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1. About This IP Core

This document describes the Altera® FIR Compiler II intellectual property (IP) core. 
The FIR Compiler II provides a fully-integrated finite impulse response (FIR) filter 
function optimized for use with Altera FPGA devices. The FIR Compiler II has an 
interactive parameter editor that allows you to easily create custom FIR filters. The 
parameter editor outputs IP functional simulation model files for use with Verilog 
HDL and VHDL simulators.

You can use the parameter editor to implement a variety of filter types, including 
single rate, decimation, interpolation, and fractional rate filters.

Many digital systems use signal filtering to remove unwanted noise, to provide 
spectral shaping, or to perform signal detection or analysis. FIR filters and infinite 
impulse response (IIR) filters provide these functions. Typical filter applications 
include signal preconditioning, band selection, and low-pass filtering. 

Figure 1–1 shows a weighted, tapped delay line, FIR filter .

To design a filter, identify coefficients that match the frequency response you specify 
for the system. These coefficients determine the response of the filter. You can change 
which signal frequencies pass through the filter by changing the coefficient values in 
the parameter editor.

Figure 1–1. Basic FIR Filter
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Features
The Altera FIR Compiler II implements a finite impulse response (FIR) filter and 
supports the following features:

■ Exploiting maximal designs efficiency through hardware optimizations such as:

■ Interpolation

■ Decimation

■ Symmetry

■ Decimation half-band

■ Time sharing

■ Easy system integration using Avalon® Streaming (Avalon-ST) interfaces.

■ Memory and multiplier trade-offs to balance the implementation between logic 
elements (LEs) and memory blocks (M512, M4K, M9K, M10K, M20K, or M144K).

■ Support for run-time coefficient reloading capability and multiple coefficient 
banks.

■ User-selectable output precision via truncation, saturation, and rounding.

Device Family Support
Altera offers the following device support levels for Altera IP cores:

■ Preliminary support—Altera verifies the IP core with preliminary timing models 
for this device family. The IP core meets all functional requirements, but might still 
be undergoing timing analysis for the device family. You can use it in production 
designs with caution.

■ Final support—Altera verifies the IP core with final timing models for this device 
family. The IP core meets all functional and timing requirements for the device 
family and can be used in production designs.
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Table 1–1 lists the level of support for the FIR Compiler II for each Altera device 
family.

MegaCore Verification
Before releasing a version of the FIR Compiler II, Altera runs comprehensive 
regression tests to verify its quality and correctness. Altera generates custom 
variations of the FIR Compiler II to exercise its various parameter options. Altera 
simulates the resulting simulation models and verifies the results against master 
simulation models.

Table 1–1. Device Family Support 

Device Family Support 

Arria® II GX Final

Arria II GZ Final

Arria V Final

Arria V GZ Final

Arria 10 Preliminary

Cyclone® IV GX/E Final

Cyclone V Final

MAX® 10 Preliminary

Stratix® IV Final

Stratix IV GT Final

Stratix IV GX Final

Stratix V Final

Other device families No support 



1–4 Chapter 1: About This IP Core
Performance and Resource Utilization

FIR Compiler II August 2014 Altera Corporation
User Guide

Performance and Resource Utilization
Table 1–2 through Table 1–4 show typical expected performance for a FIR II IP Core 
using the Quartus II software with Arria V (5AGXFB3H4F40C4), Cyclone V 
(5CGXFC7D6F31C6), and Stratix V (5SGSMD4H2F35C2) devices:

Table 1–2. FIR II IP Core Performance—Arria V Devices

Parameters
ALM DSP 

Blocks

Memory Registers fMAX 
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

8 2 Decimation — 1,607 24 0 — 1,232 64 308

8 2 Decimation Write 2,120 24 0 — 1,298 141 308

8 2 Fractional 
Rate — 1,395 16 0 — 2,074 99 281

8 2 Fractional 
Rate Write 1,745 16 0 — 2,171 91 282

8 2 Fractional 
Rate — 1,493 16 0 — 2,167 117 280

8 2 Fractional 
Rate Write 1,852 16 0 — 2,287 116 270

8 2 Interpolation — 1,841 32 0 — 2,429 52 282

8 2 Interpolation Write 1,994 32 0 — 2,826 41 278

8 2 Interpolation Multiple 
banks 2,001 32 0 — 2,737 74 279

8 2 Interpolation Multiple 
banks; Write 2,700 32 0 — 2,972 130 282

8 2 Single rate — 932 20 0 — 318 20 278

8 2 Single rate Write 1,057 20 0 — 713 3 279

8 1 Decimation — 329 3 1 — 321 33 301

8 1 Decimation Write 430 3 1 — 366 34 307

8 1 Decimation Multiple 
banks 395 3 3 — 483 44 310

8 1 Decimation Multiple 
banks; Write 510 3 3 — 472 40 291

8 1 Fractional 
Rate — 661 5 4 — 877 75 310

8 1 Fractional 
Rate Write 788 5 4 — 936 98 309

8 1 Interpolation — 381 5 0 — 442 32 278

8 1 Interpolation Write 514 5 0 — 540 27 278

8 1 Single Rate — 493 10 0 — 191 20 278

8 1 Single Rate Write 633 10 0 — 588 1 278

1 — Decimation — 220 3 0 — 158 27 310

1 super 
sample — Decimation — 404 20 0 — 400 41 305



Chapter 1: About This IP Core 1–5
Performance and Resource Utilization

August 2014 Altera Corporation FIR Compiler II
User Guide

1 super 
sample — Decimation Write 505 20 0 — 785 35 308

1 — Decimation Write 318 3 0 — 208 26 309

1 Half Band — Decimation — 234 3 0 — 192 34 308

1 Half Band — Decimation Write 320 3 0 — 232 27 309

1 — Fractional 
Rate — 297 3 0 — 504 57 310

1 — Fractional 
Rate Write 391 3 0 — 563 56 310

1 Half Band — Fractional 
Rate — 196 2 0 — 251 5 277

1 Half Band — Fractional 
Rate Write 266 2 0 — 301 15 280

1 — Interpolation — 266 5 0 — 290 30 278

1 super 
sample — Interpolation — 717 32 0 — 903 45 308

1 super 
sample — Interpolation Write 842 32 0 — 1,281 48 308

1 — Interpolation Write 405 5 0 — 380 15 278

1 Half Band — Interpolation — 254 3 0 — 293 8 310

1 Half Band — Interpolation Write 333 4 0 — 314 10 309

1 — Single rate — 93 10 0 — 129 27 299

1 super 
sample — Single rate — 262 20 0 — 307 41 309

1 super 
sample — Single rate Write 373 20 0 — 687 40 302

1 — Single rate Write 228 10 0 — 519 16 300

1 Half Band — Single rate — 189 5 0 — 254 63 309

1 Half Band — Single rate Write 272 5 0 — 496 29 310

1 — Single rate Multiple 
banks 109 10 0 — 199 29 283

1 — Single rate Multiple 
banks; Write 395 10 0 — 361 19 282

Table 1–2. FIR II IP Core Performance—Arria V Devices

Parameters
ALM DSP 

Blocks

Memory Registers fMAX 
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary
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Table 1–3. FIR II IP Core Performance—Cyclone V Devices

Parameters
ALM DSP 

Blocks

Memory Registers fMAX 
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

8 2 Decimation — 1,607 24 0 — 1,231 46 273

8 2 Decimation Write 2,092 24 0 — 1,352 63 273

8 2 Fractional 
Rate — 1,852 16 0 — 3,551 309 254

8 2 Fractional 
Rate Write 2,203 16 0 — 3,675 269 255

8 2 Fractional 
Rate — 1,951 16 0 — 3,543 421 227

8 2 Fractional 
Rate Write 2,301 16 0 — 3,601 476 250

8 2 Interpolation — 1,840 32 0 — 2,431 48 255

8 2 Interpolation Write 1,988 32 0 — 2,813 57 252

8 2 Interpolation Multiple 
banks 2,006 32 0 — 2,711 98 253

8 2 Interpolation Multiple 
banks; Write 2,704 32 0 — 2,990 100 250

8 2 Single rate — 934 20 0 — 317 19 252

8 2 Single rate Write 1,053 20 0 — 704 12 251

8 1 Decimation — 474 3 1 — 541 50 275

8 1 Decimation Write 559 3 1 — 574 58 273

8 1 Decimation Multiple 
banks 544 3 3 — 691 83 275

8 1 Decimation Multiple 
banks; Write 636 3 3 — 677 82 275

8 1 Fractional 
Rate — 1,165 5 4 — 1,715 205 275

8 1 Fractional 
Rate Write 1,287 5 4 — 1,770 198 275

8 1 Interpolation — 381 5 0 — 433 42 248

8 1 Interpolation Write 513 5 0 — 540 26 250

8 1 Single Rate — 493 10 0 — 191 18 249

8 1 Single Rate Write 624 10 0 — 563 26 251

1 — Decimation — 219 3 0 — 159 23 289

1 super 
sample — Decimation — 404 20 0 — 398 43 288

1 super 
sample — Decimation Write 503 20 0 — 774 46 256

1 — Decimation Write 312 3 0 — 208 26 289

1 Half Band — Decimation — 234 3 0 — 192 29 289

1 Half Band — Decimation Write 323 3 0 — 228 32 288
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1 — Fractional 
Rate — 422 3 0 — 723 94 310

1 — Fractional 
Rate Write 516 3 0 — 787 86 292

1 Half Band — Fractional 
Rate — 195 2 0 — 251 12 261

1 Half Band — Fractional 
Rate Write 267 2 0 — 299 15 252

1 — Interpolation — 262 5 0 — 296 25 252

1 super 
sample — Interpolation — 708 32 0 — 914 34 272

1 super 
sample — Interpolation Write 841 32 0 — 1,297 32 259

1 — Interpolation Write 400 5 0 — 382 12 258

1 Half Band — Interpolation — 288 3 0 — 456 13 290

1 Half Band — Interpolation Write 331 4 0 — 315 9 290

1 — Single rate — 87 10 0 — 142 14 253

1 super 
sample — Single rate — 258 20 0 — 315 33 260

1 super 
sample — Single rate Write 369 20 0 — 704 23 274

1 — Single rate Write 227 10 0 — 535 0 251

1 Half Band — Single rate — 187 5 0 — 273 44 288

1 Half Band — Single rate Write 274 5 0 — 506 19 275

1 — Single rate Multiple 
banks 110 10 0 — 187 41 255

1 — Single rate Multiple 
banks; Write 375 10 0 — 349 32 255

Table 1–3. FIR II IP Core Performance—Cyclone V Devices

Parameters
ALM DSP 

Blocks

Memory Registers fMAX 
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

Table 1–4. FIR II IP Core Performance—Stratix V Devices

Parameters
ALM DSP 

Blocks

Memory Registers fMAX 
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

8 2 Decimation — 1,609 24 — 0 1,231 60 450

8 2 Decimation Write 2,319 24 — 0 2,077 66 450

8 2 Fractional 
Rate — 1,350 16 — 0 2,099 88 448

8 2 Fractional 
Rate Write 1,771 16 — 0 2,291 78 450
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8 2 Fractional 
Rate — 1,457 16 — 0 2,213 88 444

8 2 Fractional 
Rate Write 1,873 16 — 0 2,418 89 450

8 2 Interpolation — 1,777 32 — 0 2,303 15 444

8 2 Interpolation Write 2,081 32 — 0 3,009 26 450

8 2 Interpolation Multiple 
banks 1,825 32 — 0 2,473 39 430

8 2 Interpolation Multiple 
banks; Write 2,652 32 — 0 2,842 236 424

8 2 Single rate — 920 20 — 0 332 2 444

8 2 Single rate Write 1,359 20 — 0 1,323 1 450

8 1 Decimation — 340 3 — 0 324 25 450

8 1 Decimation Write 463 3 — 0 457 29 450

8 1 Decimation Multiple 
banks 466 3 — 0 569 42 450

8 1 Decimation Multiple 
banks; Write 577 3 — 0 567 41 450

8 1 Fractional 
Rate — 709 5 — 0 870 45 450

8 1 Fractional 
Rate Write 852 5 — 0 991 65 450

8 1 Interpolation — 216 5 — 0 197 13 450

8 1 Interpolation Write 361 5 — 0 290 22 450

8 1 Single Rate — 483 10 — 0 212 4 447

8 1 Single Rate Write 783 10 — 0 894 4 450

1 — Decimation — 215 3 — 0 175 10 450

1 super 
sample — Decimation — 547 20 — 0 1,167 88 450

1 super 
sample — Decimation Write 989 20 — 0 2,214 105 450

1 — Decimation Write 331 3 — 0 310 7 450

1 Half Band — Decimation — 226 3 — 0 206 16 450

1 Half Band — Decimation Write 343 3 — 0 327 18 450

1 — Fractional 
Rate — 252 3 — 0 318 21 445

1 — Fractional 
Rate Write 353 3 — 0 380 13 450

1 Half Band — Fractional 
Rate — 140 2 — 0 185 13 450

1 Half Band — Fractional 
Rate Write 214 2 — 0 235 21 450

Table 1–4. FIR II IP Core Performance—Stratix V Devices

Parameters
ALM DSP 

Blocks

Memory Registers fMAX 
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary
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Release Information
Table 1–5 provides information about this release of the Altera FIR Compiler II.

f For more information about this release, refer to the MegaCore IP Library Release Notes 
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the 
previous version of each IP core. The MegaCore IP Library Release Notes and Errata 
report any exceptions to this verification. Altera does not verify compilation with IP 
core versions older than one release.

1 — Interpolation — 168 5 — 0 127 19 450

1 super 
sample — Interpolation — 573 32 — 0 1,084 51 446

1 super 
sample — Interpolation Write 870 32 — 0 1,774 136 450

1 — Interpolation Write 313 5 — 0 196 5 450

1 Half Band — Interpolation — 253 3 — 0 292 9 450

1 Half Band — Interpolation Write 370 4 — 0 418 9 450

1 — Single rate — 226 10 — 0 706 31 447

1 _ssample — Single rate — 468 20 — 0 1,354 53 450

1 _ssample — Single rate Write 927 20 — 0 2,267 203 450

1 — Single rate Write 524 10 — 0 1,391 31 500

1 Half Band — Single rate — 195 5 — 0 270 50 450

1 Half Band — Single rate Write 351 5 — 0 645 28 450

1 — Single rate Multiple 
banks 250 10 — 0 716 93 449

1 — Single rate Multiple 
banks; Write 671 10 — 0 1,228 50 450

Table 1–4. FIR II IP Core Performance—Stratix V Devices

Parameters
ALM DSP 

Blocks

Memory Registers fMAX 
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

Table 1–5. FIR Compiler II Release Information

Item Description

Version 13.1

Release Date November 2013

Ordering Code IP-FIRII
IPR-FIRII (renewal)

Product ID 00D8

Vendor ID 6AF7
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2. Getting Started

Installing and Licensing IP Cores
The Quartus II software includes the Altera IP Library. The library provides many 
useful IP core functions for production use without additional license. You can fully 
evaluate any licensed Altera IP core in simulation and in hardware until you are 
satisfied with its functionality and performance. 

Some Altera IP cores, such as MegaCore® functions, require that you purchase a 
separate license for production use. After you purchase a license, visit the Self Service 
Licensing Center to obtain a license number for any Altera product. For additional 
information, refer to Altera Software Installation and Licensing.

1 The default installation directory on Windows is <drive>:\altera\<version number>; 
on Linux it is <home directory>/altera/<version number>.

OpenCore Plus Evaluation
The Altera IP library contains both free and individually licenced IP cores. With the 
Altera free OpenCore Plus evaluation feature, you can evaluate separately licenced IP 
cores in the following ways prior to purchasing a production license:

■ Simulate the behavior of an Altera IP core in your system using the Quartus II 
software and Altera-supported VHDL and Verilog HDL simulators.

■ Verify the functionality of your design and evaluate its size and speed quickly and 
easily.

■ Generate device programming files for designs that include IP cores. These files 
are time-limited under the OpenCore Plus evaluation program.

■ Program a device and verify your design in hardware.

Open Core Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following two operation modes:

■ Untethered—the design runs for a limited time. 

■ Tethered—requires a connection between your board and the host computer. If all 
Altera IP cores in a design support tethered mode, the device can operate for a 
longer time or indefinitely. 

Figure 2–1. IP core Installation Path

acds

quartus - Contains the Quartus II software

ip - Contains the Altera IP Library and third-party IP cores

altera - Contains the Altera IP Library source code

<IP core name> - Contains the IP core source files  
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All IP cores in a device time out simultaneously when the most restrictive evaluation 
time is reached. If there is more than one IP core in a design, a specific IP core's 
time-out behavior may be masked by the time-out behavior of the other IP cores.

1 For IP cores, the untethered time-out is 1 hour; the tethered time-out value 
is indefinite. 

Your design stops working after the hardware evaluation time expires.

1 The Quartus II software uses OpenCore Plus Files (.ocp) in your project 
directory to identify your use of the OpenCore Plus evaluation program. 
After you activate the feature, do not delete these files.

f For information about the OpenCore Plus evaluation program, refer to 
AN320: OpenCore Plus Evaluation of Megafunctions.

Customizing and Generating IP Cores
You can customize IP cores to support a wide variety of applications. The Quartus II 
IP Catalog displays IP cores available for the current target device. The parameter 
editor guides you to set parameter values for optional ports, features, and output files. 

To customize and generate a custom IP core variation, follow these steps: 

1. In the IP Catalog (Tools > IP Catalog), locate and double-click the name of the IP 
core to customize. The parameter editor appears.

2. Specify a top-level name for your custom IP variation. This name identifies the IP 
core variation files in your project. If prompted, also specify the target Altera 
device family and output file HDL preference. Click OK.

3. Specify the desired parameters, output, and options for your IP core variation:

■ Optionally select preset parameter values. Presets specify all initial parameter 
values for specific applications (where provided).

■ Specify parameters defining the IP core functionality, port configuration, and 
device-specific features.

■ Specify options for generation of a timing netlist, simulation model, testbench, 
or example design (where applicable).

■ Specify options for processing the IP core files in other EDA tools.

4. Click Finish or Generate to generate synthesis and other optional files matching 
your IP variation specifications. The parameter editor generates the top-level .qip 
or .qsys IP variation file and HDL files for synthesis and simulation. Some IP cores 
also simultaneously generate a testbench or example design for hardware testing.

5. To generate a simulation testbench, click Generate > Generate Testbench System. 
Generate > Generate Testbench System is not available for some IP cores.

6. To generate a top-level HDL design example for hardware verification, click 
Generate > HDL Example. Generate > HDL Example is not available for some IP 
cores.
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When you generate the IP variation with a Quartus II project open, the parameter 
editor automatically adds the IP variation to the project. Alternatively, click Project > 
Add/Remove Files in Project to manually add a top-level .qip or .qsys IP variation 
file to a Quartus II project. To fully integrate the IP into the design, make appropriate 
pin assignments to connect ports. You can define a virtual pin to avoid making 
specific pin assignments to top-level signals.

Files Generated for Altera IP Cores
The Quartus II software version 14.0 Arria 10 Edition and later generates the 
following output file structure for Altera IP cores:

Simulating IP Cores
The Quartus II software supports RTL- and gate-level design simulation of Altera IP 
cores in supported EDA simulators. Simulation involves setting up your simulator 
working environment, compiling simulation model libraries, and running your 
simulation.

Figure 2–2. IP Core Generated Files

<Project Directory>

<your_testbench>_tb.csv
<your_testbench>_tb.spd

sim - IP core simulation files

<your_testbench>_tb - Simulation testbench files

<your_testbench>_tb

<your_ip> - IP core variation files
<your_ip>.cmp - VHDL component declaration file

<your_ip>.ppf - XML I/O pin information file
<your_ip>.qip - Lists IP synthesis files
<your_ip>.sip - Lists files for simulation

synth - IP synthesis files
<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files 1

<your_ip>.v or .vhd - Top-level simulation file
<EDA_tool_name> - Simulator setup scripts

<simulator_setup_scripts>

<IP subcore library> - IP subcore files

<HDL files>

sim

<your_ip>.qsys - System or IP integration file

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file
<your_ip>_inst.v or .vhd - Sample instantiation template 

<your_ip>_generation.rpt - IP generation report
<your_ip>.debuginfo - IP generation report
<your_ip>.html - Contains memory map
<your_ip>.bsf - Block symbol schematic
<your_ip>.spd - Combines individual simulation startup scripts 1

<your_ip>_tb.qsys - Testbench system file

1

<your_ip>.sopcinfo - Software tool-chain integration file

1. If supported and enabled for your IP variation
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You can use the functional simulation model and the testbench or example design 
generated with your IP core for simulation. The functional simulation model and 
testbench files are generated in a project subdirectory. This directory may also include 
scripts to compile and run the testbench. For a complete list of models or libraries 
required to simulate your IP core, refer to the scripts generated with the testbench. 
You can use the Quartus II NativeLink feature to automatically generate simulation 
files and scripts. NativeLink launches your preferred simulator from within the 
Quartus II software.

For more information about simulating Altera IP cores, refer to Simulating Altera 
Designs in volume 3 of the Quartus II Handbook.

Simulating Your FIR II Compiler Design
The FIR Compiler II MegaCore function generates a number of output files for design 
simulation. After you have created a custom FIR filter, you can simulate your design 
in the ModelSim®-Altera software, MATLAB, or another third-party simulation tool.

Simulating in the ModelSim-Altera Software
Use the Tcl script (<variation name>_msim.tcl) to load the VHDL testbench into the 
ModelSim-Altera software.

This script uses the file <variation name>_input.txt to provide input data to the FIR 
filter. The output from the simulation is stored in a file <variation name>_output.txt.

Simulating in MATLAB
To simulate in a MATLAB environment, run the <variation_name>_model.m 
testbench m-file, which also is located in your design directory. This script also uses 
the file <variation name>_input.txt to provide input data. The output from the 
MATLAB simulation is stored in the file <variation name>_model_output.txt.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the 
Quartus II software, using NativeLink.

The Tcl script file <variation name>_nativelink.tcl can be used to assign default 
NativeLink testbench settings to the Quartus II project.

To perform a simulation in the Quartus II software using NativeLink, perform the 
following steps:

1. Create a custom MegaCore function variation as described earlier in this chapter 
but ensure you specify a variation name that exactly matches the Quartus II 
project name.

2. Verify that the absolute path to your third-party EDA tool is set in the Options 
page under the Tools menu in the Quartus II software.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. In the Tcl Scripts dialog box, select 
<variation name>_nativelink.tcl and click Run. A message indicates that the Tcl 
script is successfully loaded.
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5. On the Assignments menu, click Settings, expand EDA Tool Settings, and select 
Simulation. Select a simulator under Tool name then in NativeLink Settings, 
select Compile test bench and click Test Benches.

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL 
Simulation.

The Quartus II software selects the simulator, and compiles the Altera libraries, 
design files, and testbenches. The testbench runs and the waveform window 
shows the design signals for analysis.

f For more information, refer to the Simulating Altera IP in Third-Party Simulation Tools 
chapter in volume 3 of the Quartus II Handbook.

1 IP functional simulation models output correct data only when data storage is clear. 
When data storage is not clear, functional simulation models will output non-relevant 
data. The number of clock cycles it takes before relevant samples are available is N; 
where N = (number of channels) × (number of coefficients) × (number of clock cycles 
to calculate an output).

Including Other IP Libraries and Files
The Quartus II software searches for IP cores in the project directory, in the Altera 
installation directory, and in the defined IP search path. You can include IP libraries 
and files from other locations by modifying the IP search path. To use the GUI to 
modify the global or project-specific search path, click Tools > Options > IP Search 
Locations and specify the path to your IP.

As an alternative to the GUI, use the following SEARCH_PATH assignment to include 
one or more project libraries. Specify only one source directory for each SEARCH_PATH 
assignment.

Figure 2–3. Specifying IP Search Locations

Adds new global IP search paths 

Changes search path order

Adds new project-specific IP search paths 

Lists current project and global search paths
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set_global_assignment -name SEARCH_PATH <library or file path>

If your project includes two IP core files of the same name, the following search path 
precedence rules determine the resolution of files:

1. Project directory files.

2. Project database directory files.

3. Project libraries specified in IP Search Locations, or with the SEARCH_PATH 
assignment in the Quartus II Settings File (.qsf).

4. Global libraries specified in IP Search Locations, or with the SEARCH_PATH 
assignment in the Quartus II Settings File (.qsf).

5. Quartus II software libraries directory, such as <Quartus II Installation>\libraries.

Upgrading Outdated IP Cores
IP cores generated with a previous version of the Quartus II software may require 
upgrade before use in the current version of the Quartus II software. Click Project > 
Upgrade IP Components to identify and upgrade outdated IP cores.

The Upgrade IP Components dialog box provides instructions when IP upgrade is 
required, optional, or unsupported for specific IP cores in your design. Most Altera IP 
cores support one-click, automatic simultaneous upgrade. You can individually 
migrate IP cores unsupported by auto-upgrade. 

The Upgrade IP Components dialog box also reports legacy Altera IP cores that 
support compilation-only (without modification), as well as IP cores that do not 
support migration. Replace unsupported IP cores in your project with an equivalent 
Altera IP core or design logic.Upgrading IP cores changes your original design files.

Before you begin

■ Migrate your Quartus II project containing outdated IP cores to the latest version 
of the Quartus II software. In a previous version of the Quartus II software, click 
Project > Archive Project to save the project. This archive preserves your original 
design source and project files after migration. le paths in the archive must be 
relative to the project directory. File paths in the archive must reference the IP 
variation .v or .vhd file or .qsys file, not the .qip file.

■ Restore the project in the latest version of the Quartus II software. Click Project > 
Restore Archived Project. Click Ok if prompted to change to a supported device 
or overwrite the project database.

To upgrade outdated IP cores, follow these steps:

1. In the latest version of the Quartus II software, open the Quartus II project 
containing an outdated IP core variation.

1 File paths in a restored project archive must be relative to the project 
directory and you must reference the IP variation .v or .vhd file or .qsys file, 
not the .qip file.
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2. Click Project > Upgrade IP Components. The Upgrade IP Components dialog 
box displays all outdated IP cores in your project, along with basic instructions for 
upgrading each core.

3. To simultaneously upgrade all IP cores that support automatic upgrade, click 
Perform Automatic Upgrade. The IP cores upgrade to the latest version. The 
Status and Version columns reflect the update.

Upgrading IP Cores at the Command Line
Alternatively, you can upgrade IP cores at the command line. To upgrade a single IP 
core, type the following command: 

quartus_sh --ip_upgrade -variation_files <my_ip_path> <project>

To upgrade a list of IP cores, type the following command:

quartus_sh --ip_upgrade -variation_files
"<my_ip>.qsys;<my_ip>.<hdl>; <project>"

1 IP cores older than Quartus II software version 12.0 do not support upgrade. Altera 
verifies that the current version of the Quartus II software compiles the previous 
version of each IP core. The MegaCore IP Library Release Notes reports any verification 
exceptions for MegaCore IP. The Quartus II Software and Device Support Release Notes 
reports any verification exceptions for other IP cores. Altera does not verify 
compilation for IP cores older than the previous two releases.

Figure 2–4. Upgrading IP Cores

Displays upgrade
status for all IP cores
in the Project

Upgrades all IP core that support “Auto Upgrade”
Upgrades individual IP cores unsupported by “Auto Upgrade”

Checked IP cores
support “Auto Upgrade”

Successful
“Auto Upgrade”

Upgrade
unavailable

Double-click to
individually migrate
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DSP Builder Design Flow
DSP Builder shortens digital signal processing (DSP) design cycles by helping you 
create the hardware representation of a DSP design in an algorithm-friendly 
development environment. 

This IP core supports DSP Builder. Use the DSP Builder flow if you want to create a 
DSP Builder model that includes an IP core variation; use IP Catalog if you want to 
create an IP core variation that you can instantiate manually in your design.

f For more information about the DSP Builder flow, refer to the Using MegaCore 
Functions chapter in the DSP Builder Handbook.
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3. Parameters

This chapter describes the FIR Compiler II parameters.

For information about using the parameter editor, refer to “Customizing and 
Generating IP Cores” on page 2–2.

The Parameters contains the following three pages:

■ Filter Specification Parameters

■ Input and Output Options Page

■ Implementation Options

Filter Specification Parameters
A FIR filter is defined by its coefficients. The FIR Compiler II provides the following 
options for obtaining coefficients:

■ Specify the filter settings and coefficient options in the parameter editor. The FIR 
Compiler II provides a default 37-tap coefficient set regardless of the 
configurations from filter settings. The scaled value and fixed point value are 
recalculated based on the coefficient bit width setting. The higher the coefficient 
bit width, the closer the fixed frequency response is to the intended original 
frequency response with the expense of higher resource usage.

■ Load the coefficients from a file. For example, you can create the coefficients in 
another application such as MATLAB or a user-created program, save the 
coefficients to a file, and import them into the FIR Compiler II. For more 
information, refer to “Loading Coefficients from a File” on page 3–2.

Table 3–1 lists the filter specification parameters.

Table 3–1. Filter Specification Parameters (Part 1 of 2)

Parameter Value Description

Filter Settings 

Filter Type 

Single Rate 

Decimation 

Interpolation 

Fractional Rate 

Specifies the type of FIR filter. The default value is Single 
Rate.

Interpolation Factor 1 to 128 Specifies the number of extra points to generate between 
the original samples. The default value is 1.

Decimation Factor 1 to 128 Specifies the number of data points to remove between the 
original samples. The default value is 1.

L-th Band Filter 

All taps 

Half band 

3rd–5th

Specifies the appropriate L-band Nyquist filters. Every Lth 
coefficient of these filters is zero, counting out from the 
center tap. The default value is All taps.

Number of Channels 1–128 Specifies the number of unique input channels to process. 
The default is 1.
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Loading Coefficients from a File
To load a coefficient set from a file, perform the following steps:

1. In the File Path box, specify the name of the .txt file containing the coefficient set.

■ In the .txt file, separate the coefficients file by either white space or commas or 
both. 

■ Use new lines to separate banks. 

■ You may use blank lines as the FIR Compiler II ignores them.

■ You may use floating-point or fixed-point numbers, and scientific notation. 

■ Use a # character to add comments. 

■ Specify an array of coefficient sets to support multiple coefficient sets. 

■ Specify the number of rows to specify the number of banks. 

■ All coefficient sets must have the same symmetry type and number of taps. For 
example:
# bank 1 and 2 are symmetric
1, 2, 3, 2, 1
1 3 4 3 1

Coefficient Options 

Coefficient Scaling
Auto

None

Specifies the coefficient scaling mode. Select Auto to apply 
a scaling factor in which the maximum coefficient value 
equals the maximum possible value for a given number of 
bits. Select None to read in pre-scaled integer values for 
the coefficients and disable scaling.

Coefficient Data Type
Signed Binary

Signed Fractional Binary

Specifies the coefficient input data type. Select Signed 
Fractional Binary to monitor which bits are preserved and 
which bits are removed during the filtering process.

Coefficient Bit Width 2–32 Specifies the width of the coefficients. The default value is 
8 bits.

Coefficient Fractional Bit 
Width 0–32

Specifies the width of the coefficient data input into the 
filter when you select Signed Fractional Binary as your 
coefficient data type.

Frequency Response Display

Show Coeffificient Bank 0–Number of coefficient bank -1 Specifies the coefficient bank to display in the coefficient 
table and frequency response graph.

File Path 

File Path URL Specifes the file from which to load coefficients. Refer to 
“Loading Coefficients from a File”.

Table 3–1. Filter Specification Parameters (Part 2 of 2)

Parameter Value Description
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# bank 3 is anti-symmetric
1 2 0 -2 -1

# bank 4 is asymmetric
1,2,3,4,5

1 The file must have a minimum of five non-zero coefficients.

2. In the Filter Specification tab of the parameter editor, click Apply to import the 
coefficient set.

When you import a coefficient set, the frequency response of the floating-point 
coefficients is displayed in blue and the frequency response of the fixed-point 
coefficients is displayed in red.

The FIR Compiler II supports scaling on the coefficient set.

Input and Output Options Page
Table 3–2 lists the parameter options.

Table 3–2. Input and Output Options 

Parameter Value Description

Input Options 

Input Data Type
Signed Binary

Signed Fractional Binary

Specifies whether the input data is in a signed binary or a 
signed fractional binary format. Select Signed Fractional 
Binary to monitor which bits the IP core preserves and 
which bits it removes during the filtering process.

Input Bit Width 1–32 Specifies the width of the input data sent to the filter. The 
default value is 8 bits.

Input Fractional Bit Width 0–32
Specifies the width of the data input into the filter when you 
select Signed Fractional Binary as your input data type. 
The default value is 0 bits.

Output Options

Output Data Type
Signed Binary

Signed Fractional Binary

Specifies whether the output data is in a signed binary or a 
signed fractional binary format. Select Signed Fractional 
Binary to monitor which bits the IP core preserves and 
which bits it removes during the filtering process.

Output Bit Width 0–32 Specifies the width of the output data (with limited 
precision) from the filter.

Output Fractional Bit Width 0–32
Specifies the width of the output data (with limited 
precision) from the filter when you select Signed 
Fractional Binary as your output data.

Output MSB rounding Truncation/ Saturating Specifies whether to truncate or saturate the most 
significant bit (MSB).

MSB Bits to Remove 0–32
Specifies the number of MSB bits to truncate or saturate. 
The value must not be greater than its corresponding 
integer bits or fractional bits.
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Signed Fractional Binary
The FIR Compiler II supports two’s complement, signed fractional binary notation, 
which allows you to monitor which bits the IP core preserves and which bits it 
removes during filtering. A signed binary fractional number has the format:

<sign> <integer bits>.<fractional bits>

A signed binary fractional number is interpreted as shown below:

<sign> <x1  integer bits>.<y1 fractional bits> Original input data

<sign> <x2 integer bits>.<y2 fractional bits> Original coefficient data

<sign> <i integer bits>.<y1 + y2 fractional bits> Full precision after FIR calculation

<sign> <x3 integer bits>.<y3 fractional bits> Output data after limiting precision

where i = ceil(log2(number of coefficients)) + x1 + x2

For example, if the number has 3 fractional bits and 4 integer bits plus a sign bit, the 
entire 8-bit integer number is divided by 8, which gives a number with a binary 
fractional component. 

The total number of bits equals to the sign bits + integer bits + fractional bits. The sign 
+ integer bits is equal to Input Bit Width – Input Fractional Bit Width with a 
constraint that at least 1 bit must be specified for the sign. 

MSB and LSB Truncation, Saturation, and Rounding
The output options on the parameter editor allow you to truncate or saturate the MSB 
and to truncate or round the LSB. Saturation, truncation, and rounding are non-linear 
operations.

Table 3–1 lists the options for limiting the precision of your filter.

Output LSB rounding Truncation/ Rounding Specifies whether to truncate or round the least significant 
bit (LSB).

LSB Bits to Remove 0–32
Specifies the number of LSB bits to truncate or round. The 
value must not be greater than its corresponding integer 
bits or fractional bits.

Table 3–2. Input and Output Options 

Parameter Value Description

Table 3–1. Options for Limiting Precision

Bit Range Option Result

MSB Truncate In truncation, the filter disregards specified bits. (Figure 3–1).

Saturate In saturation, if the filtered output is greater than the maximum positive 
or negative value that can be represented, the output is forced (or 
saturated) to the maximum positive or negative value.

LSB Truncate Same process as for MSB.

Round The output is rounded away from zero.
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Figure 3–1 shows an example of removing bits from the MSB and LSB.

Implementation Options 
Table 3–3 lists the implementation options.

Figure 3–1. Removing Bits from the MSB and LSB
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Table 3–3. Implementation Options (Part 1 of 2)

Parameter Value Description

Frequency Specification 

Clock Frequency (MHz) 1–500 Specifies the frequency of the input clock. The default value is 
100 MHz.

Clock Slack Integer 
Enables you to control the amount of pipelining independently 
of the clock frequency and therefore independently of the clock 
to sample rate ratio. The default value is 0.

Input Sample Rate (MSPS) Integer Specifies the sample rate of the incoming data. The default is 
100.

Speed Grade 

Fast 

Medium 

Slow 

Specifies the speed grade of the target device to balance the 
size of the hardware against the resources required to meet the 
clock frequency. The default value is Medium.

Symmetry Option 

Symmetry Mode 

Non Symmetry 

Symmetrical 

Anti-Symmetrical 

Specifies whether your filter design uses non-symmetric, 
symmetric, or anti-symmetric coefficients. The default value is 
Non Symmetry.

Coefficients Reload Options 

Coefficients Reload —

Turn on this option to allow coefficient reloading. This option 
allows you to change coefficient values during run time. When 
this option is turned on, additional input ports are added to the 
filter.

Base Address Integer Specifies the base address of the memory-mapped 
coefficients.

Read/Write mode

Read

Write

Read/Write

Specifies the read and write mode that determines the type of 
address decode to build.
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Memory and Multiplier Trade-Offs
When the quartus II software synthesizes your design to logic, it often creates delay 
blocks. The FIR Compiler II tries to balance the implementation between logic 
elements (LEs) and memory blocks (M512, M4K, M9K, or M144K). The exact trade-off 
depends on the target FPGA family, but generally the trade-off attempts to minimize 
the absolute silicon area used. For example, if a block of RAM occupies the silicon area 
of two logic array blocks (LABs), a delay requiring more than 20 LEs (two LABs) is 
implemented as a block of RAM. However, you want to influence this trade-off.

These topics describe the memory and multiplier threshold trade-offs, and provide 
some usage examples.

Using LEs / Small RAM Block Threshold 

This threshold is the trade-off between simple delay LEs and small ROM blocks. If 
any delay’s size is such that the number of LEs is greater than this parameter, the IP 
core implements delay as block RAM. The default value is 20 bits.

1. To make more delays using block RAM, enter a lower number, such as a value in 
the range of 20–30.

2. To use fewer block memories, enter a larger number, such as 100.

3. To never use block memory for simple delays, enter a very large number, such as 
10000.

4. Implement delays of less than three cycles in LEs because of block RAM behavior.

Flow Control

Back Pressure Support —

Turn on this option to enable backpressure support. When this 
option is turned on, the sink signals the source to stop the flow 
of data when its FIFO buffers are full or when there is 
congestion on its output port.

Resource Optimization Settings 

Device Family Menu of supported devices Specifies the target device family.

LEs / Small RAM Block 
Threshold Integer 

Specifies the balance of resources between LEs/Small RAM 
block threshold in bits. The default value is 20. For more 
information, refer to “Memory and Multiplier Trade-Offs” on 
page 3–6.

Small / Medium RAM 
Block Threshold Integer 

Specifies the balance of resources between small to medium 
RAM block threshold in bits.The default value is 1280. For 
more information, refer to “Memory and Multiplier Trade-Offs” 
on page 3–6.

Medium / Large RAM 
Block Threshold Integer 

Specifies the balance of resources between medium to large 
RAM block threshold in bits. The default value is 1000000. For 
more information, refer to “Memory and Multiplier Trade-Offs” 
on page 3–6.

LEs / DSP Block Multiplier 
Threshold Integer 

Specifies the balance of resources between LEs/ DSP block 
multiplier threshold in bits. The default value is -1. For more 
information, refer to “Memory and Multiplier Trade-Offs” on 
page 3–6.

Table 3–3. Implementation Options (Part 2 of 2)

Parameter Value Description
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1 This threshold only applies to implementing simple delays in memory blocks or logic 
elements. You cannot push dual memories back into logic elements.

Using Small / Medium RAM Block Threshold 

This threshold is trade-off between small and medium RAM blocks. This threshold is 
similar to the Using LEs / Small RAM Block Threshold except that it applies only to 
the dual-port memories.

The IP core implements any dual-port memory in a block memory rather than logic 
elements, but for some device families different sizes of block memory may be 
available. The threshold value determines which medium-size RAM memory blocks 
IP core implements instead of small-memory RAM blocks. For example, the threshold 
that determines whether to use M9K blocks rather than MLAB blocks on Stratix IV 
devices.

The default value is 1,290 bits.

1. Set the default threshold value, to implement dual memories greater than 1,280 
bits as M9K blocks and dual memories less than or equal to 1,280 bits as MLABs. 

2. Change this threshold to a lower value such as 200, to implement dual memories 
greater than 200 bits as M9K blocks and dual memories less than or equal to 200 
bits as MLAB blocks.

1 For device families with only one type of memory block, this threshold has no effect.

Using Medium / Large RAM Block Threshold 

This threshold is the trade-off between medium and large RAM blocks. For larger 
delays, implement memory in medium-block RAM (M4K, M9K) or use larger M-
RAM blocks (M512K, M144K).

The default value is 1,000,000 bits.

1. Set the number of bits in a memory or delay greater than this threshold, to use M-
RAM. 

2. Set a large value such as the default of 1,000,000 bits, to never uses M-RAM blocks.

Using the LEs / DSP Block Multiplier Threshold 

This threshold is the trade-off between hard and soft multipliers. For devices that 
support hard multipliers or DSP blocks, use these resources instead of a soft 
multiplier made from LEs. For example, a 2-bit × 10-bit multiplier consumes very few 
LEs. The hard multiplier threshold value corresponds to the number of LEs that save a 
multiplier. If the hard multiplier threshold value is 100, you are allowing 100 LEs. 
Therefore, an 18 × 18 multiplier (that requires approximately 182–350 LEs) is not 
transferred to LEs because it requires more LEs than the threshold value. However, 
the IP core implements a 16 × 4 multiplier that requires approximately 64 LEs as a soft 
multiplier with this setting.

1. Set the default to always use hard multipliers. With this value, IP core implements 
a 24 × 18 multiplier as two 18 × 18 multipliers.
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2. Set a value of approximately 300 to keep 18 × 18 multipliers hard, but transform 
smaller multipliers to LEs. The IP core implements a 24 × 18 multiplier as a 6 × 18 
multiplier and an 18 × 18 multiplier, so this setting builds the hybrid multipliers 
that you require.

3. Set a value of approximately 1,000 to implement the multipliers entirely as LEs. 
Essentially you are allowing a high number (1000) of LEs to save using an 18 × 18 
multiplier.

4. Set a value of approximately 10 to implement a 24 × 16 multiplier as a 36 × 36 
multiplier. With the value, you are not even allowing the adder to combine two 
multipliers. Therefore, the system has to burn a 36 × 36 multiplier in a single DSP 
block.
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4. Functional Description

Figure 4–1 shows a high-level block diagram of the FIR Compiler II with the 
Avalon-ST interface. The FIR Compiler II generates the Avalon-ST register transfer 
level (RTL) wrapper.

Interfaces
The FIR Compiler II includes the following interfaces:

■ Avalon Streaming (Avalon-ST) source and sink interfaces

■ Clock and reset interfaces

The IP core also consists of an interface controller for the Avalon-ST wrapper that 
handles the flow control mechanism. The control signals between the sink interface, 
FIR filter, and source interface are communicated via the controller. 

Figure 4–1. High Level Block Diagram of FIR Compiler II with Avalon-ST Interface
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Avalon-ST Sink and Source Interfaces
The sink and source interfaces implement the Avalon-ST protocol, which is a 
unidirectional flow of data. The number of bits per symbol represents the data width 
and the number of symbols per beat is the number of channel wires. The IP core 
symbol type supports signed and unsigned binary format. The ready latency on the 
FIR Compiler II is 0.

When designing a datapath that includes the FIR Compiler II, you might not need 
backpressure if you know the downstream components can always receive data. You 
might achieve a higher clock rate by driving the ast_source_ready signal of the FIR 
Compiler II high, and not connecting the ast_sink_ready signal.

f For more information about the Avalon-ST interface properties, protocol and the data 
transfer timing, refer to the Avalon Interface Specifications.

Avalon-ST Sink Interface
The sink interface can handle single or multiple channels on a single wire and 
multiple channels on multiple wires.

Single Channel on Single Wire

Figure 4–2 shows the connection between the sink interface and the FIR Compiler II 
when transferring a single channel of 8-bit data.

Figure 4–2. Single Channel on Single Wire (Sink -> FIR Compiler II)
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Multiple Channels on Single Wire

Figure 4–3 shows the connection between the sink interface and the FIR Compiler II 
when transferring a packet of data over multiple channels on a single wire. The data 
width of each channel is 8 bits.

Multiple Channels on Multiple Wires

Figure 4–4 and Figure 4–5 show the connection between the sink interface and the FIR 
Compiler II when transferring a packet of data over multiple channels on multiple 
wires. The data width of each channel is 8 bits. Consider a case when the number of 
channels = 6, clock rate = 200 MHz, and sample rate = 100 MHz. 

Figure 4–3. Multiple Channels on Single Wire (Sink -> FIR Compiler II)
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In this example, hardware optimization produces a TDM factor of 2, number of 
channel wires = 3, and channels per wire = 2.

Figure 4–4. Multiple Channels on Multiple Wires 
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Figure 4–5. Timing Diagram of Multiple Channels on Multiple Wires 
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Avalon-ST Source Interface
The source interface can handle single or multiple channels on a single wire and 
multiple channels on multiple wires. The IP core includes an Avalon-ST FIFO in the 
source wrapper when the backpressure support is turned on. The Avalon-ST FIFO 
controls the backpressure mechanism and catches the extra cycles of data from the FIR 
Compiler II after backpressure. On the input side of the FIR Compiler II, driving the 
enable_i signal low, causes the FIR Compiler II to stop. From the output side, 
backpressure drives the enable_i signal of the FIR Compiler II. If the downstream 
module can accept data again, the FIR Compiler II is instantly re-enabled.

When the packet size is greater than one (multichannel), the source interface expects 
your application to supply the count of data starting from 1 to the packet size. When 
the source interface receives the valid flag together with the data_count = 1, it starts 
sending out data by driving both the ast_source_sop and ast_source_valid signals 
high. When data_count equals the packet size, the ast_source_eop signal is driven 
high together with the ast_source_valid signal.

If the downstream components are not ready to accept any data, the source interface 
drives the source_stall signal high to tell the design to stall.

Figure 4–6 and Figure 4–7 show the connection between the FIR Compiler II and the 
source interface when transferring a packet of data over multiple channels on 
multiple wires.

Figure 4–6. Multiple Channels on Multiple Wires 
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Clock and Reset Interfaces
The clock and reset interfaces drive or receive the clock and reset signals to 
synchronize the Avalon-ST interfaces and provide reset connectivity.

Signals
Table 4–1 lists the input and output signals for the FIR Compiler II with the Avalon-ST 
interface.

Figure 4–7. Timing Diagram of Multiple Channels on Multiple Wires
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Table 4–1. FIR Compiler II Signals with Avalon-ST Interface (Part 1 of 3)

Signal Direction Width Description

clk Input 1 Clock signal for all internal FIR Compiler II filter registers.

reset_n Input 1 Asynchronous active low reset signal. Resets the FIR 
Compiler II filter control circuit on the rising edge of clk.

coeff_in_clk Input 1 Clock signal for the coefficient reloading mechanism. This 
clock can have a lower rate than the system clock.

coeff_in_areset Input 1 Asynchronous active high reset signal for the coefficient 
reloading mechanism.

ast_sink_ready Output 1
FIR filter asserts this signal when can accept data in the 
current clock cycle. This signal is not available when 
backpressure is turned off. 

ast_sink_valid Input 1
Assert this signal when the input data is valid. When 
ast_sink_valid is not asserted, the FIR processing stops 
until you re-assert the ast_sink_valid signal.
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ast_sink_data Input

(Data width + 
Bank width) × 
the number of 
channel input 
wires 
(PhysChanIn)

where,

Bank width= 
Log2(Number of 
coefficient sets)

Sample input data. For a multichannel operation (number of 
channel input wires > 1), the least significant bits of 
ast_sink_data are mapped to xln_0 of the FIR Compiler II 
filter (refer to Figure 4–5).

For example:

ast_sink_data[7:0] --> xln_0[7:0] 

ast_sink_data[15:8] --> xln_1[7:0]

ast_sink_data[23:16] --> xln_2[7:0]

For multiple coefficient banks, the most significant bits of the 
channel data are mapped to the bank input signal and the 
LSBs of the channel data are mapped to the data input signal.

For example,

Single channel with 4 coefficient banks:

ast_sink_data[9:8] --> BankIn_0

ast_sink_data[7:0] --> xln_0

Multi-channel (4 channels) with 4 coefficient banks:

ast_sink_data[9:8] --> BankIn_0

ast_sink_data[7:0] --> xln_0

ast_sink_data[19:18] --> BankIn_1

ast_sink_data[17:10] --> xln_1

ast_sink_data[29:28] --> BankIn_2

ast_sink_data[27:20] --> xln_2

ast_sink_data[39:38] --> BankIn_3

ast_sink_data[37:30] --> xln_3

ast_sink_sop Input 1 Marks the start of the incoming sample group. The start of 
packet (SOP) is interpreted as a sample from channel 0.

ast_sink_eop Input 1

Marks the end of the incoming sample group. If data is 
associated with N channels, the end of packet (EOP) must be 
driven high when the sample belonging to the last channel 
(that is, channel N-1), is presented at the data input.

ast_sink_error Input 2

Error signal indicating Avalon-ST protocol violations on the 
sink side:

■ 00: No error

■ 01: Missing SOP

■ 10: Missing EOP

■ 11: Unexpected EOP

Other types of errors are also marked as 11.

ast_source_ready Input 1
The downstream module asserts this signal if it is able to 
accept data. This signal is not available when backpressure is 
turned off.

ast_source_valid Output 1 The IP core assserts this signal when there is valid data to 
output.

Table 4–1. FIR Compiler II Signals with Avalon-ST Interface (Part 2 of 3)

Signal Direction Width Description
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ast_source_channel Output
Log2(number of 
channels per 
wire)

Indicates the index of the channel whose result is presented at 
the data output.

ast_source_data Output

Data width × 
number of 
channel output 
wires 
(PhysChanOut)

FIR Compiler II filter output. For a multichannel operation 
(number of channel output wires > 1), the least significant 
bits of ast_source_data are mapped to xOut_0 of the FIR 
Compiler II filter (refer to Figure 4–7).

For example:

xOut_0[7:0] --> ast_source_data[7:0]

xOut_1[7:0] --> ast_source_data[15:8]

xOut_2[7:0]--> ast_source_data[23:16]

ast_source_sop Output 1 Marks the start of the outgoing FIR Compiler II filter result 
group. If '1', a result corresponding to channel 0 is output.

ast_source_eop Output 1
Marks the end of the outgoing FIR Compiler II filter result 
group. If '1', a result corresponding to channels per wire N-1 
is output, where N is the number of channels per wire.

ast_source_error Output 2

Error signal indicating Avalon-ST protocol violations on the 
source side:

■ 00: No error

■ 01: Missing SOP

■ 10: Missing EOP

■ 11: Unexpected EOP

Other types of errors are also marked as 11.

coeff_in_address Input Number of 
coefficients Address input to write new coefficient data.

coeff_in_we Input 1 Write enable for memory-mapped coefficients.

coeff_in_data Input Coefficient width Data coefficient input.

coeff_out_valid Output 1 Coefficient read valid signal.

coeff_out_data Output Coefficient width Data coefficient output. The coefficient in memory at the 
address specified by coeff_in_address. 

Table 4–1. FIR Compiler II Signals with Avalon-ST Interface (Part 3 of 3)

Signal Direction Width Description
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Time-Division Multiplexing
The FIR II compiler optimizes hardware utilization by using time-division 
multiplexing (TDM). The TDM factor (or folding factor) is the ratio of the clock rate to 
the sample rate.

By clocking a FIR Compiler II faster than the sample rate, you can reuse the same 
hardware. For example, by implementing a filter with a TDM factor of 2 and an 
internal clock multiplied by 2, you can halve the required hardware (Figure 4–8).

To achieve TDM, the IP core requires a serializer and deserializer before and after the 
reused hardware block to control the timing. The ratio of system clock frequency to 
sample rate determines the amount of resource saving except for a small amount of 
additional logic for the serializer and deserializer.

Table 4–2 shows the resources for a 49-tap symmetric FIR filter.

When the sample rate equals the clock rate, the filter is symmetric and you only need 
25 multipliers. When you increase the clock rate to twice the sample rate, the number 
of multipliers drops to 13. When the clock rate is set to 4 times the sample rate, the 
number of multipliers drops to 7. If the clock rate stays the same while the new data 
sample rate is only 36 MSPS (million samples per second), the resource consumption 
is the same as twice the sample rate case.

Figure 4–8. Time-Division Multiplexing to Save Hardware Resources

Table 4–2. Estimated Resources Required for a 49-Tap Single Rate FIR Compiler II Filter 

Clock Rate
(MHz)

Sample Rate
(MSPS) Logic Multipliers Memory Bits TDM Factor

72 72 2230 25 0 1

144 72 1701 13 468 2

288 72 1145 7 504 4

72 36 1701 13 468 2

Clock Rate = Sample Rate

Clock Rate = 2 x Sample Rate
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Write
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Multichannel Operation
You can build multichannel systems directly using the required channel count, rather 
than creating a single channel system and scaling it up. The IP core uses vectors of 
wires to scale without having to cut and paste multiple blocks.

You can vectorize the FIR Compiler II. If data going into the block is a vector requiring 
multiple instances of a FIR filter, teh IP core creates multiple FIR blocks in parallel 
behind a single FIR Compiler II block. If a decimating filter requires a smaller vector 
on the output, the data from individual filters is automatically time-division 
multiplexed onto the output vector. This feature relieves the necessity of gluing filters 
together with custom logic.

Vectorized Inputs
The data inputs and outputs for the FIR Compiler II blocks can be vectors. USe this 
capability when the clock rate is insufficiently high to carry the total aggregate data. 
For example, 10 channels at 20 MSPS require 10 × 20 = 200 MSPS aggregate data rate. 
If you set the system clock rate to 100 MHz, two wires are required to carry this data, 
and so the FIR Compiler II uses a vector of width 2. 

This approach is unlike traditional methods because you do not need to manually 
instantiate two FIR filters and pass a single wire to each in parallel. Each FIR 
Compiler II block internally vectorizes itself. For example, a FIR Compiler II block can 
build two FIR filters in parallel and wire one element of the vector up to each FIR. The 
same paradigm is used on outputs, where high data rates on multiple wires are 
represented as vectors.

The input and output wire counts are determined by each FIR Compiler II based on 
the clock rate, sample rate, and number of channels.

The output wire count is also affected by any rate changes in the FIR Compiler II. If 
there is a rate change, such interpolating by two, the output aggregate sample rate 
doubles. The output channels are then packed into the fewest number of wires (vector 
width) that will support that rate. For example, an interpolate by two FIR Compiler II 
filters might have two wires at the input, but three wires at the output.

Any necessary multiplexing and packing is performed by the FIR Compiler II. The 
blocks connected to the inputs and outputs must have the same vector widths. Vector 
width errors can usually be resolved by carefully changing the sample rates.
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Channelization
The number of wires and the number of channels carried on each wire are determined 
by parameterization, which you can specify using the following variables:

■ clockRate is the system clock frequency (MHz).

■ inputRate is the data sample rate per channel (MSPS).

■ inputChannelNum is the number of channels. Channels are enumerated from 0 to 
inputChannelNum–1.

■ The period (or TDM factor) is the ratio of the clock rate to the sample rate and 
determines the number of available time slots.

■ ChanWireCount is the number of channel wires required to carry all the channels. It 
can be calculated by dividing the number of channels by the TDM factor. More 
specifically:

■ PhysChanIn = Number of channel input wires

■ PhysChanOut = Number of channel output wires

■ ChanCycleCount is the number of channels carried per wire. It is calculated by 
dividing the number of channels by the number of channels per wire. The channel 
signal counts from 0 to ChanCycleCount–1. More specifically:

■ ChansPerPhyIn = Number of channels per input wire

■ ChansPerPhyOut = Number of channels per output wire

If the number of channels is greater than the clock period, multiple wires are required. 
Each FIR Compiler II in your design is internally vectorized to build multiple FIR 
filters in parallel.

Figure 4–9 shows how a TDM factor of 3 combines two input channels into a single 
output wire. (inputChannelNum = 2, ChanWireCount = 1, ChanCycleCount = 2).

Figure 4–9. Channelization of Two Channels with a TDM Factor of 3 (1)

Note to Figure 4–9:

(1) In this example, there are three available time slots in the output channel and every third time slot has a ‘don't care’ value when the valid signal is 
low. The value of the channel signal while the valid signal is low does not matter.
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Figure 4–10 shows how a TDM factor of 3 combines four input channels into two 
wires (inputChannelNum = 4, ChanWireCount = 2, ChanCycleCount = 2).

The channel signal is used for synchronization and scheduling of data. It specifies the 
channel data separation per wire. Note that the channel signal counts from 0 to 
ChanCycleCount–1 in synchronization with the data. Thus, for ChanCycleCount = 1, the 
channel signal is the same as the channel count, enumerated from 0 to 
inputChannelNum–1.

For a case with single wire, the channel signal is the same as a channel count. For 
example, Figure 4–11 shows the case for four channels of data on one data wire with 
no invalid cycles.

For ChanWireCount > 1, the channel signal specifies the channel data separation per 
wire, rather than the actual channel number. The channel signal counts from 0 to 
ChanCycleCount–1 rather than 0 to inputChannelNum–1. Figure 4–12 shows the case for 
four channels on two wires with no invalid cycles.

Figure 4–10. Channelization for Four Channels with a TDM Factor of 3 (1)

Note to Figure 4–10:

(1) In this example, two wires are required to carry the four channels and the cycle count is two on each wire. The channels are evenly distributed on 
each wire leaving the third time slot as don't care on each wire.
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Figure 4–11. Four Channels on One Wire
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Notice that the channel signal remains a single wire, not a wire for each data wire. It 
counts from 0 to ChanCycleCount–1. Figure 4–13 shows the case with four channels 
simultaneously on four wires.

Figure 4–13. Four Channels on Four Wires
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Channel Input/Output Format
The FIR Compiler II requires the inputs and the outputs to be in the same format 
when the number of input channel is more than one. The input data to the MegaCore 
must be arranged horizontally according to the channels and vertically according to 
the wires. The outputs should then come out in the same order, counting along 
horizontal row first, vertical column second.

Example—Eight Channels on Three Wires
Figure 4–14 shows the input format for eight channels on three wires.

Figure 4–15 shows the expected output format for eight channels on three wires.

Example—Four Channels on Four Wires
Figure 4–16 shows the input format for four channels on four wires.

Figure 4–14. Eight Channels on Three Wires (Input)

Figure 4–15. Eight Channels on Three Wires (Output)

Figure 4–16. Four Channels on Four Wires (Input)
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Figure 4–17 shows the expected output format for four channels on four wires.

This result appears to be vertical, but that is because the number of cycles is 1, so on 
each wire there is only space for one piece of data.

Figure 4–18 and Figure 4–19 show the input and output format when the clock rate is 
doubled and the sample rate remains the same.

Example—15 Channels with 15 Valid Cycles and 17 Invalid Cycles
Sometimes invalid cycles are inserted between the input data. Consider an example 
where the clock rate = 320, sample rate = 10, which yields a TDM factor of 32, 
inputChannelNum = 15, and interpolation factor is 10. In this case, the TDM factor is 
greater than inputChannelNum. The optimization produces a filter with PhysChanIn = 
1, ChansPerPhyIn = 15, PhysChanOut = 5, and ChansPerPhyOut = 3.

Figure 4–17. Four Channels on Four Wires (Output)

Figure 4–18. Four Channels on Four Wires with Double Clock Rate (Input)

Figure 4–19. Four Channels on Four Wires with Double Clock Rate (Output)

clk

xOut_v

xOut_0

xOut_1

xOut_2

C0

C1

C2

xOut_3 C3

clk

xln_v

xln_0

xln_1

C0 C1

C2 C3

clk

xOut_v

xOut_0

xOut_1

C0 C1

C2 C3
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The input data format in this case is 32 cycles long, which comes from the TDM factor. 
The number of channels is 15, so the filter expects 15 valid cycles together in a block, 
followed by 17 invalid cycles. Refer to Figure 4–20. If the number of invalid cycles is 
less than 17, the output format is incorrect, as shown in Figure 4–21. You can insert 
extra invalid cycles at the end, but they must not interrupt the packets of data after the 
process has started. Refer to Figure 4–22. If the input sample rate is less than the clock 
rate, the pattern is always the same: a repeating cycle, as long as the TDM factor, with 
the number of channels as the number of valid cycles required, and the remainder as 
invalid cycles.

Figure 4–20. Correct Input Format (15 valid cycles, 17 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8

1 0

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

8 16 24 6

32 40 48 24 3

56 64 72 42

80 88 96 60

104 112 120 78

Figure 4–21. Incorrect Input Format (15 valid cycles, 0 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

1 0

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

8 1

32 4

56 6

80 8

104 1
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Example—22 Channels with 11 Valid Cycles and 9 Invalid Cycles
Consider another example where the clock rate = 200, sample rate = 10, which yields a 
TDM factor of 20, inputChannelNum = 22 and interpolation factor is 10. In this case, the 
TDM factor is less than inputChannelNum. The optimization produces a filter with 
PhysChanIn = 2, ChansPerPhyIn = 11, PhysChanOut = 11, and ChansPerPhyOut = 2.

The input format in this case is 20 cycles long, which comes from the TDM factor. The 
number of channels is 22, so the filter expects 11 (ChansPerPhyIn) valid cycles, 
followed by 9 invalid cycles (TDM factor – ChansPerPhyIn = 20 – 11) (refer to 
Figure 4–23). If the number of invalid cycles is less than 17, the output format is 
incorrect, as shown in Figure 4–24. You can insert extra invalid cycles at the end, 
which mean the number of invalid cycles can be greater than 9, but they must not 
interrupt the packets of data after the process has started (Figure 4–25).

Figure 4–22. Correct Input Format (15 valid cycles, 20 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8

1 0

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

8 16 24 6 1

32 40 48 24 3

56 64 72 42 4

80 88 96 60 6

104 112 120 78 8

Figure 4–23. Correct Input Format (11 valid cycles, 9 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xin_1[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

xout_5[17:0]

xout_6[17:0]

xout_7[17:0]

xout_8[17:0]

xout_9[17:0]

xout_10[17:0]

1 0

1 2 3 4 5 6 7 8 9 10 11 4 1 2

12 13 14 15 16 17 18 19 20 21 22 15 12 13

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

8

24

40

56

72

88

104

120

136

152

168
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Figure 4–24. Incorrect Input Format (11 valid cycles, 0 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xin_1[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

xout_5[17:0]

xout_6[17:0]

xout_7[17:0]

xout_8[17:0]

xout_9[17:0]

xout_10[17:0]

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 0 150 186 177

12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 0 206 172 212

0

00 01 00 01 00 01 00 01 00 01 0

Figure 4–25. Correct Input Format (11 valid cycles, 11 invalid cycles)

clk

areset

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xin_1[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

xout_5[17:0]

xout_6[17:0]

xout_7[17:0]

xout_8[17:0]

xout_9[17:0]

xout_10[17:0]

1 0

2 3 4 5 6 7 8 9 10 11 4 1

13 14 15 16 17 18 19 20 21 22 15 12

11 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

8 16

24 32

40 48

56 64

72 80

88 96

104 112

120 128

136 144

152 160

168 176

1

12
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Example—Super Sample Rate
Consider an example of a “super sample rate” filter where the sample rate is greater 
than the clock rate. In this example, clock rate = 100, sample rate = 200, 
inputChannelNum = 1, and single rate. The optimization produces a filter with 
PhysChanIn = 2, ChansPerPhyIn = 1, PhysChanOut = 2, and ChansPerPhyOut = 1.

The input format expected by the FIR filter is shown in Figure 4–26. A0 is the first 
sample of channel A, A1 is the second sample of channel A, and so forth.

If inputChannelNum = 2, then the expected input format is shown in Figure 4–27.

Figure 4–26. Super Sample Rate Filter (clkRate=100, inputRate=200) with inChans=1

clk

xln_v

xln_0

xln_1

xOut_v

xOut_c

xOut_0

xOut_1

A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28

A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29

A0 A2 A4 A6 A8 A10 A12 A14

A1 A3 A5 A7 A9 A11 A13 A15

00

00

Figure 4–27. Super Sample Rate Filter (clkRate=100, inputRate=200) with inChans=2

clk

xln_v

xln_0

xln_1

xOut_v

xOut_c

xOut_0

xOut_1

xOut_2

xOut_3

xln_2

xln_3

A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28

A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29

A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28

A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29

A0 A2 A4 A6 A8 A10 A12 A14

A1 A3 A5 A7 A9 A11 A13 A15

A0 A2 A4 A6 A8 A10 A12 A14

A1 A3 A5 A7 A9 A11 A13 A15

00

00

00

00
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Multiple Coefficient Banks
The FIR Compiler II supports multiple coefficient banks. The FIR filter can switch 
between different coefficient banks dynamically, which enables the filter to switch 
between infinite number of coefficient sets. Therefore, while the filter uses one 
coefficient set, you can update other coefficient sets.You can also set different 
coefficient banks for different channels and use the channel signal to switch between 
coefficient sets.

The IP core uses multiple coefficient banks when you load multiple sets of coefficients 
from a file. Refer to “Loading Coefficients from a File” on page 3–2. Based on the 
number of coefficient banks you specify, the IP core extends the width of the 
ast_sink_data signal to support two additional signals— bank signal (bankIn) and 
input data (xIn) signal. The most significant bits represent the bank signals and the 
least significant bits represent the input data.

Figure 4–28 shows a timing diagram for a single-channel filter with four coefficient 
banks. You can switch the coefficient bank from 0–3 using the bankIn signal when the 
filter runs.

Figure 4–29 shows a timing diagram for a four-channel filter with four coefficient 
banks and each channel has a separate corresponding coefficient set. The bank inputs 
for different channels are driven with their channel number respectively throughout 
the filter operation.

Figure 4–28. Timing Diagram of a Single-Channel Filter with 4 Coefficient Banks

clk

ast_sink_valid

ast_sink_data[9:0]

bankin_0[1:0]

xin_0[7:0]

xout_v[0]

xout_0[21:0]

256 -478 -179 118 408 -259 -159 135 427 -433 -79 122 481 -396 -15 48 429 -262

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

34 77 118 -104 -3 97 -121 -85 79 -79 122 -31 116 -15 48 -83 -6

411 279

0

0

0

0

0

1

Figure 4–29. Timing Diagram of a Four-Channel Filter with 4 Coefficient Banks

clk
ast_sink_valid

ast_sink_data[39:0]
bankin_0[1:0]

xin_0[7:0]
bankin_1[1:0]

xin_1[7:0]
bankin_2[1:0]

xin_2[7:0]
bankin_3[1:0]

xin_3[7:0]
xout_v[0]

xout_0[21:0]
xout_1[21:0]
xout_2[21:0]
xout_3[21:0]

-15... -17... -55... -20... -23... -30... -30... -16... -21... -24... -14... -14... -12... -41... -25... -17... -26...

-41 24 29 -65 -109 34 -15 18 77 -82 25 127 -42 -18 -96 -4 79

52 67 71 -78 -82 -22 55 115 120 -51 -28 -124 -81 -16 67 -104

46 -37 22 29 -102 -125 -12 -10 -21 -48 56 15 32 31 -23 125 -105

109 96 -52 67 33 -29 99 57 29 125 122 -114 -39 21 88 4

-82 -75 7 -12 -261 -1
104 186 157 -4

46 -83 -
109 -13 -1

0
0
0
0

0
0
0

0
0

0 1
0

0
0
0

1

2

3
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Coefficient Reloading
The internal data coefficients are accessed via a memory-mapped interface that 
consists of the input address, write data, write enable, read data, and read valid 
signals. The Avalon Memory-Mapped (Avalon-MM) interfaces function as read/write 
interfaces on the master and slave components in a memory-mapped system. The 
memory-mapped system components include microprocessors, memories, UARTs, 
timers, and a system interconnect fabric that connects the master and slave interfaces. 
The Avalon-MM interfaces describe a wide variety of components, from an SRAM 
that supports simple, fixed -cycle read/write transfers to a complex, pipelined 
interface capable of burst transfers. In Read mode, the memory-mapped coefficients 
are read over a specified address range while in Write mode, the coefficients are 
written over a specified address range. In Read/Write mode, the coefficients can be 
read or written over a specified address range. You can use a separate bus clock for 
this interface. When coefficient reloading option is not enabled, the processor cannot 
access the specified address range, and the coefficient data is not read or written.

Coefficient reloading starts anytime during the filter run time. However, you must 
reload the coefficients only after all the desired output data are obtained to avoid 
unpredictable results. If you are using multiple coefficient banks, you can reload 
coefficient banks that are not used and switch over to the new coefficient set when 
coefficient reloading is completed. You must toggle the coeff_in_areset signal before 
reloading the coefficient with new data. The new coefficient data is read out after 
coefficient reloading to verify whether the coefficient reloading process is successful. 
When the coefficient reloading ends by deasserting the coeff_in_we, the input data is 
inserted immediately to the filter that is reloaded with the new coefficients.

The symmetrical or anti-symmetrical filters have fewer genuine coefficients, use 
fewer registers, and require fewer writes to reload the coefficients. For example, only 
the first 19 addresses must be written for a 37-tap symmetrical filter. When you write 
to all 37 addresses, the last 18 addresses are ignored because they are not part of the 
address space of the filter. Similarly, reading coefficient data from the last 18 addresses 
is also ignored. 

When the FIR uses multiple coefficient banks, it arranges the addresses of all the 
coefficients in consecutive order according to the bank number.
The following example shows a 37-tap symmetrical/anti-symmetrical filter with four 
coefficient banks:

Address 0–18: Bank 0

Address 19–37: Bank 1

Address 38–56: Bank 2

Address 57–75: Bank 3

The following example shows a 37-tap non-symmetrical/anti-symmetrical filter with 
2 coefficient banks:

Address 0–36: Bank 0

Address 37–73: Bank 1

If the coefficient bit width parameter is equal to or less than 16 bits, the width of the 
write data is fixed at 16 bits. If the coefficient bit width parameter is more than 16 bits, 
the width of the write data is fixed at 32 bits.
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Figure 4–30 shows the timing diagram for a coefficient reloading configuration with 
Read/Write mode. There are a total of nine coefficients in this configuration. A write 
cycle of 9 clock cycles are performed to reload the whole coefficient data set shown in 
Figure 4–30. To complete the write cycle, assert the coeff_in_we signal, and provide 
the address (from base address to the max address) together with the new coefficient 
data. Then, load the new coefficient data into the memory corresponding to the 
address of the coefficient. The new coefficient data is read during the write cycle when 
you deassert the coeff_in_we signal. When the coeff_out_valid signal is high, the 
read data is available on coeff_out_data.

Figure 4–31 shows the timing diagram of a coefficient reloading configuration in 
Write mode. In this mode, one coefficient data is reloaded. The new coefficient data 
(123) is loaded into a single address (7).

Figure 4–30. Timing Diagram of Coefficient Reloading in Read or Write mode

clk

coeff_in_areset

coeff_in_address[11:0]

coeff_in_data[15:0]

coeff_in_we[0]

coeff_out_data[15:0]

coeff_out_valid[0]

-1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

-1

0 -26 45

-1

45 -50 7 -121 -32 49 -1 108 124 -1

-25 13 80 127 80 0 -26 0 -50 7 -1 -32 49 -1 108 124 45

Figure 4–31. Timing Diagram of Coefficient Reloading in Write mode

clk

coeff_in_areset

coeff_in_address[11:0]

coeff_in_data[15:0]

coeff_in_we[0]

-1 7

0 123

-1

0
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Figure 4–32 shows the timing diagram of a coefficient reloading configuration in Read 
mode. When the coeff_in_address is 3, the coefficient data at the location is read, the 
coefficient data 80 is available on coeff_out_data when the coeff_out_valid signal is 
high.

Figure 4–33 shows the timing diagram of a filter with multiple coefficient banks and 
writable coefficients. It is a symmetry, 13-tap filter. The coefficients data of bank 1 
(address 7-13) is reloaded while the filter is running on bank 0. When the coefficient 
reloading is completed, bank 1 is used to produce an impulse response of the filter 
and the new coefficient data (-58,18,106…) from bank 1 can be observed on the filter 
output.

Figure 4–32. Timing Diagram of Coefficient Reloading in Read mode

clk

coeff_in_areset

coeff_in_address[11:0]

coeff_out_data[15:0]

coeff_out_valid[0]

-1 3

0 0 80

-1

Figure 4–33. Timing Diagram of Multiple Coefficient Banks 

clk

xin_v[0]

bankin_0[0]

xin_0[7:0]

coeff_in_data[15:0]

coeff_in_address[11:0]

coeff_in_we[0]

xout_v[0]

xout_0[19:0]

51 -14 -48 33 112 125 -10 -71 119 40 -105 -125 -114 0 1 0

-58 18 106 -34 119 112 105 -1

7 8 9 10 11 12 13

342 1530 3636 5490 6400 8064 11 16 20 20 23 28 30 26 16 12 -14 12 -22 -51 -27 -26 -13 5198 6612 0 -58 18 106 119 112 105 112

-1

6

0

-1

-13 -82 -34
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Additional Information

This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

Date Version Changes

August 2014
14.0 

Arria 10 
Edition

■ Added support for Arria 10 devices.

■ Added Arria 10 generated files description.

■ Removed table with generated file descriptions.

June 2014 14.0

■ Corrected TDM timing diagram TDM_output_data signal.

■ Removed device support for Cyclone III and Stratix III devices

■ Added support for MAX 10 FPGAs.

■ Added instructions for using IP Catalog

November 2013 13.1

■ Corrected coefficient file description.

■ Removed device support for following devices:

■ HardCopy II, HardCopy III, HardCopy IV E, HardCopy IV GX

■ Stratix, Stratix GX, Stratix II, Stratix II GX

■ Cyclone, Cyclone II

■ Arria GX 

May 2013 13.0 Updated interpolation and decimation factor ranges.

November 2012 12.1 Added support for Arria V GZ devices.

February 2012 11.1 Added a new parameter.

November 2011 11.1 Updated Chapter 1, About This IP Core with new resource utilization information for Stratix V 
and Cyclone III.

May 2011 11.0
■ Updated Chapter 1, About This IP Core with new resource utilization information for 

Stratix V.

■ Updated Chapter 3, Parameters.

December 2010 10.1
■ Updated Chapter 3, Parameters and Chapter 4, Functional Description to include new 

output options and multiple coefficient bands.

■ Updated Chapter 1, About This IP Core with new resource utilization information.

July 2010 10.0 Updated Chapter 3, Parameters and Chapter 4, Functional Description with backpressure 
and coefficient reloading features.

January 2010 9.1 SP1 Initial release.
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How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the 
following table.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative. 
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Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital 
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. For GUI elements, capitalization matches 
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name 
extensions, software utility names, and GUI labels. For example, \qdesigns 
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the 
Options menu. 

“Subheading Title” Quotation marks indicate references to sections in a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1, 
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it 
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. 

Also indicates sections of an actual file, such as a Report File, references to parts of 
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI). 

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important, 
such as the steps listed in a procedure. 

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important. 

1 The hand points to information that requires special attention. 

h The question mark directs you to a software help system with related information. 

f The feet direct you to another document or website with related information. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you 
injury.

The envelope links to the Email Subscription Management Center page of the Altera 
website, where you can sign up to receive update notifications for Altera documents.
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