 32-bit word transfers, that is, rdsize
and wrsize = 4’b1000; other values cause an error response packet to be sent.

The wdptr and config_offset values are used to generate the Avalon-MM address.
The following expression is used to derive the address:

mnt_m_address = {rx_base, config_offset, wdptr, 2'b00}

where rx_base is the value programmed in the Rx Maintenance Mapping register at
location 0x10088 (Table 6–28 on page 6–18).

The payload is presented on the mnt_m_writedata[31:0] bus.

Port-Write Processor
The port-write processor performs the following tasks:

■ Composes the RapidIO logical header of a MAINTENANCE port-write request
packet.

■ Presents the port-write request packet to the Transport layer for transmission.

■ Processes port-write request packets received from a remote device.

■ Alerts the user of a received port-write using the sys_mnt_s_irq signal.

The port-write processor is controlled through the use of the registers that are
described in the following sections:

■ “Transmit Port-Write Registers” on page 6–19

■ “Receive Port-Write Registers” on page 6–20

Port-Write Transmission

To send a port-write to a remote device, you must program the transmit port-write
control and data registers. The Tx Port Write Control register is described in
Table 6–33 on page 6–20 and the Tx Port Write Buffer is described in Table 6–35 on

4–36 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

page 6–20. These registers are accessed using the System Maintenance Avalon-MM
slave interface. The following header fields are supplied by the values stored at the Tx
Port Write Control register:

■ DESTINATION_ID

■ priority

■ wrsize

The other fields of the MAINTENANCE port-write packet are assigned as follows. The
ftype is assigned a value of 4'b1000 and the ttype field is assigned a value of
4'b0100. The wdptr and wrsize fields of the transmitted packet are calculated from
the size of the payload to be sent as defined by the size field of the Tx Port Write
Control register. The source_tid and config_offset are reserved and set to zero.

The payload is written to a Tx Port Write Buffer starting at address 0x10210. This
buffer can store a maximum of 64 bytes. The port-write processor starts the packet
composition and transmission process after the PACKET_READY bit in the Tx Port Write
Control register is set. The composed Maintenance port-write packet is sent to the
Transport layer for transmission.

Port-Write Reception

The Maintenance module receives a MAINTENANCE packet on the Rx Atlantic interface
from the Transport layer. The port-write processor handles MAINTENANCE packets with
a ttype value set to 4'b0100. The port-write processor extracts the following fields
from the packet header and uses them to write the appropriate content to registers Rx
Port Write Control (Table 6–36 on page 6–20) through Rx Port Write Buffer
(Table 6–38 on page 6–21):

■ wrsize

■ wdptr

■ payload

The wrsize and the wdptr determine the value of the PAYLOAD_SIZE field in the Rx
Port Write Status register (Table 6–37 on page 6–21). The payload is written to the
Rx Port Write Buffer starting at address 0x10260. A maximum of 64 bytes can be
written. While the payload is written to the buffer, the PORT_WRITE_BUSY bit of the Rx
Port Write Status register remains asserted. After the payload is completely written
to the buffer, the interrupt signal sys_mnt_s_irq is asserted by the Concentrator on
behalf of the Port Write Processor. The interrupt is asserted only if the
RX_PACKET_STORED bit of the Maintenance Interrupt Enable register (Table 6–27 on
page 6–18) is set.

Maintenance Module Error Handling
The Maintenance Interrupt register (at 0x10080) and the Maintenance Interrupt
Enable register (at 0x10084), described in Table 6–26 and Table 6–27, determine the
error handling and reporting for MAINTENANCE packets.

Chapter 4: Functional Description 4–37
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

The following errors can also occur for MAINTENANCE packets:

■ A MAINTENANCE read or MAINTENANCE write request time-out occurs and a
PKT_RSP_TIMEOUT interrupt (bit 24 of the Logical/Transport Layer Error Detect
CSR, described in Table 6–52 on page 6–26) is generated if a response packet is not
received within the time specified by the Port Response Time-Out Control
register (Table 6–7 on page 6–6).

■ The IO_ERROR_RSP (bit 31 of the Logical/Transport Layer Error Detect CSR) is set
when an ERROR response is received for a transmitted MAINTENANCE packet.

For information about how the time-out value is calculated, refer to Table 6–7 on
page 6–6.

For more information about the error management registers, refer to Table 6–52 on
page 6–26.

Input/Output Logical Layer Modules
This section describes the following Input/Output Logical layer modules:

■ “Input/Output Avalon-MM Master Module”

■ “Input/Output Avalon-MM Slave Module” on page 4–45

Input/Output Avalon-MM Master Module
The Input/Output (I/O) Avalon-MM master Logical layer module receives RapidIO
read and write request packets from a remote endpoint through the Transport layer
module. The I/O Avalon-MM master module translates the request packets into
Avalon-MM transactions, and creates and returns RapidIO response packets to the
source of the request through the Transport layer. Figure 4–17 shows a block diagram
of the I/O Avalon-MM master Logical module and its interfaces.

1 The I/O Avalon-MM master module is referred to as a master module because it is an
Avalon-MM interface master.

To maintain full-duplex bandwidth, two independent Avalon-MM interfaces are used
in the I/O master module—one for read transactions and one for write transactions.

4–38 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

The I/O Avalon-MM master module can process a mix of as many as seven NREAD or
NWRITE_R requests simultaneously. If the Transport layer module receives an NREAD or
NWRITE_R request packet while seven requests are already pending in the I/O
Avalon-MM master module, the new packet remains in the Transport layer until one
of the pending transactions completes.

Input/Output Avalon-MM Master Address Mapping Windows

Address mapping or translation windows are used to map windows of 34-bit
RapidIO addresses into windows of 32-bit Avalon-MM addresses. Table 4–9 lists the
registers used for address translation.

Your variation must have at least one translation window. You can change the values
of the window defining registers at any time. You should disable a window before
changing its window defining registers.

A window is enabled if the window enable (WEN) bit of the I/O Master Mapping
Window n Mask register is set.

The number of mapping windows is defined by the Number of receive address
translation windows parameter, which supports up to 16 sets of registers. Each set of
registers supports one address mapping window.

Figure 4–17. I/O Master Block Diagram

Transport Side
TX

Interface
32 or 64 bits

Transport Side
 RX

Interface
32 or 64 bits

Tx

Sink

Source
Read

Master

Write
Master

io_m_rd_readdata

io_m_rd_readdatavalid

io_m_rd_read

io_m_rd_waitrequest

io_m_rd_address

io_m_rd_burstcount

io_m_rd_readerror

io_m_wr_writedata

io_m_wr_write

io_m_wr_waitrequest

io_m_wr_address

io_m_wr_burstcount

io_m_wr_ byteenable
 Rx

Datapath Read
Avalon-MM Interface
32 or 64 bits

Datapath Write
Avalon-MM Interface
32 or 64 bits

Table 4–9. Address Translation Registers

Registers Location

Input/Output master base address Table 6–39 on page 6–21

Input/Output master address mask Table 6–40 on page 6–21

Input/Output master address offset Table 6–41 on page 6–22

Chapter 4: Functional Description 4–39
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

For each window that is defined and enabled, the least significant bits of the incoming
RapidIO address are masked out by the window mask and the resulting address is
compared to the window base. If the addresses match, the Avalon-MM address is
made of the least significant bits of the RapidIO address and the window offset using
the following equation:

Let rio_addr[33:0] be the 34-bit RapidIO address, and address[31:0] the local
Avalon-MM address.

Let base[31:0], mask[31:0] and offset[31:0] be the three window-defining
registers. The least significant three bits of these registers are always 3’b000.

Starting from window 0, for the first window in which
((rio_addr & {xamm, mask}) == ({xamb, base} & {xamm, mask}),

where xamm and xamb are the Extended Address MSB fields of the I/O Master Mapping
Window n Mask and the I/O Master Mapping Window n Base registers, respectively,

let address[31:3] = (offset[31:3] & mask[31:3]) |
(rio_addr[31:3] & ~mask[31:3])

The value of address[2] is zero for variations with 64-bit wide datapath Avalon-MM
interfaces.

The value of address[2] is determined by the values of wdptr and rdsize or wrsize
for variations with 32-bit wide datapath Avalon-MM interfaces.

The value of address[1:0] is always zero.

For each received NREAD or NWRITE_R request packet that does not match any enabled
window, an ERROR response packet is returned.

4–40 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure 4–18 shows a block diagram of the I/O master‘s window translation.

RapidIO Packet Data wdptr and Data Size Encoding in Avalon-MM
Transactions
The RapidIO IP core converts RapidIO packets to Avalon-MM transactions. The
RapidIO packets’ read size, write size, and word pointer fields are translated to the
Avalon-MM burst count and byteenable values.

Figure 4–18. I/O Master Window Translation

Initial
RapidIO Address

0x000000000x000000000

Base

Offset

Window

0xFFFFFFF8

0x3FFFFFFF8

Don’t Care

Don’t Care

33

Window Base

Window Mask

Window Offset

Resulting
Avalon-MM Address

023

023

31

31

XAMB

XAMM

(1)

(1)

Avalon-MM
Address Space

RapidIO
Address Space

Window Size

11111111.........................11000000000000000..............00

Chapter 4: Functional Description 4–41
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

For information about the burst count values determined in the conversion process
for read transactions, refer to Table 4–10. For information about the burst count and
byteenable values determined in the conversion process for 32-bit datapath write
transactions, by RapidIO IP core 1× variations, refer to Table 4–11. For information
about the burst count and byteenable values determined in the conversion process for
64-bit datapath write transactions, by RapidIO IP core 4× variations, refer to
Table 4–12.

Table 4–10. Avalon-MM I/O Master Read Transaction Burstcount (32-bit or 64-bit datapath)

RapidIO Values Avalon-MM Burstcount Value

rdsize
(4'bxxxx)

wdptr
(1'bx) in 32-Bit Datapath In 64-Bit Datapath

0000 0 1 1
1 1 1

0001 0 1 1
1 1 1

0010 0 1 1
1 1 1

0011 0 1 1
1 1 1

0100 0 1 1
1 1 1

0101 0 1 1
1 1 1

0110 0 1 1
1 1 1

0111 0 2 1
1 2 1

1000 0 1 1
1 1 1

1001 0 2 1
1 2 1

1010 0 2 1
1 2 1

1011 0 2 1
1 4 2

1100 0 8 4
1 16 8

1101 0 24 12
1 32 16

1110 0 40 20
1 48 24

1111 0 56 28
1 64 32

4–42 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 4–11 lists the allowed write-request conversions for RapidIO IP core 1×
variations.

Table 4–11. RapidIO Master Write Transaction Burstcount and Byteenable (32-Bit Datapath)

RapidIO Values Avalon-MM Values

wrsize
(4'bxxxx)

wdptr
(1'bx)

Maximum
Burstcount (1)

Byteenable (8’b0000xxxx)

First Cycle
or

All Cycles

Second Cycle
(If Different)

0000 0 1 1000 —
1 1 1000 —

0001 0 1 0100 —
1 1 0100 —

0010 0 1 0010 —
1 1 0010 —

0011 0 1 0001 —
1 1 0001 —

0100 0 1 1100 —
1 1 1100 —

0101 0 (2) 1 1110 —
1 (2) 1 0111 —

0110 0 1 0011 —
1 1 0011 —

0111 0 2 1000 1111
1 2 1111 0001

1000 0 1 1111 —
1 1 1111 —

1001 0 2 1100 1111
1 2 1111 0011

1010 0 (2) 2 1110 1111
1 (2) 2 1111 0111

1011 0 2 1111 1111
1 4 1111 —

1100 0 8 1111 —
1 16 1111 —

1101 0 (3) — — —
1 32 1111 —

1110 0 (3) — — —
1 (3) — — —

1111 0 (3) — — —
1 64 1111 —

Notes to Table 4–11:

(1) If the maximum burst count is larger than 2, the actual burst count depends on the size of the payload in the
received request packet.

(2) This combination of wdptr and wrsize values should be avoided, because the resulting byteenable value is not
allowed by the Avalon-MM specification.

(3) This combination of wdptr and wrsize values is reserved. If this combination is received, the RapidIO IP core
declares an error.

Chapter 4: Functional Description 4–43
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 4–12 lists the allowed write-request conversions for RapidIO IP core 4×
variations.

Table 4–12. RapidIO Master Write Transaction Burstcount and Byteenable (64-Bit Datapath)

RapidIO Values Avalon-MM Values

wrsize
(4'bxxxx)

wdptr
(1'bx)

Maximum
Burstcount (1) Byteenable (8’bxxxxxxxx)

0000 0 1 1000_0000
1 1 0000_1000

0001 0 1 0100_0000
1 1 0000_0100

0010 0 1 0010_0000
1 1 0000_0010

0011 0 1 0001_0000
1 1 0000_0001

0100 0 1 1100_0000
1 1 0000_1100

0101 0 (2) 1 1110_0000
1 (2) 1 0000_0111

0110 0 1 0011_0000
1 1 0000_0011

0111 0 (2) 1 1111_1000
1 (2) 1 0001_1111

1000 0 1 1111_0000
1 1 0000_1111

1001 0 1 1111_1100
1 1 0011_1111

1010 0 (2) 1 1111_1110
1 (2) 1 0111_1111

1011 0 1 1111_1111
1 2 1111_1111

1100 0 4 1111_1111
1 8 1111_1111

1101 0 (3) — —
1 16 1111_1111

1110 0 (3) — —
1 (3) — —

1111 0 (3) — —
1 32 1111_1111

Notes to Table 4–12:

(1) If the maximum burst count is larger than 2, the actual burst count depends on the size of the payload in the
received request packet.

(2) This combination of wdptr and wrsize values should be avoided, because the resulting byteenable value is not
allowed by the Avalon-MM specification.

(3) This combination of wdptr and wrsize values is reserved. If this combination is received, the RapidIO IP core
declares an error.

4–44 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Input/Output Avalon-MM Master Module Timing Diagrams
Figure 4–19 shows the timing dependencies on the Avalon-MM master interface for
an incoming RapidIO NREAD transaction. Figure 4–20 shows the timing dependencies
on the Avalon-MM master interface for an incoming RapidIO NWRITE transaction.

Both transaction requests are received on the RapidIO link and sent on to the Logical
layer Avalon-MM master module. If the RapidIO link partner is also an Altera
RapidIO IP core, the timing diagrams in “Input/Output Avalon-MM Slave Module
Timing Diagrams” on page 4–56 show the same transactions as they originate on the
Avalon-MM interface of the RapidIO link partner’s Input/Output Avalon-MM slave
module.

Figure 4–19. NREAD Transaction on the Input/Output Avalon-MM Master Interface

Figure 4–20. NWRITE Transaction on the Input/Output Avalon-MM Master Interface

sysclk

io_m_rd_waitrequest

io_m_rd_read

io_m_rd_address[31:0]

io_m_rd_readdatavalid

io_m_rd_readerror

io_m_rd_readdata[31:0]

io_m_rd_burstcount[7:0]

00000000 Adr0 Adr1

r0 r1 r2

00 01 02

sysclk

io_m_wr_waitrequest

io_m_wr_write

io_m_wr_address[31:0]

io_m_wr_writedata[31:0]

io_m_wr_byteenable[3:0]

io_m_wr_burstcount[7:0]

AdrA AdrB

w1 w2 w3 w4 w5w0

F

02 04

Chapter 4: Functional Description 4–45
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Input/Output Avalon-MM Slave Module
The I/O Avalon-MM slave Logical layer module transforms Avalon-MM transactions
to RapidIO read and write request packets that are sent through the Transport and
Physical layer modules to a remote RapidIO processing element where the actual read
or write transactions occur and from which response packets are sent back when
required. Avalon-MM read transactions complete when the corresponding response
packet is received. Figure 4–21 on page 4–46 shows a block diagram of the I/O
Avalon-MM Logical layer slave module and its interfaces.

1 The I/O Avalon-MM slave module is referred to as a slave module because it is an
Avalon-MM interface slave.

1 The maximum number of outstanding transactions (I/O Requests) supported is 26 (14
read requests + 12 write requests).

To maintain full-duplex bandwidth, two independent Avalon-MM interfaces are used
in the I/O slave module—one for read transactions and one for write transactions.

When the read Avalon-MM slave creates a read request packet, the request is sent to
both the Pending Reads buffer to wait for the corresponding response packet, and to
the read request transmit buffer to be sent to the remote processing element through
the Transport layer. When the read response is received, the packet’s payload is used
to complete the read transaction on the read Avalon-MM slave.

For a read operation, one of the following responses occurs:

■ The read was successful. After a response packet is received, the read response
and data are passed from the Pending Reads buffer back through the read
Avalon-MM slave interface.

■ The remote processing element is busy and the request packet is resent.

■ An error or time-out occurs, which causes io_s_rd_readerror to be asserted on
the read Avalon-MM slave interface and some information to be captured in the
Error Management Extension registers.

How the write request is handled depends on the type of write request sent. For
example, unlike a read request, not all write requests send tracking information to the
Pending Writes buffer. NWRITE and SWRITE requests do not send write tracking
information to the Pending Writes buffer. Only write requests such as NWRITE_R, that
require a response, are sent to both the Pending Writes and Transmit buffers. Write
requests are sent through the Transport and Physical layers to the remote processing
element.

4–46 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

An outbound request that requires a response—an NWRITE_R or an NREAD
transaction—is assigned a time-out value that is the sum of the VALUE field of the Port
Response Time-Out Control register (Table 6–7 on page 6–6) and the current value of
a free-running counter. When the counter reaches the time-out value, if the transaction
has not yet received a response, the transaction times out. Refer to Table 6–7 for
information about the duration of the time-out.

If you turn off the I/O read and write order preservation option in the RapidIO
parameter editor, if a read and a write request arrive simultaneously or one clock
cycle apart on the Avalon-MM interfaces, the order of transaction completion is
undefined. However, if you turn on the I/O read and write order preservation option,
the read requests buffer and the write requests buffer shown in Figure 4–21 are
combined, to preserve the relative order of read and write requests that appear on the
Avalon-MM interface.

Keeping Track of I/O Write Transactions

The following three registers are available to software to keep track of I/O write
transactions:

■ The Input/Output Slave Avalon-MM Write Transactions register described in
Table 6–49 on page 6–24 holds a count of the write transactions that have been
initiated on the write Avalon-MM slave interface.

■ The Input/Output Slave RapidIO Write Requests register described in
Table 6–50 on page 6–25 holds a count of the RapidIO write request packets that
have been transferred to the Transport layer.

Figure 4–21. Input/Output Avalon-MM Slave Logical Layer Block Diagram

Data Path
Read

Avalon-MM Bus
32 of 64 bits

Pending Reads

Pending Writes

Read
Avalon-MM Slave

Write
Avalon-MM Slave

Read Request
Buffer

Write Request
Buffer

Tx Interface

From
Transport

Layer

To
Transport

Layer

Sink

Source

Data Path
Write

Avalon-MM Bus
32 of 64 bits

io_s_rd_read
io_s_rd_readdatavalid
io_s_rd_readdata
io_s_rd_address
io_s_rd_burstcount
io_s_rd_readerror
io_s_rd_waitrequest

io_s_wr_write
io_s_wr_writedata
io_s_wr_byteenable
io_s_wr_address
io_s_wr_burstcount
io_s_wr_waitrequest
io_s_wr_chipselect

io_s_rd_chipselect

Chapter 4: Functional Description 4–47
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ The Input/Output Slave Pending NWRITE_R Transactions register described in
Table 6–48 on page 6–24 holds a count of the NWRITE_R requests that have been
issued but have not yet completed.

In addition, the NWRITE_RS_COMPLETED bit of the Input/Output Slave Interrupt
Enable register described in Table 6–47 on page 6–24 controls a maskable interrupt in
the Input/Output Slave Interrupt register described in Table 6–46 on page 6–23 that
can be generated when the final pending NWRITE_R transaction completes.

You can use these registers to determine if a specific I/O write transaction has been
issued or if a response has been received for any or all issued NWRITE_R requests.

Input/Output Avalon-MM Slave Address Mapping Windows

Address mapping or translation windows map windows of 32-bit Avalon-MM
addresses to windows of 34-bit RapidIO addresses, and are defined by sets of the
32-bit registers in Table 4–13.

A base register, a mask register, and an offset register define a window. The control
register stores information used to prepare the packet header on the RapidIO side of
the transaction, including the target device’s destination ID, the request packet's
priority, and selects between the three available write request packet types: NWRITE,
NWRITE_R and SWRITE. Figure 4–22 on page 4–49 illustrates this address mapping.

You can change the values of the window-defining registers at any time, even after
sending a request packet and before receiving its response packet. However, you
should disable a window before changing its window-defining registers. A window is
enabled if the window enable (WEN) bit of the Input/Output Slave Mapping Window n
Mask register is set, where n is the number of the transmit address translation window.

The number of mapping windows is defined by the parameter Number of transmit
address translation windows; up to 16 windows are supported. Each set of registers
supports one external host or entity at a time. Your variation must have at least one
translation window.

For each window that is enabled, the least significant bits of the Avalon-MM address
are masked out by the window mask and the resulting address is compared to the
window base. If the addresses match, the RapidIO address in the outgoing request
packet is made of the least significant bits of the Avalon-MM address and the window
offset using the following equation:

Let avalon_address[31:0] be the 32-bit Avalon-MM address, and rio_addr[33:0] be
the RapidIO address, in which rio_addr[33:32] is the 2-bit wide xamsbs field,
rio_addr[31:3] is the 29-bit wide address field in the packet, and rio_addr[2:0] is
implicitly defined by wdptr and rdsize or wrsize.

Table 4–13. Address Mapping and Translation Registers

Registers Location

Input/Output slave base address Table 6–42 on page 6–22

Input/Output slave address mask Table 6–43 on page 6–22

Input/Output slave address offset Table 6–44 on page 6–22

Input/Output slave packet control information
(for packet header) Table 6–45 on page 6–23

4–48 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Let base[31:0], mask[31:0], and offset[31:0] be the values defined by the three
corresponding window-defining registers. The least significant 3 bits of base, mask,
and offset are fixed at 3’b000 regardless of the content of the window-defining
registers.

Let xamo be the Extended Address MSBits Offset field in the Input/Output Slave
Window n Offset register (the two least significant bits of the register).

Starting with window 0, find the first window for which

((address & mask) == (base & mask)).

Let
rio_addr [33:3] = {xamo, (offset [31:3] & mask [31:3]) |
 (avalon_address [31:3])}

If the address matches multiple windows, the lowest number window register set is
used. The Avalon-MM slave interface’s burstcount and byteenable signals determine
the values of wdptr and rdsize or wrsize, as described in “Avalon-MM Burstcount
and Byteenable Encoding in RapidIO Packets” on page 4–52.

The priority and DESTINATION_ID fields are inserted from the control register.

If the address does not match any window the following events occur:

■ An interrupt bit, either WRITE_OUT_OF_BOUNDS or READ_OUT_OF_BOUNDS in the
Input/Output Slave Interrupt register (Table 6–46 on page 6–23), is set.

■ The interrupt signal sys_mnt_s_irq is asserted if enabled by the corresponding bit
in the Input/Output Slave Interrupt Enable register (Table 6–47 on page 6–24).

■ The COMPLETED_OR_CANCELLED_WRITES field of the Input/Output Slave RapidIO
Write Requests register is incremented if the transaction is a write request.

An interrupt is cleared by writing 1 to the interrupt register’s corresponding bit
location.

Chapter 4: Functional Description 4–49
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Figure 4–22 shows the I/O slave Logical window translation process.

Figure 4–22. Input/Output Slave Window Translation

Base

Window

Offset

0x000000000

0x3FFFFFFF8

RapidIO
Address Space

0x00000000

0xFFFFFFF8

Avalon-MM
Address Space

Initial
Avalon-MM Address

Don’t Care

Don’t Care

33

Window Base

Window Mask

Window Offset

Resulting
RapidIO Address

023

023

31

31

XAMO

(1)

(1)

Window Size

11111111.........................11000000000000000..............00

4–50 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Input/Output Slave Translation Window Example

This section contains an example illustrating the use of I/O slave translation
windows. In this example, a RapidIO IP core with 8-bit device ID communicates with
three other processing endpoints through three I/O slave translation windows. For
this example, the XAMO bits are set to 2'b00 for all three windows. The offset value
differs for each window, which results in the segmentation of the RapidIO address
space that is shown in Figure 4–23.

The two most significant bits of the Avalon-MM address are used to differentiate
between the processing endpoints. Figure 4–25 through Figure 4–29 show the address
translation implemented for each window. Each figure shows the value for the
destination ID of the control register for one window.

Translation Window 0

An Avalon-MM address in which the two most significant bits have the value 2'b01
matches window 0. The RapidIO transaction corresponding to the Avalon-MM
operation has a DESTINATION_ID value of 0x55. This value corresponds to processing
endpoint 0.

Figure 4–23. Input/Output Slave Translation Window Address Mapping

0x00000000

0x3FFFFFFC

0xFFFFFFFC

0x40000000

Avalon-MM
Address Space

RapidIO
Address Space

0x7FFFFFFC
0x80000000

0xBFFFFFFC
0xC0000000

0x000000000

0x03FFFFFF8
0x040000000

0x07FFFFFF8
0x080000000

0x0BFFFFFF8
0x0C0000000

0x0FFFFFFF8
0x100000000

0x3FFFFFFF8

PE 2

PE 1

PE 0PE 0

PE 1

PE 2

Chapter 4: Functional Description 4–51
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Figure 4–24 shows address translation window 0.

Translation Window 1

An Avalon-MM address in which the two most significant bits have a value of 2'b10
matches window 1. The RapidIO transaction corresponding to the Avalon-MM
operation has a destination ID value of 0xAA. This value corresponds to processing
endpoint 1.

Figure 4–25 shows address translation window 1.

Figure 4–24. Translation Window 0

0x7555999

0x7555999RapidIO Address [33:0]

Avalon Address [31:0]

1

0 0 0

Destination ID

Don’t Care

Don’t Care

023

3

000000000000000000..............00

Base (register 0x10400)

Mask (register 0x10404)

Offset (register 0x10408)

Control (register 0x1040C)

129

29

23 16

3031

R

R1 1

1

1

0

00

0

0

0 0

1

0 1

30313233

XAMO

0x55

(1)

(1)

Figure 4–25. Translation Window 1

0x7555999

0x7555999RapidIO Address [33:0]

Avalon Address [31:0]

1

0 0 0

Destination ID

Don’t Care

Don’t Care

023

3

000000000000000000..............00

Base (register 0x10410)

Mask (register 0x10414)

Offset (register 0x10418)

Control (register 0x1041C)

129

29

23 16

3031

R

R1 1

0

0

1

10

0

0

0 1

0

1 0

30313233

XAMO

0xAA

(1)

(1)

4–52 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Translation Window 2

An Avalon-MM address in which the two most significant bits have a value of 2'b11
matches window 2. The RapidIO transaction corresponding to the Avalon-MM
operation has a destination ID value of 0xCC. This value corresponds to processing
endpoint 2.

Figure 4–26 shows address translation window 2.

Avalon-MM Burstcount and Byteenable Encoding in RapidIO Packets
The RapidIO IP core converts Avalon-MM transactions to RapidIO packets. The
Avalon-MM burst count, byteenable, and, in 32-bit variations, address bit 2 values are
translated to the RapidIO packets' read size, write size, and word pointer fields.

For information about the packet size encoding used in the conversion process for
32–bit datapath read requests, refer to Table 4–14. For information about the encoding
for 32-bit datapath write requests, refer to Table 4–15. For information about the
encoding for 64-bit datapath conversion, refer to Table 4–16 and Table 4–17.

Figure 4–26. Translation Window 2

0x7555999

0x7555999RapidIO Address [33:0]

Avalon Address [31:0]

1

0 0 0

Destination ID

Don’t Care

Don’t Care

023

3

000000000000000000..............00

Base (register 0x10420)

Mask (register 0x10424)

Offset (register 0x10428)

Control (register 0x1042C)

129

29

23 16

3031

R

R1 1

1

1

1

10

0

0

0 1

1

1 1

30313233

XAMO

0xCC

(1)

(1)

Table 4–14. Read Request Size Encoding (32-bit datapath) (Part 1 of 2)

Avalon-MM Values RapidIO Values

burstcount(1) address[2] (2)
(1'bx)

wdptr
(1'bx)

rdsize(2)
(4'bxxxx)

1 1 0 1000
1 0 1 1000
2 0 0 1011

3–4 0 1 1011
5–8 0 0 1100

9–16 0 1 1100
17–24 0 0 1101
25–32 0 1 1101
33–40 0 0 1110

Chapter 4: Functional Description 4–53
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 4–15 lists the allowed burst count, byteenable, and address bit 2 value
combinations for RapidIO IP core variations with a 32-bit Avalon-MM interface.
Avalon-MM value combinations not listed in Table 4–15 flag interrupts in the RapidIO
IP core. For more information about the relevant interrupts, refer to Table 6–46 on
page 6–23.

41–48 0 1 1110
49–56 0 0 1111
57–64 0 1 1111

Notes to Table 4–14:

(1) For read transfers, the read size of the request packet is rounded up to the next supported size, but only the number
of words corresponding to the requested read burst size is returned.

(2) Burst transfers of more than one Avalon-MM word must start on a double-word aligned Avalon-MM address. If
the slave read burst count is larger than one and io_s_rd_address[2] is not zero, the transfer completes in the
same manner as a failed mapping: the READ_OUT_OF_BOUNDS bit in the Input/Output Slave Interrupt
register is set, sys_mnt_s_irq is asserted if enabled, and the transfer is marked as errored by asserting
io_s_rd_readerror for the duration of the burst.

Table 4–15. Write Request Size Encoding (32-bit datapath) (Part 1 of 2)

Avalon-MM Values RapidIO Values

burstcount(1) byteenable
(4'bxxxx)

address [2] (2)
(1'bx)

wdptr
(1'bx)

wrsize
(4'bxxxx)

1 1000 1 0 0000

1 0100 1 0 0001

1 0010 1 0 0010

1 0001 1 0 0011

1 1000 0 1 0000

1 0100 0 1 0001

1 0010 0 1 0010

1 0001 0 1 0011

1 1100 1 0 0100

1 1110 (3) 1 0 0101

1 0011 1 0 0110

1 1100 0 1 0100

1 0111 (3) 0 1 0101

1 0011 0 1 0110

1 1111 1 0 1000

1 1111 0 1 1000

Table 4–14. Read Request Size Encoding (32-bit datapath) (Part 2 of 2)

Avalon-MM Values RapidIO Values

burstcount(1) address[2] (2)
(1'bx)

wdptr
(1'bx)

rdsize(2)
(4'bxxxx)

4–54 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 4–16 lists the allowed read-request size encodings for RapidIO IP core variations
with a 64-bit Avalon-MM interface.

2

1111 (4) 0

0 1011

4 1 1011

6 or 8 0 1100

10, 12, 14, 16 1 1100

18, 20, 22, 24 1 1101

26, 28, 30, 32 1 1101

34, 36, 38, 40 0 1110

42, 44, 46, 48 1 1110

50, 52, 54, 56 0 1111

58, 60, 62, 64 1 1111

Notes to Table 4–15:

(1) For write transfers in variations with 32-bit wide datapaths, odd burst sizes other than 1 are not supported. If one
occurs, the INVALID_WRITE_BURSTCOUNT bit in the Input/Output Slave Interrupt register is set, causing
sys_mnt_s_irq to be asserted if enabled.

(2) Burst transfers of more than one Avalon-MM word must start on a double-word aligned Avalon-MM address. If
io_s_wr_burstcount is larger than one and io_s_wr_address[2] is not zero, the transfer completes in the
same manner as a failed mapping: the WRITE_OUT_OF_BOUNDS bit in the Input/Output Slave Interrupt
register is set and sys_mnt_s_irq is asserted if enabled.

(3) This is not a legal Avalon-MM byteenable pattern, but the RapidIO IP core supports it if user logic generates it.
(4) For all Avalon-MM write transfers with burstcount larger than 1, io_s_wr_byteenable must be set to 4’b1111.

If it is not, the transfer fails: the INVALID_WRITE_BYTEENABLE bit in the Input/Output Slave Interrupt
register is set and io_s_mnt_irq is asserted if enabled.

Table 4–16. Read Request Size Encoding (64-bit datapath)

Avalon-MM Values RapidIO
Values

burstcount(1) wdptr
(1'bx)

rdsize(1)
(4'bxxxx)

1 1'b0 4'b1011
2 1'b1 4'b1011

3–4 1'b0 4'b1100
5–8 1'b1 4'b1100

9–12 1'b0
4'b1101

13–16 1'b1
17–20 1'b0

4'b111121–24 1'b1
25–28 1'b0
29–32 1'b1

Note to Table 4–16:

(1) For read transfers, the read size of the request packet is rounded up to the next supported size, but only the number
of words corresponding to the requested read burst size are returned.

Table 4–15. Write Request Size Encoding (32-bit datapath) (Part 2 of 2)

Avalon-MM Values RapidIO Values

burstcount(1) byteenable
(4'bxxxx)

address [2] (2)
(1'bx)

wdptr
(1'bx)

wrsize
(4'bxxxx)

Chapter 4: Functional Description 4–55
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 4–17 lists the allowed burst count and byteenable combinations for RapidIO IP
core variations with a 64-bit Avalon-MM interface. Avalon-MM value combinations
not listed in Table 4–17 flag interrupts in the RapidIO IP core. For more information
about the relevant interrupts, refer to Table 6–46 on page 6–23.

Table 4–17. Write Request Size Encoding (64-bit datapath)

Avalon-MM Values RapidIO Values

burstcount byteenable
(8'bxxxx_xxxx)

wdptr
(1'bx)

wrsize
(4'bx)

1 1000_0000 0 0000
1 0100_0000 0 0001
1 0010_0000 0 0010
1 0001_0000 0 0011
1 0000_1000 1 0000
1 0000_0100 1 0001
1 0000_0010 1 0010
1 0000_0001 1 0011
1 1100_0000 0 0101
1 1110_0000 (1) 0 0110
1 0011_0000 0 0111
1 1111_1000 (1) 0 1000
1 0000_1100 1 1000
1 0000_0111 (1) 1 1001
1 0000_0011 1 1001
1 0001_1111 (1) 1 1010
1 1111_0000 0 1000
1 0000_1111 1 1000
1 1111_1100 0 1001
1 0011_1111 1 1001
1 1111_1110 (1) 0 1010
1 0111_1111 (1) 1 1010
1 1111_1111 0 1011
2

1111_1111 (2)

1 1011
3–4 0 1100
5–8 1 1100

9–12 1 1101
13–16
17–20

1 111121–24
25–28
29–32

Notes to Table 4–17:

(1) This is not a legal Avalon-MM byteenable pattern, but the RapidIO IP core supports it if user logic generates it.
(2) For all Avalon-MM write transfers with burstcount larger than 1, io_s_wr_byteenable must be set to

8’b1111_1111. If it is not, the transfer fails: the INVALID_WRITE_BYTEENABLE bit in the Input/Output Slave
Interrupt register is set and io_s_mnt_irq is asserted if enabled.

4–56 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Input/Output Avalon-MM Slave Module Timing Diagrams
Figure 4–27 shows the timing dependencies on the Avalon-MM slave interface for an
outgoing RapidIO NREAD request. Figure 4–28 shows the timing dependencies on the
Avalon-MM slave interface for an outgoing NWRITE transaction. Both transaction
requests originate on the Avalon-MM interface of the slave module. The timing
diagrams in “Input/Output Avalon-MM Master Module Timing Diagrams” on
page 4–44 show the same transactions after they are transmitted on the RapidIO link
and received by an Altera RapidIO IP core link partner, when they are sent out as
Avalon-MM requests by an Input/Output Avalon-MM master module in the partner
RapidIO IP core.

Figure 4–27. NREAD Transaction on the Input/Output Avalon-MM Slave Interface

Figure 4–28. NWRITE Transaction on the Input/Output Avalon-MM Slave Interface

sysclk

io_s_rd_chipselect

io_s_rd_waitrequest

io_s_rd_read

io_s_rd_address[31:0]

io_s_rd_readdatavalid

io_s_rd_readdata[31:0]

io_s_rd_burstcount[7:0]

io_s_rd_readerror

Adr0 Adr1

00000000 r0 r1 r2

01 02

sysclk

io_s_wr_chipselect

io_s_wr_waitrequest

io_s_wr_write

io_s_wr_address[31:0]

io_s_wr_writedata[31:0]

io_s_wr_byteenable[3:0]

io_s_wr_burstcount[7:0]

00000000 AdrA AdrB

w0 w1 w2 w3 w4 w5

F

02 04

Chapter 4: Functional Description 4–57
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Doorbell Module
The Doorbell module provides support for Type 10 packet format (DOORBELL class)
transactions, allowing users to send and receive short software-defined messages to
and from other processing elements connected to the RapidIO interface.

Figure 4–8 on page 4–26 shows how the Doorbell module is connected to the
Transport layer module. In a typical application the Doorbell module’s Avalon-MM
slave interface is connected to the system interconnect fabric, allowing an Avalon-MM
master to communicate with RapidIO devices by sending and receiving DOORBELL
messages.

When you configure the RapidIO IP core, you can enable or disable the DOORBELL
operation feature, depending on your application requirements. If you do not need
the DOORBELL feature, disabling it reduces device resource usage. If you enable the
feature, a 32–bit Avalon-MM slave port is created that allows the RapidIO MegaCore
to receive, generate, or both receive and generate RapidIO DOORBELL messages.

Doorbell Module Block Diagram
Figure 4–29 illustrates the Doorbell module. This module includes a 32–bit
Avalon-MM slave interface to the user interface. The Doorbell module contains the
following logic blocks:

■ Register and FIFO interface that allows an external Avalon-MM master to access
the Doorbell module’s internal registers and FIFO buffers.

■ Tx output FIFO that stores the outbound DOORBELL and response packets waiting
for transmission to the Transport layer module.

■ Acknowledge RAM that temporarily stores the transmitted DOORBELL packets
pending responses to the packets from the target RapidIO device.

■ Tx time-out logic that checks the expiration time for each outbound Tx DOORBELL
packet that is sent.

■ Rx control that processes DOORBELL packets received from the Transport layer
module. Received packets include the following packet types:

■ Rx DOORBELL request.

■ Rx response DONE to a successfully transmitted DOORBELL packet.

■ Rx response RETRY to a transmitted DOORBELL message.

■ Rx response ERROR to a transmitted DOORBELL message.

■ Rx FIFO that stores the received DOORBELL messages until they are read by an
external Avalon-MM master device.

■ Tx FIFO that stores DOORBELL messages that are waiting to be transmitted.

■ Tx staging FIFO that stores DOORBELL messages until they can be passed to the Tx
FIFO. The staging FIFO is present only if you select Prevent doorbell messages
from passing write transactions in the RapidIO parameter editor.

■ Tx completion FIFO that stores the transmitted DOORBELL messages that have
received responses. This FIFO also stores timed out Tx DOORBELL requests.

4–58 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

■ Error Management module that reports detected errors, including the following
errors:

■ Unexpected response (a response packet was received, but its TransactionID
does not match any pending request that is waiting for a response).

■ Request time-out (an outbound DOORBELL request did not receive a response
from the target device).

Preserving Transaction Order
If you select Prevent doorbell messages from passing write transactions in the
RapidIO parameter editor, each DOORBELL message from the Avalon-MM interface is
kept in the Tx staging FIFO until all I/O write transactions that started on the write
Avalon-MM slave interface before this DOORBELL message arrived on the Doorbell
module Avalon-MM interface have been transmitted to the Transport layer. An I/O
write transaction is considered to have started before a DOORBELL transaction if the
io_s_wr_write and io_s_wr_chipselect signals are asserted while the
io_s_wr_waitrequest signal is not asserted, on a cycle preceding the cycle on which
the drbell_s_write and drbell_s_chipselect signals are asserted for writing to the
Tx Doorbell register while the drbell_s_waitrequest signal is not asserted.

If you do not select Prevent doorbell messages from passing write transactions in
the RapidIO parameter editor, the Doorbell Tx staging FIFO is not configured in the
RapidIO IP core.

Doorbell Message Generation
To generate a DOORBELL request packet on the RapidIO serial interface, follow these
steps, using the set of registers described in “Doorbell Message Registers” on
page 6–28:

1. Optionally enable interrupts by writing the value 1 to the appropriate bit of the
Doorbell Interrupt Enable register (Table 6–66).

Figure 4–29. Doorbell Module Block Diagram

Sink Rx Control

Source

Acknowledge
RAM

Doorbell Logical Module

From
Transport

Layer
Module

To
Transport

Layer
Module

To Register Module From I/O Slave Module

Error
Management

Tx Output
FIFO

Rx
FIFO

IRQ

Avalon-MM
Slave

System
Interconnect

Fabric

Tx
FIFO

Tx Staging
FIFO

Tx Completion
FIFO

Tx
Timeout

Register
and

FIFO
Interface

Chapter 4: Functional Description 4–59
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

2. Optionally enable confirmation of successful outbound messages by writing 1 to
the COMPLETED bit of the Tx Doorbell Status Control register (Table 6–65).

3. Set up the priority field of the Tx Doorbell Control register (Table 6–60).

4. Write the Tx Doorbell register (Table 6–61) to set up the DESTINATION_ID and
Information fields of the generated DOORBELL packet format.

1 Before writing to the Tx Doorbell register you must be certain that the Doorbell
module has available space to accept the write data. Ensuring sufficient space exists
avoids a waitrequest signal assertion due to a full FIFO. When the waitrequest
signal is asserted, you cannot perform other transactions on the DOORBELL Avalon-MM
slave port until the current transaction is completed. You can determine the combined
fill level of the staging FIFO and the Tx FIFO by reading the Tx Doorbell Status
register (Table 6–62). The total number of Doorbell messages stored in the staging
FIFO and the Tx FIFO, together, is limited to 16 by the assertion of the
drbell_s_waitrequest signal.

After a write to the Tx Doorbell register is detected, internal control logic generates
and sends a Type 10 packet based on the information in the Tx Doorbell and Tx
Doorbell Control registers. A copy of the outbound DOORBELL packet is stored in the
Acknowledge RAM.

When the response to an outbound DOORBELL message is received, the corresponding
copy of the outbound message is written to the Tx Doorbell Completion FIFO (if
enabled), and an interrupt is generated (if enabled) on the Avalon-MM slave interface
by asserting the drbell_s_irq signal of the Doorbell module. The ERROR_CODE field in
the Tx Doorbell Completion Status register (Table 6–64) indicates successful or error
completion.

The corresponding interrupt status bit is set each time a valid response packet is
received, and resets itself when the Tx Completion FIFO is empty. Software optionally
can clear the interrupt status bit by writing a 1 to this specific bit location of the
Doorbell Interrupt Status register (Table 6–67).

Upon detecting the interrupt, software can fetch the completed message and
determine its status by reading the Tx Doorbell Completion (Table 6–63) register and
Tx Doorbell Completion Status register (Table 6–64), respectively.

An outbound DOORBELL message is assigned a time-out value based on the VALUE field
of the Port Response Time-Out Control register (Table 6–7 on page 6–6) and a
free-running counter. When the counter reaches the time-out value, if the DOORBELL
transaction has not yet received a response, the transaction times out. Refer to
Table 6–7 for information about how the time-out value is calculated.

An outbound message that times out before its response is received is treated in the
same manner as an outbound message that receives an error response: if enabled, an
interrupt is generated by the Error Management module by asserting the
sys_mnt_s_irq signal, and the ERROR_CODE field in the Tx Doorbell Completion
Status register (Table 6–64) is set to indicate the error.

If the interrupt is not enabled, the Avalon-MM master must periodically poll the Tx
Doorbell Completion Status register to check for available completed messages
before retrieving them from the Tx Completion FIFO.

4–60 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

DOORBELL request packets for which RETRY responses are received are resent by
hardware automatically. No retry limit is imposed on outbound DOORBELL messages.

Doorbell Message Reception
DOORBELL request packets received from the Transport layer module are stored in an
internal buffer, and an interrupt is generated on the DOORBELL Avalon-MM slave
interface, if the interrupt is enabled.

The corresponding interrupt status bit is set every time a DOORBELL request packet is
received and resets itself when the Rx FIFO is empty. Software can clear the interrupt
status bit by writing a 1 to this specific bit location of the Doorbell Interrupt Status
register (Table 6–67).

An interrupt is generated when a valid response packet is received and when a
request packet is received. Therefore, when the interrupt is generated, you must check
the Doorbell Interrupt Status register to determine the type of event that triggered
the interrupt.

If the interrupt is not enabled, the external Avalon-MM master must periodically poll
the Rx Doorbell Status register (Table 6–59) to check the number of available
messages before retrieving them from the Rx doorbell buffer.

Appropriate Type 13 response packets are generated internally and sent for all the
received DOORBELL messages. A response with DONE status is generated when the
received DOORBELL packet can be processed immediately. A response with RETRY status
is generated to defer processing the received message when the internal hardware is
busy, for example when the Rx doorbell buffer is full.

Avalon-ST Pass-Through Interface
The Avalon-ST pass-through interface is an optional interface that is generated when
you select the Avalon-ST pass-through interface in the Transport and Maintenance
page of the RapidIO parameter editor (refer to “Avalon-ST Pass-Through Interface”
on page 3–7). If destination ID checking is enabled, all packets received by the
Transport layer whose destination ID does not match this RapidIO IP core’s base
device ID or whose ftype is not supported by this IP core’s variation are routed to the
Rx Avalon-ST pass-through interface. If you disable destination ID checking, request
packets are instead routed to the Rx Avalon-ST pass-through interface only if they
have ftypes that are not supported by this IP core’s variation. After packets are routed
to the Rx Avalon-ST pass-through interface, they can be further examined by a local
processor or parsed and processed by a custom user function.

The following applications can use the Avalon-ST pass-through interface:

■ User implementation of a RapidIO function not supported by this IP core (for
example, data message passing)

■ User implementation of a custom function not specified by the RapidIO protocol,
but which may be useful for the system application

Chapter 4: Functional Description 4–61
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Pass-Through Interface Examples
This section contains two examples, one receiving and the other transmitting a packet
through the Avalon-ST pass-through interface. The RapidIO IP core variation in the
receiving example uses 8-bit device ID, and the variation in the transmitting example
uses 16-bit device ID.

Packet Routed Through Rx Port on Avalon-ST Pass-Through Interface

The following example of a packet routed to the receiver Avalon-ST pass-through
interface is for a variation that only has the Maintenance module and the Avalon-ST
pass-through interface enabled. A packet received on the RapidIO interface with an
ftype that does not indicate a MAINTENANCE transaction is routed to the receiver port of
the Avalon-ST pass-through interface. The transaction diagram in Figure 4–30 shows
a packet received on this interface.

Figure 4–30. Packet Received on the Avalon-ST Pass-Through Interface (Note 1)

Notes to Figure 4–30:

(1) To improve readability of the figure, the data bus has been split in two and is displayed on two lines.
(2) Refer to Table 5–3 on page 5–2 for the system clock signal names in the MegaWizard Plug-in Manager, Qsys, and SOPC Builder design flows.

(2)

gen_rx_ready

gen_rx_ valid

gen_rx_startofpacket

gen_rx_endofpacket

gen_rx_data[63:32]

gen_rx_data[31:0]

gen_rx_size[5:0]

gen_rx_empty[2:0]

gen_rx_error

0005AACC CAC80001 06070809 0E0F1011 D37C0000

0C005A5A 02030405 0A0B0C0D 12131415 XXXXXXXX

05

4

0 1 2 3 4 5 6system clock

4–62 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

In cycle 0, the user logic indicates to the RapidIO IP core that it is ready to receive a
packet transfer by asserting gen_rx_ready. In cycle 1, the IP core asserts gen_rx_valid
and gen_rx_startofpacket. During this cycle, gen_rx_size is valid and indicates that
five cycles are required to transfer the packet. Table 4–18 shows the RapidIO header
fields and the payload carried on the gen_rx_data bus in each cycle.

Table 4–18. RapidIO Header Fields and gen_rx_data Bus Payload (Part 1 of 2)

Cycle Field gen_rx_data bus Value Comment

1

ackID [63:59] 5'h00

rsvd [58:57] 2'h0

CRF [56] 1'b0

prio [55:54] 2'h0

tt [53:52] 2'h0 Indicates 8-bit device IDs.

ftype [51:48] 4'h5 A value of 5 indicates a Write Class packet.

destinationID [47:40] 8'haa (1)

sourceID [39:32] 8'hcc (1)

ttype [31:28] 4'h4 The value of 4 indicates a NWRITE transaction.

wrsize [27:24] 4'hc

The wrsize and wdptr values encode the
maximum size of the payload field. In this example,
they decode to a value of 32 bytes. For details, refer
to Table 4-4 in Part 1: Input/Output Logical
Specification of the RapidIO Interconnect
Specification, Revision 2.1

srcTID [23:16] 8'h00

address[28:13] [15:0] 16'h5a5a
The 29 bit address composed is 29’hb4b5959.
This becomes 32'h5a5acac8, the double-word
physical address.

2

address[12:0] [63:51] 13'h1959

wdptr [50] 1'b0 See description for the size field.

xamsbs [49:48] 2'h0

Payload Byte0,1 [47:32] 16'h0001

Payload Byte2,3 [31:16] 16'h0203

Payload Byte4,5 [15:0] 16'h0405

3

Payload Byte6,7 [63:48] 16'h0607

Payload Byte8,9 [47:32] 16'h0809

Payload
Byte10,11

[31:16] 16'h0a0b

Payload
Byte12,13

[15:0] 16'h0c0d

Chapter 4: Functional Description 4–63
Logical Layer Modules

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Bits [31:0] of the gen_rx_data bus are ignored in cycle 5 as the gen_rx_empty signals
indicates that 4 bytes are not used in the end-of-packet word. In the case of a
RapidIO IP core variation with 16-bit device ID, the value of gen_rx_empty would be
2, and only bits [15:0] of the gen_rx_data bus would be ignored in cycle 5.

NREAD Example Using Tx Port on Avalon-ST Pass-Through Interface

The next example shows the response to an NREAD transaction in a RapidIO IP core
variation with 16-bit device ID. The response is presented on the Tx port of the
Avalon-ST pass-through interface. The transaction diagram in Figure 4–31 shows the
packet presented on this interface. The values captured on a rising clock edge are
those shown in the previous clock cycle, because values change after the rising clock
edge.

4

Payload
Byte14,15

[63:48] 16'h0e0f

Payload
Byte16,17

[47:32] 16'h1011

Payload
Byte18,19

[31:16] 16'h1213

Payload
Byte20,21

[15:0] 16'h1415

5
CRC[15:0] [63:48] 16'hd37c

For packets with a payload greater than 80 bytes,
the first CRC field is removed but the final CRC field
is not removed. For packets smaller than 80 bytes,
the CRC field is not removed.

Pad bytes [47:32] 16'h0000
The RapidIO requires that Pad bytes be added for
the payload to adhere to 32-bit alignment.

Note to Table 4–18:

(1) In the case of a RapidIO IP core variation with 16-bit device ID, the destinationID and sourceID fields expand to a width of 16 bits each, and the
fields described in the table rows following the destinationID field are shifted to the right and to the following clock cycles.

Table 4–18. RapidIO Header Fields and gen_rx_data Bus Payload (Part 2 of 2)

Cycle Field gen_rx_data bus Value Comment

Figure 4–31. Packet Transmitted on the Avalon ST Pass-Through Interface

gen_tx_ready

system clock

gen_tx_valid

gen_tx_startofpacket

gen_tx_endofpacket

gen_tx_data[63:32]

gen_tx_data[31:0]

gen_tx_empty[2:0]

gen_tx_error

209DCCDC 01020304 090A0B0C 11121314 191A1B1C

AABA8000 05060708 0D0E0F10 15161718 1D1E1F20

0

0 1 2 3 4 5 6 7

READY_LATENCY
= 1

READY_LATENCY
= 1

ready cycle ready cycleready cycle ready cycle ready cycle ready cycle

4–64 Chapter 4: Functional Description
Logical Layer Modules

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure 4–31 shows a response to a 32-byte NREAD request in a RapidIO IP core with
16-bit device ID. Table 4–19 shows the composition of the fields in the RapidIO packet
header and the payload as they correspond to each clock cycle. The gen_tx_empty bits
indicate a value of 0, because all bytes of the last word are read.

Table 4–19. RapidIO Header Fields on the gen_tx_data Bus (Part 1 of 2)

Cycle Field gen_tx_data bus Value Comment

1

ackID [63:59] 5'h00
Value is a don’t care, because it is overwritten by the
Physical layer ackID value before the packet is
transmitted on the RapidIO link.

rsvd [58:57] 2'h0

CRF [56] 1'b0

prio [55:54] 2'b10

Priority of the RESPONSE packet. Value must be
incremented from the priority value of the REQUEST
packet. For example, prio value 2’b10 indicates that the
original request had a priority value of 2’b01.

tt [53:52] 2'h1 Indicates 16-bit device IDs

ftype [51:48] 4'hd
A value of 4'hd (13 decimal) indicates a Response Class
packet.

destinationId [47:32] 16'hccdc

sourceId [31:16] 16'haaba

ttype [15:12] 4'h8
A value of 8 indicates a RESPONSE transaction with data
payload.

status [11:8] 4'h0
A value of 0 indicates DONE. Requested transaction has
been successfully completed.

targetTID [7:0] 8'h00
Value in the response packet matches the sourceTID of
the corresponding request packet.

2

Payload Byte0,1 [63:48] 16'h0102

Payload double word 0
Payload Byte2,3 [47:32] 16'h0304

Payload Byte4,5 [31:16] 16'h0506

Payload Byte6,7 [15:0] 16'h0708

3

Payload Byte8,9 [63:48] 16'h090a

Payload double word 1

Payload
Byte10,11

[47:32] 16'h0b0c

Payload
Byte12,13

[31:16] 16'h0d0e

Payload
Byte14,15

[15:0] 16'h0f10

4

Payload
Byte16,17

[63:48] 16'h1112

Payload double word 2

Payload
Byte18,19

[47:32] 16'h1314

Payload
Byte20,21

[31:16] 16'h1516

Payload

Byte22,23
[15:0] 16'h1718

Chapter 4: Functional Description 4–65
Error Detection and Management

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Error Detection and Management
The error detection and management mechanisms in the RapidIO specification and
those built into the RapidIO IP core provide a high degree of reliability. In addition to
error detection, management, and recovery features, the RapidIO IP core also
provides debugging and diagnostic aids.

This section describes the error detection and management features in the RapidIO IP
core.

Physical Layer Error Management
Errors at the Physical layer are mainly of the following two types:

■ Protocol violations

■ Transmission errors

Protocol violations can be caused by a link partner that is not fully compliant to the
specification, or can be a side effect of the link partner being reset.

Transmission errors can be caused by noise on the line and consist of one or more bit
errors. The following mechanisms exist for checking and detecting errors:

■ The receiver checks the validity of the received 8B10B encoded characters,
including the running disparity.

■ The receiver detects control characters changed into data characters or data
characters changed into control characters, based on the context in which the
character is received.

■ The receiver checks the CRC of the received control symbols and packets.

The RapidIO IP core Physical layer transparently manages these errors for you. The
RapidIO specification defines both input and output error detection and recovery
state machines that include handshaking protocols in which the receiving end signals
that an error is detected by sending a packet-not-accepted control symbol, the
transmitter then sends an input-status link-request control symbol to which the
receiver responds with a link-response control symbol to indicate which packet
requires transmission. The input and output error detection and recovery state
machines can be monitored by software that you create to read the status of the Port
0 Error and Status CSR (Table 6–10 on page 6–7).

5

Payload

Byte24,25
[63:48] 16'h191a

Payload double word 3

Payload

Byte26,27
[47:32] 16'h1b1c

Payload

Byte28,29
[31:16] 16'h1d1e

Payload

Byte30,31
[15:0] 16'h1f20

Table 4–19. RapidIO Header Fields on the gen_tx_data Bus (Part 2 of 2)

Cycle Field gen_tx_data bus Value Comment

4–66 Chapter 4: Functional Description
Error Detection and Management

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

In addition to the registers defined by the specification, the RapidIO IP core provides
several output signals that enable user logic to monitor error detection and the
recovery process. Refer to “Status Packet and Error Monitoring Signals” on page 5–5.

Protocol Violations
Some protocol violations, such as a packet with an unexpected ackID or a time-out on
a packet acknowledgment, can use the same error recovery mechanisms as the
transmission errors described in “Physical Layer Error Management” on page 4–65.
Some protocol violations, such as a time-out on a link-request or the RapidIO IP core
receiving a link-response with an ackID outside the range of transmitted ackIDs, can
lead to unrecoverable—or fatal—errors.

Fatal Errors
Fatal errors cause a soft reset of the Physical layer module, which clears all the
transmit buffers and resets the transmission and expected ackID to zero. This effect
also can be triggered by software by first writing a one and then a zero to the PORT_DIS
bit of the Port 0 Control CSR (Table 6–11 on page 6–10).

If the link partner is reset when its expected ackID is not zero, a fatal error occurs
when the link partner receives the next transmitted packet because the link partner’s
expected ackID is reset to zero, which causes a mismatch between the transmitted
ackID and the expected ackID. The fatal error causes a soft reset of the IP core. After
the soft reset completes, transmitted and expected ackIDs are synchronized and
normal operation resumes. Only the packets that were queued at the time of the fatal
error are lost.

If Send link-request reset-device on fatal errors is turned on in the RapidIO
parameter editor, fatal errors cause the transmitter to send link-request control
symbols with cmd set to reset-device to the link partner.

Logical Layer Error Management
The Logical layer modules only need to process Logical layer errors because errors
detected by the Physical layer are masked from the Logical layer module. Any packet
that has the arxerr signal asserted is dropped in the Transport layer before it reaches
the Logical layer modules.

The RapidIO specification defines the following common errors and the protocols for
managing them:

■ Malformed request or response packets

■ Unexpected Transaction ID

■ Missing response (time-out)

■ Response with ERROR status

The RapidIO IP core implements part of the optional Error Management Extensions
as defined in Part 8 of the RapidIO Interconnect Specification Revision 2.1. However,
because the registers defined in the Error Management Extension specification are not
all implemented in the RapidIO IP core, the error management registers are mapped
in the Implementation Defined Space instead of being mapped in the Extended
Features Space.

Chapter 4: Functional Description 4–67
Error Detection and Management

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

The following Error Management registers are implemented in the RapidIO IP core
and provide the most useful information for error management:

■ Logical/Transport Layer Error Detect CSR (Table 6–52)

■ Logical/Transport Layer Error Enable CSR (Table 6–53)

■ Logical/Transport Layer Address Capture CSR (Table 6–54)

■ Logical/Transport Layer Device ID Capture CSR (Table 6–55)

■ Logical/Transport Layer Control Capture CSR (Table 6–56)

1 For more information about these registers, refer to their descriptions in “Error
Management Registers” on page 6–26.

When enabled, each error defined in the Error Management Extensions triggers the
assertion of an interrupt on the sys_mnt_s_irq output signal of the System
Maintenance Avalon-MM slave interface and causes the capture of various packet
header fields in the appropriate capture CSRs.

In addition to the errors defined by the RapidIO specification, each Logical layer
module has its own set of error conditions that can be detected and managed.

Maintenance Avalon-MM Slave
The Maintenance Avalon-MM slave module creates request packets for the
Avalon-MM transaction on its slave interface and processes the response packets that
it receives. Anomalies are reported through one or more of the following three
channels:

■ Standard error management registers

■ Registers in the implementation defined space

■ The Avalon-MM slave interface’s error indication signal

The following sections describe these channels.

Standard Error Management Registers

The following standard defined error types can be declared by the I/O Avalon-MM
slave module. The corresponding error bits are then set and the required packet
information is captured in the appropriate error management registers.

■ IO Error Response is declared when a response with ERROR status is received for a
pending MAINTENANCE read or write request.

■ Unsolicited Response is declared when a response is received that does not
correspond to any pending MAINTENANCE read or write request.

■ Packet Response Timeout is declared when a response is not received within the
time specified by the Port Response Time-Out CSR (Table 6–7 on page 6–6) for a
pending MAINTENANCE read or write request.

4–68 Chapter 4: Functional Description
Error Detection and Management

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

■ Illegal Transaction Decode is declared for malformed received response packets
occurring from any of the following events:

■ Response packet to pending MAINTENANCE read or write request with status not
DONE nor ERROR.

■ Response packet with payload with a transaction type different from
MAINTENANCE read response.

■ Response packet without payload, with a transaction type different from
MAINTENANCE write response.

■ Response to a pending MAINTENANCE read request with more than 32 bits of
payload. (The RapidIO IP core issues only 32-bit read requests.)

Registers in the Implementation Defined Space

The Maintenance register module defines the Maintenance Interrupt register
(Table 6–26 on page 6–17) in which the following two bits report Maintenance
Avalon-MM slave related error conditions:

■ WRITE_OUT_OF_BOUNDS

■ READ_OUT_OF_BOUNDS

These bits are set when the address of a write or read transfer on the Maintenance
Avalon-MM slave interface falls outside of all the enabled address mapping windows.
When these bits are set, the system interrupt signal sys_mnt_s_irq is also asserted if
the corresponding bit in the Maintenance Interrupt Enable register (Table 6–27 on
page 6–18) is set.

Maintenance Avalon-MM Slave Interface's Error Indication Signal

The mnt_s_readerror output is asserted when a response with ERROR status is
received for a MAINTENANCE read request packet, when a MAINTENANCE read times out,
or when the Avalon-MM read address falls outside of all the enabled address
mapping windows.

Maintenance Avalon-MM Master
The Maintenance Avalon-MM master module processes the MAINTENANCE read and
write request packets that it receives and generates response packets. Anomalies are
reported by generating ERROR response packets. A response packet with ERROR status
is generated in the following cases:

■ Received a MAINTENANCE write request packet without payload or with more than
64 bytes of payload

■ Received a MAINTENANCE read request packet of the wrong size (too large or too
small)

■ Received a MAINTENANCE read or write request packet with an invalid rdsize or
wrsize value

1 These errors do not cause any of the standard-defined errors to be declared and
recorded in the Error Management registers.

Chapter 4: Functional Description 4–69
Error Detection and Management

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Port-Write Reception Module
The Port-Write reception module processes receive port-write request MAINTENANCE
packets. The following bits in the Maintenance Interrupt register (Table 6–26) in the
implementation-defined space report any detected anomaly. The System Maintenance
Avalon-MM slave port interrupt signal sys_mnt_s_irq is asserted if the
corresponding bit in the Maintenance Interrupt Enable register (Table 6–27) is set.

■ The PORT_WRITE_ERROR bit is set when the packet is either too small (no payload) or
too large (more than 64 bytes of payload), or if the actual size of the packet is larger
than indicated by the wrsize field. These errors do not cause any of the standard
defined errors to be declared and recorded in the error management registers.

■ The PACKET_DROPPED bit is set when a port-write request packet is received but
port-write reception is not enabled (by setting bit PORT_WRITE_ENA in the Rx Port
Write Control register, described in Table 6–36 on page 6–20) or if a previously
received port-write has not been read out from the Rx Port Write Buffer register
(Table 6–38 on page 6–21).

Port-Write Transmission Module
Port-write requests do not cause response packets to be generated. Therefore, the
port-write transmission module does not detect or report any errors.

Input/Output Avalon-MM Slave
The I/O Avalon-MM slave module creates request packets for the Avalon-MM
transaction on its read and write slave interfaces and processes the response packets
that it receives. Anomalies are reported through one or more of the following three
channels:

■ Standard error management registers

■ Registers in the implementation defined space

■ The Avalon-MM slave interface's error indication signal

Standard Error Management Registers

The following standard defined error types can be declared by the I/O Avalon-MM
slave module. The corresponding error bits are then set and the required packet
information is captured in the appropriate error management registers.

■ IO Error Response is declared when a response with ERROR status is received for a
pending NREAD or NWRITE_R request.

■ Unsolicited Response is declared when a response is received that does not
correspond to any pending NREAD or NWRITE_R request.

■ Packet Response Time-Out is declared when a response is not received within the
time specified by the Port Response Time-Out Response CSR (Table 6–7 on
page 6–6) for an NREAD or NWRITE_R request.

4–70 Chapter 4: Functional Description
Error Detection and Management

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

■ Illegal Transaction Decode is declared for malformed received response packets
occurring from any of the following events:

■ NREAD or NWRITE_R response packet with status not DONE nor ERROR.

■ NWRITE_R response packet with payload or with a transaction type indicating
the presence of a payload.

■ NREAD response packet without payload, with incorrect payload size, or with a
transaction type indicating absence of payload.

Registers in the Implementation Defined Space

The I/O Avalon-MM slave module defines the Input/Output slave interrupt
registers with the following bits. For details on when these bits are set, refer to their
descriptions in Table 6–46 on page 6–23.

■ INVALID_WRITE_BYTEENABLE

■ INVALID_WRITE_BURSTCOUNT

■ WRITE_OUT_OF_BOUNDS

■ READ_OUT_OF_BOUNDS

When any of these bits are set, the system interrupt signal sys_mnt_s_irq is also
asserted if the corresponding bit in the Input/Output Slave Interrupt Enable
register (Table 6–47 on page 6–24) is set.

The Avalon-MM Slave Interface's Error Indication Signal

The io_s_rd_readerror output is asserted when a response with ERROR status is
received for an NREAD request packet, when an NREAD request times out, or when the
Avalon-MM address falls outside of the enabled address mapping window. As
required by the Avalon-MM interface specification, a burst in which the
io_s_rd_readerror signal is asserted completes despite the error signal assertion.

Input/Output Avalon-MM Master
The I/O Avalon-MM master module processes the request packets that it receives and
generates response packets when required. Anomalies are reported through one or
both of the following two channels:

■ Standard error management registers

■ Response packets with ERROR status

Standard Error Management Registers

The following two standard defined error types can be declared by the
I/O Avalon-MM master module. The corresponding bits are then set and the required
packet information is captured in the appropriate error management registers.

■ Unsupported Transaction is declared when a request packet carries a transaction
type that is not supported in the Destination Operations CAR (Table 6–19 on
page 6–15), whether an ATOMIC transaction type, a reserved transaction type, or an
implementation defined transaction type.

Chapter 4: Functional Description 4–71
Error Detection and Management

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ Illegal Transaction Decode is declared when a request packet for a supported
transaction is too short or if it contains illegal values in some of its fields such as in
these examples:

■ Request packet with priority = 3.

■ NWRITE or NWRITE_R request packets without payload.

■ NWRITE or NWRITE_R request packets with reserved wrsize and wdptr
combination.

■ NWRITE, NWRITE_R, SWRITE, or NREAD request packets for which the address does
not match any enabled address mapping window.

■ NREAD request packet with payload.

■ NREAD request with rdsize that is not an integral number of transfers on all byte
lanes. (The Avalon-MM interface specification requires that all byte lanes be
enabled for read transfers. Therefore, Read Avalon-MM master modules do not
have a byteenable signal).

■ Payload size does not match the size indicated by the rdsize or wrsize and
wdptr fields.

Response Packets with ERROR Status

An ERROR response packet is sent for NREAD and NWRITE_R and Type 5 ATOMIC request
packets that cause an Illegal Transaction Decode error to be declared. An ERROR
response packet is also sent for NREAD requests if the io_m_rd_readerror input signal
is asserted through the final cycle of the Avalon-MM read transfer.

Avalon-ST Pass-Through Interface
Packets with valid CRCs that are not recognized as being targeted to one of the
implemented Logical layer modules are passed to the Avalon-ST pass-through
interface for processing by user logic.

The RapidIO IP core also provides hooks for user logic to report any error detected by
a user-implemented Logical layer module attached to the Avalon-ST pass-through
interface.

The transmit side of the Avalon-ST pass-through interface provides the gen_tx_error
input signal that behaves essentially the same way as the atxerr input signal
described in “Atlantic Interface” on page 4–17.

If Enable Avalon-ST pass-through interface is enabled and at least one of the Data
Messages options Source Operation and Destination Operation is turned on in the
RapidIO parameter editor, the message passing error management input ports in
Table 5–24 are added to the IP core to enable integrated error management.

4–72 Chapter 4: Functional Description
Error Detection and Management

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

5. Signals

This chapter lists the RapidIO IP core signals.

Qsys allows you to export signals with different names or prefixes. Refer to the Qsys
System Contents tab for the signals that support this capability individually, and to
the Qsys HDL Example tab for the list of signals that are bundled together as
exported_connections. The signals bundled in exported_connections all take the
prefix you specify in the Qsys System Contents tab.

A yes entry in the Exported by SOPC Builder and by Qsys column in the following
tables indicates that the signal is exported by SOPC Builder and is included in the
exported_connections conduit in Qsys. A no entry indicates that the signal is not
exported by SOPC Builder and is not included in the exported_connections conduit
in Qsys.

Physical Layer Signals
Table 5–1 through Table 5–13 list the pins used by the Physical layer of the serial
RapidIO IP core. Refer to Figure 4–5 on page 4–14 for details on the I/O signals.

1 For signals and bus widths specific to your variation, refer to the HTML file
(<variation name>.html) generated in your project directory by the RapidIO parameter
editor. This file is not generated in the Qsys flow.

All signals except the reference clock and reset have a suffix (<RapidIO variation name>
as defined in SOPC Builder) added to their signal names in the SOPC Builder design
flow. For example, rd becomes rd_rapidio, if rapidio is the variation name.

Table 5–1. RapidIO Interface

Signal Direction Description
Exported by

SOPC Builder
and by Qsys

rd Input Receive data—a unidirectional data receiver. It is connected to the td bus of the
transmitting device. yes

td Output Transmit data—a unidirectional data driver. The td bus of one device is connected
to the rd bus of the receiving device. yes

5–2 Chapter 5: Signals
Physical Layer Signals

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 5–2. External Transceiver Interface (Note 1)

Signal Direction Description Exported by
SOPC Builder

td Output Transmit data. 8-bit (1×) or 32-bit (4×) parallel data interface. yes

tc Output Transmit control. 1 bit for 1×; 4 bits for 4×. yes

tclk Output Transmit DDR center aligned clock. yes

phy_dis Output External transmitter disable. yes

rd Input Receive data. 8-bit (1×) or 32-bit (4×) parallel data interface. yes

rc Input Receive control. 1 bit for 1×; 4 bits for 4×. yes

rclk Input Recovered DDR center aligned clock. 1 bit for 1×; 4 bits for 4×. yes

rerr Input This input signal is used by external logic to indicate 8B10B decoding errors. yes

Note to Table 5–2:

(1) Qsys does not support the RapidIO external transceiver interface.

Table 5–3. Avalon System Clock (Note 1)

Design Flow Signal Direction Description
Exported by

SOPC Builder
and by Qsys

MegaWizard Plug-in Manager sysclk Input Avalon system clock —

Qsys or SOPC Builder clock Input Avalon system clock no

Note to Table 5–3:

(1) You connect this clock inside Qsys or SOPC Builder. If you connect it to an external clock, a port with the name of that external clock is added
to the your Qsys or SOPC Builder system and this clock is connected to it. Qsys allows you to specify the external name for the clock signal.

Table 5–4. Reference Clock

Design Flow Signal Direction Description
Exported by

SOPC Builder
and by Qsys

MegaWizard Plug-in Manager
or Qsys clk Input Physical layer reference

clock no (1)

SOPC Builder clk_<variation name> Input Physical layer reference
clock yes

Note to Table 5–4:

(1) You connect this clock inside Qsys or export it. Qsys allows you to specify the external name for the clk signal.

Chapter 5: Signals 5–3
Physical Layer Signals

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 5–5. Global Signals

Signal Direction Description
Exported by

SOPC Builder
and by Qsys

reset_n Input

Active-low system reset. In variations that implement only the Physical layer, this
reset signal is associated with the reference clock. In variations with a Transport
layer this reset is associated with the Avalon system clock.

reset_n can be asserted asynchronously, but must stay asserted at least one
clock cycle and must be de-asserted synchronously with the clock with which it is
associated. Refer to Figure 4–4 for a circuit that shows how to enforce
synchronous deassertion of reset_n.

Altera recommends that you apply an explicit 1 to 0 transition on the reset_n
input port in simulation, to ensure that the simulation model is properly reset.

In the Qsys flow, this signal is named clock_reset by default.

(1)

rxclk (2) Output

Receive-side recovered clock. This signal is derived from the rxgxbclk clock—a
clock driven by the transceiver—by division by 1 or 2, depending on the
configuration of the IP core. For the frequency of this clock, refer to Table 4–2 on
page 4–6

yes

txclk (3) Output

The internal clock of the Physical layer. This signal is derived from the txgxbclk
clock—a clock driven by the transceiver—by division by 1 or 2, depending on the
configuration of the IP core. For the frequency of this clock, refer to Table 4–2 on
page 4–6.

yes

Notes to Table 5–5:

(1) SOPC Builder exports this signal. In Qsys, you connect this reset signal inside the Qsys system or export it. Qsys allows you to specify the
external name for any exported signal.

(2) In MegaCore variations generated using SOPC Builder, this signal is rxclk_<variation name>. In the Qsys design flow, this signal is exported
as <user_selected_prefix_for_exported_connections>_rxclk.

(3) In MegaCore variations generated using SOPC Builder, this signal is txclk_<variation name>. In the Qsys design flow, this signal is exported
as <user_selected_prefix_for_exported_connections>_txclk.

Table 5–6. Avalon-MM Slave Interface (Note 1) (2)

Signal Direction Description Exported by SOPC Builder and
by Qsys

phy_mnt_s_clk Input Clock —

phy_mnt_s_chipselect Input Slave chip select —

phy_mnt_s_waitrequest Output Wait request —

phy_mnt_s_read Input Read enable —

phy_mnt_s_write Input Write enable —

phy_mnt_s_address[16:0] Input Address bus —

phy_mnt_s_writedata[31:0] Input Write data bus —

phy_mnt_s_readdata[31:0] Output Read data bus —

Notes to Table 5–6:

(1) All signals are in the phy_mnt_s_clk domain.
(2) This interface is not present in variations that implement the Transport layer. In those variations, the system maintenance Avalon-MM slave

interface is used to access the Physical layer registers.

5–4 Chapter 5: Signals
Physical Layer Signals

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Atlantic Interface Signals
Table 5–7 and Table 5–8 list signals for the Atlantic receive and transmit interfaces. All
Atlantic interface receive signals are in the arxclk clock domain, and all Atlantic
interface transmit signals are in the atxclk clock domain. In Physical-layer-only
variations of the RapidIO IP core, these two clocks are user-visible input clocks to the
IP core. In variations with a Transport layer, these two clocks are connected to the
Avalon system clock.

f For information about the Atlantic interface signals and protocol, refer to the
FS13: Atlantic Interface specification.

Table 5–7. Atlantic Receive Interface (Note 1) (2)

Signal Direction Description
Exported by

SOPC Builder
and by Qsys

arxclk Input Atlantic receive interface clock. —

arxreset_n Input

Receive active-low reset. arxreset_n can be asserted asynchronously
but should be deasserted synchronously to arxclk. This reset is
connected internally to reset_n in variations that implement the
Transport layer.

—

arxena Input Receive enable. —

arxdav Output

Receive data available. The arxdav signal is asserted when at least one
complete packet is available to be read from the receive buffer. It is
deasserted when the receive buffer does not have at least one complete
packet available.

—

arxdat Output Receive data bus. —

arxval Output Receive data valid. —

arxsop Output Receive start of packet. —

arxeop Output Receive end of packet. —

arxmty Output

Number of empty bytes on arxdat. During the final word of a packet,
when arxeop is asserted, the arxmty signal indicates the number of bytes
on the arxdat data bus that do not contain relevant data and should
therefore be ignored.

—

arxerr Output Receive data error. —

arxwlevel (3
)

Output Receive buffer write level (number of free 64-byte blocks in the receive
buffer). yes

Notes to Table 5–7:

(1) All of these signals are in the arxclk clock domain.
(2) This interface is not present in variations that include a Transport layer.
(3) The formula log2(size of the receive buffer in bytes/64)+1 determines the number of bits. For example, a receive buffer size of 16

KBytes would give: log2(16×1024/64)+1= 9 bits (for example, [8:0]).

Chapter 5: Signals 5–5
Physical Layer Signals

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Status Packet and Error Monitoring Signals
Table 5–9 lists the status packet and error monitoring signals.

Table 5–8. Atlantic Transmit Interface (Note 1) (2)

Signal Direction Description
Exported by

SOPC Builder
and by Qsys

atxclk Input
Atlantic transmit interface clock. This clock is connected internally to
the Avalon system clock in variations that implement the Transport
layer.

—

atxreset_n Input

Transmit active-low reset. atxreset_n can be asserted
asynchronously but should be deasserted on the rising edge of atxclk.
This reset is connected internally to reset_n in variations that
implement the Transport layer.

—

atxena Input Transmit enable. —

atxdav Output

Transmit data available. atxdav is asserted when the transmit buffer
has space to accept at least one maximum size packet (for example,
276 bytes). It is deasserted when it does not have space to accept at
least one maximum size packet.

—

atxdat Input Transmit data bus. —

atxsop Input Transmit start of packet. —

atxeop Input Transmit end of packet. —

atxmty Input

Number of empty bytes on atxdat. During the final word of a packet,
when atxeop is asserted, the atxmty signal indicates the number of
bytes on the atxdat data bus that do not contain relevant data and are
therefore ignored.

—

atxerr Input Transmit data error. —

atxwlevel (3) Output Transmit buffer write level (number of free 64-byte blocks in the
transmit buffer). yes

atxovf Output
Transmit buffer overflow. If a new packet is started by asserting atxena
and atxsop three or more atxclk clock cycles after atxdav is
deasserted, atxovf is asserted and the packet is ignored.

yes

Notes to Table 5–8:

(1) All of these signals are in the atxclk clock domain.
(2) This interface is not present in variations that include a Transport layer.
(3) The formula log2(size of the transmit buffer in bytes/64) determines the number of bits. For example, a transmit buffer size of 16

KBytes would give: log2(16×1024/64)= 8 bits (for example, [7:0]).

Table 5–9. Status Packet and Error Monitoring (Part 1 of 2)

Output Signal Clock
Domain Description

Exported by
SOPC Builder
and by Qsys

packet_transmitted txclk
Pulsed high for one clock cycle when a packet’s transmission
completes normally. yes

packet_cancelled txclk
Pulsed high for one clock cycle when a packet’s transmission is
cancelled by sending a stomp, a restart-from-retry, or a link-
request control symbol.

yes

5–6 Chapter 5: Signals
Physical Layer Signals

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Multicast Event Signal
Table 5–10 lists the multicast_event_rx signal.

packet_accepted rxclk
Pulsed high for one clock cycle when a packet-accepted control
symbol is being transmitted. yes

packet_retry rxclk
Pulsed high for one clock cycle when a packet-retry control
symbol is being transmitted. yes

packet_not_accepted rxclk
Pulsed high for one clock cycle when a packet-not-accepted
control symbol is being transmitted. yes

packet_crc_error rxclk
Pulsed high for one clock cycle when a CRC error is detected in a
received packet. yes

symbol_error rxclk
Pulsed high for one clock cycle when a corrupted symbol is
received. yes

port_initialized txclk

This signal indicates that the serial RapidIO initialization sequence
has completed successfully.

This is a level signal asserted high while the initialization state
machine is in the 1X_MODE or 4X_MODE state, as described in
paragraph 4.6 of Part VI of the RapidIO Specification.

yes

port_error txclk
This signal holds the value of the PORT_ERR bit of the Port 0
Error and Status CSR (offset 0x158) described in Table 6–10 on
page 6–7.

yes

char_err rxclk
Pulsed for one clock cycle when an invalid character or a valid but
illegal character is detected. yes

Table 5–9. Status Packet and Error Monitoring (Part 2 of 2)

Output Signal Clock
Domain Description

Exported by
SOPC Builder
and by Qsys

Table 5–10. Multicast Event Signal

Signal Direction Clock
Domain Description

Exported by
SOPC Builder
and by Qsys

multicast_event_tx Input txclk

Change the value of this signal to indicate the RapidIO
IP core should transmit a multicast-event control
symbol.

This signal should remain stable for at least 10 txclk
cycles.

yes

multicast_event_rx Output rxclk
Changes value when a multicast-event control
symbol is received. yes

Chapter 5: Signals 5–7
Physical Layer Signals

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Receive Priority Retry Threshold-Related Signals
Table 5–11 lists signals that are related to the Receive Priority Retry Threshold set in
the RapidIO parameter editor.

Transceiver Signals
Table 5–12 lists the transceiver signals in use for Arria GX, Arria II GX,
Cyclone IV GX, Stratix II GX, or Stratix IV GX designs. They are connected directly to
the transceiver block. In many cases these signals must be shared by multiple
transceiver blocks that are implemented in the same device

Arria GX devices do not support dynamic reconfiguration, so the Quartus II software
ties off the dynamic reconfiguration signals.

Table 5–11. Priority Retry Threshold Signals (Note 1)

Signal Direction Description
Exported by

SOPC Builder
and by Qsys

buf_av0 Output Buffers available for priority 0 retry packets. yes

buf_av1 Output Buffers available for priority 1 retry packets. yes

buf_av2 Output Buffers available for priority 2 retry packets. yes

buf_av3 Output Buffers available for priority 3 retry packets. yes

Note to Table 5–11:

(1) All of these signals are in the arxclk domain.

Table 5–12. Transceiver Signals (Part 1 of 2)

Signal Direction Description
Exported by

SOPC Builder
and by Qsys

cal_blk_clk (1) Input

The Arria GX, Arria II GX, Cyclone IV GX, Stratix II GX, and
Stratix IV GX transceiver’s on-chip termination resistors are
calibrated by a single calibration block. This circuitry requires a
calibration clock. The frequency range of the cal_blk_clk is
10–125 MHz. For more information, refer to the Arria GX Transceiver
Architecture chapter in volume 2 of the Arria GX Device Handbook,
the Transceiver Architecture for Arria II Devices chapter in volume 2
of the Arria II Device Handbook, the Cyclone IV Transceivers
Architecture chapter in volume 2 of the Cyclone IV Device Handbook,
the Stratix II GX Transceiver Architecture Overview chapter in
volume 2 of the Stratix II GX Device Handbook, or the Stratix IV
Transceiver Architecture chapter in volume 2 of the Stratix IV Device
Handbook.

no

rxgxbclk Input Transceiver receiver clock (recovered clock). no

reconfig_clk (2) Input

Reference clock for the dynamic reconfiguration controller. The
frequency range for this clock is 2.5–50 MHz. If you use a dynamic
reconfiguration block in your design to dynamically control the
transceiver, then this clock is required by the dynamic
reconfiguration block and the RapidIO IP core.

If no external dynamic reconfiguration block is used, this input
should be tied low.

yes

5–8 Chapter 5: Signals
Physical Layer Signals

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

In addition to customization of the transceiver through the parameter editor, you can
use the transceiver reconfiguration block to dynamically modify the parameter
interface. The dynamic reconfiguration block lets you reconfigure the following PMA
settings:

■ Pre-emphasis

■ Equalization

■ Offset cancellation (required for Stratix IV device transceivers)

■ VOD on a per channel basis

f For more information, refer to “Device Options” on page 3–1 and the appropriate
device handbook. For more information about offset cancellation, refer to the Arria II
Device Handbook or the Stratix IV Device Handbook.

reconfig_togxb (2) Input

Driven from an external dynamic reconfiguration block. Supports the
selection of multiple transceiver channels for dynamic
reconfiguration. If no external dynamic reconfiguration block is used,
then you must tie this bus to 3'b010 for Stratix II GX devices. Note
that not using a dynamic reconfiguration block that enables offset
cancellation results in a non-functional hardware design in
Arria II GX, Cyclone IV GX, and Stratix IV devices.

yes

reconfig_fromgxb Output

Driven to an external dynamic reconfiguration block. The bus
identifies the transceiver channel whose settings are being
transmitted to the dynamic reconfiguration block. If no external
dynamic reconfiguration block is used, then this output bus can be
left unconnected.

yes

gxbpll_locked Output Indicates the transceiver transmitter PLL is locked to the reference
clock. yes

gxb_powerdown Input

Transceiver block reset and power down. This resets and powers
down all circuits in the transceiver block. This signal does not affect
the refclk buffers and reference clock lines.

All the gxb_powerdown input signals of IP cores intended to be
placed in the same quad should be tied together. The
gxb_powerdown should be tied low or should remain asserted for at
least 2 ms whenever it is asserted.

yes

rx_errdetect Output Transceiver 8B10B code group violation signal bus. For details, refer
to the relevant device handbook. yes

Notes to Table 5–12:

(1) You connect this clock inside the Qsys tool or SOPC Builder. If you connect it to an external clock, a port with the name of that external clock
is added to your Qsys or SOPC Builder system and this clock is connected to it.

(2) Refer to“Instantiating Multiple RapidIO IP Cores” on page 2–13 for information about how to successfully combine multiple high-speed
transceiver channels—whether in two RapidIO IP core instances or in a RapidIO IP core and in another component—in the same quad.

Table 5–12. Transceiver Signals (Part 2 of 2)

Signal Direction Description
Exported by

SOPC Builder
and by Qsys

Chapter 5: Signals 5–9
Transport and Logical Layer Signals

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Register-Related Signals
Table 5–13 lists the register-related signals.

Transport and Logical Layer Signals
Table 5–14 through Table 5–25 list the signals used by the Transport layer and the
Maintenance, Input/Output, and Doorbell Logical layer modules of the RapidIO IP
core. For a list of descriptions of the pins and signals used and generated by the
Physical layer, see “Physical Layer Signals” on page 5–1.

Clock and Reset Signals
Table 5–3 through Table 5–5 list the clock and reset signals used when the Transport
layer and all Logical layer modules exist.

Avalon-MM Interface Signals
Table 5–14 through Table 5–21 list the standard signals for the Avalon-MM interfaces.
Signals on Avalon-MM interfaces are in the Avalon system clock domain.

1 When you instantiate the IP core with the Qsys tool or SOPC Builder, these signals are
automatically connected and are not visible as inputs or outputs of the system.

f Refer to the Avalon Interface Specifications for details.

Table 5–13. Register-Related Signals

Signal Direction Clock
Domain Description

Exported by
SOPC Builder
and by Qsys

ef_ptr[15:0] Input txclk Most significant bits [31:16] of the PHEAD0 register. yes

master_enable Output txclk

This output reflects the value of the Master Enable bit
of the Port General Control CSR, which indicates
whether this device is allowed to issue request packets.
If the Master Enable bit is not set, the device may
only respond to requests. User logic connected to the
Avalon-ST pass-through interface should honor this
value and not cause the Physical layer to issue request
packets when it is not allowed.

yes

port_response_timeout
[23:0]

Output txclk

Most significant bits [31:8] of PRTCTRL register. User
logic connected to the pass-through interface that
results in request packets requiring a response can use
this value to check for request to response time-out.

yes

Table 5–14. System Maintenance Avalon-MM Slave Interface Signals (Part 1 of 2)

Signal Direction Description

sys_mnt_s_clk Input This signal is not used, therefore it can be left open. The Avalon
clock is used internally to sample this interface.

sys_mnt_s_chipselect Input System maintenance slave chip select

5–10 Chapter 5: Signals
Transport and Logical Layer Signals

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

The following parameters are used in some signal width definitions:

■ n = (internal datapath width - 1)

■ m = (internal datapath width/8) - 1

■ k = 6 for 32-bit internal datapath width, and 5 for 64-bit internal datapath width

sys_mnt_s_waitrequest Output System maintenance slave wait request

sys_mnt_s_read Input System maintenance slave read enable

sys_mnt_s_write Input System maintenance slave write enable

sys_mnt_s_address[16:0] Input System maintenance slave address bus

sys_mnt_s_writedata[31:0] Input System maintenance slave write data bus

sys_mnt_s_readdata[31:0] Output System maintenance slave read data bus

sys_mnt_s_irq Output System maintenance slave interrupt request

Table 5–14. System Maintenance Avalon-MM Slave Interface Signals (Part 2 of 2)

Signal Direction Description

Table 5–15. Maintenance Avalon-MM Master Interface Signals

Signal Direction Description

mnt_m_clk Input This signal is not used, therefore it can be left open. The Avalon clock is
used internally to sample this interface.

mnt_m_waitrequest Input Maintenance master wait request

mnt_m_read Output Maintenance master read enable

mnt_m_write Output Maintenance master write enable

mnt_m_address[31:0] Output Maintenance master address bus

mnt_m_writedata[31:0] Output Maintenance master write data bus

mnt_m_readdata[31:0] Input Maintenance master read data bus

mnt_m_readdatavalid Input Maintenance master read data valid

Table 5–16. Maintenance Avalon-MM Slave Interface Signals

Signal Direction Description

mnt_s_clk Input This signal is not used, therefore it can be left open. The Avalon clock is
used internally as the clock reference for this interface.

mnt_s_chipselect Input Maintenance slave chip select.

mnt_s_waitrequest Output Maintenance slave wait request.

mnt_s_read Input Maintenance slave read enable.

mnt_s_write Input Maintenance slave write enable.

mnt_s_address[25:0] Input Maintenance slave address bus.

mnt_s_writedata[31:0] Input Maintenance slave write data bus.

mnt_s_readdata[31:0] Output Maintenance slave read data bus.

mnt_s_readdatavalid Output Maintenance slave read data valid.

mnt_s_readerror Output
Maintenance slave read error, which indicates that the read transfer did
not complete successfully. This signal is valid only when the
mnt_s_readdatavalid signal is asserted.

Chapter 5: Signals 5–11
Transport and Logical Layer Signals

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ j = (I/O slave address width - 1) — the I/O slave address width value is defined in
the RapidIO parameter editor.

1 For signals and bus widths specific to your variation, refer to the HTML report file
generated by the parameter editor.

Table 5–17. Input/Output Master Datapath Write Avalon-MM Interface Signals

Signal Direction Description

io_m_wr_clk Input This signal is not used, therefore it can be left open. The Avalon clock
is used internally as the clock reference for this interface.

io_m_wr_waitrequest Input Input/Output master wait request

io_m_wr_write Output Input/Output master write enable

io_m_wr_address[31:0] Output Input/Output master address bus

io_m_wr_writedata[n:0] Output Input/Output master write data bus

io_m_wr_byteenable[m:0] Output Input/Output master byte enable

io_m_wr_burstcount[k:0] Output Input/Output master burst count

Table 5–18. Input/Output Master Datapath Read Avalon-MM Interface Signals

Signal Direction Description

io_m_rd_clk Input This signal is not used, therefore it can be left open. The Avalon clock
is used internally as the clock reference for this interface.

io_m_rd_waitrequest Input Input/Output master wait request

io_m_rd_read Output Input/Output master read enable

io_m_rd_address[31:0] Output Input/Output master address bus

io_m_rd_readdata[n:0] Input Input/Output master read data bus

io_m_rd_readdatavalid Input Input/Output master read data valid

io_m_rd_burstcount[k:0] Output Input/Output master burst count

io_m_rd_readerror Input
Input/Output master indicates that the burst read transfer did not
complete successfully. This signal should be asserted through the
final cycle of the read transfer.

Table 5–19. Input/Output Slave Datapath Write Avalon-MM Interface Signals

Signal Direction Description

io_s_wr_clk Input This signal is not used, therefore it can be left open. The Avalon clock
is used internally as the clock reference for this interface.

io_s_wr_chipselect Input Input/Output slave chip select

io_s_wr_waitrequest Output Input/Output slave wait request

io_s_wr_write Input Input/Output slave write enable

io_s_wr_address[j:0] Input Input/Output slave address bus

io_s_wr_writedata[n:0] Input Input/Output slave write data bus

io_s_wr_byteenable[m:0] Input Input/Output slave byte enable

io_s_wr_burstcount[k:0] Input Input/Output slave burst count

5–12 Chapter 5: Signals
Transport and Logical Layer Signals

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Avalon-ST Pass-Through Interface Signals
Table 5–22 through Table 5–24 list the standard Avalon-ST pass-through interface
signals.

1 When you instantiate the IP core with Qsys or SOPC Builder, these signals are
automatically connected and are not visible as inputs or outputs of the system.

Table 5–20. Input/Output Slave Datapath Read Avalon-MM Interface Signals

Signal Direction Description

io_s_rd_clk Input This signal is not used, therefore it can be left open. The Avalon clock is
used internally as the clock reference for this interface.

io_s_rd_chipselect Input Input/Output slave chip select

io_s_rd_waitrequest Output Input/Output slave wait request

io_s_rd_read Input Input/Output slave read enable

io_s_rd_address[j:0] Input Input/Output slave address bus

io_s_rd_readdata[n:0] Output Input/Output slave read data bus

io_s_rd_readdatavalid Output Input/Output slave read data valid

io_s_rd_burstcount[k:0] Input Input/Output slave burst count

io_s_rd_readerror Output
Input/Output slave read error indicates that the burst read transfer did
not complete successfully. This signal is valid only when the
io_s_rd_readdatavalid signal is asserted.

Table 5–21. Doorbell Message Avalon-MM Slave Interface Signals

Signal Direction Description

drbell_s_clk Input This signal is not used, therefore it can be left open. The Avalon clock
is used internally as the clock reference for this interface.

drbell_s_chipselect Input Doorbell chip select

drbell_s_write Input Doorbell write enable

drbell_s_read Input Doorbell read enable

drbell_s_address[5:0] Input Doorbell address bus

drbell_s_writedata[31:0] Input Doorbell write data bus

drbell_s_readdata[31:0] Output Doorbell read data bus

drbell_s_waitrequest Output Doorbell wait request

drbell_s_irq Output Doorbell interrupt

Chapter 5: Signals 5–13
Transport and Logical Layer Signals

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 5–22 describes the Avalon-ST pass-through interface transmission (Tx) signals.

Table 5–22. Avalon-ST Pass-Through Interface Transmission Signals

Signal Type Function

gen_tx_ready Output

Indicates that the IP core is ready to receive data on the next clock cycle.
Asserted by the Avalon-ST sink to mark ready cycles, which are the cycles in
which transfers can take place. If ready is asserted on cycle N, the cycle
(N+READY_LATENCY) is a ready cycle.

In the RapidIO IP core, READY_LATENCY is equal to 1, so the cycle immediately
following the rising clock edge on which gen_tx_ready is detected as asserted
is the ready cycle.

This signal may alternate between 0 and 1 when the Avalon-ST pass-through
transmitter interface is idle. After gen_tx_valid is asserted, gen_tx_ready
remains asserted for the duration of the packet transmission, unless the
Physical layer transmit buffer fills.

gen_tx_valid Input
Used to qualify all the other transmit side of the Avalon-ST pass-through
interface input signals. On every ready cycle in which gen_tx_valid is high,
data is sampled by the IP core. (1)

gen_tx_startofpacket Input Marks the active cycle containing the start of the packet. (1)

gen_tx_endofpacket Input Marks the active cycle containing the end of the packet. (1)

gen_tx_data Input A 32-bit or 64-bit wide data bus for 1x or 4x variations respectively. Carries the
bulk of the information transferred from the source to the sink. (1)

gen_tx_empty Input

This bus identifies the number of empty bytes on the last data transfer of the
gen_tx_endofpacket. For a 32-bit wide data bus, this bus is 2 bits wide. For a
64-bit wide data bus, this bus is 3 bits wide. The least significant bit is ignored
and assumed to be 0. The following values are supported: (1)

32-bit bus:

2'b0X none

2'b1X [15:0]

64-bit bus:

3'b00X none

3'b01X [15:0]

3'b10X [31:0]

3'b11X [47:0]

gen_tx_error Input
If asserted any time during the packet transfer, this signal indicates the
corresponding data has an error and causes the packet to be dropped by the IP
core. A value of zero on any beat indicates the data on that beat is error-free. (1)

Note to Table 5–22:

(1) gen_tx_valid is used to qualify all the other input signals of the transmit side of the Avalon-ST pass-through interface.

5–14 Chapter 5: Signals
Transport and Logical Layer Signals

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 5–23 describes the Avalon-ST pass-through receiver (Rx) signals.

f For more information about these signals, refer to the Avalon Interface Specifications.

Table 5–23. Avalon-ST Pass-Through Interface Receiver Signals

Signal Type Function

gen_rx_ready Input

Indicates to the IP core that the user’s custom logic is ready to receive data on the
next clock cycle. Asserted by the sink to mark ready cycles, which are cycles in
which transfers can occur. If ready is asserted on cycle N, the cycle
(N+READY_LATENCY) is a ready cycle. The RapidIO IP core is designed for
READY_LATENCY equal to1.

gen_rx_valid Output
Used to qualify all the other output signals of the receive side pass-through
interface. On every rising edge of the clock where gen_rx_valid is high,
gen_rx_data can be sampled. (1)

gen_rx_startofpacket Output Marks the active cycle containing the start of the packet. (1)

gen_rx_endofpacket Output Marks the active cycle containing the end of the packet. (1)

gen_rx_data Output A 32-bit or 64-bit wide data bus for 1x or 4x mode respectively. (1)

gen_rx_empty Output

This bus identifies the number of empty bytes on the last data transfer of the
gen_rx_endofpacket. For a 32-bit wide data bus, this bus is 4 bits wide. For a
64-bit wide data bus, this bus is 8 bits wide. The least significant bit is ignored
and assumed to be 0. The following values are supported: (1)

32-bit bus:

2'b0X none

2'b1X [15:0]

64-bit bus:

3'b00X none

3'b01X [15:0]

3'b10X [31:0]

3'b11X [47:0]

gen_rx_size (2) Output
Identifies the number of cycles the current packet transfer requires. This signal is
only valid on the start of packet cycle when gen_rx_startofpacket is asserted.
(1)

gen_rx_error Output Indicates that the corresponding data has an error. This signal is never asserted
by the RapidIO IP core. (1)

Notes to Table 5–23:

(1) gen_rx_valid is used to qualify all the other output signals of the receive side Avalon-ST pass-through interface.
(2) This is not an Avalon-ST signal. The gen_rx_size signal is exported when the RapidIO IP core is part of a Qsys or SOPC Builder system.

Chapter 5: Signals 5–15
Transport and Logical Layer Signals

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Error Management Extension Signals
Table 5–24 shows the signals that are added when the Avalon-ST pass-through
interface is enabled and at least one of the Data Messages options (Source Operation
or Destination Operation) is turned on in the RapidIO parameter editor.

Table 5–24. Message Passing Error Management Input Ports (Note 1) (2) (Part 1 of 2)

Signal Description

Message Passing Error Management Inputs

error_detect_message_error_response

Sets the MESSAGE ERROR RESPONSE bit in the
Logical/Transport Layer Error Detect CSR and
triggers capture into the Error Management registers of the
captured fields below.

error_detect_message_format_error

Sets the MESSAGE ERROR RESPONSE bit in the
Logical/Transport Layer Error Detect CSR and
triggers capture into the Error Management registers of the
captured fields below.

error_detect_message_request_timeout

Sets the MESSAGE REQUEST TIME-OUT bit in the
Logical/Transport Layer Error Detect CSR and
triggers capture into the Error Management registers of the
captured fields below.

error_capture_letter [1:0] Field captured into the Logical/Transport Layer
Control Capture CSR.

error_capture_mbox [1:0] Field captured into the Logical/Transport Layer
Control Capture CSR.

error_capture_msgseg_or_xmbox [3:0] Field captured into the Logical/Transport Layer
Control Capture CSR.

Common Error Management Inputs

error_detect_illegal_transaction_decode

Sets the ILLEGAL TRANSACTION DECODE bit in the
Logical/Transport Layer Error Detect CSR and
triggers capture into the Error Management registers of the
captured fields below.

error_detect_illegal_transaction_target

Sets the ILLEGAL TRANSACTION TARGET ERROR bit in the
Logical/Transport Layer Error Detect CSR and
triggers capture into the Error Management registers of the
captured fields below.

error_detect_packet_response_timeout

Sets the PACKET RESPONSE TIME-OUT bit in the
Logical/Transport Layer Error Detect CSR and
triggers capture into the Error Management registers of the
captured fields below.

error_detect_unsolicited_response

Sets the UNSOLICITED RESPONSE bit in the
Logical/Transport Layer Error Detect CSR and
triggers capture into the Error Management registers of the
captured fields below.

error_detect_unsupported_transaction

Sets the UNSUPPORTED TRANSACTION bit in the
Logical/Transport Layer Error Detect CSR and
triggers capture into the Error Management registers of the
captured fields below.

5–16 Chapter 5: Signals
Transport and Logical Layer Signals

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Packet and Error Monitoring Signal for the Transport Layer
Table 5–25 shows the packet and error monitoring signal for the Transport layer. For
Physical layer packet and error monitoring signals, see Table 5–9 on page 5–5.

error_capture_ftype [3:0] Field captured into Logical/Transport Layer Control
Capture CSR.

error_capture_ttype [3:0] Field captured into Logical/Transport Layer Control
Capture CSR.

error_capture_destination_id [15:0] Field captured into Logical/Transport Layer Device ID
Capture CSR.

error_capture_source_id [15:0] Field captured into Logical/Transport Layer Device ID
Capture CSR.

Notes to Table 5–24:

(1) All of these signals are exported by SOPC Builder and included in the rio_data_messages conduit bundle in Qsys. This conduit bundle is
enabled only in RapidIO variations in which at least one of the Data Messages Source Operation or Destination Operation options is turned on.

(2) All these input signals are sampled in the Avalon system clock domain.

Table 5–24. Message Passing Error Management Input Ports (Note 1) (2) (Part 2 of 2)

Signal Description

Table 5–25. Transport Layer Packet and Error Monitoring Signal

Signal Clock
Domain Direction Description

Exported by
SOPC Builder
and by Qsys

rx_packet_dropped
Avalon
system
clock

Output

Pulsed high one Avalon clock cycle when a received
packet is dropped by the Transport layer. Received packets
are only dropped if the Avalon-ST pass-through interface
is not enabled in the variation. Examples of packets that
are dropped include packets that have an incorrect
destination ID, are of a type not supported by the selected
Logical layers, or have a transaction ID outside the range
used by the selected Logical layers.

yes

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

6. Software Interface

The RapidIO IP core supports the following sets of registers that control the RapidIO
IP core or query its status:

■ Standard RapidIO capability registers—CARs

■ Standard RapidIO command and status registers—CSRs

■ Extended features registers

■ Implementation defined registers

■ Doorbell specific registers

Some of these register sets are supported by specific RapidIO IP core layers only. This
chapter organizes the registers by the layers they support. The Physical layer registers
are described first, followed by the Transport and Logical layers registers.

All of the registers are 32 bits wide and are shown as hexadecimal values. The
registers can be accessed only on a 32-bit (4-byte) basis. The addressing for the
registers therefore increments by units of 4.

1 Reserved fields are labelled in the register tables. These fields are reserved for future
use and your design should not write to or rely on a specific value being found in any
reserved field or bit.

The following sets of registers are accessible through the System Maintenance
Avalon-MM slave interface.

■ CARs—Capability registers

■ CSRs—Command and status registers

■ Extended features registers

■ Implementation defined registers

A remote device can access these registers only by issuing read/write MAINTENANCE
operations destined for the local device. The local device must route these
transactions, if they are addressing these registers, from the Maintenance master
interface to the System Maintenance slave interface. Routing can be done by a Qsys or
SOPC Builder system or by a user-provided design. Refer to “Maintenance Module”
on page 4–29 for more details.

The doorbell registers can be accessed through the Doorbell Avalon-MM slave
interface. These registers are implemented only if you turn on Doorbell Tx enable or
Doorbell Rx enable in the RapidIO parameter editor. If you turn on only Doorbell Rx
enable, only the Rx-related doorbell registers are implemented. If you turn on only
Doorbell Tx enable, only the Tx-related doorbell registers are implemented.

6–2 Chapter 6: Software Interface

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 6–1 lists the access codes used to describe the type of register bits.

Table 6–2 lists the CAR, CSR and all the registers in the extended features
implementation defined address spaces. The doorbell registers are listed in Table 6–57
on page 6–28.

Table 6–1. Register Access Codes

Code Description

RW Read/write

RO Read-only

RW1C Read/write 1 to clear

RW0S Read/write 0 to set

RTC Read to clear

RTS Read to set

RTCW Read to clear/write

RTSW Read to set/write

RWTC Read/write any value to clear

RWTS Read/write any value to set

RWSC Read/write self-clearing

RWSS Read/write self-setting

UR0 Unused bits/read as 0

UR1 Unused bits/read as 1

Table 6–2. Memory Map (Part 1 of 3)

Address Name Used by

Capability Registers (CARs)

0x0 Device Identity

These CARs are not used by any of the internal modules.
They do not affect the functionality of the RapidIO IP
core. These registers are all Read-Only. Their values are
set using the RapidIO parameter editor when generating
the IP core. These registers inform either a local
processor or a processor on a remote end about the IP
core's capabilities.

0x4 Device Information

0x8 Assembly Identity

0xC Assembly Information

0x10 Processing Element Features

0x14 Switch Port Information

0x18 Source Operations

0x1C Destination Operations

Command and Status Registers (CSRs)

0x4C Processing Element Logical
layer Control Input/Output Slave Logical layer

0x58 Local Configuration Space Base
Address 0

Input/Output Master Logical layer

0x5C Local Configuration Space Base
Address 1

Input/Output Master Logical layer

0x60 Base Device ID Transport layer for routing or filtering. Input/Output
Slave Logical layer

Chapter 6: Software Interface 6–3

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

0x68 Host Base Device ID Lock Maintenance module

0x6C Component Tag Accessed via the Maintenance module

Extended Features Space

0x100 Register Block Header Physical layer

0x104–0x11C Reserved —

0x120 Port Link Time-out Control Logical layer modules

0x124 Port Response Time-out Control Logical layer modules

0x13C Port General Control Physical layer

0x148 Port 0 Local AckID Physical layer

0x158 Port 0 Error and Status Physical layer

0x15C Port 0 Control Physical layer

Implementation-Defined Space

0x10000

Reserved

0x10004

0x10008

0x1000C–0x1001C

0x10020

0x10024

0x10028

0x1002C-0x1007C

0x10080 Maintenance Interrupt Maintenance module

0x10084 Maintenance Interrupt Enable Maintenance module

0x10088 Rx Maintenance Mapping Maintenance module

0x1008C–0x100FC Reserved —

0x10100 Tx Maintenance Window 0 Base Maintenance module

0x10104 Tx Maintenance Window 0 Mask Maintenance module

0x10108 Tx Maintenance Window 0 Offset Maintenance module

0x1010C Tx Maintenance Window 0 Control Maintenance module

0x10110–0x101FC Tx Maintenance Windows 1-15 Maintenance module

0x10200 Tx Port Write Control Maintenance module

0x10204 Tx Port Write Status Maintenance module

0x10210–0x1024C Tx Port Write Buffer Maintenance module

0x10250 Rx Port Write Control Maintenance module

0x10254 Rx Port Write Status Maintenance module

0x10260–0x1029C Rx Port Write Buffer Maintenance module

0x102A0–0x102FC Reserved —

0x10300 I/O Master Window 0 Base Input/Output Master Logical layer

0x10304 I/O Master Window 0 Mask Input/Output Master Logical layer

0x10308 I/O Master Window 0 Offset Input/Output Master Logical layer

Table 6–2. Memory Map (Part 2 of 3)

Address Name Used by

6–4 Chapter 6: Software Interface
Physical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Physical Layer Registers
Table 6–3 shows the memory map for the serial RapidIO Physical layer. Table 6–4
through Table 6–11 describe the registers for the Physical layer of the RapidIO IP core.
The offset values are defined by the RapidIO standard.

0x1030C Reserved —

0x10310–0x103FC I/O Master Windows 1–15 Input/Output Master Logical layer

0x10400 I/O Slave Window 0 Base Input/Output Slave Logical layer

0x10404 I/O Slave Window 0 Mask Input/Output Slave Logical layer

0x10408 I/O Slave Window 0 Offset Input/Output Slave Logical layer

0x1040C I/O Slave Window 0 Control Input/Output Slave Logical layer

0x10410-0x104FC I/O Slave Windows 1–15 Input/Output Slave Logical layer

0x10500 I/O Slave Interrupt Input/Output Slave Logical layer

0x10504 I/O Slave Interrupt Enable Input/Output Slave Logical layer

0x10508 I/O Slave Pending NWRITE_R
Transactions

Input/Output Slave Logical Layer

0x1050C I/O Slave Avalon-MM Write
Transactions

Input/Output Slave Logical layer and Doorbell module

0x10510 I/O Slave RapidIO Write
Requests

Input/Output Slave Logical layer and Doorbell module

0x10514–0x105FC Reserved —

0x10600 Rx Transport Control Transport layer

0x10604–0x107FC Reserved —

0x10800 Logical/Transport Layer Error
Detect

Logical/Transport layer

0x10804 Logical/Transport Layer Error
Enable

Logical/Transport layer

0x10808 Logical/Transport Layer Address Logical/Transport layer

0x1080C Logical/Transport Layer Device
ID Capture Logical/Transport layer

0x10810 Logical/Transport Layer Control
Capture

Logical/Transport layer

Table 6–2. Memory Map (Part 3 of 3)

Address Name Used by

Table 6–3. Physical Layer Register Map (Part 1 of 2)

 Address Name Description

0x100 PHEAD0 1x/4x LP-Serial Register Block Header

0x104 PHEAD1 Reserved register

0x120 PLTCTRL Port Link Time-out Control CSR

0x124 PRTCTRL Port Response Time-out Control CSR

0x13C PGCTRL Port General Control CSR

Chapter 6: Software Interface 6–5
Physical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

0x158 ERRSTAT Port 0 Error and Status CSR

0x15C PCTRL0 Port 0 Control CSR

Table 6–4. PHEAD0—1x/4x LP-Serial Register Block Header—0x100

Field Bits Acces
s Function Default

EF_PTR [31:16] RO Hard-wired pointer to the next block in the data structure, if one exists.
The value is set from the ef_ptr input port. ef_ptr

EF_ID [15:0] RO Hard-wired extended features ID. 16'h0001

Table 6–5. PHEAD1—Reserved Register—0x104

Field Bits Access Function Default

RSRV [31:0] UR0 Reserved 32’h0

Table 6–6. PLTCTRL—Port Link Time-Out Control CSR—0x120

Field Bits Access Function Default

VALUE [31:8] RW

Time-out interval value for link-layer event pairs such as the
time interval between sending a packet and receiving the
corresponding acknowledge control symbol, or between
sending a link-request and receiving the corresponding
link-response.

The duration of the link-response time-out is approximately
equal to 4.5 seconds multiplied by the contents of this field,
divided by (224 - 1).

Note: Avoid time-out values less than 0x000010 because they
may not be reliable.

24'hFF_FFFF

RSRV [7:0] UR0 Reserved 8’h0

Table 6–3. Physical Layer Register Map (Part 2 of 2)

 Address Name Description

6–6 Chapter 6: Software Interface
Physical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 6–7. PRTCTRL—Port Response Time-Out Control CSR—0x124

Field Bits Access Function Default

VALUE [31:8] RW

Time-out internal value.

■ Physical layer-only variations: This value is not used by the RapidIO IP
core. The contents of this register drive the port_response_timeout
output signal.

■ Variations using Logical layers: The duration of the port response
time-out for all transactions that require a response—including
MAINTENANCE, DOORBELL, NWRITE_R, and NREAD transactions—is
approximately equal to 4.5 seconds multiplied by the contents of this
field, divided by (224 - 1).

Note: Avoid time-out values less than 0x000010 because they may not
be reliable.

Note: A new value in this field might not propagate quickly enough to be
applied to the next transaction. Any packet sent within 64 Avalon clock
cycles of the value change in the register might be sent using the
previous time-out value.

Note: Avoid changing the value in this field when any packet is waiting to
be transmitted or waiting for a response, to ensure that in each FIFO, the
pending entries all have the same time-out value.

24'hFF_FFFF

RSRV [7:0] UR0 Reserved 8'h0

Table 6–8. Port General Control—Offset: 0x13C

Field Bits Access Function Default

HOST [31] RW

A host device is a device that is responsible for system exploration,
initialization, and maintenance. Host devices typically initialize agent or
slave devices.

'b0 - agent or slave device

'b1 - host device

1'b0

ENA [30] RW

The Master Enable bit controls whether or not a device is allowed to
issue requests to the system. If Master Enable is not set, the device
may only respond to requests.

'b0 - The processing element cannot issue requests

'b1 - The processing element can issue requests

Variations that use only the Physical layer ignore this bit.

1'b0

DISCOVER [29] RW

This device has been located by the processing element responsible
for system configuration.

'b0 - The device has not been previously discovered

'b1 - The device has been discovered by another processing
element

1'b0

RSRV [28:0] RO Reserved 29'b0

Chapter 6: Software Interface 6–7
Physical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 6–9. Port 0 Local AckID CSR—Offset: 0x148

Field Bits Access Function Default

RSRV [31:29] RO Reserved 3'b0

INBOUND_ACKID [28:24] RO Next expected packet ackID. 5’b0

RSRV [23:13] RO Reserved 11’b0

OUTSTANDING_
ACKID

[12:8] RO Next expected acknowledge control-symbol ackID. 5'b0

RSRV [7:5] RO Reserved 3'b0

OUTBOUND_ACKID [4:0] RO Next transmitted packet ackID. 5'b0

Table 6–10. Port 0 Error and Status CSR—Offset: 0x158 (Note 1) (Part 1 of 3)

Field Bits Access Function Default

RSRV [31:21] RO Reserved 11'b0

OUT_RTY_ENC [20] RW1C
Output port has encountered a retry condition. In all cases, this
condition is caused by the port receiving a packet-retry control
symbol. This bit is set if the OUT_RTY_STOP bit is set.

1'b0

OUT_RETRIED [19] RO
Output port has received a packet-retry control symbol and cannot
make forward progress. This bit is cleared when a packet-accepted
or packet-not-accepted control symbol is received.

1'b0

OUT_RTY_STOP [18] RO

Output port has been stopped due to a retry and is trying to recover.
When a port receives a packet_retry control symbol, it enters the
Output Retry Stopped state. In this state, the port transmits a
restart-from-retry control symbol to its link partner. The link
partner exits the Input Retry Stopped state and normal operation
resumes. The port exits the Output Retry Stopped state.

1'b0

OUT_ERR_ENC [17] RW1C Output port has encountered a transmission error and has possibly
recovered from it. This bit is set when the OUT_ERR_STOP bit is set. 1'b0

OUT_ERR_STOP [16] RO

Output port has been stopped due to a transmission error and is trying
to recover. The output port is in the Output Error Stopped state. The port
enters into this state when it receives a packet-not-accepted control
symbol. To exit from this state, the port issues an input-status
link-request/input-status (restart-from-error) control symbol.
The port waits for the link-response control symbol and exits the
Output Error Stopped state.

1'b0

RSRV [15:11] RO Reserved 5'b0

IN_RTY_STOP [10] RO

Input port is stopped due to a retry. When the receiver issues a
packet-retry control symbol to its link partner, it enters the Input
Retry Stopped state. The receiver issues a packet-retry when
sufficient buffer space is not available to accept the packet for that
specific priority. The receiver continues in the Input Retry Stopped state
until it receives a restart-from-retry control symbol.

1'b0

IN_ERR_ENC [9] RW1C Input port has encountered a transmission error. This bit is set if the
IN_ERR_STOP bit is set. 1'b0

6–8 Chapter 6: Software Interface
Physical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

IN_ERR_STOP [8] RO

Input port is stopped due to a transmission error. The port is in the
Input Error Stop state.

The following conditions cause the input port to transition to this state:

■ Cancellation of a packet by using the restart-from-retry control
symbol.

■ Invalid character or valid character other than A, K, or R in an idle
sequence.

■ Single bit transmission errors.

■ Any of the following link protocol violations:

Unexpected packet accepted

Unexpected packet-retry

Unexpected packet-not-accepted packet Acknowledgment control
symbol with an unexpected packet_ackID

Link time-out while waiting for an acknowledgment control symbol

■ Corrupted control symbols, that is, CRC violations on the symbol.

■ Any of the following Packet Errors:

Unexpected ackID value

Incorrect CRC value

Invalid characters or valid nondata characters

Max data payload violations

The recovery mechanism consists of these steps:

1. Issue a packet-not-accepted control symbol.

2. Wait for link-request/input-status control symbol.

3. Send link-response control symbol.

1'b0

RSRV [7:5] RO Reserved 3'h0

PWRITE_PEND [4] RO This register is not implemented and is reserved. It is always set to zero. 1'b0

RSRV [3] RO Reserved 1'b0

Table 6–10. Port 0 Error and Status CSR—Offset: 0x158 (Note 1) (Part 2 of 3)

Field Bits Access Function Default

Chapter 6: Software Interface 6–9
Physical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

PORT_ERR [2] RW1C

This bit is set if the input port error recovery state machine encounters
an unrecoverable error or the output port error recovery state machine
enters the fatal_error state.

The input port error recovery state machine encounters an
unrecoverable error if it times out while waiting for a link-request after
sending a packet-not-accepted control symbol.

The output port error recovery state machine enters the fatal_error state
if the following sequence of events occurs:

1. The output port error recovery state machine enters the stop_output
state when it receives a packet-not-accepted control symbol. In
response, it sends the
input-status link-request/input-status (restart-from-error)
control symbol.

2. One of the following events occurs in response to the link-request
control symbol:

■ If the link-response is received but the ackID is outside of the
outstanding ackID set, or the port_status value is Error, then
the output port error recovery state machine enters the fatal_error
state.

■ If the port times out before receiving link-response, and the
number of times this time-out event has occurred reaches the
number you set in the RapidIO parameter editor as the value for
Link-request attempts, then the output port error recovery state
machine enters the fatal_error state.

When the PORT_ERR bit is set, the RapidIO IP core performs an internal
soft reset sequence, as described in “Fatal Errors” on page 4–66.

The port_error output signal mirrors this register bit.

1'b0

PORT_OK [1] RO

Input and output ports are initialized and can communicate with the
adjacent device. This bit is asserted when port_initialized is
asserted and the following conditions exist:

■ The IP core has received at least 7 status control symbols.

■ The output port retry recovery state machine is not in the
stop_output state.

■ The output port error recovery state machine is not in the
stop_output state.

■ The input port retry recovery state machine is not in the stop_input
state.

■ The input port error recovery state machine is not in the stop_input
state.

1'b0

PORT_UNINIT [0] RO Input and output ports are not initialized and are in training mode. This
bit is the negation of the PORT_OK bit. 1'b1

Note to Table 6–10:

(1) Refer to “Error Detection and Management” on page 4–65 for details.

Table 6–10. Port 0 Error and Status CSR—Offset: 0x158 (Note 1) (Part 3 of 3)

Field Bits Access Function Default

6–10 Chapter 6: Software Interface
Physical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 6–11. Port 0 Control CSR—Offset: 0x15C (Part 1 of 2)

Field Bits Access Function Default

PORT_WIDTH [31:30] RO

Hardware width of the port:

'b00—Single-lane port.

'b01—Four-lane port.

'b10–'b11—Reserved.

2'b00 (for 1×
variations),

2'b01 (for 4×
variations) (1)

INIT_WIDTH [29:27] RO

Width of the ports after being initialized:

'b000—Single lane port, lane 0.

'b001—Single lane port, lane 2.

'b010—Four lane port.

'b011–'b111—Reserved.

3'b000 (for
1× variations),

3'b010 (for
4× variations)

PWIDTH_OVRIDE [26:24] UR0

Soft port configuration to override the hardware size:

'b000—No override.

'b001—Reserved.

'b010—Force single lane, lane 0.

'b011—Force single lane, lane 2.

'b100–'b111—Reserved.

3'b000

PORT_DIS [23] RW

Port disable:

'b0—Port receivers/drivers are enabled.

'b1—Port receivers are disabled, causing the drivers to
send out idles.

■ When this bit transitions from 1 to 0, the initialization state
machines’ force_reinit signal is asserted. This
assertion causes the port to enter the SILENT state and to
attempt to reinitialize the link, as described in section 4.12
of Part 6: LP-Serial Physical Layer Specification of the
RapidIO Interconnect Specification, Revision 2.1.

■ When reception is disabled, the input buffers are kept
empty until this bit is cleared.

■ When PORT_DIS is asserted and the drivers are disabled,
the transmit buffer are reset and kept empty until this bit is
cleared, any previously stored packets are lost, and any
attempt to write a packet to the atx Atlantic interface is
ignored by the Physical layer. New packets are NOT stored
for later transmission.

1'b0

OUT_PENA [22] RW

Output port transmit enable:

'b0—Port is stopped and not enabled to issue any packets
except to route or respond to I/O logical MAINTENANCE
packets, depending upon the functionality of the
processing element. Control symbols are not affected and
are sent normally.

'b1—Port is enabled to issue packets.

1'b1

Chapter 6: Software Interface 6–11
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Transport and Logical Layer Registers
This section lists the Transport and Logical layer registers. Table 6–2 provides a
memory map of all accessible registers. This address space is accessible to the user
through the System Maintenance Avalon-MM slave interface.

Capability Registers (CARs)
Table 6–12 through Table 6–19 describe the capability registers.

IN_PENA [21] RW

Input port receive enable:

'b0—Port is stopped and only enabled to respond I/O
Logical MAINTENANCE requests. Other requests return
packet-not-accepted control symbols to force an error
condition to be signaled by the sending device

'b1—Port is enabled to respond to any packet

1'b1

ERR_CHK_DIS [20] RW

This bit controls all RapidIO transmission error checking:

'b0—Error checking and recovery is enabled

'b1—Error checking and recovery is disabled

Device behavior when error checking and recovery is
disabled and an error condition occurs is undefined.

1'b0

Multicast-event
Participant

[19] RW Send incoming Multicast-event control symbols to this port
(multiple port devices only). 1'b0

RSRV [18] RO Reserved 1'b0

Enumeration
Boundary

[17] RO This feature is not supported. 1'b0

RSRV [16:12] RO Reserved 5'b0

Re-transmit
Suppression Mask

[11:4] RO This feature is not supported. 8’b0

RSRV [3:1] RO Reserved 3’b0

PORT_TYPE [0] RO

This bit indicates the port type, parallel or serial.

'b0—Parallel port

'b1—Serial port

1'b1

Note to Table 6–11:

(1) Reflects the choice made in the RapidIO parameter editor.

Table 6–11. Port 0 Control CSR—Offset: 0x15C (Part 2 of 2)

Field Bits Access Function Default

Table 6–12. Device Identity CAR—Offset: 0x00

Field Bits Access Function Default

DEVICE_ID [31:16] RO Hard-wired device identifier (1)

VENDOR_ID [15:0] RO Hard-wired device vendor identifier (1)

Note to Table 6–12:

(1) The default value is set in the RapidIO parameter editor.

6–12 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 6–13. Device Information CAR—Offset: 0x04

Field Bits Access Function Default

DEVICE_REV [31:0] RO Hard-wired device revision level (1)

Note to Table 6–13:

(1) The default value is set in the RapidIO parameter editor.

Table 6–14. Assembly Identity CAR—Offset: 0x08

Field Bits Access Function Default

ASSY_ID [31:16] RO Hard-wired assembly identifier (1)

ASSY_VENDOR_ID [15:0] RO Hard-wired assembly vendor identifier (1)

Note to Table 6–14:

(1) The default value is set in the RapidIO parameter editor.

Table 6–15. Assembly Information CAR—Offset: 0x0C

Field Bits Access Function Default

ASSY_REV [31:16] RO Hard-wired assembly revision level (1)

EXT_FEATURE_PTR [15:0] RO Hard-wired pointer to the first entry in the extended feature list.
This pointer must be in the range of 16'h100 and 16'hFFFC. (1)

Note to Table 6–15:

(1) The default value is set in the RapidIO parameter editor.

Chapter 6: Software Interface 6–13
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 6–16. Processing Element Features CAR—Offset: 0x10

Field Bits Access Function Default

BRIDGE [31] RO Processing element can bridge to another interface. (1)

MEMORY [30] RO

Processing element has physically addressable local address
space and can be accessed as an endpoint through
nonmaintenance operations. This local address space may be
limited to local configuration registers, on-chip SRAM, or other
device.

(1)

PROCESSOR [29] RO
Processing element physically contains a local processor or
similar device that executes code. A device that bridges to an
interface that connects to a processor does not count.

(1)

SWITCH [28] RO
Processing element can bridge to another external RapidIO
interface—an internal port to a local endpoint does not count as
a switch port.

(1)

RSRV [27:7] RO Reserved 21'h0

RE_TRAN_SUP [6] RO

Processing element supports suppression of error recovery on
packet CRC errors:

1'b0—The error recovery suppression option is not
supported

1'b1—The error recovery suppression option is supported

1'b0

CRF_SUPPORT [5] RO

Processing element supports the Critical Request Flow (CRF)
indicator:

1'b0—Critical Request Flow is not supported

1'b1—Critical Request Flow is supported

1'b0

LARGE_TRANSPORT [4] RO

Processing element supports common transport large systems:

1'b0—Processing element does not support common
transport large systems (device ID width is 8 bits).

1'b1—Processing element supports common transport
large systems (device ID width is 16 bits).

The value of this field is determined by the device ID width you
select in the RapidIO parameter editor.

(1)

EXT_FEATURES [3] RO Processing element has extended features list; the extended
features pointer is valid. 1'b1

EXT_ADDR_SPRT [2:0] RO

Indicates the number of address bits supported by the
processing element, both as a source and target of an
operation. All processing elements support a minimum 34-bit
addresses:

3'b111—Processing element supports 66, 50, and 34-bit
addresses

3'b101—Processing element supports 66 and 34-bit
addresses

3'b011—Processing element supports 50 and 34-bit
addresses

3'b001—Processing element supports 34-bit addresses

3'b001

Note to Table 6–16:

(1) The default value is set in the RapidIO parameter editor.

6–14 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 6–17. Switch Port Information CAR—Offset: 0x14

Field Bits Access Function Default

RSRV [31:16] RO Reserved 16'h0

PORT_TOTAL [15:8] RO

The total number of RapidIO ports on the processing element:

8'h0—Reserved

8'h1—1 port

8'h2—2 ports

...

8'hFF—255 ports

(1)

PORT_NUMBER [7:0] RO
This is the port number from which the MAINTENANCE read
operation accessed this register. Ports are numbered starting with
'h0.

(1)

Note to Table 6–17:

(1) The default value is set in the RapidIO parameter editor.

Table 6–18. Source Operations CAR—Offset: 0x18 (Note 1) (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:16] RO Reserved 16'h0

READ [15] RO Processing element can support a read operation (2)

WRITE [14] RO Processing element can support a write operation (2)

SWRITE [13] RO Processing element can support a streaming-write operation (2)

NWRITE_R [12] RO Processing element can support a write-with-response operation (2)

Data Message [11] RO Processing element can support data message operation (3)

DOORBELL [10] RO Processing element can support a DOORBELL operation (4)

ATM_COMP_SWP [9] RO Processing element can support an ATOMIC compare-and-swap
operation 1'b0

ATM_TEST_SWP [8] RO Processing element can support an ATOMIC test-and-swap
operation 1'b0

ATM_INC [7] RO Processing element can support an ATOMIC increment operation 1'b0

ATM_DEC [6] RO Processing element can support an ATOMIC decrement operation 1'b0

ATM_SET [5] RO Processing element can support an ATOMIC set operation 1'b0

ATM_CLEAR [4] RO Processing element can support an ATOMIC clear operation 1'b0

ATM_SWAP [3] RO Processing element can support an ATOMIC swap operation 1'b0

PORT_WRITE [2] RO Processing element can support a port-write operation (5)

Chapter 6: Software Interface 6–15
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Implementation
Defined

[1:0] RO Reserved for this implementation 2'b00

Notes to Table 6–18:

(1) If one of the Logical layers supported by the RapidIO MegaCore is not selected in the MegaWizard Plug-in Manager, the corresponding bits in
the Source and Destination Operations CARs are forced to zero. These bits cannot be set to one, even if the corresponding operations are
supported by user logic attached to the Avalon-ST pass-through interface.

(2) The default value is 1'b1 if the I/O Logical layer interface Avalon-MM Slave was selected in the RapidIO parameter editor. The value is 1'b0 if
the I/O Logical layer interface Avalon-MM Slave was not selected in the RapidIO parameter editor.

(3) The default value is set in the RapidIO parameter editor.
(4) The default value is 1'b1 if Doorbell Tx enable is turned on in the RapidIO parameter editor. If Doorbell Tx enable is turned off, the value is

1'b0.
(5) The default value is 1'b1 if Port Write Tx enable is turned on in the RapidIO parameter editor. If Port Write Tx enable is turned off, the value

is 1'b0.

Table 6–19. Destination Operations CAR—Offset: 0x1C (Note 1)

Field Bits Access Comment Default

RSRV [31:16] RO Reserved 16'h0

READ [15] RO Processing element can support a read operation (2)

WRITE [14] RO Processing element can support a write operation (2)

SWRITE [13] RO Processing element can support a streaming-write operation (2)

NWRITE_R [12] RO Processing element can support a write-with-response operation (2)

Data Message [11] RO Processing element can support data message operation (3)

DOORBELL [10] RO Processing element can support a DOORBELL operation (4)

ATM_COMP_SWP [9] RO Processing element can support an ATOMIC compare-and-swap
operation 1'b0

ATM_TEST_SWP [8] RO Processing element can support an ATOMIC test-and-swap
operation 1'b0

ATM_INC [7] RO Processing element can support an ATOMIC increment operation 1'b0

ATM_DEC [6] RO Processing element can support an ATOMIC decrement operation 1'b0

ATM_SET [5] RO Processing element can support an ATOMIC set operation 1'b0

ATM_CLEAR [4] RO Processing element can support an ATOMIC clear operation 1'b0

ATM_SWAP [3] RO Processing element can support an ATOMIC swap operation 1'b0

PORT_WRITE [2] RO Processing element can support a port-write operation (5)

Implementation
Defined

[1:0] RO Reserved for this implementation 2'b00

Notes to Table 6–19:

(1) If none of the Logical layers supported by the RapidIO MegaCore is selected, the corresponding bits in the Source and Destination Operations
CAR are forced to zero. These bits cannot be set to one, even if the corresponding operations are supported by user logic attached to the
Avalon-ST pass-through interface.

(2) The default value is 1'b1 if the Avalon-MM Master is selected as an Input/Output Logical layer interface in the RapidIO parameter editor. If the
Avalon-MM Master is not selected, the value is 1'b0.

(3) The default value is set in the RapidIO parameter editor.
(4) The default value is 1'b1 if Doorbell Rx enable is turned on in the RapidIO parameter editor. If Doorbell Rx enable is turned off, the value is

1'b0.
(5) The default value element is 1'b1 if Port Write Rx enable is turned on in the RapidIO parameter editor. If Port Write Rx enable is turned off,

the value is 1'b0.

Table 6–18. Source Operations CAR—Offset: 0x18 (Note 1) (Part 2 of 2)

Field Bits Access Function Default

6–16 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Command and Status Registers (CSRs)
Table 6–20 through Table 6–25 describe the command and status registers.

Table 6–20. Processing Element Logical Layer Control CSR—Offset: 0x4C

Field Bits Access Function Default

RSRV [31:3] RO Reserved 29'h0

EXT_ADDR_CTRL [2:0] RO

Controls the number of address bits generated by the Processing
element as a source and processed by the Processing element as the
target of an operation.

'b100 – Processing element supports 66 bit addresses

'b010 – Processing element supports 50 bit addresses

'b001 – Processing element supports 34 bit addresses

All other encodings reserved

3'b001

Table 6–21. Local Configuration Space Base Address 0 CSR—Offset: 0x58

Field Bits Access Function Default

RSRV [31] RO Reserved 1'b0

LCSBA [30:15] RO Reserved for a 34-bit local physical address 16'h0

LCSBA [14:0] RO Reserved for a 34-bit local physical address 15'h0

Table 6–22. Local Configuration Space Base Address 1 CSR—Offset: 0x5C (Note 1)

Field Bits Access Function Default

LCSBA [31] RO Reserved for a 34-bit local physical address 1'b0

LCSBA [30:0] RW Bits 33:4 of a 34-bit physical address 31'h0

Note to Table 6–22:

(1) The Local Configuration Space Base Address registers are hard coded to zero. If the Input/Output Avalon-MM master interface is connected to
the System Maintenance Avalon-MM slave interface, regular read and write operations rather than MAINTENANCE operations, can be used to
access the processing element's registers for configuration and maintenance.

Table 6–23. Base Device ID CSR—Offset: 0x60

Field Bits Access Function Default

RSRV [31:24] RO Reserved 8'h0

DEVICE_ID (1) [23:16]
RW This is the base ID of the device in a small common

transport system. 8'hFF

RO Reserved if the system does not support 8-bit device ID.

LARGE_DEVICE_ID (1) [15:0]
RW This is the base ID of the device in a large common transport

system. 16'hFFFF

RO Reserved if the system does not support 16-bit device ID.

Note to Table 6–23:

(1) In a small common transport system, the DEVICE_ID field is Read-Write and the LARGE_DEVICE_ID field is Read-only. In a large common
transport system, the DEVICE_ID field is Read-only and the LARGE_DEVICE_ID field is Read-Write.

Chapter 6: Software Interface 6–17
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Maintenance Interrupt Control Registers
Table 6–26 and Table 6–27 describe the registers that relate to the Maintenance module
interrupts. If any of these error conditions are detected and if the corresponding
Interrupt Enable bit is set, the sys_mnt_s_irq signal is asserted.

Table 6–24. Host Base Device ID Lock CSR—Offset: 0x68

Field Bits Access Function Default

RSRV [31:16] RO Reserved 16'h0

HOST_BASE_DEVICE_ID [15:0] RW (1) This is the base device ID for the processing element
that is initializing this processing element. 16'hFFFF

Note to Table 6–24:

(1) Write once; can be reset. See Part 3 §3.5.2 of the RapidIO Specification Rev 2.1 for more information.

Table 6–25. Component Tag CSR—Offset: 0x6C

Field Bits Access Function Default

COMPONENT_TAG [31:0] RW This is a component tag for the processing element. 32'h0

Table 6–26. Maintenance Interrupt—Offset: 0x10080

Field Bits Access Function Default

RSRV [31:7] RO Reserved 25'h0

PORT_WRITE_ERROR [6] RW1C Port-write error 1'b0

PACKET_DROPPED [5] RW1C

A received port-write packet was dropped. A port-write packet is
dropped under the following conditions:

■ A port-write request packet is received but port-write
reception has not been enabled by setting bit
PORT_WRITE_ENABLE in the Rx Port Write Control
register.

■ A previously received port-write has not been read out from
the Rx Port Write register.

1'b0

PACKET_STORED [4] RW1C
Indicates that the IP core has received a port-write packet and
that the payload can be retrieved using the System
Maintenance Avalon-MM slave interface.

1'b0

RSRV [3] RO Reserved 1'b0

RSRV [2] RO Reserved 1'b0

WRITE_OUT_OF_BOUNDS [1] RW1C

If the address of an Avalon-MM write transfer presented at the
Maintenance Avalon-MM slave interface does not fall within any
of the enabled Tx Maintenance Address translation windows,
then it is considered out of bounds and this bit is set.

1'b0

READ_OUT_OF_BOUNDS [0] RW1C

If the address of an Avalon-MM read transfer presented at the
Maintenance Avalon-MM slave interface does not fall within any
of the enabled Tx Maintenance Address translation windows,
then it is considered out of bounds and this bit is set.

1'b0

6–18 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Receive Maintenance Registers
Table 6–28 describes the receiver maintenance register.

Table 6–27. Maintenance Interrupt Enable—Offset: 0x10084

Field Bit Access Function Default

RSRV [31:7] RO Reserved 25'h0

PORT_WRITE_ERROR [6] RW Port-write error interrupt enable 1'b0

RX_PACKET_DROPPED [5] RW Rx port-write packet dropped interrupt enable 1'b0

RX_PACKET_STORED [4] RW Rx port-write packet stored in buffer interrupt enable 1'b0

RSRV [3:2] RO Reserved 2'b00

WRITE_OUT_OF_BOUNDS [1] RW Tx write request address out of bounds interrupt enable 1'b0

READ_OUT_OF_BOUNDS [0] RW Tx read request address out of bounds interrupt enable 1'b0

Table 6–28. Rx Maintenance Mapping—Offset: 0x10088

Field Bits Access Function Default

RX_BASE [31:24] RW

Rx base address. The offset value carried in a received
MAINTENANCE Type packet is concatenated with this RX_BASE
to form a 32-bit Avalon Address as follows:

Avalon_address = {rx_base, cfg_offset, word_addr,
2'b00}

8'h0

RSRV [23:0] RO Reserved 24'h0

Chapter 6: Software Interface 6–19
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Transmit Maintenance Registers
Table 6–29 through Table 6–32 describe the transmitter maintenance registers. When
transmitting a MAINTENANCE packet, an address translation process occurs, using a
base, mask, offset, and control register. As many as sixteen groups of four registers
can exist. The 16 register address offsets are shown in the table titles. For more details
on how to use these windows, refer to “Maintenance Slave Processor” on page 4–31.

Transmit Port-Write Registers
Table 6–33 through Table 6–35 describe the transmit port-write registers.

Table 6–29. Tx Maintenance Mapping Window n Base—Offset: 0x10100, 0x10110, 0x10120, 0x10130, 0x10140,
0x10150, 0x10160, 0x10170, 0x10180, 0x10190, 0x101A0, 0x101B0, 0x101C0, 0x101D0, 0x101E0, 0x101F0

Field Bits Access Function Default

BASE [31:3] RW
Start of the Avalon-MM address window to be mapped. The
three least significant bits of the 32-bit base are assumed to be
zero.

29'h0

RSRV [2:0] RO Reserved 3'h0

Table 6–30. Tx Maintenance Mapping Window n Mask—Offset: 0x10104, 0x10114, 0x10124, 0x10134, 0x10144,
0x10154, 0x10164, 0x10174, 0x10184, 0x10194, 0x101A4, 0x101B4, 0x101C4, 0x101D4, 0x101E4, 0x101F4

Field Bits Access Function Default

MASK [31:3] RW Mask for the address mapping window. The three least
significant bits of the 32-bit mask are assumed to be zero. 29'h0

WEN [2] RW Window enable. Set to one to enable the corresponding
window. 1'b0

RSRV [1:0] RO Reserved 2'h0

Table 6–31. Tx Maintenance Mapping Window n Offset—Offset: 0x10108, 0x10118, 0x10128, 0x10138, 0x10148,
0x10158, 0x10168, 0x10178, 0x10188, 0x10198, 0x101A8, 0x101B8, 0x101C8, '0x101D8, 0x101E8, 0x101F8

Field Bits Access Function Default

RSRV [31:24] RO Reserved 8'h0

OFFSET [23:0] RW Window offset 24'h0

Table 6–32. Tx Maintenance Mapping Window n Control—Offset: 0x1010C, 0x1011C, 0x1012C, 0x1013C, 0x1014C,
0x1015C, 0x1016C, 0x1017C, 0x1018C, 0x1019C, 0x101AC, 0x101BC, 0x101CC, 0x101DC, 0x101EC, 0x101FC

Field Bits Access Function Default

LARGE_DESTINATION_ID
(MSB)

[31:24]
RO Reserved if the system does not support 16-bit device ID.

8'h0
RW MSB of the Destination ID if the system supports 16-bit

device ID.

DESTINATION_ID [23:16] RW Destination ID 8'h0

HOP_COUNT [15:8] RW Hop count 8'hFF

PRIORITY [7:6] RW
Packet priority.
2’b11 is not a valid value for the PRIORITY field. Any attempt
to write 2’b11 to this field is overwritten with 2’b10.

2'b00

RSRV [5:0] RO Reserved 6'h0

6–20 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Refer to “Port-Write Processor” on page 4–35 for information about using these
registers to transmit a port-write.

Receive Port-Write Registers
Table 6–36 through Table 6–38 describe the receive port-write registers.

Refer to “Port-Write Reception Module” on page 4–69 for information about receiving
port write MAINTENANCE packets.

Table 6–33. Tx Port Write Control—Offset: 0x10200

Field Bits Access Function Default

LARGE_DESTINATION_ID
(MSB)

[31:24]
RO Reserved if the system does not support 16-bit device ID.

8'h0
RW MSB of the Destination ID if the system supports 16-bit

device ID.

DESTINATION_ID [23:16] RW Destination ID 8'h0

RSRV [15:8] RO Reserved 8'h00

PRIORITY [7:6] RW
Request packet’s priority.
2’b11 is not a valid value for the priority field. An attempt
to write 2’b11 to this field is overwritten as 2’b10.

2'b00

SIZE [5:2] RW
Packet payload size in number of double words. If set to 0,
the payload size is single word. If size is set to a value
larger than 8, the payload size is 8 double words (64 bytes).

4'h0

RSRV [1] RO Reserved 1'b0

PACKET_READY [0] RW

Write 1 to start transmitting the port-write request. This bit
is cleared internally after the packet has been transferred to
the Transport layer to be forwarded to the Physical layer for
transmission.

1'b0

Table 6–34. Tx Port Write Status—Offset: 0x10204

Field Bits Access Function Default

RSRV [31:0] RO Reserved 31'h0

Table 6–35. Tx Port Write Buffer n—Offset: 0x10210 – 0x1024C

Field Bits Access Function Default

PORT_WRITE_DATA_n [31:0] RW Port-write data. This buffer is implemented in memory and is
not initialized at reset. 32'hx

Table 6–36. Rx Port Write Control—Offset: 0x10250

Field Bits Access Function Default

RSRV [31:2] RO Reserved 30'h0

CLEAR_BUFFER [1] RW Clear port-write buffer. Write 1 to activate. Always read 0. 1'b0

PORT_WRITE_ENA [0] RW Port-write enable. If set to 1, port-write packets are accepted.
If set to 0, port-write packets are dropped. 1'b1

Chapter 6: Software Interface 6–21
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Input/Output Master Address Mapping Registers
Table 6–39 through Table 6–41 describe the Input/Output master registers. When the
IP core receives an NREAD, NWRITE, NWRITE_R, or SWRITE request packet, the RapidIO
address has to be translated into a local Avalon-MM address. The translation involves
the base, mask, and offset registers. There are up to 16 register sets, one for each
address mapping window. The 16 possible register address offsets are shown in the
table titles.

Refer to “Input/Output Avalon-MM Master Address Mapping Windows” on
page 4–38 for more details.

Table 6–37. Rx Port Write Status—Offset: 0x10254

Field Bits Access Function Default

RSRV [31:6] RO Reserved 26'h0

PAYLOAD_SIZE [5:2] RO Packet payload size in number of double words. If the size is
zero, the payload size is single word. 4'h0

RSRV [1] RO Reserved 1'b0

PORT_WRITE_BUSY [0] RO Port-write busy. Set if a packet is currently being stored in the
buffer or if the packet is stored and has not been read. 1'b0

Table 6–38. Rx Port Write Buffer n—Offset: 0x10260 – 0x1029C

Field Bits Access Function Default

PORT_WRITE_DATA_n [31:0] RO Port-write data. This buffer is implemented in memory and is
not initialized at reset. 32'hx

Table 6–39. Input/Output Master Mapping Window n Base—Offset: 0x10300, 0x10310, 0x10320, 0x10330, 0x10340,
0x10350, 0x10360, 0x10370, 0x10380, 0x10390, 0x103A0, 0x103B0, 0x103C0, 0x103D0, 0x103E0, 0x103F0

Field Bits Access Function Default

BASE [31:3] RW
Start of the RapidIO address window to be mapped. The three
least significant bits of the 34-bit base are assumed to be
zeros.

29'h0

RSRV [2] RO Reserved 1'b0

XAMB [1:0] RW Extended Address: two most significant bits of the 34-bit base. 2'h0

Table 6–40. Input/Output Master Mapping Window n Mask—Offset: 0x10304, 0x10314, 0x10324, 0x10334, 0x10344,
0x10354, 0x10364, 0x10374, 0x10384, 0x10394, 0x103A4, 0x103B4, 0x103C4, 0x103D4, 0x103E4, 0x103F4

Field Bits Access Function Default

MASK [31:3] RW
Bits 31 to 3 of the mask for the address mapping window. The
three least significant bits of the 34-bit mask are assumed to
be zeros.

29'h0

WEN [2] RW Window enable. Set to one to enable the corresponding
window. 1'b0

XAMM [1:0] RW Extended Address: two most significant bits of the 34-bit
mask. 2’b0

6–22 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Input/Output Slave Mapping Registers
Table 6–42 through Table 6–47 describe the Input/Output slave registers. The
registers define windows in the Avalon-MM address space that are used to determine
the outgoing request packet’s ftype, DESTINATION_ID, priority, and address fields.
There are up to 16 register sets, one for each possible address mapping window. The
16 possible register address offsets are shown in the table titles.

Refer to “Input/Output Avalon-MM Slave Address Mapping Windows” on
page 4–47 for a description of how to use these registers.

Table 6–41. Input/Output Master Mapping Window n Offset—Offset: 0x10308, 0x10318, 0x10328, 0x10338, 0x10348,
0x10358, 0x10368, 0x10378, 0x10388, 0x10398, 0x103A8, 0x103B8, 0x103C8, 0x103D8, 0x103E8, 0x103F8

Field Bits Access Function Default

OFFSET [31:3] RW
Starting offset into the Avalon-MM address space. The three
least significant bits of the 32-bit offset are assumed to be
zero.

29'h0

RSRV [2:0] RO Reserved 3'h0

Table 6–42. Input/Output Slave Mapping Window n Base—Offset: 0x10400, 0x10410, 0x10420, 0x10430, 0x10440,
0x10450, 0x10460, 0x10470, 0x10480, 0x10490, 0x104A0, 0x104B0, 0x104C0, 0x104D0, 0x104E0, 0x104F0

Field Bits Access Function Default

BASE [31:3] RW
Start of the Avalon-MM address window to be mapped. The
three least significant bits of the 32-bit base are assumed to be
all zeros.

29'h0

RSRV [2:0] RO Reserved 3'h0

Table 6–43. Input/Output Slave Mapping Window n Mask—Offset: 0x10404, 0x10414, 0x10424, 0x10434, 0x10444,
0x10454, 0x10464, 0x10474, 0x10484, 0x10494, 0x104A4, 0x104B4, 0x104C4, 0x104D4, 0x104E4, 0x104F4

Field Bits Access Function Default

MASK [31:3] RW
29 most significant bits of the mask for the address mapping
window. The three least significant bits of the 32-bit mask are
assumed to be zeros.

29'h0

WEN [2] RW Window enable. Set to one to enable the corresponding
window. 1'b0

RSRV [1:0] RO Reserved 2'h0

Table 6–44. Input/Output Slave Mapping Window n Offset—Offset: 0x10408, 0x10418, 0x10428, 0x10438, 0x10448,
0x10458, 0x10468, 0x10478, 0x10488, 0x10498, 0x104A8, 0x104B8, 0x104C8, 0x104D8, 0x104E8, 0x104F8

Field Bits Access Function Default

OFFSET [31:3] RW
Bits [31:3] of the starting offset into the RapidIO address
space. The three least significant bits of the 34-bit offset are
assumed to be zeros.

29'h0

RSRV [2] RO Reserved 1'b0

XAMO [1:0] RW Extended Address: two most significant bits of the 34-bit
offset. 2'h0

Chapter 6: Software Interface 6–23
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Input/Output Slave Interrupts
Table 6–46 and Table 6–47 describe the available Input/Output slave interrupts and
corresponding interrupt enable bits. These interrupt bits assert the sys_mnt_s_irq
signal if the corresponding interrupt bit is enabled.

Table 6–45. Input/Output Slave Mapping Window n Control—Offset: 0x1040C, 0x1041C, 0x1042C, 0x1043C, 0x1044C,
0x1045C, 0x1046C, 0x1047C, 0x1048C, 0x1049C, 0x104AC, 0x104BC, 0x104CC, 0x104DC, 0x104EC, 0x104FC

Field Bits Access Function Default

LARGE_DESTINATION_ID
(MSB)

[31:24]
RO Reserved if the system does not support 16-bit device ID.

8'h0
RW MSB of the Destination ID if the system supports 16-bit

device ID.

DESTINATION_ID [23:16] RW Destination ID 8'h0

RSRV [15:8] RO Reserved 8'h0

PRIORITY [7:6] RW
Request Packet’s priority 2’b11 is not a valid value for the
priority field. Any attempt to write 2’b11 to this field is
overwritten with 2’b10.

2'h0

RSRV [5:2] RO Reserved 4'h0

SWRITE_ENABLE [1] RW SWRITE enable. Set to one to generate SWRITE request
packets. (1) 1'b0

NWRITE_R_ENABLE [0] RW NWRITE_R enable (1) 1'b0

Note to Table 6–45:

(1) Bits 0 and 1 (NWRITE_R_ENABLE and SWRITE_ENABLE) are mutually exclusive. An attempt to write ones to both of these fields at the same time
is ignored, and that part of the register keeps its previous value.

Table 6–46. Input/Output Slave Interrupt—Offset: 0x10500 (Part 1 of 2)

Field Bits Access Function Default

RSRV [31:5] RO Reserved 27'h0

NWRITE_RS_COMPLETED [4] RW1C

Indicates no pending NWRITE_R transactions remain in
the RapidIO IP core. Set when the
PENDING_NWRITE_RS field of the Input/Output
Slave Pending NWRITE_R Transactions register
(offset 0x10508) is set to 0. Because of the inherent
delay in incrementing the PENDING_NWRITE_RS field
after the start of the corresponding write transaction on
the Avalon-MM interface, you should wait at least 8
Avalon clock cycles after the start of the NWRITE_R
transaction whose completion you wish to trigger an
interrupt, before you clear this bit and enable this
interrupt.

1'b0

INVALID_WRITE_BYTEENABLE [3] RW1C

Write byte enable invalid. Asserted when
io_s_wr_byteenable is set to invalid values. For
information about valid values see Table 4–15 and
Table 4–17.

1'b0

INVALID_WRITE_BURSTCOUNT [2] RW1C

Write burst count invalid. Asserted when
io_s_wr_burstcount is set to an odd number larger
than one in variations with 32-bit wide datapath Avalon-
MM write interfaces.

1'b0

6–24 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

WRITE_OUT_OF_BOUNDS [1] RW1C
Write request address out of bounds. Asserted when the
Avalon-MM address does not fall within any enabled
address mapping windows.

1'b0

READ_OUT_OF_BOUNDS [0] RW1C
Read request address out of bounds.

Asserted when the Avalon-MM address does not fall
within any enabled address mapping windows.

1'b0

Table 6–46. Input/Output Slave Interrupt—Offset: 0x10500 (Part 2 of 2)

Field Bits Access Function Default

Table 6–47. Input/Output Slave Interrupt Enable—Offset: 0x10504

Field Bits Access Function Default

RSRV [31:5] RO Reserved 27'h0

NWRITE_RS_COMPLETED [4] RW NWRITE_Rs-completed field enable. 1'b0

INVALID_WRITE_BYTEENABLE [3] RW Write byte enable invalid interrupt enable 1'b0

INVALID_WRITE_BURSTCOUNT [2] RW Write burst count invalid interrupt enable 1'b0

WRITE_OUT_OF_BOUNDS [1] RW Write request address out of bounds interrupt enable 1'b0

READ_OUT_OF_BOUNDS [0] RW Read request address out of bounds interrupt enable 1'b0

Table 6–48. Input/Output Slave Pending NWRITE_R Transactions—Offset: 0x10508

Field Bits Access Function Default

RSRV [31:5] RO Reserved 27'h0

PENDING_NWRITE_RS [4:0] RO

Number of pending NWRITE_R write requests that
have been initiated in the I/O Avalon-MM slave Logical
layer module but have not yet completed. The value in
this field might update only after a delay of 8 Avalon
clock cycles after the start of the write burst on the
Avalon-MM interface.

5'b0

Table 6–49. Input/Output Slave Avalon-MM Write Transactions—Offset: 0x1050C

Field Bits Access Function Default

RSRV [31:16] RO Reserved 16'h0

STARTED_WRITES [15:0] RO

Number of write transfers initiated on Avalon-MM
Input/Output Slave port so far. Count increments on
first system clock cycle in which the io_s_wr_write
and io_s_wr_chipselect signals are asserted and
the io_s_wr_waitrequest signal is not asserted.
This counter rolls over to 0 after its maximum value.

16'b0

Chapter 6: Software Interface 6–25
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Transport Layer Feature Register
Table 6–51 describes the Rx Transport Control register. This register controls the
Transport layer mode.

Table 6–50. Input/Output Slave RapidIO Write Requests—Offset: 0x10510

Field Bits Access Function Default

RSRV [31:16] RO Reserved 16'h0

COMPLETED_OR_CANCELLED_WRITES [15:0] RO

Number of write-request packets transferred
from the Avalon-MM Input/Output Slave
module to the Transport layer or cancelled.
Count increments when the write-request
packet is sent to the Transport layer, or when
a write transaction is cancelled. This counter
rolls over to 0 after its maximum value.

16'b0

Table 6–51. Rx Transport Control—Offset: 0x10600

Field Bits Access Function Default

RSRV [31:1] RO Reserved 31'h0

PROMISCUOUS_MODE [0] RW

This bit determines whether the Transport layer checks
destination IDs in incoming request packets, or
promiscuously accepts all incoming request packets
with a supported ftype. The reset value is set in the
RapidIO parameter editor.

(1)

Note to Table 6–51:

(1) The default value is set in the RapidIO parameter editor.

6–26 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Error Management Registers
Table 6–52 through Table 6–56 describe the error management registers. These
registers can be used by software to diagnose problems with packets that are received
by the local endpoint. If enabled, the detected error triggers the assertion of
sys_mnt_s_irq. Information about the packet that caused the error is captured in the
capture registers. After an error condition is detected, the information is captured and
the capture registers are locked until the Error Detect CSR is cleared. Upon being
cleared, the capture registers are ready to capture a new packet that exhibits an error
condition.

Table 6–52. Logical/Transport Layer Error Detect CSR—Offset: 0x10800

Field Bits Access Function Default

IO_ERROR_RSP [31] RW Received a response of ERROR for an I/O Logical Layer Request. 1'b0

MSG_ERROR_RESPONSE [30] RW Received a response of ERROR for a MSG Logical Layer Request. 1'b0

GSM error response [29] RO This feature is not supported. 1'b0

MSG_FORMAT_ERROR [28] RW Received MESSAGE packet data payload with an invalid size or
segment. 1'b0

ILL_TRAN_DECODE [27] RW Received illegal fields in the request/response packet for a
supported transaction. 1'b0

ILL_TRAN_TARGET [26] RW Received a packet that contained a destination ID that is not
defined for this end point. 1'b0

MSG_REQ_TIMEOUT [25] RW A required message request has not been received within the
specified time-out interval. 1'b0

PKT_RSP_TIMEOUT [24] RW A required response has not been received within the specified
time-out interval. 1'b0

UNSOLICIT_RSP [23] RW An unsolicited/unexpected response packet was received. 1'b0

UNSUPPORT_TRAN [22] RW A transaction is received that is not supported in the Destination
Operations CAR. 1'b0

RSRV [21:8] RO Reserved 22'h0

Implementation Specific
error [7:0] RO This feature is not supported. 8’b0

Table 6–53. Logical/Transport Layer Error Enable CSR—Offset: 0x10804 (Part 1 of 2)

Field Bits Access Function Default

IO_ERROR_RSP_EN [31] RW
Enable reporting of an I/O error response. Save and lock
original request transaction information in all
Logical/Transport Layer Capture CSRs.

1'b0

MSG_ERROR_RESPONSE_EN [30] RW
Enable reporting of a Message error response. Save and
lock original request transaction information in all
Logical/Transport Layer Capture CSRs.

1'b0

GSM error response enable [29] RO This feature is not supported. 1’b0

MSG_FORMAT_ERROR_EN [28] RW
Enable reporting of a message format error. Save and lock
original request transaction information in all
Logical/Transport Layer Capture CSRs.

1’b0

Chapter 6: Software Interface 6–27
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

ILL_TRAN_DECODE_EN [27] RW

Enable reporting of an illegal transaction decode error. Save
and lock transaction capture information in
Logical/Transport Layer Device ID and Control Capture
CSRs.

1'b0

ILL_TRAN_TARGET_EN [26] RW

Enable reporting of an illegal transaction target error. Save
and lock transaction capture information in
Logical/Transport Layer Device ID and Control Capture
CSRs.

1'b0

MSG_REQ_TIMEOUT_EN [25] RW

Enable reporting of a Message Request time-out error. Save
and lock original request transaction information in
Logical/Transport Layer Device ID and Control Capture CSRs
for the last Message request segment packet received.

1'b0

PKT_RSP_TIMEOUT_EN [24] RW

Enable reporting of a packet response time-out error. Save
and lock original request address in Logical/Transport Layer
Address Capture CSRs. Save and lock original request
destination ID in Logical/Transport Layer Device ID Capture
CSR.

1'b0

UNSOLICIT_RSP_EN [23] RW
Enable reporting of an unsolicited response error. Save and
lock transaction capture information in Logical/Transport
Layer Device ID and Control Capture CSRs.

1'b0

UNSUPPORT_TRAN_EN [22] RW
Enable report of an unsupported transaction error. Save and
lock transaction capture information in Logical/Transport
Layer Device ID and Control Capture CSRs.

1'b0

RSRV [21-8] RO Reserved 14'h0

Implementation Specific
error enable

[7-0] RO This feature is not supported. 8’b0

Table 6–53. Logical/Transport Layer Error Enable CSR—Offset: 0x10804 (Part 2 of 2)

Field Bits Access Function Default

Table 6–54. Logical/Transport Layer Address Capture CSR—Offset: 0x10808

Field Bits Access Function Default

ADDRESS [31:3] RO Bits 31 to 3 of the RapidIO address associated with the error. 29'h0

RSRV [2] RO Reserved 1'b0

XAMSBS [1:0] RO Extended address bits of the address associated with the error. 2'h0

Table 6–55. Logical/Transport Layer Device ID Capture CSR—Offset: 0x1080C

Field Bits Access Function Default

LARGE_DESTINATION_ID
(MSB)

[31:24]
RO Reserved if the system does not support 16-bit device ID.

8'h0
RW MSB of the Destination ID if the system supports 16-bit

device ID.

DESTINATION_ID [23:16] RO The destination ID associated with the error. 8'h0

LARGE_SOURCE_ID (MSB) [15:8]
RO Reserved if the system does not support 16-bit device ID.

8'h0
RW MSB of the Source ID if the system supports 16-bit device

ID.

SOURCE_ID [7:0] RO The source ID associated with the error. 8'h0

6–28 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Doorbell Message Registers
The RapidIO IP core has registers accessible by the Avalon-MM slave port in the
Doorbell module. These registers are described in the following sections.

Refer to “Doorbell Module” on page 4–57 for a detailed explanation of the DOORBELL
messaging support.

Table 6–56. Logical/Transport Layer Control Capture CSR—Offset: 0x10810

Field Bits Access Function Default

FTYPE [31:28] RO Format type associated with the error. 4'h0

TTYPE [27:24] RO Transaction type associated with the error. 4'h0

MSG_INFO [23:16] RO Letter, mbox, and msgseg for the last message request received
for the mailbox that had and error. 8'h0

Implementation
Specific

[15:0] RO Reserved for this implementation. 16'h0

Table 6–57. Doorbell Message Module Memory Map

Address Name Used by

Doorbell Message Space

0x00 Rx Doorbell

External Avalon-MM master that generates or receives
doorbell messages.

0x04 Rx Doorbell Status

0x08 Tx Doorbell Control

0x0C Tx Doorbell

0x10 Tx Doorbell Status

0x14 Tx Doorbell Completion

0x18 Tx Doorbell Completion
Status

0x1C Tx Doorbell Status Control

0x20 Doorbell Interrupt Enable

0x24 Doorbell Interrupt Status

Table 6–58. Rx Doorbell—Offset: 0x00

Field Bits Access Function Default

LARGE_SOURCE_ID
(MSB)

[31:24] RO
Reserved if the system does not support 16-bit device ID.

8'b0MSB of the DOORBELL message initiator device ID if the system
supports 16-bit device ID.

SOURCE_ID [23:16] RO Device ID of the DOORBELL message initiator 8'b0

INFORMATION (MSB) [15:8] RO Received DOORBELL message information field, MSB 8'b0

INFORMATION (LSB) [7:0] RO Received DOORBELL message information field, LSB 8'b0

Chapter 6: Software Interface 6–29
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 6–59. Rx Doorbell Status—Offset: 0x04

Field Bits Access Function Default

RSRV [31:8] RO Reserved 24’b0

FIFO_LEVEL [7:0] RO Shows the number of available DOORBELL messages in the Rx FIFO.
A maximum of 16 received messages is supported. 8'h0

Table 6–60. Tx Doorbell Control—Offset: 0x08

Field Bits Access Function Default

RSRV [31:2] RO Reserved 30'h0

PRIORITY [1:0] RW
Request Packet’s priority. 2’b11 is not a valid value for the
priority field. An attempt to write 2’b11 to this field will be
overwritten as 2’b10.

2'h0

Table 6–61. Tx Doorbell—Offset: 0x0C

Field Bits Access Function Default

LARGE_DESTINATION_ID
(MSB)

[31:24]
RO Reserved if the system does not support 16-bit device ID.

8'h0
RW MSB of the targeted RapidIO processing element device ID if

the system supports 16-bit device ID.

DESTINATION_ID [23:16] RW Device ID of the targeted RapidIO processing element 8'h0

INFORMATION (MSB) [15:8] RW MSB information field of the outbound DOORBELL message 8'h0

INFORMATION (LSB) [7:0] RW LSB information field of the outbound DOORBELL message 8'h0

Table 6–62. Tx Doorbell Status—Offset: 0x10

Field Bits Access Function Default

RSRV [31:24] RO Reserved 8'h0

PENDING [23:16] RO
Number of DOORBELL messages that have been transmitted, but
for which a response has not been received. There can be a
maximum of 16 pending DOORBELL messages.

8'h0

TX_FIFO_LEVEL [15:8] RO
The number of DOORBELL messages in the staging FIFO plus the
number of DOORBELL messages in the Tx FIFO. The maximum
value is 16.

8'h0

TXCPL_FIFO_LEVEL [7:0] RO The number of available completed Tx DOORBELL messages in
the Tx Completion FIFO. The FIFO can store a maximum of 16. 8'h0

6–30 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Table 6–63. Tx Doorbell Completion—Offset: 0x14 (Note 1)

Field Bits Access Function Default

LARGE_DESTINATION_ID [31:24] RO
Reserved if the system does not support 16-bit device ID.

8'h0MSB of the targeted RapidIO processing element device ID if
the system supports 16-bit device ID.

DESTINATION_ID [23:16] RO The device ID of the targeted RapidIO processing element. 8'h0

INFORMATION [15:8] RO
MSB of the information field of an outbound DOORBELL
message that has been confirmed as successful or
unsuccessful.

8'h0

INFORMATION [7:0] RO
LSB of the information field of an outbound DOORBELL
message that has been confirmed as successful or
unsuccessful.

8'h0

Note to Table 6–63:

(1) The completed Tx DOORBELL message comes directly from the Tx Doorbell Completion FIFO.

Table 6–64. Tx Doorbell Completion Status—Offset: 0x18

Field Bits Access Function Default

RSRV [31:2] RO Reserved 30'h0

ERROR_CODE [1:0] RO

This error code corresponds to the most recently read message from
the Tx Doorbell Completion register. After software reads the Tx
Doorbell Completion register, a read to this register should follow
to determine the status of the message.

2'b00—Response DONE status

2'b01—Response with ERROR status

2'b10—Time-out error

2'h0

Table 6–65. Tx Doorbell Status Control—Offset: 0x1C

Field Bits Access Function Default

RSRV [31:2] RO Reserved 30'h0

ERROR [1] RW
If set, outbound DOORBELL messages that received a response with
ERROR status, or were timed out, are stored in the Tx Completion
FIFO. Otherwise, no error reporting occurs.

1'h0

COMPLETED [0] RW

If set, responses to successful outbound DOORBELL messages are
stored in the Tx Completion FIFO. Otherwise, these responses are
discarded.18 1'h0

Table 6–66. Doorbell Interrupt Enable—Offset: 0x20

Field Bits Access Function Default

RSRV [31:3] RO Reserved 29'b0

TX_CPL_OVERFLOW [2] RW Tx Doorbell Completion Buffer Overflow Interrupt Enable 1'h0

TX_CPL [1] RW Tx Doorbell Completion Interrupt Enable 1'h0

RX [0] RW Doorbell Received Interrupt Enable 1'h0

Chapter 6: Software Interface 6–31
Transport and Logical Layer Registers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Table 6–67. Doorbell Interrupt Status—Offset: 0x24

Field Bits Access Function Default

RSRV [31:3] RO Reserved 29'h0

TX_CPL_OVERFLOW [2] RW1C

Interrupt asserted due to Tx Completion buffer overflow. This bit
remains set until at least one entry is read from the Tx
Completion FIFO. After reading at least one entry, software
should clear this bit. It is not necessary to read all of the Tx
Completion FIFO entries.

1'h0

TX_CPL [1] RW1C Interrupt asserted due to Tx completion status 1'h0

RX [0] RW1C Interrupt asserted due to received messages 1'h0

6–32 Chapter 6: Software Interface
Transport and Logical Layer Registers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

7. Testbenches

The RapidIO IP core includes two demonstration testbenches for your use. One tests a
IP core variation that has only the Physical layer. The other testbench tests a IP core
variation that has Physical, Transport, and Logical layers. The purpose of the supplied
testbenches is to provide examples of how to parameterize the IP core and how to use
the Atlantic interface in the Physical-layer-only IP core variations, and the Avalon
Memory-Mapped (Avalon-MM) and Avalon Streaming (Avalon-ST) interfaces, to
generate and process RapidIO transactions. The testbenches are not available for
RapidIO IP cores generated in the Qsys flow.

Testbench for Variations with Only a Physical Layer
The demonstration testbench that is generated for a Physical-layer-only variation
demonstrates the following functions:

■ Port initialization process

■ Transmission, reception, and acknowledgment of packets with 8 to 256 bytes of
data payload

■ Support for 8-bit or 16-bit device ID fields

■ Writing to and reading from the Atlantic interfaces

■ Reading from the software interface registers

■ Transmission and reception of multicast-event control symbols

The testbench consists of two RapidIO IP core instances interconnected through their
high-speed serial interfaces, as shown in Figure 7–1. In the testbench, each IP core’s td
output is connected to the other IP core’s rd input. The testbench module provides
clocking and reset control, tasks to write to and read from the IP core’s Atlantic
interfaces, and a task to read from the command and status register (CSR) set. For
variations with external transceivers, these IP cores are interconnected through their
XGMII interfaces.

7–2 Chapter 7: Testbenches
Testbench for Variations with Only a Physical Layer

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

The testbench starts with the IP cores in a reset state. All clock inputs use a common
reference clock. After coming out of the reset state, the IP cores start the port
initialization process to detect the presence of a partner and establish bit
synchronization and code group boundary alignment. After the IP cores assert their
port_initialized output signals, the testbench checks that the port initialization
process completed successfully by reading the Error and Status CSR to confirm the
expected values of the PORT_OK and PORT_UNINIT register bits.

Packets with 8 to 256 bytes of data payload are then transmitted from one IP core to
the other. The receiving IP core sends the proper acknowledgment symbols and the
received packets are checked in the expected sequence for data integrity.

Table 7–1 describes the format of the transmitted packets.

Figure 7–1. Serial RapidIO Physical Layer Demonstration Testbench (Note 1)

Note to Figure 7–1:

(1) The external blocks, shown in white, are Verilog HDL tasks.

Reference
Clock

tb module

td rd

rd td
RapidIO A

DUT

RapidIO B

Sister

B_Receive_Packet

B_Send_PacketA_Receive_Packet

A_Send_Packet

RapidIO
LP-Serial Links

Reference
Clock

Atlantic
Interface

Atlantic
Interface

Avalon-MM
Interface

Avalon-MM
Interface

B_Read_RegisterA_Read_Register

Table 7–1. Serial Packets Format

Packet Byte Format Description

First Header
word

{ackID[4:0],Reserved[2:0],
prio[1:0],tt[1:0],
ftype[3:0]}

ackID is set to zero and is replaced by the transmitting IP
core. The prio field is used by the receiver to select the
output queue. The ttype and ftype fields are used by the
Transport and Logical layers and are ignored by the Physical
layer IP cores, except I/O logical MAINTENANCE packet type.

DestinationID DestinationID[15:0]

These fields are used by the Transport and Logical layers and
are transferred unchanged by the Physical layer IP cores.

SourceID SourceID[15:0]

Last Header
word

{Transaction[3:0],
Size[3:0],TID[7:0]}

Payload bytes 8–256 bytes The payload bytes in the packet are set to an incrementing
sequence starting at 0.

Chapter 7: Testbenches 7–3
Testbench for a Variation with Physical, Transport, and Logical Layers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

The received packet format is similar, but CRCs and padding (when required) are
appended to the packet and an intermediate CRC is inserted in the packets after the
first 80 bytes, when the packet size exceeds 80 bytes.

Table 7–2 lists the tasks used to write packets to a IP core for transmission, read and
check a received packet, and read the value from a register and compare it to an
expected value.

All of the packets are sent contiguously, in sequence. The testbench also changes the
value of the multicast_event_tx input signal to the RapidIO IP core under test,
multiple times during the test sequence, and the sister module checks that a multicast-
event control symbol is sent for each transition. After all packets have been sent, the
idle sequence is transmitted until the end of the simulation.

The testbench concludes by checking that all of the packets have been received. If no
error is detected and all packets are received, the testbench issues a TESTBENCH PASSED
message stating that the simulation was successful.

If an error is detected, a TESTBENCH FAILED message is issued to indicate that the
testbench has failed. A TESTBENCH INCOMPLETE message is issued if the expected
number of checks is not made. For example, this message is issued if not all packets
are received before the testbench is terminated. The variable tb.exp_chk_cnt
determines the number of checks done to ensure completeness of the testbench.

To generate a value change dump file called dump.vcd for all viewable signals,
uncomment the line //`define MAKEDUMP in the <variation name>_tb.v file.

Testbench for a Variation with Physical, Transport, and Logical Layers
For a variation that includes Transport, Logical, and Physical layers, transactions are
generated and monitored on the Avalon-MM interfaces and Avalon-ST interface. The
Atlantic interfaces are not visible in variations with a Transport layer.

Table 7–2. Physical Layer Testbench Tasks

Function Prototype Comments

Write Packet to an
Atlantic slave sink

task send_packet;

input [1:0] prio;

input [1:0] tt;

input [3:0] ftype;

input [8:0] payload_sizes;

The payload_size should be an even number between 8
and 256 inclusive.

The actual name of the task is prepended with A_ or B_
depending on which IP core it should act.

prio—packet priority

tt—transport type

ftype—packet format type

payload_size—size of the packet payload

Read and check a
packet from an
Atlantic slave
source

 task receive_packet;

input [1:0] prio;

input [1:0] tt;

input [3:0] ftype;

input [8:0] payload_size;

Read from
Register

 task read_register;

input [15:0]address;

input [31:0]expected;

The read value is compared to the expected value, and any
difference is flagged as an error. You can specify “don’t
care” values by putting ‘x’s in the corresponding bit position.

7–4 Chapter 7: Testbenches
Testbench for a Variation with Physical, Transport, and Logical Layers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

MAINTENANCE, Input/Output, or DOORBELL transactions are generated if you select the
corresponding modules during parameterization of the IP core. Type 9 (Data
Streaming) packets are transferred through the Avalon-ST pass-through interface, if
present.

The testbench instantiates two symmetrical RapidIO IP core variations. One instance
is the Device Under Test (DUT). The other instance acts as a RapidIO link partner for
the RapidIO DUT module and is referred to as the sister_rio module. The sister_rio
module responds to transactions initiated by the DUT and generates transactions to
which the DUT responds. Bus functional models (BFM) are connected to the Avalon-
MM and Avalon-ST interfaces of both the DUT and sister_rio modules, to generate
transactions to which the link partner responds when appropriate, and to monitor the
responses.

Figure 7–2 is a block diagram of the testbench in which all of the available
Avalon-MM interfaces are enabled. The two MegaCore modules communicate with
each other using the Serial RapidIO interface. The testbench initiates the following
transactions at the DUT and targets them to the sister_rio module:

■ SWRITE

■ NWRITE_R

■ NWRITE

■ NREAD

■ DOORBELL messages

■ MAINTENANCE writes and reads

■ MAINTENANCE port writes and reads

■ Type 9 (Data Streaming) transactions (using the Avalon-ST interface)

1 Your specific variation may not have all of the interfaces enabled. If an interface is not
enabled, the transactions supported by that interface are not exercised by the
testbench.

In addition, the RapidIO IP core modules implement the following features:

■ Multicast-event control symbol transmission and reception. The RapidIO IP core
under test generates and transmits multicast-event control symbols in response to
transitions on its multicast_event_tx input signal. The sister module checks that
these control symbols arrive as expected.

■ Disabled destination ID checking, or not, selected at configuration.

■ NWRITE_R completion indication.

Chapter 7: Testbenches 7–5
Testbench for a Variation with Physical, Transport, and Logical Layers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ Transaction order preservation between DOORBELL transactions and I/O write
transactions, or not, selected at configuration. If this feature is selected, the
RapidIO IP core under test generates and transmits DOORBELL and write
transactions. The testbench checks that the transaction packets arrive on the link in
the expected order.

Figure 7–2 illustrates the system specified in Verilog HDL in the file
<design_name>_hookup.iv. Activity across the Avalon-MM interfaces is generated and
checked by running tasks that are defined in the bus functional models (BFMs). These
models are implemented in the following files:

■ <design_name>_avalon_bfm_master.v

■ <design_name>_avalon_bfm_slave.v

The file <design_name>_tb.v implements the code that performs the test transactions.
The code performs a reset and initialization sequence necessary for the DUT and
sister_rio IP cores to establish a link and exchange packets.

Reset, Initialization, and Configuration
The clocks that drive the testbench are defined and generated in the
<design_name>_hookup.iv file.

1 Refer to <design_name>_hookup.iv for the exact frequencies used for each of the
clocks. The frequencies depend on the configuration of the variation.

Figure 7–2. Transport and IO Logical Layers Testbench

PHY PHY

Avalon-MM

sister_rio

Serial
RapidIO
Interface

Avalon-MM

Avalon-ST

DUT

Avalon-ST

Maintenance
Slave

sister_bfm_mnt_slave

sister_bfm_mnt_master

Maintenance
Master

Maintenance
Slave

Maintenance
Master

bfm_mnt_slave

bfm_mnt_master

sister_receive_packet_avalon_st

sister_send_packet_avalon_st

bfm_receive_packet_avalon_st

bfm_send_packet_avalon_st

I/O
Master

I/O
Slave

bfm_io_read_master

bfm_io_write_master

bfm_io_write_slave

bfm_io_read_slave

sister_bfm_io_read_master

sister_bfm_io_write_master

sister_bfm_io_write_slave

sister_bfm_io_read_slave

I/O
Master

I/O
Slave

sister_bfm_drbell_master

sister_bfm_cnt_master

System
Maintenance

Slave

Doorbell
Slave

System
Maintenance

Slave

Doorbell
Slave bfm_drbell_master

bfm_cnt_master

Pass-
Through

Pass-
Through

7–6 Chapter 7: Testbenches
Testbench for a Variation with Physical, Transport, and Logical Layers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

The reset sequence is simple—the main reset signal for the DUT and the sister_rio IP
core, reset_n, is driven low at the beginning of the simulation, is kept low for 200 ns,
and is then deasserted.

After reset_n is deasserted, the testbench waits until both the DUT and the sister_rio
modules have driven their port_initialized output signals high. These signal
transitions indicate that both IP cores have completed their initialization sequence.
The testbench then waits an additional 5000 ns, to allow time for a potential reset
link-request control symbol exchange between the DUT and the sister_rio module.
The testbench again waits until both the DUT and the sister_rio modules have driven
their port_initialized output signals high. Following the 5000 ns wait, these signals
indicate that the link is established and the Physical layer is ready to exchange traffic.

Next, basic programming of the internal registers is performed in the DUT and the
sister_rio module. Table 7–3 shows the registers that are programmed in both the
DUT and the sister_rio IP cores. For a full description of each register, refer to
Chapter 6, Software Interface.

Table 7–3. Testbench Registers

 Module Register
Address Register Name Description Value

rio 0x00060 Base Device ID CSR Program the DUT to have an 8-bit base device ID
of 0xAA or a 16-bit device ID of 0xAAAA.

32'h00AA_FFFFor
32’h00FF_AAAA

rio 0x0013C
General Control
CSR

Enable Request packet generation by the DUT. 32'h6000_0000

sister_rio 0x00060 Base Device ID CSR
Program the sister_rio module to have an 8-bit
base device ID of 0x55 or a 16-bit device ID of
0x5555.

32'h0055_FFFF
or
32’h00FF_5555

sister_rio 0x0013C
General Control
CSR

Enable Request packet generation by the
sister_rio module. 32'h6000_0000

rio 0x1040C
Input/Output Slave
Window 0 Control

Set the DESTINATION_ID for outgoing
transactions to a value 0x55 or 0x5555. The
width of the DESTINATION_ID field depends on
the sister_rio device ID width. This value
matches the base device ID of the sister_rio
module.

32'h0055_0000 or
32'h5555_0000

rio 0x10404
Input/Output Slave
Window 0 Mask

Define the Input/Output Avalon-MM Slave
Window 0 to cover the whole address space
(mask set to all zeros) and enable it.

32'h0000_0004

sister_rio 0x10504
Input/Output Slave
Interrupt Enable

Enable the I/O slave interrupts. 32'h0000_000F

sister_rio 0x10304
Input/Output
Master Window 0
Mask

Enable the sister_rio I/O Master Window 0,
which allows the sister_rio to receive I/O
transactions.

32'h0000_0004

rio 0x1010C
TX Maintenance
Window 0 Control

Set the DESTINATION_ID for outgoing
MAINTENANCE packets to 0x55 or 0x5555,
depending on the sister_rio device ID width. This
value matches the base device ID of the sister_rio
module. Set the hop count to 0xFF.

32'h0055_FF00
or 32'h5555_FF00

rio 0x10104
TX Maintenance
Window 0 Mask Enable the TX Maintenance window 0. 32'h0000_0004

Chapter 7: Testbenches 7–7
Testbench for a Variation with Physical, Transport, and Logical Layers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Read and write tasks that are defined in the BFM instance, bfm_cnt_master, program
the DUT’s registers. Read and write tasks defined in the BFM instance
sister_bfm_cnt_master program the sister_rio module’s registers. For the exact
parameters passed to these tasks, refer to the file <design_name>_tb.v. The tasks drive
either a write or read transaction across the System Maintenance Avalon-MM slave
interface.

In the configuration shown in Figure 7–2 on page 7–5, the IP cores can exchange basic
packets across the serial link.

Maintenance Write and Read Transactions
If the Maintenance module is present, the testbench sends a few MAINTENANCE read
and write request packets from the DUT to the sister_rio module. Transactions are
initiated by Avalon-MM transactions on the DUT's Maintenance Avalon-MM slave
interface, and are checked on the sister_rio’s Maintenance Avalon-MM master
interface.

The first set of tests performed are MAINTENANCE write and read requests. The DUT
sends two MAINTENANCE write requests to the sister_rio module. The writes are
performed by running the rw_addr_data task defined inside the BFM instance,
bfm_mnt_master. The bfm_mnt_master is an instance of the module
avalon_bfm_master, defined in the file <design_name>_avalon_bfm_master.v. The
following parameters are passed to the task:

■ ‘WRITE —transaction type to be executed

■ wr_address—address to be driven on the Avalon-MM address bus

■ wr_data—write data to be driven on the Avalon-MM write data bus

The task performs the write transaction across the Maintenance Write Avalon-MM
slave interface.

The DUT then sends two MAINTENANCE read requests to the sister_rio module. To
perform the reads, run the rw_data task defined inside the BFM instance,
bfm_mnt_master. The following parameters are passed to the task:

■ ‘READ— transaction type to be executed

■ rd_address—address to be driven on the Avalon-MM address bus

■ rd_data—parameter that stores the data read across the Avalon-MM read data bus

The rw_data task performs the read transaction across the Maintenance Read Avalon-
MM slave interface.

The write transaction across the Avalon-MM interface is translated to a RapidIO
MAINTENANCE write request packet. Similarly, the read transaction across the Avalon-
MM interface is translated into a RapidIO MAINTENANCE read request packet.

The MAINTENANCE write and read request packets are received by the sister_rio
module and translated to Avalon-MM transactions that are presented across the
sister_rio module’s Maintenance master Avalon-MM interface. An instance of
avalon_bfm_slave, the BFM for an Avalon-MM slave, is driven by this interface. In the
testbench, the write and read transactions are checked and data is returned for the
read operation. The write operation is checked by invoking the read_writedata task

7–8 Chapter 7: Testbenches
Testbench for a Variation with Physical, Transport, and Logical Layers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

of the BFM. The task returns the write address and the written data. This information
is then checked for data integrity. The read operation is completed on the sister side
by invoking the write_readdata task. This task returns the read address and drives
the return data and read control signals on the Avalon-MM master read port of the
sister_rio module. The read data is checked after it is received by the DUT.

SWRITE Transactions
The next set of operations performed are Streaming Writes (SWRITE). To perform
SWRITE operations, one register in the IP core must be reconfigured as shown in
Table 7–4.

With the setting in Table 7–4, any write operation presented across the Input/Output
Avalon-MM slave interface on the rio module is translated to a RapidIO Streaming
Write transaction.

1 The Avalon-MM write address must map into Input/Output Slave Window 0.
However, in this example the window is set to cover the entire Avalon-MM address
space by setting the mask to all zeros.

The testbench generates a predetermined series of burst writes across the Avalon-MM
slave I/O interface on the DUT. These write bursts are each converted to an SWRITE
request packet sent on the RapidIO serial interface. Because Streaming Writes only
support bursts that are multiples of a double word (multiple of 8 bytes), the testbench
cycles from 8 to MAX_WRITTEN_BYTES in steps of 8 bytes. Two tasks carry out the burst
writes, rw_addr_data and rw_data. The rw_addr_data task initiates the burst by
providing the address, burstcount, and the content of the first data word, and the
rw_data task completes the remainder of the burst.

At the sister_rio module, the SWRITE request packets are received and translated into
Avalon-MM transactions that are presented across the Input/Output master
Avalon-MM interface. The testbench calls the task read_writedata of the
sister_bfm_io_write_slave. The task captures the written data.

The written data is then checked against the expected value by running an expect
task. After completing the SWRITE tests, the testbench performs NWRITE_R operations.

Table 7–4. SWRITE Register

Module Register
Address Name Value Description

rio 0x1040C
Input/Output
Slave Mapping
Window 0 Control

32'h0055_0002 or
32'h5555_0002

Sets the DESTINATION_ID for outgoing transactions
to the value 0x55 or 0x5555, depending on the
device ID width of the sister_rio. This value matches
the base device ID of the sister_rio module. Enables
SWRITE operations.

Chapter 7: Testbenches 7–9
Testbench for a Variation with Physical, Transport, and Logical Layers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

NWRITE_R Transactions
To perform NWRITE_R operations, one register in the IP core must be reconfigured as
shown in Table 7–5.

With the setting in Table 7–5, any write operation presented across the Input/Output
Avalon-MM slave module's Avalon-MM write interface is translated to a RapidIO
NWRITE_R transaction. The Avalon-MM write address must map to the range specified
for the I/O Slave window 0.

To initialize testing of the new NWRITE_R completion indication feature, the test first
checks that the PENDING_NWRITE_RS field of the Input/Output Slave Pending
NWRITE_R Transactions register has value 0, that the NWRITE_RS_COMPLETED field of
the Input/Output Slave Interrupt Enable register is set, and that the
NWRITE_RS_COMPLETED field of the Input/Output Slave Interrupt register is clear,
before setting the Input/Output Slave Mapping Window 0 Control register and
starting the sequence of NWRITE_R transactions.

Initially, the testbench performs two single word transfers, writing to an even word
address first and then to an odd word address. The testbench then generates a
predetermined series of burst writes across the Input/Output Avalon-MM slave
module's Avalon-MM write interface on the DUT. These write bursts are each
converted into NWRITE_R request packets sent over the RapidIO Serial interface. The
testbench cycles from 8 to MAX_WRITTEN_BYTES in steps of 8 bytes. Two tasks are
invoked to carry out the burst writes, rw_addr_data and rw_data. The rw_addr_data
task initiates the burst and the rw_data task completes the burst.

At the sister_rio module, the NWRITE_R request packets are received and presented
across the I/O master Avalon-MM interface as write transactions. The testbench calls
the read_writedata task of the sister_bfm_io_write_slave module. The task captures
the written data. The written data is checked against the expected value.

In addition, the test checks that the NWRITE_RS_COMPLETED interrupt field of the
Input/Output Slave Interrupt register is set, then clears the field, and checks again
to confirm the field was cleared correctly.

Table 7–5. NWRITE_R Transactions

Module Register
Address Name Value Description

rio 0x1040C
Input/Output Slave
Mapping Window 0
Control

32'h0055_0001

or 32'h5555_0001

Sets the DESTINATION_ID for outgoing
transactions to the value 0x55 or 0x5555,
depending on the device ID width of the
sister_rio. This value matches the base
device ID of the sister_rio module. Enables
NWRITE_R operations.

7–10 Chapter 7: Testbenches
Testbench for a Variation with Physical, Transport, and Logical Layers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

NWRITE Transactions
To perform NWRITE operations, one register in the IP core must be reconfigured as
shown in Table 7–6. With these settings, any write operation presented across the
Input/Output Avalon-MM slave interface is translated into a RapidIO NWRITE
transaction.

Initially, the testbench performs two single word transfers, writing to an even word
address first and then to an odd word address. The testbench then generates a
predetermined series of burst writes across the Input/Output Avalon-MM slave
module's Avalon-MM write interface on the DUT. These write bursts are each
converted into an NWRITE request packet that is sent over the RapidIO serial interface.
The testbench cycles from 8 to MAX_WRITTEN_BYTES in steps of 8 bytes. Two tasks are
run to carry out the burst writes, rw_addr_data and rw_data. The rw_addr_data task
initiates the burst and the rw_data task completes the remainder of the burst.

The sister_rio module receives the NWRITE request packets and presents them across
the I/O master Avalon-MM slave interface as write transactions. The testbench calls
the read_writedata task of the sister_bfm_io_write_slave module. The task captures
the written data. The written data is checked against the expected value.

NREAD Transactions
The next set of transactions tested are NREADs. The DUT sends a group of NREAD
transactions to the sister_rio module by cycling the read burst size from 8 to
MAX_READ_BYTES in increments of 8 bytes. For each iteration, the rw_addr_data task is
called. This task is defined in the bfm_io_read_master instance of the Avalon-MM
master BFM. The task performs the read request packets across the I/O Avalon-MM
Slave Read interface. The read transaction across the Avalon-MM interface is
translated into a RapidIO NREAD request packets. The values of the rd_address,
rd_byteenable, and rd_burstcount parameters determine the values for the rdsize,
wdptr and xamsbs fields in the header of the RapidIO packet.

The NREAD request packets are received by the DUT and are translated into
Avalon-MM read transactions that are presented across the sister_rio module‘s I/O
master Avalon-MM interface. An instance of avalon_bfm_slave, the BFM for an
Avalon-MM slave, is driven by this interface. The read operations are checked and
data is returned by calling the task, write_readdata. This task drives the data and
read datavalid control signals on the Avalon-MM master read port of the DUT.

Table 7–6. NWRITE Transactions

Module Register
Address Name Value Description

rio 0x1040C
Input/Output Slave
Mapping Window 0
Control

32'h0055_0000or
32'h5555_0000

Sets the DESTINATION_ID for outgoing
transactions to the value 0x55 or 0x5555,
depending on the device ID width of the
sister_rio. This value matches the base device ID
of the sister_rio. Sets the write request type back
to NWRITE.

Chapter 7: Testbenches 7–11
Testbench for a Variation with Physical, Transport, and Logical Layers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

The returned data is expected at the DUT’s I/O Avalon-MM slave interface. The
rw_data task is called and it captures the read data. This task is defined inside the
instance of bfm_io_read_master. The read data and the expected value are then
compared to ensure that they are equal.

Doorbell Transactions
To test DOORBELL messages, the doorbell interrupts must be enabled. To enable
interrupts, the testbench sets the lower three bits in the Doorbell Interrupt Enable
register located at address 0x0000_0020. The test also programs the DUT to store all of
the successful and unsuccessful DOORBELL messages in the Tx Completion FIFO.

For more information, refer to Table 6–65 on page 6–30.

Next, the test pushes eight DOORBELL messages to the transmit DOORBELL Message FIFO
of the DUT. The test increments the message payload for each transaction, which
occurs when the rw_addr_data task (defined in the bfm_drbell_s_master instance) is
invoked with a ‘WRITE operation to the TX doorbell register at offset 0x0000_000C.
This action programs the 16-bit message, an incrementing payload in this example, as
well as the DESTINATION_ID—0x55 for an 8-bit device ID or 0x5555 for a 16-bit device
ID—which is used in the DOORBELL transaction packet.

To verify that the DOORBELL request packets have been sent, the test waits for the
drbell_s_irq signal to be asserted. The test then reads the Tx Doorbell Completion
register (refer to Table 6–63 on page 6–30). This register provides the DOORBELL
messages that have been added to the Tx Completion FIFO. Eight successfully
completed DOORBELL messages should appear in that FIFO and each one should be
accessible by reading the Tx Doorbell Completion register eight times in succession.
To perform this verification, the test invokes the rw_data task defined in the instance
bfm_drbell_s_master.

If you created the DUT with Doorbell Rx enable turned on and with Doorbell Tx
enable turned off, the doorbell test programs the sister_rio module to send eight
DOORBELL messages to the DUT. The test verifies that all eight DOORBELL messages were
received by the DUT. The test calls the rw_addr_data task defined in the instance
sister_bfm_drbell_s_master. The task performs a write to the Tx Doorbell register
(refer to Table 6–61 on page 6–29). It programs the payload to be incrementing,
starting at 0x0C01, and the DESTINATION_ID to have value 0xAA or 0xAAAA, matching
the device ID of the DUT.

The test waits for the DUT to assert the drbell_s_irq signal, which indicates that a
DOORBELL message has been received. The test then reads the eight received DOORBELL
messages, by calling the rw_data task with a ‘READ operation to the Rx DOORBELL
register at offset 0x0000_0000. The task is called eight times, once for each message. It
returns the received DOORBELL message and the message is checked for an
incrementing payload starting at 0x0C01 and for the sourceId value 0x55 or 0x5555,
the device ID of the sister RapidIO IP core variation.

7–12 Chapter 7: Testbenches
Testbench for a Variation with Physical, Transport, and Logical Layers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Doorbell and Write Transactions With Transaction Order Preservation
Figure 7–3 shows the testbench for checking transaction order preservation. The test
generates write transactions and Doorbell messages, and compares the transaction
order before and after the transactions are transmitted on the RapidIO link. If a
Doorbell module and I/O slave port are instantiated in the DUT, and Prevent
doorbell messages from passing write transactions is turned on in the RapidIO
parameter editor, the extra hardware is generated in the testbench.

The transaction ordering test has two parts. The first part checks that transaction
order is preserved among I/O write requests and Doorbell messages. The second part
injects errors in the write transactions to force transaction cancellation, to test the
integrity of the COMPLETED_OR_CANCELLED_WRITES field of the Input/Output Slave
RapidIO Write Requests register. Because the behavior of the write transactions
themselves is not under test, but only the preservation of transaction ordering
between Doorbell messages and write requests, each part of the transaction ordering
test generates only one type of write transaction.

In the first part of this test, the bfm_drbell_master sends a Doorbell message one clock
cycle after the bfm_io_write_master sends a write request. Write requests are sent and
checked according to the test sequence described in “SWRITE Transactions” on
page 7–8, and Doorbell messages are sent and checked according to the test sequence
described in “Doorbell Transactions” on page 7–11. The additional hardware shown
in Figure 7–3 is used to compare the transaction order before and after transmission
on the RapidIO link. Each queue has 40 bits of FIFO data. In each queue, the current
entry is set to 0 for a write request and to 1 for a Doorbell message. The comparator
compares bit by bit, checking for an exact match.

Figure 7–3. Transaction Order Preservation Testbench

PHY PHY

Avalon-MM

sister_rio

Serial
RapidIO
Interface

Avalon-MM

DUT

I/O
Slave

bfm_io_read_master

bfm_io_write_master

sister_bfm_io_read_master

sister_bfm_io_write_master

I/O
Slave

sister_bfm_drbell_master
Doorbell

Slave
Doorbell

Slave bfm_drbell_master

Receive Queue Transmit Queue

Comparator

Chapter 7: Testbenches 7–13
Testbench for a Variation with Physical, Transport, and Logical Layers

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

In the second part of this test, the DUT asserts an invalid byteenable value on the I/O
slave port for a single NWRITE_R transaction, and then transmits 32 NWRITE_R
transactions with a target address set out of bounds. After the bfm_io_write_master
initiates the sequence of NWRITE_R transactions, the bfm_drbell_master generates
transactions as in “Doorbell Transactions” on page 7–11. Each Doorbell transaction is
sent to the DUT immediately following a different NWRITE_R transaction. In
addition to checking for data integrity and for transaction order preservation despite
the tracking complication of cancelled transactions, the testbench checks that the I/O
Slave Interrupt register reflects each cancelled transaction correctly.

Port-Write Transactions
To test port-writes, the test performs some basic configuration of the port-write
registers in the DUT and the sister_rio module. It then programs the DUT to transmit
port-write request packets to the sister_rio module. The port-writes are received by
the sister_rio module and retrieved by the test program.

The configuration enables the Rx packet stored interrupt in the sister_rio module.
With the interrupt enabled, the sister_rio module asserts the sister_sys_mnt_s_irq
signal, which indicates that an interrupt is set in either the Maintenance Interrupt
register or the Input/Output Slave Interrupt register. Because this part of the
testbench is testing port writes, the assertion of sister_sys_mnt_s_irq means that a
Port-Write transaction has been received and that the payload can be retrieved. To
enable the interrupt, call the task rw_addr_data defined in the sister_bfm_cnt_master
module.

A write operation is performed by the task with the address 0x10084 and data 0x10
passed as parameters. In addition, the sister_rio module must be enabled to receive
Port-Write transactions from the DUT. The task is called with the address 0x10250 and
data 0x1.

After the configuration is complete, the test performs the operations listed in
Table 7–7.

Table 7–7. Port-Write Test

Operation Action

Places data into the TX_PORT_WRITE_BUFFER Write incrementing payload to registers at
addresses 0x10210 to 0x1024C

Indicates to the DUT that Port-Write data is ready
Write DESTINATION_ID = 0x55 or 0x5555,
depending on the device ID width setting, and
PACKET_READY = 0x1 to 0x10200

Waits for the sister_rio module to receive the port-write Monitor sister_sys_mnt_s_irq

Verifies that the sister _rio module has the interrupt bit
PACKET_STORED set Read register at address 0x10080

Retrieves the Port-Write payload from the sister_rio module and
checks for data integrity Read registers at addresses 0x10260–0x1029C

Checks the sister_rio module Rx Port Write Status register for
correct payload size Read register at address 0x10254

Clears the PACKET_STORED interrupt in the sister_rio module Write 1 to bit 4 of register at address 0x10080

Waits for the next interrupt at the sister _rio module Monitor sister_sys_mnt_s_irq

7–14 Chapter 7: Testbenches
Testbench for a Variation with Physical, Transport, and Logical Layers

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

The test iterates through these operations, each time incrementing the payload of the
port write. The loop exits when the max payload for a port-write has been transmitted,
64 bytes.

All of the operations in the loop are executed by running the rw_addr_data task either
in the bfm_cnt_master or the sister_bfm_cnt_master instances.

Transactions Across the Avalon-ST Pass-Through Interface
The demonstration testbench tests the Avalon-ST pass-through interface by
exchanging Type 9 (Data Streaming) traffic between the DUT and the sister_rio
module. The testbench tests this interface in a similar manner to variations that
include only the Physical layer.

For details about testing the Physical interface, refer to“Testbench for Variations with
Only a Physical Layer” on page 7–1.

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

8. SOPC Builder Design Example

The design example in this chapter shows you how to use SOPC Builder to build a
system that combines a RapidIO IP core with other SOPC Builder components. SOPC
Builder automatically generates HDL files that include all the specified components
and interconnections. The resulting HDL files are ready to be compiled in the
Quartus II software for programming an Altera device. SOPC Builder also generates a
Verilog HDL simulation testbench module that performs basic transactions.

1 When you specify VHDL as your SOPC Builder language, only a link loopback
module simulation testbench is generated for this MegaCore.

f For more information about the system interconnect fabric, refer to the System
Interconnect Fabric for Memory-Mapped Interfaces chapter in the SOPC Builder User
Guide. For more information about SOPC Builder, refer to the SOPC Builder Features
and Building Systems with SOPC Builder sections in the SOPC Builder User Guide.

The design example explains how to use SOPC Builder and the Quartus II software to
generate a system containing the following components:

■ RapidIO IP core

■ DMA Controller

■ On-Chip Memory

■ On-Chip FIFO

8–2 Chapter 8: SOPC Builder Design Example

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure 8–1 shows a block diagram of the system you create in this chapter.

In this chapter you create a design example by following these steps:

1. Create a New Quartus II Project

2. Run SOPC Builder

3. Add and Parameterize the RapidIO Component

4. Add and Connect Other System Components

a. Add the DMA Controller

b. Add the On-Chip Memory

c. Add the On-Chip FIFO Memory

d. Assign Addresses and Set the Clock Frequency

5. Generate the System

6. Simulate the System

7. Compile and Program the Device

After you compile your design, you can program your target Altera device and verify
your design in hardware using the OpenCore Plus hardware evaluation feature or a
full license.

This design example does not use all available parameters and options.

For more information about specific parameters used in this design example, refer to
Chapter 3, Parameter Settings.

Figure 8–1. Example SOPC Builder System

RapidIO
Simulation

Testbench Module

System Interconnect Fabric

DMA On-Chip

Memory

SOPC Builder System

 RapidIO
MegaCore Function

On-Chip
 FIFO

Chapter 8: SOPC Builder Design Example 8–3
Create a New Quartus II Project

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Create a New Quartus II Project
You must create a new Quartus II project. You can create the project with the New
Project Wizard, which helps you specify the working directory for the project, assign
the project name, and designate the name of the top-level design entity. To create a
new project, follow these steps:

1. On the Windows start menu, click
Programs > Altera > Quartus II <version> > Quartus II <version> to run the
Quartus II software.

2. On the File menu, click New Project Wizard. If you did not turn it off previously,
the New Project Wizard: Introduction page appears.

3. On the New Project Wizard: Introduction page, click Next.

4. On the New Project Wizard: Directory, Name, Top-Level Entity page, enter the
following information:

a. Specify the working directory for your project. This design example uses the
directory C:\altera\project_rio\rapidio_sopc.

b. Specify the name of the project. This design example uses rio_sys. You must
specify the same name for both the project and the top-level design entity.

1 The Quartus II software specifies a top-level design entity that has the same
name as the project automatically. Do not change this name.

5. Click Next to display the Add Files page.

1 Click Yes, if prompted, to create a new directory.

6. Click Next to display the Family and Device Settings page.

7. On the Family and Device Settings page, select the following target device family
and options:

a. In the Family list, select Stratix II GX.

1 This design example creates a design targeting the Stratix II GX device family. You can
also use these procedures for other supported device families.

b. In the Target device box, select Specific device selected in ‘Available devices’
list.

c. In the Available devices list, select EP2SGX90EF1152C3.

8. Click Next to display the EDA Tool Settings page.

9. Click Next to display the Summary page.

10. Check the Summary page to ensure that you have entered all the information
correctly.

11. Click Finish to complete the Quartus II project.

8–4 Chapter 8: SOPC Builder Design Example
Run SOPC Builder

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Run SOPC Builder
To run SOPC Builder to build your system, follow these steps:

1. On the Tools menu, click SOPC Builder.

f For more information about how to use SOPC Builder, refer to Quartus II Help.

2. In the System Name box, type rio_sys as the project’s top-level system name.

1 If you have an existing SOPC Builder system, on the File menu, click New
System to display the System Name box.

3. Under Target HDL, select Verilog.

4. Click OK.

1 Although this design example requires the Verilog HDL target output, you can
alternatively select VHDL for a project of your own.

Add and Parameterize the RapidIO Component
To instantiate and parameterize the RapidIO MegaCore component in your system,
follow these steps:

1. Under Interface Protocols in the High Speed folder, double-click the RapidIO
MegaCore component.

2. To parameterize your IP core, follow these steps:

a. On the Physical Layer page, specify the parameters in Table 8–1.

Table 8–1. Set Physical Layer Options I

Option Value Comment

Mode Selection 4x Serial

Transceiver Selection Stratix II GX PHY

Chapter 8: SOPC Builder Design Example 8–5
Run SOPC Builder

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

b. Click Configure Transceiver to display the transceiver parameter editor.

c. On the Tx Analog page, for What is the transmitter buffer power (VCCH)?,
select 1.5 V.

d. Click Finish.

e. Click Finish.

f. In the RapidIO parameter editor, on the Physical Layer page, specify the
parameters in Table 8–2 and leave all other parameters at their default values.

g. Click Next to display the Transport and Maintenance page.

h. On the Transport and Maintenance page, set the parameters in Table 8–3.

i. Click Next to display the I/O and Doorbell page.

j. On the I/O and Doorbell page, set the parameters in Table 8–4.

Table 8–2. Set Physical Layer Options II

Option Value Comment

Baud rate 2500 Mbaud Default value.

Receive Priority Retry Threshold Turn on Auto-configured
from receiver buffer size

Default value. Receiver priority retry thresholds are
expressed in terms of 64-byte buffers. Each maximum
size packet requires five buffers.

Table 8–3. Set Transport Layer Options

Option Value Comment

Enable Avalon-ST pass-through interface Turn on this option
For SOPC Builder, the Transport layer is always enabled;
but you must turn on the Enable Avalon-ST
pass-through interface.

Maintenance logical layer interface(s) Avalon-MM Master

Table 8–4. Set I/O and Doorbell Options

Option Value Comment

I/O logical layer interfaces Avalon-MM Master
and Slave

I/O slave address width 25

The Input/Output Slave address width is set to
30 by default. However, to avoid over-allocating
Avalon-MM memory space it must be set to a
smaller value in this example design.

Number of Rx address translation windows 1

Number of Tx address translation windows 1

Doorbell Tx enable and Doorbell Rx enable Turn off these
options.

Default value. When DOORBELL messaging is
turned on, a 32-bit Avalon slave port enables
DOORBELL messaging from the user application
to the IP core. Turning off DOORBELL messaging
reduces resource usage and may be desirable for
some applications.

8–6 Chapter 8: SOPC Builder Design Example
Run SOPC Builder

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

k. Click Next to display the Capability Registers page. You can set the Device
Register IDs to match your system. Unless your design includes an additional
extended feature block, keep the Extended features pointer default value of
0x0100. You can keep the default values for all other parameters.

l. Under Data Messages, make sure both options are turned off.

m. Click Finish to complete parameterization and add the RapidIO IP core to the
SOPC Builder system

After adding the RapidIO IP core component to your system, various Avalon-MM
ports are created and shown as connection points in the System Contents tab.
Error messages indicate that these ports are not connected, as shown in Figure 8–2.

These errors are resolved as you add the remaining components to your system and
make all of the appropriate connections, as described in the following sections.

The default instance name of the RapidIO IP core component is rapidio_0. You can
change the default name by right-clicking on the component name and then clicking
Rename. The component name must be unique; it cannot be the same name as the
system name.

Add and Connect Other System Components
To complete your system, you add and connect the following components, assign
addresses, and set the clock frequency:

Figure 8–2. RapidIO IP core Added and Avalon-MM Ports Created

Chapter 8: SOPC Builder Design Example 8–7
Run SOPC Builder

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

■ Add the DMA Controller

■ Add the On-Chip Memory

■ Add the On-Chip FIFO Memory

Add the DMA Controller
To add a DMA controller to your system, follow these steps:

1. On the System Contents tab, under Memories and Memory Controllers in the
DMA folder, double-click DMA Controller. The DMA Controller component is
added to the system, and the DMA Controller parameter editor appears.

2. On the DMA Parameters tab, turn on Enable burst transfers and select 64 as the
Maximum burst size.

3. Click Finish to retain default settings for other parameters and add the DMA
controller to your SOPC Builder system.

Add the On-Chip Memory
To add on-chip memory to your system, follow these steps:

1. On the System Contents tab, under Memories and Memory Controllers in the
On-Chip folder, double-click On-Chip Memory (RAM or ROM). The On-Chip
Memory component is added to your system, and the On-Chip Memory
parameter editor appears.

2. Select 64 as the Data width.

3. Click Finish to retain default settings for other parameters and add the On-Chip
Memory to your SOPC Builder system.

Add the On-Chip FIFO Memory
To add on-chip FIFO memory to your system, follow these steps:

1. On the System Contents tab, under Memories and Memory Controllers in the
On-Chip folder, double-click On-Chip FIFO Memory. The On-Chip FIFO
Memory component is added to your system, and the On-Chip FIFO Memory
parameter editor appears.

2. Set the options in Table 8–5.

Table 8–5. Set Interface Parameter Options

Option Value

Depth 64

Create status interface for input Off

Input AvalonST_SINK

8–8 Chapter 8: SOPC Builder Design Example
Run SOPC Builder

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

3. Click Finish to retain default settings for other parameters and add the On-Chip
FIFO Memory to your SOPC Builder system.

Connect Clocks and the System Components
You must now connect any unconnected clocks and other components in your system.
For the external RapidIO processing elements to access the internal registers of the
RapidIO variation, your system must meet the following criteria:

■ The Maintenance Master port must be connected to the System Maintenance Slave
port.

■ The System Maintenance Slave port Base address must be assigned to address
0x0.

Display Clock Information and Connect Unconnected Clocks
By default, clock information is not displayed. The Clock column appears, but the
clock input ports of the components are not displayed. To display the missing clock
information, follow these steps:

1. On the System Contents tab, click Filters. The Filters dialog box appears.

2. In the Filter list, select All.

Information about the clocks in the system appears in the Connections, Module
Name, Description, and Clock columns.

3. Close the Filters dialog box.

4. Connect all clocks designated as unconnected in the Clock column. Click
unconnected in the Clock column to assign the clock to clk_0.

1 For Arria GX, Arria II GX, Stratix II GX, and Stratix IV GX designs, you
must ensure that you also connect the calibration clock (cal_blk_clk) to a
clock with the appropriate frequency range 10–125 MHz. In this example,
the default external clock, clk_0, is in this range.

Output AvalonST_SOURCE

Avalon-ST port settings

Bits per symbol

Symbols per beat

Error width

Channel width

8 bits

8 symbols

1 bit

0 bits

Table 8–5. Set Interface Parameter Options

Option Value

Chapter 8: SOPC Builder Design Example 8–9
Run SOPC Builder

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Connect System Components
In SOPC Builder, clicking and hovering the mouse over the Connections column
displays the potential connection points between components, represented as dots
connecting wires. A filled dot shows that a connection is made; an open dot shows a
potential connection point that is not currently connected. Clicking a dot toggles the
connection status. To complete this design, create the connections listed in Table 8–6.

Refer to Figure 8–3 to ensure that you connected the ports correctly.

Table 8–6. Connect System Components

Make Connection From To

rapidio_0 mnt_master rapidio_0 sys_mnt_slave

rapidio_0 io_read_master onchip_mem... s1

rapidio_0 io_write_master onchip_mem... s1

rapidio_0 io_read_master dma_0 control_port_slave

rapidio_0 io_write_master dma_0 control_port_slave

dma_0 read_master rapidio_0 io_read_slave

dma_0 write_master rapidio_0 io_write_slave

dma_0 read_master onchip_mem... s1

dma_0 write_master onchip_mem... s1

rapidio_0 pass_through_tx fifo_0 out

rapidio_0 pass_through_rx fifo_0 in

Figure 8–3. Complete System Connections

8–10 Chapter 8: SOPC Builder Design Example
Run SOPC Builder

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

1 As described in “Reset for RapidIO IP Cores with Physical, Transport, and Logical
Layers” on page 4–11, the circuitry necessary to ensure the correct behavior of the
reset_n input signal to the RapidIO IP core is created automatically by SOPC Builder.
For this design example, you do not implement the logic described in Figure 4–4,
because SOPC Builder implements it for you.

Assign Addresses and Set the Clock Frequency
To assign a specific address, follow these steps:

1. Click on the address that you want to change in the Base column, then type the
address that you want to assign. Make the address assignments specified in
Table 8–7.

2. In the Clock Settings box, highlight clk_0, double-click 50.0 in the MHz column,
type 125 for the external clock source clk_0, and press r .

3. On the File menu, click Save to save the SOPC Builder system.

Figure 8–4 shows the completed SOPC Builder system.

Table 8–7. Assign Addresses

 Port Name Base Address

rapidio_0 sys_mnt_slave 0x00000000

rapidio_0 io_read_slave 0x10000000

rapidio_0 io_write_slave 0x10000000

dma_0 control_port_slave 0x00001000

onchip_mem... s1 0x00000000

Figure 8–4. Complete SOPC Builder Example System

Chapter 8: SOPC Builder Design Example 8–11
Simulate the System

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Generate the System
After you create your system with all the required components and connections and
you have resolved any errors, generate the system by following these steps:

1. Click the System Generation tab.

2. Turn on Simulation. This setting enables the generation of the testbench and
simulation model files for your SOPC Builder system.

3. Click Generate to start the generation process.

1 If you are prompted to save your changes to rio_sys.sopc, click Save.

Generating the system files, the simulation models, and the environment takes a
few minutes.

When the SOPC Builder system is generated successfully, the system HDL files are
added to your project directory and are ready to be simulated and compiled with
the Quartus II software.

4. Click Exit to close SOPC Builder.

Simulate the System
The RapidIO IP core includes both a Verilog HDL testbench and a VHDL link
loopback module. The steps in this section describe the Verilog HDL testbench.

The Verilog HDL testbench provided with the RapidIO IP core has two modes of
operation:

■ A generic mode that works with all RapidIO IP core variations and all SOPC
Builder systems

■ A special SOPC Builder design example mode that only works with the variation
and SOPC Builder system described in this SOPC Builder design example, but
which takes advantage of the various SOPC Builder components of the design
example

To simulate your system with the sample Verilog HDL testbench, follow these steps:

1. The generic mode is enabled by default. To enable the special SOPC Builder design
example mode, you must edit one file. In your project directory, open the
rapidio_0_sopc_tb.v file in a text editor, search for the SOPC_EXAMPLE_DESIGN
parameter, and change the value from 0 to 1.

2. Start the ModelSim software. On the File menu, change directory to the
C:\altera\project_rio\rapidio_sopc\rio_sys_sim directory.

3. Type the following command at the ModelSim command prompt:

do setup_sim.do r
4. To compile all the files and load the design, type the following command at the

ModelSim prompt:

s r

8–12 Chapter 8: SOPC Builder Design Example
Compile and Program the Device

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

5. To simulate the design, type the following command at the ModelSim prompt:

run -all r
When the special SOPC Builder Design Example mode is enabled, the RapidIO
sample testbench performs the following transactions:

■ Sends a sequence of read requests to the internal registers of the IP core

■ Sets up the address translation register within the MegaCore for MAINTENANCE and
I/O transactions

■ Programs the DMA transfer data between the test module and on-chip memory

■ Verifies data integrity

When simulation finishes, on the File menu, click Quit to close the ModelSim
software and return to the Quartus II software to compile your system.

Compile and Program the Device
The SOPC Builder generated HDL system files are now ready for compilation in the
Quartus II software, which generates an SRAM Object File (.sof) for device
programming. To compile your system design in the Quartus II software, follow these
steps:

1. Open the Quartus II project created in the “Create a New Quartus II Project” on
page 8–3.

2. On the View menu, point to Utility Windows and click Tcl Console.

3. Run the generated Tcl script at the Tcl command prompt, by typing the following
command:

source rapidio_0_constraints.tcl r
4. Add the Rapid IO constraints to your project by typing the following command in

the Quartus II Tcl Console window:

add_rio_constraints -ref_clk_name clk_rapidio_0 \
-sys_clk_name clk_0 r

1 The rapidio_0_constraints.tcl script file sets the required constraints for
compilation. The default fMAX constraint on the system clock domain is
125 MHz. Modify this constraint if the system clock domain operates at a
different speed than the default setting.

5. After the script has finished Analysis and Synthesis, on the Processing menu, click
Start Compilation to compile your system.

6. After you successfully compile your design, you can program your target Altera
device and verify your design in hardware.

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

A. Initialization Sequence

This appendix describes the most basic initialization sequence for a RapidIO system
that contains two RapidIO IP cores connected through their RapidIO interfaces.

To initialize the system, perform these steps:

1. Read the Port 0 Error and Status (ERRSTAT) Command and Status register
(CSR) (0x00158) of the first RapidIO IP core to confirm port initialization.

2. Set the following registers in the first RapidIO IP core:

a. To set the base ID of the device to 0x01, set the DEVICE_ID field (bits 23:16) or
the LARGE_DEVICE_ID field (bits 15:0) of the Base Device ID register (0x00060)
to 0x1.

b. To allow request packets to be issued, write 1 to the ENA field (bit 30) of the Port
General Control CSR (0x13C).

c. To set the destination ID of outgoing maintenance request packets to 0x02, set
the DESTINATION_ID field (bits 23:16) or the combined {LARGE_DESTINATION_ID
(MSB), DESTINATION_ID} fields (bits 31:16) of the Tx Maintenance Window 0
Control register (0x1010C) to 0x02.

d. To enable an all-encompassing address mapping window for the maintenance
module, write 1’b1 to the WEN field (bit 2) of the Tx Maintenance Window 0
Mask register (0x10104).

3. Set the following registers in the second RapidIO IP core:

a. To set the base ID of the device to 0x02, set the DEVICE_ID field (bits 23:16) or
the LARGE_DEVICE_ID field (bits 15:0) of the Base Device ID register (0x00060)
to 0x02.

b. To allow request packets to be issued, write 1’b1 to the ENA field (bit 30) of the
Port General Control CSR (0x13C).

c. To set the destination ID of outgoing maintenance packets to 0x0, set the
DESTINATION_ID field (bits 23:16) or the combined {LARGE_DESTINATION_ID
(MSB), DESTINATION_ID} fields (bits 31:16) of the Tx Maintenance Window 0
Control register (0x1010C) to 0x0.

d. To enable an all-encompassing address mapping window for the maintenance
module, write 1’b1 to the WEN field (bit 2) of the Tx Maintenance Window 0
Mask register (0x10104).

These register settings allow one RapidIO IP core to remotely access the other
RapidIO IP core.

To access the registers, the system requires an Avalon-MM master, for example a
Nios II processor. The Avalon-MM master can program these registers.

You can use SOPC Builder, a Quartus II software tool, to rapidly and easily build and
evaluate your RapidIO system. For an example, refer to Chapter 8, SOPC Builder
Design Example.

A–2 Appendix A: Initialization Sequence

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

f For more information about initializing a RapidIO system, refer to Fuller, Sam. 2005.
RapidIO: The Embedded System Interconnect. John Wiley & Sons, Ltd., Chapter 10
RapidIO Bringup and Initialization Programming.

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

B. XGMII Interface Timing

This appendix describes the RapidIO XGMII interface required for the RapidIO IP
core to communicate with an external transceiver. This appendix illustrates the clock
layout and timing, provides insight into timing constraints and data alignment, and
includes an example.

RapidIO XGMII Interface
The RapidIO IP core supports an XGMII-like interface that connects the RapidIO IP
core to an external transceiver. The RapidIO XGMII interface is similar to the 10-
Gigabit Media-Independent Interface (XGMII). The RapidIO XGMII interface is
available for all RapidIO supported device families except the Cyclone IV GX device
family. With this one exception, the XGMII interface is available for devices that can
also have internal transceivers, such as Arria GX, Arria II GX, Stratix II GX, and
Stratix IV GX devices.

The RapidIO XGMII interface connects to an external transceiver interface with these
characteristics:

■ 8-bit data transmit and receive datapaths per serial lane

■ Control and clocking signals that allow bidirectional data transfers

■ Supports phy_dis, an external transceiver transmitter disable signal

The RapidIO XGMII Transmit and Receive interfaces support bidirectional data
transfer between the RapidIO IP core and an external transceiver. The Transmit
interface allows the RapidIO IP core to transfer data to the external transceiver. The
Receive interface allows the RapidIO IP core to process data received from the
external transceiver.

The XGMII Receiver interface supports one control, one error, and one clock signal
per 8 bits from the external transceiver decoder.

1 For maximum flexibility, the RapidIO XGMII-like interface features one clock signal
per group of 8 bits of received data. The standard XGMII interface usually has only
one receiver clock per interface.

The RapidIO specification requires that the link output drivers be disabled when the
Initialization state machine is in the SILENT state to force the link partner to
re-initialize. The phy_dis output signal is driven high by the RapidIO MegaCore
when its initialization state machine is in the SILENT state so that this signal can be
used to disable the link output drivers.

B–2 Appendix B: XGMII Interface Timing
RapidIO XGMII Interface

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Figure B–1 through Figure B–3 illustrate the XGMII interface in 1x mode and 4x mode.
Figure B–1 illustrates the 1x interface. Figure B–2 shows the 4x RapidIO XGMII
Transmit interface allowing data from the RapidIO IP core to be transmitted to the
external transceiver. Figure B–3 shows the 4x RapidIO XGMII Receiver interface
which allows the RapidIO IP core to process data received from the external
transceiver.

Figure B–1. 1x XGMII Clock Interface

rapidio_rio_inst

txclk

tc

tclk

phy_dis

From PHY

From PHY

rxclk

rclk

rerr

rc

rd[7:0]

td[7:0]

:

To PHY

To PHY

xgmii_gxb_inst

altddio_out_
txclk90

channels[0].
txd[7:0].

altddio_out_txd

channels[0].
altddio_out_txc

reference clock

channels[0].
tx_fifo

channels[0].
rx_fifo

xgmii_pll
phase0_clk

phase90_clk

riophy_xcvr

channels[0].
rxd[7:0].

altddio_in_rxd

channels[0].
altddio_in_rxh

channels[0].
altddio_in_rxc

div by
2

div by
2

Appendix B: XGMII Interface Timing B–3
RapidIO XGMII Interface

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Figure B–2. 4x Tx XGMII Clock Interface

rapidio_rio_inst

riophy_xcvr

xgmii_gxb_inst

txclk reference clock

xgmii_pllphase0_clk phase 90_clk

td[31:0]

tc [3 :0]

tclk

phy_dis

channels[0].
tx_fifo

channels[0].
altddio_out_txc

altddio_out_
txclk90

channels[0].
txd[7:0].

altddio_out_txd

From PHY

channels[1].
tx_fifo

channels[1].
altddio_out_txc

channels[1].
txd[7:0].

altddio_out_txd

channels[2].
tx_fifo

channels[2].
altddio_out_txc

channels[2].
txd[7:0].

altddio_out_txd

channels[3].
tx_fifo

channels[3].
altddio_out_txc

channels[3].
txd[7:0].

altddio_out_txd

From PHY

td[7:0]

td[15:8]

td[23:16]

td[31:24]

tc [0]

tc [1]

tc [2]

tc [3]

B–4 Appendix B: XGMII Interface Timing
RapidIO XGMII Interface

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

The xgmii_pll instantiated by the MegaCore generates two clocks:

■ 90° phase shifted clock

■ 0° phase shift clock

The 90° phase shifted clock ensures that the td and tc signals are transmitted on the
rising and falling edges of the center aligned clock tclk. The tclk is not a separate
clock domain because it is not an FPGA clock signal. Instead, alternating 1s and 0s are
preloaded into the altddio_out serializer.

Figure B–3. 4x Rx XGMII Clock Interface

rapidio_rio_inst

riophy_xcvr
xgmii_gxb_inst

channels[0].
rx fifo

channels[0].
altddio_in_rxc

rxclk

rclk[3:0]

rc[3 :0]

rerr[3:0]

rd[31:0]

channels[1].
rx_ fifo

channels[2].
rx_ fifo

channels[0].
altddio_in_rxh

channels[0].
rxd[7:0].

altddio_in_rxd

channels[3].
rxd[7:0].

altddio_in_rxd

channels[3].
altddio_in_rxc

channels[3].
altddio_in_rxhchannels[3].

rx_ fifo

rclk[0]

rerr[0]

rerr[3]

rc[3]

rc[0]

rd[7:0]

rd [31:24]

rclk[1]

rclk[2]

rclk [3]
To PHY

To PHY

To PHY

To PHY

To PHY
rx_clkout [0]

rx_clkout [1]

rx_clkout [2]

rx_clkout [3]

_

Appendix B: XGMII Interface Timing B–5
Timing Constraints

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

1 In some cases, due to timing or configuration settings, the external transceiver may
require the data and control signals to be transmitted on the rising and falling edges of
an edge aligned clock. If this change is required in the <variation_name>_xgmii_gxb.v
file contains the edge_aligned parameter. By default, this is set to 0. Setting
edge_aligned to 1 clocks the altddio_out serializer with the phase0_clk instead, thus
ensuring the data is transmitted on the edges of tclk.

The RapidIO IP core outputs the Rx recovered MegaCore clock (rxclk). In 1x mode,
rxclk is derived from the rclk input, and is divided by two internally by a flip-flop.
In 4x mode, rxclk is directly driven by the rclk from channel 0.

If you have a 4x Rx XGMII RapidIO IP core with only one clock from the external
transceiver, change the port mapping to ensure that the rclk input simultaneously
drives the four rclk inputs to the IP core.

Timing Constraints
RapidIO transmits source-center aligned data using either HSTL Class 1 or SSTL Class
2 I/O drivers. The clock rate required is 156.25 MHz for 3.125 Gbaud, 125 MHz for 2.5
Gbaud, and 62.5 for 1.25 Gbaud.The timing diagram in Figure B–4 illustrates basic
timing relationships.

On the receive side, the 8-bit data (rd) and 1-bit control (rc) signals per lane are
received and sampled on the rising and falling edges of a center aligned clock, rclk.
Separate error (rerr) and rclk signals are associated with each lane.

On the transmit side, the 8-bit data (td) and 1-bit control (tc) signals per lane are
transmitted on the rising and falling edges of a center aligned clock, tclk.

The RapidIO XGMII interface requires the following I/O timing relationships:

■ Use Fast Inputs for rd, rc and other inputs.

■ Use similar clock types (for example rclk[0] should not be a global clock and
rclk[1] a regional clock).

Figure B–4. XGMII Timing

Notes to Figure B–4:

(1) A typical Transmitter tSU and tH at 3.125 Gbaud is 960 ps.
(2) An ideal Receiver tSU and tH at 3.125 Gbaud is 480 ps.

rclk or tclk

rd or td
rc or tc

 rerr

tSU

tH

B–6 Appendix B: XGMII Interface Timing
Timing Constraints

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

Setting Quartus II tSU and tH Checks
You must specify tSU and tH timing requirements in the Quartus II software for the
XGMII receive interface (rd, rc, rerr). The value to use for the tSU and tH is a function
of the following:

■ Effects of clock jitter and other signal integrity issues.

■ Any clock phase offset on the output of the attached device.

■ Skew over the traces.

■ Adjustments for output clock phase. If not exactly center aligned, adjust the tSU
and tH assignments accordingly.

Example
The following example describes how to calculate the appropriate timing constraints
for an example design. If the external transceiver output clock (which is connected to
rclk) is out 80 ps past the center point (including all other functions that adjust the
clock phase), subtract 80 ps from the tSU and subtract 80 ps from the tH. Using the Rx
ideal number above for 3.125 Gbaud and subtracting the trace skew, adjust for the
clock phase as shown below for TimeQuest timing analyzer assignments:

■ set_max_delay -from [get_pins -hierarchical *] \
-to [get_ports {rd*}] 0.4

■ set_max_delay -from [get_pins -hierarchical *] \
-to [get_ports {rc}] 0.4

■ set_max_delay -from [get_pins -hierarchical *] \
-to [get_ports {rerr}] 0.4

■ set_min_delay -from [get_pins -hierarchical *] \
-to [get_ports {rd*}] -0.4

■ set_min_delay -from [get_pins -hierarchical *] \
-to [get_ports {rc}] -0.4

■ set_min_delay -from [get_pins -hierarchical *] \
-to [get_ports {rerr}] -0.4

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

C. Porting a RapidIO Design from the
Previous Version of the Software

This appendix describes how to port your RapidIO design from the previous version
of the RapidIO IP core and Quartus II software.

Upgrading a RapidIO Design Without Changing Tools
To upgrade your RapidIO design that you developed and generated using the
RapidIO IP core v10.0, to the IP core v10.1, follow these steps:

1. Open the Quartus II software v10.1.

2. On the File menu, click Open Project.

3. Navigate to the location of the .qpf file you generated with the Quartus II software
v10.0.

4. Select the .qpf file and click Open.

5. If the project was generated by SOPC Builder originally, follow these steps:

a. Open SOPC Builder.

b. To edit the RapidIO IP core, double-click its name in SOPC Builder. The
RapidIO parameter editor appears.

c. Click Finish.

d. In SOPC Builder, regenerate the project.

6. If the RapidIO IP core was generated using the MegaWizard Plug-in Manager
originally, follow these steps:

a. Open the existing IP core for editing in the MegaWizard Plug-in Manager.

b. Click Finish.

7. Proceed with simulation, adding the RapidIO timing constraints, and compilation.

1 Before you add the RapidIO timing constraints, use the Assignment Editor
to remove the old 0PPM assignments for this IP core. Otherwise, the new
0PPM settings are not written.

Upgrading an SOPC Builder Design with a RapidIO Component to a Qsys
System

1 To upgrade an existing RapidIO IP core that you developed and generated using the
MegaWizard Plug-in Manager, to a Qsys component, you must recreate the RapidIO
component in Qsys.

To upgrade an existing RapidIO design that you developed and generated using the
RapidIO IP core in SOPC Builder, to a Qsys design, you can open the SOPC Builder
File (.sopc) for the design in the Qsys tool. Refer to the caution notice on the first page
of Chapter 2, Getting Started.

C–2 Appendix C: Porting a RapidIO Design from the Previous Version of the Software
Upgrading an SOPC Builder Design with a RapidIO Component to a Qsys System

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

c If you upgrade an SOPC Builder system that includes a RapidIO IP core using this
process, the transceiver settings of the RapidIO IP core are reset to default settings in
the Qsys system. You must modify the transceiver settings by updating the ALTGX
megafunction settings in the MegaWizard Plug-in Manager. Altera recommends that
you maintain a copy of your SOPC Builder system so that you can retrieve the
information about the desired settings from the original ALTGX megafunction.

f For general information about the SOPC Builder to Qsys migration path, refer to
AN632: SOPC Builder to Qsys Migration Guidelines.

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

Additional Information

This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this user guide.

Date Version Changes

December 2010 10.1
■ Added beta support for Qsys system integration tool.

■ Added read-only version of Port 0 Local AckID CSR.

July 2010 10.0

■ Added preliminary support for Cyclone IV GX devices.

■ Added support for configurable number of link-request attempts to be sent before fatal
error, after time-out on link-response.

■ Added support for order preservation between read and write requests that come in on the
Avalon-MM interface.

■ Removed support for Stratix GX devices.

November 2009 9.1

■ Added preliminary support for Cyclone III LS and HardCopy IV GX devices.

■ Added support for 5.0 Gbaud data rate.

■ Added support for order preservation between I/O write requests and DOORBELL requests.

■ Added NWRITE_R completion indication.

■ Added post-reset ackID synchronization.

■ Added transceiver configuration using full transceiver parameter editor.

March 2009 9.0

■ Corrected to preliminary support for HardCopy II devices.

■ Clarified the RapidIO IP core uses the transceiver bonded mode where relevant.

■ Updated Table 4–17.

February 2009 9.0

■ Added preliminary support for Arria II GX devices.

■ Added preliminary support for HardCopy III and HardCopy IV E devices.

■ Added support for outgoing multicast-event symbol generation.

■ Added support for 16-bit device ID.

■ Added Appendix C, Porting a RapidIO Design from the Previous Version of the Software.

November 2008 8.1

■ Added full support for Stratix III devices.

■ Added support for incoming multicast transactions.

■ Added GUI and register support to enable or disable destination ID checking.

■ Added GUI support to set transceiver starting channel number.

■ Added requirement to configure a dynamic reconfiguration block with Stratix IV
transceivers, to enable offset cancellation.

■ Updated Figure 4–5 and Figure 7–2.

Info–2 Additional Information
How to Contact Altera

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

May 2008 8.0

■ Added Arria GX device support for 1x mode 3.125 GBaud variation.

■ Added Stratix IV device support.

■ Added GUI support to set VCCH and reference clock frequency.

■ Simplified Physical layer description in Functional Description chapter.

■ Updated the performance information.

October 2007 7.2

■ Added Avalon-ST pass-through interface to SOPC Builder flow.

■ Added support for EDA page and an option that creates a netlist for use by third-party
synthesis tools.

■ Reorganized the user guide to make finding information easier and more efficient.

Date Version Changes

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

Additional Information Info–3
Typographic Conventions

December 2010 Altera Corporation RapidIO MegaCore Function User Guide

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

 A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning

Info–4 Additional Information
Typographic Conventions

RapidIO MegaCore Function User Guide December 2010 Altera Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Intel manufacturer:

Other Similar products are found below :

RAPPID-567XFSW SRP004001-01 SW163052 SYSWINEV21 Core429-SA WS01NCTF1E W128E13 SW89CN0-ZCC IPS-EMBEDDED

IP-UART-16550 MPROG-PRO535E AFLCF-08-LX-CE060-R21 WS02-CFSC1-EV3-UP SYSMAC-STUDIO-EIPCPLR LIB-PL-PC-N-

1YR-DISKID LIB-PL-A-F SW006026-COV 1120270005 1120270006 MIKROBASIC PRO FOR FT90X (USB DONGLE) MIKROC PRO

FOR FT90X (USB DONGLE) MIKROC PRO FOR PIC (USB DONGLE LICENSE) MIKROBASIC PRO FOR AVR (USB DONGLE LICEN

MIKROBASIC PRO FOR FT90X MIKROC PRO FOR DSPIC30/33 (USB DONGLE LI MIKROPASCAL PRO FOR ARM (USB DONGLE

LICE MIKROPASCAL PRO FOR FT90X MIKROPASCAL PRO FOR FT90X (USB DONGLE) MIKROPASCAL PRO FOR PIC32 (USB

DONGLE LI SW006021-2H ATATMELSTUDIO 2400573 2702579 2988609 2702546 SW006022-DGL 2400303 2701356 VDSP-21XX-

PCFLOAT VDSP-BLKFN-PC-FULL 88970111 DG-ACC-NET-CD 55195101-102 SW1A-W1C MDK-ARM PCI-EXP1-E3-US PCI-T32-

E3-US SW006021-2NH SW006021-1H SW006021-2

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/development-software
https://www.x-on.com.au/manufacturer/intel
https://www.x-on.com.au/mpn/nxp/rappid567xfsw
https://www.x-on.com.au/mpn/lantronix/srp00400101
https://www.x-on.com.au/mpn/microchip/sw163052
https://www.x-on.com.au/mpn/omron/syswinev21
https://www.x-on.com.au/mpn/microsemi/core429sa
https://www.x-on.com.au/mpn/omron/ws01nctf1e
https://www.x-on.com.au/mpn/omron/w128e13
https://www.x-on.com.au/mpn/toshiba/sw89cn0zcc
https://www.x-on.com.au/mpn/intel/ipsembedded
https://www.x-on.com.au/mpn/intel/ipuart16550
https://www.x-on.com.au/mpn/advantech/mprogpro535e
https://www.x-on.com.au/mpn/iei/aflcf08lxce060r21
https://www.x-on.com.au/mpn/omron/ws02cfsc1ev3up
https://www.x-on.com.au/mpn/omron/sysmacstudioeipcplr
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microchip/libplaf
https://www.x-on.com.au/mpn/microchip/sw006026cov
https://www.x-on.com.au/mpn/molex/1120270005
https://www.x-on.com.au/mpn/molex/1120270006
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforpicusbdonglelicense
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforavrusbdonglelicen
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikrocprofordspic3033usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/microchip/sw0060212h
https://www.x-on.com.au/mpn/microchip/atatmelstudio
https://www.x-on.com.au/mpn/phoenixcontact/2400573
https://www.x-on.com.au/mpn/phoenixcontact/2702579
https://www.x-on.com.au/mpn/phoenixcontact/2988609
https://www.x-on.com.au/mpn/phoenixcontact/2702546
https://www.x-on.com.au/mpn/microchip/sw006022dgl
https://www.x-on.com.au/mpn/phoenixcontact/2400303
https://www.x-on.com.au/mpn/phoenixcontact/2701356
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdspblkfnpcfull
https://www.x-on.com.au/mpn/crouzet/88970111
https://www.x-on.com.au/mpn/digiinternational/dgaccnetcd
https://www.x-on.com.au/mpn/honeywell/55195101102
https://www.x-on.com.au/mpn/idec/sw1aw1c
https://www.x-on.com.au/mpn/keil/mdkarm
https://www.x-on.com.au/mpn/lattice/pciexp1e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/microchip/sw0060212nh
https://www.x-on.com.au/mpn/microchip/sw0060211h
https://www.x-on.com.au/mpn/microchip/sw0060212

