
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-01072-9.2

User Guide

FIR Compiler II

Document last updated for Altera Complete Design Suite version:
Document publication date:

14.1 Arria 10 Edition
August 2014

Feedback Subscribe

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

August 2014 Altera Corporation FIR Compiler II
User Guide

ISO
9001:2008
Registered

August 2014 Altera Corporation FIR Compiler II
User Guide

Contents

Chapter 1. About This IP Core
Features . 1–2
Device Family Support . 1–2
MegaCore Verification . 1–3
Performance and Resource Utilization . 1–4
Release Information . 1–9

Chapter 2. Getting Started
Installing and Licensing IP Cores . 2–1

OpenCore Plus Evaluation . 2–1
Open Core Plus Time-Out Behavior . 2–1

Customizing and Generating IP Cores . 2–2
Files Generated for Altera IP Cores . 2–3
Simulating IP Cores . 2–3
Simulating Your FIR II Compiler Design . 2–4

Simulating in the ModelSim-Altera Software . 2–4
Simulating in MATLAB . 2–4
Simulating in Third-Party Simulation Tools Using NativeLink . 2–4

Including Other IP Libraries and Files . 2–5
Upgrading Outdated IP Cores . 2–6

Upgrading IP Cores at the Command Line . 2–7
DSP Builder Design Flow . 2–8

Chapter 3. Parameters
Filter Specification Parameters . 3–1

Loading Coefficients from a File . 3–2
Input and Output Options Page . 3–3

Signed Fractional Binary . 3–4
MSB and LSB Truncation, Saturation, and Rounding . 3–4

Implementation Options . 3–5
Memory and Multiplier Trade-Offs . 3–6

Chapter 4. Functional Description
Interfaces . 4–1

Avalon-ST Sink and Source Interfaces . 4–2
Avalon-ST Sink Interface . 4–2

Avalon-ST Source Interface . 4–5
Clock and Reset Interfaces . 4–6
Signals . 4–6

Time-Division Multiplexing . 4–9
Multichannel Operation . 4–10

Vectorized Inputs . 4–10
Channelization . 4–11
Channel Input/Output Format . 4–14

Example—Eight Channels on Three Wires . 4–14
Example—Four Channels on Four Wires . 4–14
Example—15 Channels with 15 Valid Cycles and 17 Invalid Cycles . 4–15
Example—22 Channels with 11 Valid Cycles and 9 Invalid Cycles . 4–17

iv Contents

FIR Compiler II August 2014 Altera Corporation
User Guide

Example—Super Sample Rate . 4–19
Multiple Coefficient Banks . 4–20
Coefficient Reloading . 4–21

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–2
Typographic Conventions . Info–3

August 2014 Altera Corporation FIR Compiler II
User Guide

1. About This IP Core

This document describes the Altera® FIR Compiler II intellectual property (IP) core.
The FIR Compiler II provides a fully-integrated finite impulse response (FIR) filter
function optimized for use with Altera FPGA devices. The FIR Compiler II has an
interactive parameter editor that allows you to easily create custom FIR filters. The
parameter editor outputs IP functional simulation model files for use with Verilog
HDL and VHDL simulators.

You can use the parameter editor to implement a variety of filter types, including
single rate, decimation, interpolation, and fractional rate filters.

Many digital systems use signal filtering to remove unwanted noise, to provide
spectral shaping, or to perform signal detection or analysis. FIR filters and infinite
impulse response (IIR) filters provide these functions. Typical filter applications
include signal preconditioning, band selection, and low-pass filtering.

Figure 1–1 shows a weighted, tapped delay line, FIR filter .

To design a filter, identify coefficients that match the frequency response you specify
for the system. These coefficients determine the response of the filter. You can change
which signal frequencies pass through the filter by changing the coefficient values in
the parameter editor.

Figure 1–1. Basic FIR Filter

xin

yout

Z -1 Z -1 Z -1 Z -1 Tapped
Delay Line

Coefficient
Multipliers

Adder Tree

C01

C02

C11

C12

C21

C22

C31

C32
Coefficient
Banks

1–2 Chapter 1: About This IP Core
Features

FIR Compiler II August 2014 Altera Corporation
User Guide

Features
The Altera FIR Compiler II implements a finite impulse response (FIR) filter and
supports the following features:

■ Exploiting maximal designs efficiency through hardware optimizations such as:

■ Interpolation

■ Decimation

■ Symmetry

■ Decimation half-band

■ Time sharing

■ Easy system integration using Avalon® Streaming (Avalon-ST) interfaces.

■ Memory and multiplier trade-offs to balance the implementation between logic
elements (LEs) and memory blocks (M512, M4K, M9K, M10K, M20K, or M144K).

■ Support for run-time coefficient reloading capability and multiple coefficient
banks.

■ User-selectable output precision via truncation, saturation, and rounding.

Device Family Support
Altera offers the following device support levels for Altera IP cores:

■ Preliminary support—Altera verifies the IP core with preliminary timing models
for this device family. The IP core meets all functional requirements, but might still
be undergoing timing analysis for the device family. You can use it in production
designs with caution.

■ Final support—Altera verifies the IP core with final timing models for this device
family. The IP core meets all functional and timing requirements for the device
family and can be used in production designs.

Chapter 1: About This IP Core 1–3
MegaCore Verification

August 2014 Altera Corporation FIR Compiler II
User Guide

Table 1–1 lists the level of support for the FIR Compiler II for each Altera device
family.

MegaCore Verification
Before releasing a version of the FIR Compiler II, Altera runs comprehensive
regression tests to verify its quality and correctness. Altera generates custom
variations of the FIR Compiler II to exercise its various parameter options. Altera
simulates the resulting simulation models and verifies the results against master
simulation models.

Table 1–1. Device Family Support

Device Family Support

Arria® II GX Final

Arria II GZ Final

Arria V Final

Arria V GZ Final

Arria 10 Preliminary

Cyclone® IV GX/E Final

Cyclone V Final

MAX® 10 Preliminary

Stratix® IV Final

Stratix IV GT Final

Stratix IV GX Final

Stratix V Final

Other device families No support

1–4 Chapter 1: About This IP Core
Performance and Resource Utilization

FIR Compiler II August 2014 Altera Corporation
User Guide

Performance and Resource Utilization
Table 1–2 through Table 1–4 show typical expected performance for a FIR II IP Core
using the Quartus II software with Arria V (5AGXFB3H4F40C4), Cyclone V
(5CGXFC7D6F31C6), and Stratix V (5SGSMD4H2F35C2) devices:

Table 1–2. FIR II IP Core Performance—Arria V Devices

Parameters
ALM DSP

Blocks

Memory Registers fMAX
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

8 2 Decimation — 1,607 24 0 — 1,232 64 308

8 2 Decimation Write 2,120 24 0 — 1,298 141 308

8 2 Fractional
Rate — 1,395 16 0 — 2,074 99 281

8 2 Fractional
Rate Write 1,745 16 0 — 2,171 91 282

8 2 Fractional
Rate — 1,493 16 0 — 2,167 117 280

8 2 Fractional
Rate Write 1,852 16 0 — 2,287 116 270

8 2 Interpolation — 1,841 32 0 — 2,429 52 282

8 2 Interpolation Write 1,994 32 0 — 2,826 41 278

8 2 Interpolation Multiple
banks 2,001 32 0 — 2,737 74 279

8 2 Interpolation Multiple
banks; Write 2,700 32 0 — 2,972 130 282

8 2 Single rate — 932 20 0 — 318 20 278

8 2 Single rate Write 1,057 20 0 — 713 3 279

8 1 Decimation — 329 3 1 — 321 33 301

8 1 Decimation Write 430 3 1 — 366 34 307

8 1 Decimation Multiple
banks 395 3 3 — 483 44 310

8 1 Decimation Multiple
banks; Write 510 3 3 — 472 40 291

8 1 Fractional
Rate — 661 5 4 — 877 75 310

8 1 Fractional
Rate Write 788 5 4 — 936 98 309

8 1 Interpolation — 381 5 0 — 442 32 278

8 1 Interpolation Write 514 5 0 — 540 27 278

8 1 Single Rate — 493 10 0 — 191 20 278

8 1 Single Rate Write 633 10 0 — 588 1 278

1 — Decimation — 220 3 0 — 158 27 310

1 super
sample — Decimation — 404 20 0 — 400 41 305

Chapter 1: About This IP Core 1–5
Performance and Resource Utilization

August 2014 Altera Corporation FIR Compiler II
User Guide

1 super
sample — Decimation Write 505 20 0 — 785 35 308

1 — Decimation Write 318 3 0 — 208 26 309

1 Half Band — Decimation — 234 3 0 — 192 34 308

1 Half Band — Decimation Write 320 3 0 — 232 27 309

1 — Fractional
Rate — 297 3 0 — 504 57 310

1 — Fractional
Rate Write 391 3 0 — 563 56 310

1 Half Band — Fractional
Rate — 196 2 0 — 251 5 277

1 Half Band — Fractional
Rate Write 266 2 0 — 301 15 280

1 — Interpolation — 266 5 0 — 290 30 278

1 super
sample — Interpolation — 717 32 0 — 903 45 308

1 super
sample — Interpolation Write 842 32 0 — 1,281 48 308

1 — Interpolation Write 405 5 0 — 380 15 278

1 Half Band — Interpolation — 254 3 0 — 293 8 310

1 Half Band — Interpolation Write 333 4 0 — 314 10 309

1 — Single rate — 93 10 0 — 129 27 299

1 super
sample — Single rate — 262 20 0 — 307 41 309

1 super
sample — Single rate Write 373 20 0 — 687 40 302

1 — Single rate Write 228 10 0 — 519 16 300

1 Half Band — Single rate — 189 5 0 — 254 63 309

1 Half Band — Single rate Write 272 5 0 — 496 29 310

1 — Single rate Multiple
banks 109 10 0 — 199 29 283

1 — Single rate Multiple
banks; Write 395 10 0 — 361 19 282

Table 1–2. FIR II IP Core Performance—Arria V Devices

Parameters
ALM DSP

Blocks

Memory Registers fMAX
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

1–6 Chapter 1: About This IP Core
Performance and Resource Utilization

FIR Compiler II August 2014 Altera Corporation
User Guide

Table 1–3. FIR II IP Core Performance—Cyclone V Devices

Parameters
ALM DSP

Blocks

Memory Registers fMAX
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

8 2 Decimation — 1,607 24 0 — 1,231 46 273

8 2 Decimation Write 2,092 24 0 — 1,352 63 273

8 2 Fractional
Rate — 1,852 16 0 — 3,551 309 254

8 2 Fractional
Rate Write 2,203 16 0 — 3,675 269 255

8 2 Fractional
Rate — 1,951 16 0 — 3,543 421 227

8 2 Fractional
Rate Write 2,301 16 0 — 3,601 476 250

8 2 Interpolation — 1,840 32 0 — 2,431 48 255

8 2 Interpolation Write 1,988 32 0 — 2,813 57 252

8 2 Interpolation Multiple
banks 2,006 32 0 — 2,711 98 253

8 2 Interpolation Multiple
banks; Write 2,704 32 0 — 2,990 100 250

8 2 Single rate — 934 20 0 — 317 19 252

8 2 Single rate Write 1,053 20 0 — 704 12 251

8 1 Decimation — 474 3 1 — 541 50 275

8 1 Decimation Write 559 3 1 — 574 58 273

8 1 Decimation Multiple
banks 544 3 3 — 691 83 275

8 1 Decimation Multiple
banks; Write 636 3 3 — 677 82 275

8 1 Fractional
Rate — 1,165 5 4 — 1,715 205 275

8 1 Fractional
Rate Write 1,287 5 4 — 1,770 198 275

8 1 Interpolation — 381 5 0 — 433 42 248

8 1 Interpolation Write 513 5 0 — 540 26 250

8 1 Single Rate — 493 10 0 — 191 18 249

8 1 Single Rate Write 624 10 0 — 563 26 251

1 — Decimation — 219 3 0 — 159 23 289

1 super
sample — Decimation — 404 20 0 — 398 43 288

1 super
sample — Decimation Write 503 20 0 — 774 46 256

1 — Decimation Write 312 3 0 — 208 26 289

1 Half Band — Decimation — 234 3 0 — 192 29 289

1 Half Band — Decimation Write 323 3 0 — 228 32 288

Chapter 1: About This IP Core 1–7
Performance and Resource Utilization

August 2014 Altera Corporation FIR Compiler II
User Guide

1 — Fractional
Rate — 422 3 0 — 723 94 310

1 — Fractional
Rate Write 516 3 0 — 787 86 292

1 Half Band — Fractional
Rate — 195 2 0 — 251 12 261

1 Half Band — Fractional
Rate Write 267 2 0 — 299 15 252

1 — Interpolation — 262 5 0 — 296 25 252

1 super
sample — Interpolation — 708 32 0 — 914 34 272

1 super
sample — Interpolation Write 841 32 0 — 1,297 32 259

1 — Interpolation Write 400 5 0 — 382 12 258

1 Half Band — Interpolation — 288 3 0 — 456 13 290

1 Half Band — Interpolation Write 331 4 0 — 315 9 290

1 — Single rate — 87 10 0 — 142 14 253

1 super
sample — Single rate — 258 20 0 — 315 33 260

1 super
sample — Single rate Write 369 20 0 — 704 23 274

1 — Single rate Write 227 10 0 — 535 0 251

1 Half Band — Single rate — 187 5 0 — 273 44 288

1 Half Band — Single rate Write 274 5 0 — 506 19 275

1 — Single rate Multiple
banks 110 10 0 — 187 41 255

1 — Single rate Multiple
banks; Write 375 10 0 — 349 32 255

Table 1–3. FIR II IP Core Performance—Cyclone V Devices

Parameters
ALM DSP

Blocks

Memory Registers fMAX
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

Table 1–4. FIR II IP Core Performance—Stratix V Devices

Parameters
ALM DSP

Blocks

Memory Registers fMAX
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

8 2 Decimation — 1,609 24 — 0 1,231 60 450

8 2 Decimation Write 2,319 24 — 0 2,077 66 450

8 2 Fractional
Rate — 1,350 16 — 0 2,099 88 448

8 2 Fractional
Rate Write 1,771 16 — 0 2,291 78 450

1–8 Chapter 1: About This IP Core
Performance and Resource Utilization

FIR Compiler II August 2014 Altera Corporation
User Guide

8 2 Fractional
Rate — 1,457 16 — 0 2,213 88 444

8 2 Fractional
Rate Write 1,873 16 — 0 2,418 89 450

8 2 Interpolation — 1,777 32 — 0 2,303 15 444

8 2 Interpolation Write 2,081 32 — 0 3,009 26 450

8 2 Interpolation Multiple
banks 1,825 32 — 0 2,473 39 430

8 2 Interpolation Multiple
banks; Write 2,652 32 — 0 2,842 236 424

8 2 Single rate — 920 20 — 0 332 2 444

8 2 Single rate Write 1,359 20 — 0 1,323 1 450

8 1 Decimation — 340 3 — 0 324 25 450

8 1 Decimation Write 463 3 — 0 457 29 450

8 1 Decimation Multiple
banks 466 3 — 0 569 42 450

8 1 Decimation Multiple
banks; Write 577 3 — 0 567 41 450

8 1 Fractional
Rate — 709 5 — 0 870 45 450

8 1 Fractional
Rate Write 852 5 — 0 991 65 450

8 1 Interpolation — 216 5 — 0 197 13 450

8 1 Interpolation Write 361 5 — 0 290 22 450

8 1 Single Rate — 483 10 — 0 212 4 447

8 1 Single Rate Write 783 10 — 0 894 4 450

1 — Decimation — 215 3 — 0 175 10 450

1 super
sample — Decimation — 547 20 — 0 1,167 88 450

1 super
sample — Decimation Write 989 20 — 0 2,214 105 450

1 — Decimation Write 331 3 — 0 310 7 450

1 Half Band — Decimation — 226 3 — 0 206 16 450

1 Half Band — Decimation Write 343 3 — 0 327 18 450

1 — Fractional
Rate — 252 3 — 0 318 21 445

1 — Fractional
Rate Write 353 3 — 0 380 13 450

1 Half Band — Fractional
Rate — 140 2 — 0 185 13 450

1 Half Band — Fractional
Rate Write 214 2 — 0 235 21 450

Table 1–4. FIR II IP Core Performance—Stratix V Devices

Parameters
ALM DSP

Blocks

Memory Registers fMAX
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

Chapter 1: About This IP Core 1–9
Release Information

August 2014 Altera Corporation FIR Compiler II
User Guide

Release Information
Table 1–5 provides information about this release of the Altera FIR Compiler II.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each IP core. The MegaCore IP Library Release Notes and Errata
report any exceptions to this verification. Altera does not verify compilation with IP
core versions older than one release.

1 — Interpolation — 168 5 — 0 127 19 450

1 super
sample — Interpolation — 573 32 — 0 1,084 51 446

1 super
sample — Interpolation Write 870 32 — 0 1,774 136 450

1 — Interpolation Write 313 5 — 0 196 5 450

1 Half Band — Interpolation — 253 3 — 0 292 9 450

1 Half Band — Interpolation Write 370 4 — 0 418 9 450

1 — Single rate — 226 10 — 0 706 31 447

1 _ssample — Single rate — 468 20 — 0 1,354 53 450

1 _ssample — Single rate Write 927 20 — 0 2,267 203 450

1 — Single rate Write 524 10 — 0 1,391 31 500

1 Half Band — Single rate — 195 5 — 0 270 50 450

1 Half Band — Single rate Write 351 5 — 0 645 28 450

1 — Single rate Multiple
banks 250 10 — 0 716 93 449

1 — Single rate Multiple
banks; Write 671 10 — 0 1,228 50 450

Table 1–4. FIR II IP Core Performance—Stratix V Devices

Parameters
ALM DSP

Blocks

Memory Registers fMAX
(MHz)Channel Wires Filter Type Coefficients M10K M20K Primary Secondary

Table 1–5. FIR Compiler II Release Information

Item Description

Version 13.1

Release Date November 2013

Ordering Code IP-FIRII
IPR-FIRII (renewal)

Product ID 00D8

Vendor ID 6AF7

1–10 Chapter 1: About This IP Core
Release Information

FIR Compiler II August 2014 Altera Corporation
User Guide

August 2014 Altera Corporation FIR Compiler II
User Guide

2. Getting Started

Installing and Licensing IP Cores
The Quartus II software includes the Altera IP Library. The library provides many
useful IP core functions for production use without additional license. You can fully
evaluate any licensed Altera IP core in simulation and in hardware until you are
satisfied with its functionality and performance.

Some Altera IP cores, such as MegaCore® functions, require that you purchase a
separate license for production use. After you purchase a license, visit the Self Service
Licensing Center to obtain a license number for any Altera product. For additional
information, refer to Altera Software Installation and Licensing.

1 The default installation directory on Windows is <drive>:\altera\<version number>;
on Linux it is <home directory>/altera/<version number>.

OpenCore Plus Evaluation
The Altera IP library contains both free and individually licenced IP cores. With the
Altera free OpenCore Plus evaluation feature, you can evaluate separately licenced IP
cores in the following ways prior to purchasing a production license:

■ Simulate the behavior of an Altera IP core in your system using the Quartus II
software and Altera-supported VHDL and Verilog HDL simulators.

■ Verify the functionality of your design and evaluate its size and speed quickly and
easily.

■ Generate device programming files for designs that include IP cores. These files
are time-limited under the OpenCore Plus evaluation program.

■ Program a device and verify your design in hardware.

Open Core Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following two operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If all
Altera IP cores in a design support tethered mode, the device can operate for a
longer time or indefinitely.

Figure 2–1. IP core Installation Path

acds

quartus - Contains the Quartus II software

ip - Contains the Altera IP Library and third-party IP cores

altera - Contains the Altera IP Library source code

<IP core name> - Contains the IP core source files

2–2 Chapter 2: Getting Started
Customizing and Generating IP Cores

FIR Compiler II August 2014 Altera Corporation
User Guide

All IP cores in a device time out simultaneously when the most restrictive evaluation
time is reached. If there is more than one IP core in a design, a specific IP core's
time-out behavior may be masked by the time-out behavior of the other IP cores.

1 For IP cores, the untethered time-out is 1 hour; the tethered time-out value
is indefinite.

Your design stops working after the hardware evaluation time expires.

1 The Quartus II software uses OpenCore Plus Files (.ocp) in your project
directory to identify your use of the OpenCore Plus evaluation program.
After you activate the feature, do not delete these files.

f For information about the OpenCore Plus evaluation program, refer to
AN320: OpenCore Plus Evaluation of Megafunctions.

Customizing and Generating IP Cores
You can customize IP cores to support a wide variety of applications. The Quartus II
IP Catalog displays IP cores available for the current target device. The parameter
editor guides you to set parameter values for optional ports, features, and output files.

To customize and generate a custom IP core variation, follow these steps:

1. In the IP Catalog (Tools > IP Catalog), locate and double-click the name of the IP
core to customize. The parameter editor appears.

2. Specify a top-level name for your custom IP variation. This name identifies the IP
core variation files in your project. If prompted, also specify the target Altera
device family and output file HDL preference. Click OK.

3. Specify the desired parameters, output, and options for your IP core variation:

■ Optionally select preset parameter values. Presets specify all initial parameter
values for specific applications (where provided).

■ Specify parameters defining the IP core functionality, port configuration, and
device-specific features.

■ Specify options for generation of a timing netlist, simulation model, testbench,
or example design (where applicable).

■ Specify options for processing the IP core files in other EDA tools.

4. Click Finish or Generate to generate synthesis and other optional files matching
your IP variation specifications. The parameter editor generates the top-level .qip
or .qsys IP variation file and HDL files for synthesis and simulation. Some IP cores
also simultaneously generate a testbench or example design for hardware testing.

5. To generate a simulation testbench, click Generate > Generate Testbench System.
Generate > Generate Testbench System is not available for some IP cores.

6. To generate a top-level HDL design example for hardware verification, click
Generate > HDL Example. Generate > HDL Example is not available for some IP
cores.

Chapter 2: Getting Started 2–3
Files Generated for Altera IP Cores

August 2014 Altera Corporation FIR Compiler II
User Guide

When you generate the IP variation with a Quartus II project open, the parameter
editor automatically adds the IP variation to the project. Alternatively, click Project >
Add/Remove Files in Project to manually add a top-level .qip or .qsys IP variation
file to a Quartus II project. To fully integrate the IP into the design, make appropriate
pin assignments to connect ports. You can define a virtual pin to avoid making
specific pin assignments to top-level signals.

Files Generated for Altera IP Cores
The Quartus II software version 14.0 Arria 10 Edition and later generates the
following output file structure for Altera IP cores:

Simulating IP Cores
The Quartus II software supports RTL- and gate-level design simulation of Altera IP
cores in supported EDA simulators. Simulation involves setting up your simulator
working environment, compiling simulation model libraries, and running your
simulation.

Figure 2–2. IP Core Generated Files

<Project Directory>

<your_testbench>_tb.csv
<your_testbench>_tb.spd

sim - IP core simulation files

<your_testbench>_tb - Simulation testbench files

<your_testbench>_tb

<your_ip> - IP core variation files
<your_ip>.cmp - VHDL component declaration file

<your_ip>.ppf - XML I/O pin information file
<your_ip>.qip - Lists IP synthesis files
<your_ip>.sip - Lists files for simulation

synth - IP synthesis files
<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files 1

<your_ip>.v or .vhd - Top-level simulation file
<EDA_tool_name> - Simulator setup scripts

<simulator_setup_scripts>

<IP subcore library> - IP subcore files

<HDL files>

sim

<your_ip>.qsys - System or IP integration file

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file
<your_ip>_inst.v or .vhd - Sample instantiation template

<your_ip>_generation.rpt - IP generation report
<your_ip>.debuginfo - IP generation report
<your_ip>.html - Contains memory map
<your_ip>.bsf - Block symbol schematic
<your_ip>.spd - Combines individual simulation startup scripts 1

<your_ip>_tb.qsys - Testbench system file

1

<your_ip>.sopcinfo - Software tool-chain integration file

1. If supported and enabled for your IP variation

2–4 Chapter 2: Getting Started
Simulating Your FIR II Compiler Design

FIR Compiler II August 2014 Altera Corporation
User Guide

You can use the functional simulation model and the testbench or example design
generated with your IP core for simulation. The functional simulation model and
testbench files are generated in a project subdirectory. This directory may also include
scripts to compile and run the testbench. For a complete list of models or libraries
required to simulate your IP core, refer to the scripts generated with the testbench.
You can use the Quartus II NativeLink feature to automatically generate simulation
files and scripts. NativeLink launches your preferred simulator from within the
Quartus II software.

For more information about simulating Altera IP cores, refer to Simulating Altera
Designs in volume 3 of the Quartus II Handbook.

Simulating Your FIR II Compiler Design
The FIR Compiler II MegaCore function generates a number of output files for design
simulation. After you have created a custom FIR filter, you can simulate your design
in the ModelSim®-Altera software, MATLAB, or another third-party simulation tool.

Simulating in the ModelSim-Altera Software
Use the Tcl script (<variation name>_msim.tcl) to load the VHDL testbench into the
ModelSim-Altera software.

This script uses the file <variation name>_input.txt to provide input data to the FIR
filter. The output from the simulation is stored in a file <variation name>_output.txt.

Simulating in MATLAB
To simulate in a MATLAB environment, run the <variation_name>_model.m
testbench m-file, which also is located in your design directory. This script also uses
the file <variation name>_input.txt to provide input data. The output from the
MATLAB simulation is stored in the file <variation name>_model_output.txt.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the
Quartus II software, using NativeLink.

The Tcl script file <variation name>_nativelink.tcl can be used to assign default
NativeLink testbench settings to the Quartus II project.

To perform a simulation in the Quartus II software using NativeLink, perform the
following steps:

1. Create a custom MegaCore function variation as described earlier in this chapter
but ensure you specify a variation name that exactly matches the Quartus II
project name.

2. Verify that the absolute path to your third-party EDA tool is set in the Options
page under the Tools menu in the Quartus II software.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. In the Tcl Scripts dialog box, select
<variation name>_nativelink.tcl and click Run. A message indicates that the Tcl
script is successfully loaded.

Chapter 2: Getting Started 2–5
Including Other IP Libraries and Files

August 2014 Altera Corporation FIR Compiler II
User Guide

5. On the Assignments menu, click Settings, expand EDA Tool Settings, and select
Simulation. Select a simulator under Tool name then in NativeLink Settings,
select Compile test bench and click Test Benches.

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL
Simulation.

The Quartus II software selects the simulator, and compiles the Altera libraries,
design files, and testbenches. The testbench runs and the waveform window
shows the design signals for analysis.

f For more information, refer to the Simulating Altera IP in Third-Party Simulation Tools
chapter in volume 3 of the Quartus II Handbook.

1 IP functional simulation models output correct data only when data storage is clear.
When data storage is not clear, functional simulation models will output non-relevant
data. The number of clock cycles it takes before relevant samples are available is N;
where N = (number of channels) × (number of coefficients) × (number of clock cycles
to calculate an output).

Including Other IP Libraries and Files
The Quartus II software searches for IP cores in the project directory, in the Altera
installation directory, and in the defined IP search path. You can include IP libraries
and files from other locations by modifying the IP search path. To use the GUI to
modify the global or project-specific search path, click Tools > Options > IP Search
Locations and specify the path to your IP.

As an alternative to the GUI, use the following SEARCH_PATH assignment to include
one or more project libraries. Specify only one source directory for each SEARCH_PATH
assignment.

Figure 2–3. Specifying IP Search Locations

Adds new global IP search paths

Changes search path order

Adds new project-specific IP search paths

Lists current project and global search paths

2–6 Chapter 2: Getting Started
Upgrading Outdated IP Cores

FIR Compiler II August 2014 Altera Corporation
User Guide

set_global_assignment -name SEARCH_PATH <library or file path>

If your project includes two IP core files of the same name, the following search path
precedence rules determine the resolution of files:

1. Project directory files.

2. Project database directory files.

3. Project libraries specified in IP Search Locations, or with the SEARCH_PATH
assignment in the Quartus II Settings File (.qsf).

4. Global libraries specified in IP Search Locations, or with the SEARCH_PATH
assignment in the Quartus II Settings File (.qsf).

5. Quartus II software libraries directory, such as <Quartus II Installation>\libraries.

Upgrading Outdated IP Cores
IP cores generated with a previous version of the Quartus II software may require
upgrade before use in the current version of the Quartus II software. Click Project >
Upgrade IP Components to identify and upgrade outdated IP cores.

The Upgrade IP Components dialog box provides instructions when IP upgrade is
required, optional, or unsupported for specific IP cores in your design. Most Altera IP
cores support one-click, automatic simultaneous upgrade. You can individually
migrate IP cores unsupported by auto-upgrade.

The Upgrade IP Components dialog box also reports legacy Altera IP cores that
support compilation-only (without modification), as well as IP cores that do not
support migration. Replace unsupported IP cores in your project with an equivalent
Altera IP core or design logic.Upgrading IP cores changes your original design files.

Before you begin

■ Migrate your Quartus II project containing outdated IP cores to the latest version
of the Quartus II software. In a previous version of the Quartus II software, click
Project > Archive Project to save the project. This archive preserves your original
design source and project files after migration. le paths in the archive must be
relative to the project directory. File paths in the archive must reference the IP
variation .v or .vhd file or .qsys file, not the .qip file.

■ Restore the project in the latest version of the Quartus II software. Click Project >
Restore Archived Project. Click Ok if prompted to change to a supported device
or overwrite the project database.

To upgrade outdated IP cores, follow these steps:

1. In the latest version of the Quartus II software, open the Quartus II project
containing an outdated IP core variation.

1 File paths in a restored project archive must be relative to the project
directory and you must reference the IP variation .v or .vhd file or .qsys file,
not the .qip file.

Chapter 2: Getting Started 2–7
Upgrading Outdated IP Cores

August 2014 Altera Corporation FIR Compiler II
User Guide

2. Click Project > Upgrade IP Components. The Upgrade IP Components dialog
box displays all outdated IP cores in your project, along with basic instructions for
upgrading each core.

3. To simultaneously upgrade all IP cores that support automatic upgrade, click
Perform Automatic Upgrade. The IP cores upgrade to the latest version. The
Status and Version columns reflect the update.

Upgrading IP Cores at the Command Line
Alternatively, you can upgrade IP cores at the command line. To upgrade a single IP
core, type the following command:

quartus_sh --ip_upgrade -variation_files <my_ip_path> <project>

To upgrade a list of IP cores, type the following command:

quartus_sh --ip_upgrade -variation_files
"<my_ip>.qsys;<my_ip>.<hdl>; <project>"

1 IP cores older than Quartus II software version 12.0 do not support upgrade. Altera
verifies that the current version of the Quartus II software compiles the previous
version of each IP core. The MegaCore IP Library Release Notes reports any verification
exceptions for MegaCore IP. The Quartus II Software and Device Support Release Notes
reports any verification exceptions for other IP cores. Altera does not verify
compilation for IP cores older than the previous two releases.

Figure 2–4. Upgrading IP Cores

Displays upgrade
status for all IP cores
in the Project

Upgrades all IP core that support “Auto Upgrade”
Upgrades individual IP cores unsupported by “Auto Upgrade”

Checked IP cores
support “Auto Upgrade”

Successful
“Auto Upgrade”

Upgrade
unavailable

Double-click to
individually migrate

2–8 Chapter 2: Getting Started
DSP Builder Design Flow

FIR Compiler II August 2014 Altera Corporation
User Guide

DSP Builder Design Flow
DSP Builder shortens digital signal processing (DSP) design cycles by helping you
create the hardware representation of a DSP design in an algorithm-friendly
development environment.

This IP core supports DSP Builder. Use the DSP Builder flow if you want to create a
DSP Builder model that includes an IP core variation; use IP Catalog if you want to
create an IP core variation that you can instantiate manually in your design.

f For more information about the DSP Builder flow, refer to the Using MegaCore
Functions chapter in the DSP Builder Handbook.

August 2014 Altera Corporation FIR Compiler II
User Guide

3. Parameters

This chapter describes the FIR Compiler II parameters.

For information about using the parameter editor, refer to “Customizing and
Generating IP Cores” on page 2–2.

The Parameters contains the following three pages:

■ Filter Specification Parameters

■ Input and Output Options Page

■ Implementation Options

Filter Specification Parameters
A FIR filter is defined by its coefficients. The FIR Compiler II provides the following
options for obtaining coefficients:

■ Specify the filter settings and coefficient options in the parameter editor. The FIR
Compiler II provides a default 37-tap coefficient set regardless of the
configurations from filter settings. The scaled value and fixed point value are
recalculated based on the coefficient bit width setting. The higher the coefficient
bit width, the closer the fixed frequency response is to the intended original
frequency response with the expense of higher resource usage.

■ Load the coefficients from a file. For example, you can create the coefficients in
another application such as MATLAB or a user-created program, save the
coefficients to a file, and import them into the FIR Compiler II. For more
information, refer to “Loading Coefficients from a File” on page 3–2.

Table 3–1 lists the filter specification parameters.

Table 3–1. Filter Specification Parameters (Part 1 of 2)

Parameter Value Description

Filter Settings

Filter Type

Single Rate

Decimation

Interpolation

Fractional Rate

Specifies the type of FIR filter. The default value is Single
Rate.

Interpolation Factor 1 to 128 Specifies the number of extra points to generate between
the original samples. The default value is 1.

Decimation Factor 1 to 128 Specifies the number of data points to remove between the
original samples. The default value is 1.

L-th Band Filter

All taps

Half band

3rd–5th

Specifies the appropriate L-band Nyquist filters. Every Lth
coefficient of these filters is zero, counting out from the
center tap. The default value is All taps.

Number of Channels 1–128 Specifies the number of unique input channels to process.
The default is 1.

3–2 Chapter 3: Parameters
Filter Specification Parameters

FIR Compiler II August 2014 Altera Corporation
User Guide

Loading Coefficients from a File
To load a coefficient set from a file, perform the following steps:

1. In the File Path box, specify the name of the .txt file containing the coefficient set.

■ In the .txt file, separate the coefficients file by either white space or commas or
both.

■ Use new lines to separate banks.

■ You may use blank lines as the FIR Compiler II ignores them.

■ You may use floating-point or fixed-point numbers, and scientific notation.

■ Use a # character to add comments.

■ Specify an array of coefficient sets to support multiple coefficient sets.

■ Specify the number of rows to specify the number of banks.

■ All coefficient sets must have the same symmetry type and number of taps. For
example:
bank 1 and 2 are symmetric
1, 2, 3, 2, 1
1 3 4 3 1

Coefficient Options

Coefficient Scaling
Auto

None

Specifies the coefficient scaling mode. Select Auto to apply
a scaling factor in which the maximum coefficient value
equals the maximum possible value for a given number of
bits. Select None to read in pre-scaled integer values for
the coefficients and disable scaling.

Coefficient Data Type
Signed Binary

Signed Fractional Binary

Specifies the coefficient input data type. Select Signed
Fractional Binary to monitor which bits are preserved and
which bits are removed during the filtering process.

Coefficient Bit Width 2–32 Specifies the width of the coefficients. The default value is
8 bits.

Coefficient Fractional Bit
Width 0–32

Specifies the width of the coefficient data input into the
filter when you select Signed Fractional Binary as your
coefficient data type.

Frequency Response Display

Show Coeffificient Bank 0–Number of coefficient bank -1 Specifies the coefficient bank to display in the coefficient
table and frequency response graph.

File Path

File Path URL Specifes the file from which to load coefficients. Refer to
“Loading Coefficients from a File”.

Table 3–1. Filter Specification Parameters (Part 2 of 2)

Parameter Value Description

Chapter 3: Parameters 3–3
Input and Output Options Page

August 2014 Altera Corporation FIR Compiler II
User Guide

bank 3 is anti-symmetric
1 2 0 -2 -1

bank 4 is asymmetric
1,2,3,4,5

1 The file must have a minimum of five non-zero coefficients.

2. In the Filter Specification tab of the parameter editor, click Apply to import the
coefficient set.

When you import a coefficient set, the frequency response of the floating-point
coefficients is displayed in blue and the frequency response of the fixed-point
coefficients is displayed in red.

The FIR Compiler II supports scaling on the coefficient set.

Input and Output Options Page
Table 3–2 lists the parameter options.

Table 3–2. Input and Output Options

Parameter Value Description

Input Options

Input Data Type
Signed Binary

Signed Fractional Binary

Specifies whether the input data is in a signed binary or a
signed fractional binary format. Select Signed Fractional
Binary to monitor which bits the IP core preserves and
which bits it removes during the filtering process.

Input Bit Width 1–32 Specifies the width of the input data sent to the filter. The
default value is 8 bits.

Input Fractional Bit Width 0–32
Specifies the width of the data input into the filter when you
select Signed Fractional Binary as your input data type.
The default value is 0 bits.

Output Options

Output Data Type
Signed Binary

Signed Fractional Binary

Specifies whether the output data is in a signed binary or a
signed fractional binary format. Select Signed Fractional
Binary to monitor which bits the IP core preserves and
which bits it removes during the filtering process.

Output Bit Width 0–32 Specifies the width of the output data (with limited
precision) from the filter.

Output Fractional Bit Width 0–32
Specifies the width of the output data (with limited
precision) from the filter when you select Signed
Fractional Binary as your output data.

Output MSB rounding Truncation/ Saturating Specifies whether to truncate or saturate the most
significant bit (MSB).

MSB Bits to Remove 0–32
Specifies the number of MSB bits to truncate or saturate.
The value must not be greater than its corresponding
integer bits or fractional bits.

3–4 Chapter 3: Parameters
Input and Output Options Page

FIR Compiler II August 2014 Altera Corporation
User Guide

Signed Fractional Binary
The FIR Compiler II supports two’s complement, signed fractional binary notation,
which allows you to monitor which bits the IP core preserves and which bits it
removes during filtering. A signed binary fractional number has the format:

<sign> <integer bits>.<fractional bits>

A signed binary fractional number is interpreted as shown below:

<sign> <x1 integer bits>.<y1 fractional bits> Original input data

<sign> <x2 integer bits>.<y2 fractional bits> Original coefficient data

<sign> <i integer bits>.<y1 + y2 fractional bits> Full precision after FIR calculation

<sign> <x3 integer bits>.<y3 fractional bits> Output data after limiting precision

where i = ceil(log2(number of coefficients)) + x1 + x2

For example, if the number has 3 fractional bits and 4 integer bits plus a sign bit, the
entire 8-bit integer number is divided by 8, which gives a number with a binary
fractional component.

The total number of bits equals to the sign bits + integer bits + fractional bits. The sign
+ integer bits is equal to Input Bit Width – Input Fractional Bit Width with a
constraint that at least 1 bit must be specified for the sign.

MSB and LSB Truncation, Saturation, and Rounding
The output options on the parameter editor allow you to truncate or saturate the MSB
and to truncate or round the LSB. Saturation, truncation, and rounding are non-linear
operations.

Table 3–1 lists the options for limiting the precision of your filter.

Output LSB rounding Truncation/ Rounding Specifies whether to truncate or round the least significant
bit (LSB).

LSB Bits to Remove 0–32
Specifies the number of LSB bits to truncate or round. The
value must not be greater than its corresponding integer
bits or fractional bits.

Table 3–2. Input and Output Options

Parameter Value Description

Table 3–1. Options for Limiting Precision

Bit Range Option Result

MSB Truncate In truncation, the filter disregards specified bits. (Figure 3–1).

Saturate In saturation, if the filtered output is greater than the maximum positive
or negative value that can be represented, the output is forced (or
saturated) to the maximum positive or negative value.

LSB Truncate Same process as for MSB.

Round The output is rounded away from zero.

Chapter 3: Parameters 3–5
Implementation Options

August 2014 Altera Corporation FIR Compiler II
User Guide

Figure 3–1 shows an example of removing bits from the MSB and LSB.

Implementation Options
Table 3–3 lists the implementation options.

Figure 3–1. Removing Bits from the MSB and LSB

D15
D14
D13
D12
D11
D10
D9
D8
.
.
D0

D9
D8
.
.
D0

Bits Removed from MSB

Full
Precision

Limited
Precision

D15
D14
.
.
.
.
D4
D3
D2
D1
D0

D11
D10
.
.
.
D1
D0

Bits Removed from LSB

Full
Precision

Limited
Precision

D15
D14
D13
D12
.
.
.
D3
D2
D1
D0

D10
D9
.
.
.
D1
D0

Bits Removed from both MSB & LSB

Full
Precision

Limited
Precision

Table 3–3. Implementation Options (Part 1 of 2)

Parameter Value Description

Frequency Specification

Clock Frequency (MHz) 1–500 Specifies the frequency of the input clock. The default value is
100 MHz.

Clock Slack Integer
Enables you to control the amount of pipelining independently
of the clock frequency and therefore independently of the clock
to sample rate ratio. The default value is 0.

Input Sample Rate (MSPS) Integer Specifies the sample rate of the incoming data. The default is
100.

Speed Grade

Fast

Medium

Slow

Specifies the speed grade of the target device to balance the
size of the hardware against the resources required to meet the
clock frequency. The default value is Medium.

Symmetry Option

Symmetry Mode

Non Symmetry

Symmetrical

Anti-Symmetrical

Specifies whether your filter design uses non-symmetric,
symmetric, or anti-symmetric coefficients. The default value is
Non Symmetry.

Coefficients Reload Options

Coefficients Reload —

Turn on this option to allow coefficient reloading. This option
allows you to change coefficient values during run time. When
this option is turned on, additional input ports are added to the
filter.

Base Address Integer Specifies the base address of the memory-mapped
coefficients.

Read/Write mode

Read

Write

Read/Write

Specifies the read and write mode that determines the type of
address decode to build.

3–6 Chapter 3: Parameters
Implementation Options

FIR Compiler II August 2014 Altera Corporation
User Guide

Memory and Multiplier Trade-Offs
When the quartus II software synthesizes your design to logic, it often creates delay
blocks. The FIR Compiler II tries to balance the implementation between logic
elements (LEs) and memory blocks (M512, M4K, M9K, or M144K). The exact trade-off
depends on the target FPGA family, but generally the trade-off attempts to minimize
the absolute silicon area used. For example, if a block of RAM occupies the silicon area
of two logic array blocks (LABs), a delay requiring more than 20 LEs (two LABs) is
implemented as a block of RAM. However, you want to influence this trade-off.

These topics describe the memory and multiplier threshold trade-offs, and provide
some usage examples.

Using LEs / Small RAM Block Threshold

This threshold is the trade-off between simple delay LEs and small ROM blocks. If
any delay’s size is such that the number of LEs is greater than this parameter, the IP
core implements delay as block RAM. The default value is 20 bits.

1. To make more delays using block RAM, enter a lower number, such as a value in
the range of 20–30.

2. To use fewer block memories, enter a larger number, such as 100.

3. To never use block memory for simple delays, enter a very large number, such as
10000.

4. Implement delays of less than three cycles in LEs because of block RAM behavior.

Flow Control

Back Pressure Support —

Turn on this option to enable backpressure support. When this
option is turned on, the sink signals the source to stop the flow
of data when its FIFO buffers are full or when there is
congestion on its output port.

Resource Optimization Settings

Device Family Menu of supported devices Specifies the target device family.

LEs / Small RAM Block
Threshold Integer

Specifies the balance of resources between LEs/Small RAM
block threshold in bits. The default value is 20. For more
information, refer to “Memory and Multiplier Trade-Offs” on
page 3–6.

Small / Medium RAM
Block Threshold Integer

Specifies the balance of resources between small to medium
RAM block threshold in bits.The default value is 1280. For
more information, refer to “Memory and Multiplier Trade-Offs”
on page 3–6.

Medium / Large RAM
Block Threshold Integer

Specifies the balance of resources between medium to large
RAM block threshold in bits. The default value is 1000000. For
more information, refer to “Memory and Multiplier Trade-Offs”
on page 3–6.

LEs / DSP Block Multiplier
Threshold Integer

Specifies the balance of resources between LEs/ DSP block
multiplier threshold in bits. The default value is -1. For more
information, refer to “Memory and Multiplier Trade-Offs” on
page 3–6.

Table 3–3. Implementation Options (Part 2 of 2)

Parameter Value Description

Chapter 3: Parameters 3–7
Implementation Options

August 2014 Altera Corporation FIR Compiler II
User Guide

1 This threshold only applies to implementing simple delays in memory blocks or logic
elements. You cannot push dual memories back into logic elements.

Using Small / Medium RAM Block Threshold

This threshold is trade-off between small and medium RAM blocks. This threshold is
similar to the Using LEs / Small RAM Block Threshold except that it applies only to
the dual-port memories.

The IP core implements any dual-port memory in a block memory rather than logic
elements, but for some device families different sizes of block memory may be
available. The threshold value determines which medium-size RAM memory blocks
IP core implements instead of small-memory RAM blocks. For example, the threshold
that determines whether to use M9K blocks rather than MLAB blocks on Stratix IV
devices.

The default value is 1,290 bits.

1. Set the default threshold value, to implement dual memories greater than 1,280
bits as M9K blocks and dual memories less than or equal to 1,280 bits as MLABs.

2. Change this threshold to a lower value such as 200, to implement dual memories
greater than 200 bits as M9K blocks and dual memories less than or equal to 200
bits as MLAB blocks.

1 For device families with only one type of memory block, this threshold has no effect.

Using Medium / Large RAM Block Threshold

This threshold is the trade-off between medium and large RAM blocks. For larger
delays, implement memory in medium-block RAM (M4K, M9K) or use larger M-
RAM blocks (M512K, M144K).

The default value is 1,000,000 bits.

1. Set the number of bits in a memory or delay greater than this threshold, to use M-
RAM.

2. Set a large value such as the default of 1,000,000 bits, to never uses M-RAM blocks.

Using the LEs / DSP Block Multiplier Threshold

This threshold is the trade-off between hard and soft multipliers. For devices that
support hard multipliers or DSP blocks, use these resources instead of a soft
multiplier made from LEs. For example, a 2-bit × 10-bit multiplier consumes very few
LEs. The hard multiplier threshold value corresponds to the number of LEs that save a
multiplier. If the hard multiplier threshold value is 100, you are allowing 100 LEs.
Therefore, an 18 × 18 multiplier (that requires approximately 182–350 LEs) is not
transferred to LEs because it requires more LEs than the threshold value. However,
the IP core implements a 16 × 4 multiplier that requires approximately 64 LEs as a soft
multiplier with this setting.

1. Set the default to always use hard multipliers. With this value, IP core implements
a 24 × 18 multiplier as two 18 × 18 multipliers.

3–8 Chapter 3: Parameters
Implementation Options

FIR Compiler II August 2014 Altera Corporation
User Guide

2. Set a value of approximately 300 to keep 18 × 18 multipliers hard, but transform
smaller multipliers to LEs. The IP core implements a 24 × 18 multiplier as a 6 × 18
multiplier and an 18 × 18 multiplier, so this setting builds the hybrid multipliers
that you require.

3. Set a value of approximately 1,000 to implement the multipliers entirely as LEs.
Essentially you are allowing a high number (1000) of LEs to save using an 18 × 18
multiplier.

4. Set a value of approximately 10 to implement a 24 × 16 multiplier as a 36 × 36
multiplier. With the value, you are not even allowing the adder to combine two
multipliers. Therefore, the system has to burn a 36 × 36 multiplier in a single DSP
block.

August 2014 Altera Corporation FIR Compiler II
User Guide

4. Functional Description

Figure 4–1 shows a high-level block diagram of the FIR Compiler II with the
Avalon-ST interface. The FIR Compiler II generates the Avalon-ST register transfer
level (RTL) wrapper.

Interfaces
The FIR Compiler II includes the following interfaces:

■ Avalon Streaming (Avalon-ST) source and sink interfaces

■ Clock and reset interfaces

The IP core also consists of an interface controller for the Avalon-ST wrapper that
handles the flow control mechanism. The control signals between the sink interface,
FIR filter, and source interface are communicated via the controller.

Figure 4–1. High Level Block Diagram of FIR Compiler II with Avalon-ST Interface

FIR
Filter

xln_v

bankln_0[]

xln_(n-1)[]

xOut_v

xOut_c

xOut_0[]

xOut_(m-1)[]

ast_sink_valid

ast_sink_data[]

ast_sink_sop

ast_sink_eop

ast_sink_error

ast_source_valid

ast_source_data[]

ast_source_sop

ast_source_eop

ast_source_error

ast_source_channel

Controller

ast_sink_ready ast_source_ready

FIR Compiler II MegaCore Function

Sink Source

control signals control signals

control signals

xln_0[]

bankln_(n-1)[]

4–2 Chapter 4: Functional Description
Interfaces

FIR Compiler II August 2014 Altera Corporation
User Guide

Avalon-ST Sink and Source Interfaces
The sink and source interfaces implement the Avalon-ST protocol, which is a
unidirectional flow of data. The number of bits per symbol represents the data width
and the number of symbols per beat is the number of channel wires. The IP core
symbol type supports signed and unsigned binary format. The ready latency on the
FIR Compiler II is 0.

When designing a datapath that includes the FIR Compiler II, you might not need
backpressure if you know the downstream components can always receive data. You
might achieve a higher clock rate by driving the ast_source_ready signal of the FIR
Compiler II high, and not connecting the ast_sink_ready signal.

f For more information about the Avalon-ST interface properties, protocol and the data
transfer timing, refer to the Avalon Interface Specifications.

Avalon-ST Sink Interface
The sink interface can handle single or multiple channels on a single wire and
multiple channels on multiple wires.

Single Channel on Single Wire

Figure 4–2 shows the connection between the sink interface and the FIR Compiler II
when transferring a single channel of 8-bit data.

Figure 4–2. Single Channel on Single Wire (Sink -> FIR Compiler II)

FIR Filter

xln_v

xln_0[7:0]
ast_sink_valid

ast_sink_data[7:0]

Controller

ast_sink_ready

FIR Compiler II MegaCore Function

Sink

sink_ready

control signals

Chapter 4: Functional Description 4–3
Interfaces

August 2014 Altera Corporation FIR Compiler II
User Guide

Multiple Channels on Single Wire

Figure 4–3 shows the connection between the sink interface and the FIR Compiler II
when transferring a packet of data over multiple channels on a single wire. The data
width of each channel is 8 bits.

Multiple Channels on Multiple Wires

Figure 4–4 and Figure 4–5 show the connection between the sink interface and the FIR
Compiler II when transferring a packet of data over multiple channels on multiple
wires. The data width of each channel is 8 bits. Consider a case when the number of
channels = 6, clock rate = 200 MHz, and sample rate = 100 MHz.

Figure 4–3. Multiple Channels on Single Wire (Sink -> FIR Compiler II)

FIR Filter

xln_v

xln_0[7:0]
ast_sink_valid

ast_sink_data[7:0]

Controller

ast_sink_ready

FIR Compiler II MegaCore Function

Sink

sink_ready

control signals

ast_sink_eop

ast_sink_sop

ast_sink_error

packet error

Avalon
Streaming
Interface

Signals Check

4–4 Chapter 4: Functional Description
Interfaces

FIR Compiler II August 2014 Altera Corporation
User Guide

In this example, hardware optimization produces a TDM factor of 2, number of
channel wires = 3, and channels per wire = 2.

Figure 4–4. Multiple Channels on Multiple Wires

FIR Filter

xln_v

xln_0[7:0]

ast_sink_valid

ast_sink_data[23:0]

Controller

ast_sink_ready

FIR Compiler II MegaCore Function

Sink

xln_1[7:0]

xln_2[7:0]

control signals

ast_sink_eop

ast_sink_sop

ast_sink_error

sink_ready

packet error

Avalon
Streaming
Interface

Signals Check

Figure 4–5. Timing Diagram of Multiple Channels on Multiple Wires

clk

ast_sink_valid

ast_sink_data[7:0]

ast_sink_data[15:8]

ast_sink_data[23:16]

ast_sink_sop

ast_sink_eop

xln_v[7:0]

xln_0[7:0]

xln_1[7:0]

xln_2[7:0]

A0 B0 A1 B1 A2 B2

C0 D0 C1 D1 C2 D2

E0 F0 E1 F1 E2 F2

A0 B0 A1 B1 A2 B2

C0 D0 C1 D1 C2 D2

E0 F0 E1 F1 E2 F2

X

X

X

Chapter 4: Functional Description 4–5
Interfaces

August 2014 Altera Corporation FIR Compiler II
User Guide

Avalon-ST Source Interface
The source interface can handle single or multiple channels on a single wire and
multiple channels on multiple wires. The IP core includes an Avalon-ST FIFO in the
source wrapper when the backpressure support is turned on. The Avalon-ST FIFO
controls the backpressure mechanism and catches the extra cycles of data from the FIR
Compiler II after backpressure. On the input side of the FIR Compiler II, driving the
enable_i signal low, causes the FIR Compiler II to stop. From the output side,
backpressure drives the enable_i signal of the FIR Compiler II. If the downstream
module can accept data again, the FIR Compiler II is instantly re-enabled.

When the packet size is greater than one (multichannel), the source interface expects
your application to supply the count of data starting from 1 to the packet size. When
the source interface receives the valid flag together with the data_count = 1, it starts
sending out data by driving both the ast_source_sop and ast_source_valid signals
high. When data_count equals the packet size, the ast_source_eop signal is driven
high together with the ast_source_valid signal.

If the downstream components are not ready to accept any data, the source interface
drives the source_stall signal high to tell the design to stall.

Figure 4–6 and Figure 4–7 show the connection between the FIR Compiler II and the
source interface when transferring a packet of data over multiple channels on
multiple wires.

Figure 4–6. Multiple Channels on Multiple Wires

FIR Filter

xOut_v

xOut_c

xOut_0[7:0]

ast_source_valid

ast_source_data

ast_source_sop

ast_source_eop

ast_source_error

ast_source_channel

Controller

ast_source_ready

FIR Compiler II MegaCore Function

Source

enable_i

xOut_1[7:0]

xOut_2[7:0]

source_stall

source_valid

Avalon
Streaming
SCFIFO

(Only available
when

backpressure
is turned on)

4–6 Chapter 4: Functional Description
Interfaces

FIR Compiler II August 2014 Altera Corporation
User Guide

Clock and Reset Interfaces
The clock and reset interfaces drive or receive the clock and reset signals to
synchronize the Avalon-ST interfaces and provide reset connectivity.

Signals
Table 4–1 lists the input and output signals for the FIR Compiler II with the Avalon-ST
interface.

Figure 4–7. Timing Diagram of Multiple Channels on Multiple Wires

clk

xOut_v

xOut_c[7:0]

xOut_0[7:0]

xOut_1[7:0]

xOut_2[7:0]

ast_source_valid

ast_source_data[7:0]

ast_source_data[15:8]

ast_source_data[23:16]

ast_source_sop

ast_source_eop

ast_source_channel

ast_source_error

A0 B0 A1 B1 A2 B2

C0 D0 C1 D1 C2 D2

E0 F0 E1 F1 E2 F2

0 1 0 1 0 1

A0 B0 A1 B1 A2 B2

C0 D0 C1 D1 C2 D2

E0 F0 E1 F1 E2 F2

0 1 0 1 0 1

X

X

X

X

00

Table 4–1. FIR Compiler II Signals with Avalon-ST Interface (Part 1 of 3)

Signal Direction Width Description

clk Input 1 Clock signal for all internal FIR Compiler II filter registers.

reset_n Input 1 Asynchronous active low reset signal. Resets the FIR
Compiler II filter control circuit on the rising edge of clk.

coeff_in_clk Input 1 Clock signal for the coefficient reloading mechanism. This
clock can have a lower rate than the system clock.

coeff_in_areset Input 1 Asynchronous active high reset signal for the coefficient
reloading mechanism.

ast_sink_ready Output 1
FIR filter asserts this signal when can accept data in the
current clock cycle. This signal is not available when
backpressure is turned off.

ast_sink_valid Input 1
Assert this signal when the input data is valid. When
ast_sink_valid is not asserted, the FIR processing stops
until you re-assert the ast_sink_valid signal.

Chapter 4: Functional Description 4–7
Interfaces

August 2014 Altera Corporation FIR Compiler II
User Guide

ast_sink_data Input

(Data width +
Bank width) ×
the number of
channel input
wires
(PhysChanIn)

where,

Bank width=
Log2(Number of
coefficient sets)

Sample input data. For a multichannel operation (number of
channel input wires > 1), the least significant bits of
ast_sink_data are mapped to xln_0 of the FIR Compiler II
filter (refer to Figure 4–5).

For example:

ast_sink_data[7:0] --> xln_0[7:0]

ast_sink_data[15:8] --> xln_1[7:0]

ast_sink_data[23:16] --> xln_2[7:0]

For multiple coefficient banks, the most significant bits of the
channel data are mapped to the bank input signal and the
LSBs of the channel data are mapped to the data input signal.

For example,

Single channel with 4 coefficient banks:

ast_sink_data[9:8] --> BankIn_0

ast_sink_data[7:0] --> xln_0

Multi-channel (4 channels) with 4 coefficient banks:

ast_sink_data[9:8] --> BankIn_0

ast_sink_data[7:0] --> xln_0

ast_sink_data[19:18] --> BankIn_1

ast_sink_data[17:10] --> xln_1

ast_sink_data[29:28] --> BankIn_2

ast_sink_data[27:20] --> xln_2

ast_sink_data[39:38] --> BankIn_3

ast_sink_data[37:30] --> xln_3

ast_sink_sop Input 1 Marks the start of the incoming sample group. The start of
packet (SOP) is interpreted as a sample from channel 0.

ast_sink_eop Input 1

Marks the end of the incoming sample group. If data is
associated with N channels, the end of packet (EOP) must be
driven high when the sample belonging to the last channel
(that is, channel N-1), is presented at the data input.

ast_sink_error Input 2

Error signal indicating Avalon-ST protocol violations on the
sink side:

■ 00: No error

■ 01: Missing SOP

■ 10: Missing EOP

■ 11: Unexpected EOP

Other types of errors are also marked as 11.

ast_source_ready Input 1
The downstream module asserts this signal if it is able to
accept data. This signal is not available when backpressure is
turned off.

ast_source_valid Output 1 The IP core assserts this signal when there is valid data to
output.

Table 4–1. FIR Compiler II Signals with Avalon-ST Interface (Part 2 of 3)

Signal Direction Width Description

4–8 Chapter 4: Functional Description
Interfaces

FIR Compiler II August 2014 Altera Corporation
User Guide

ast_source_channel Output
Log2(number of
channels per
wire)

Indicates the index of the channel whose result is presented at
the data output.

ast_source_data Output

Data width ×
number of
channel output
wires
(PhysChanOut)

FIR Compiler II filter output. For a multichannel operation
(number of channel output wires > 1), the least significant
bits of ast_source_data are mapped to xOut_0 of the FIR
Compiler II filter (refer to Figure 4–7).

For example:

xOut_0[7:0] --> ast_source_data[7:0]

xOut_1[7:0] --> ast_source_data[15:8]

xOut_2[7:0]--> ast_source_data[23:16]

ast_source_sop Output 1 Marks the start of the outgoing FIR Compiler II filter result
group. If '1', a result corresponding to channel 0 is output.

ast_source_eop Output 1
Marks the end of the outgoing FIR Compiler II filter result
group. If '1', a result corresponding to channels per wire N-1
is output, where N is the number of channels per wire.

ast_source_error Output 2

Error signal indicating Avalon-ST protocol violations on the
source side:

■ 00: No error

■ 01: Missing SOP

■ 10: Missing EOP

■ 11: Unexpected EOP

Other types of errors are also marked as 11.

coeff_in_address Input Number of
coefficients Address input to write new coefficient data.

coeff_in_we Input 1 Write enable for memory-mapped coefficients.

coeff_in_data Input Coefficient width Data coefficient input.

coeff_out_valid Output 1 Coefficient read valid signal.

coeff_out_data Output Coefficient width Data coefficient output. The coefficient in memory at the
address specified by coeff_in_address.

Table 4–1. FIR Compiler II Signals with Avalon-ST Interface (Part 3 of 3)

Signal Direction Width Description

Chapter 4: Functional Description 4–9
Time-Division Multiplexing

August 2014 Altera Corporation FIR Compiler II
User Guide

Time-Division Multiplexing
The FIR II compiler optimizes hardware utilization by using time-division
multiplexing (TDM). The TDM factor (or folding factor) is the ratio of the clock rate to
the sample rate.

By clocking a FIR Compiler II faster than the sample rate, you can reuse the same
hardware. For example, by implementing a filter with a TDM factor of 2 and an
internal clock multiplied by 2, you can halve the required hardware (Figure 4–8).

To achieve TDM, the IP core requires a serializer and deserializer before and after the
reused hardware block to control the timing. The ratio of system clock frequency to
sample rate determines the amount of resource saving except for a small amount of
additional logic for the serializer and deserializer.

Table 4–2 shows the resources for a 49-tap symmetric FIR filter.

When the sample rate equals the clock rate, the filter is symmetric and you only need
25 multipliers. When you increase the clock rate to twice the sample rate, the number
of multipliers drops to 13. When the clock rate is set to 4 times the sample rate, the
number of multipliers drops to 7. If the clock rate stays the same while the new data
sample rate is only 36 MSPS (million samples per second), the resource consumption
is the same as twice the sample rate case.

Figure 4–8. Time-Division Multiplexing to Save Hardware Resources

Table 4–2. Estimated Resources Required for a 49-Tap Single Rate FIR Compiler II Filter

Clock Rate
(MHz)

Sample Rate
(MSPS) Logic Multipliers Memory Bits TDM Factor

72 72 2230 25 0 1

144 72 1701 13 468 2

288 72 1145 7 504 4

72 36 1701 13 468 2

Clock Rate = Sample Rate

Clock Rate = 2 x Sample Rate

Read

Read

Write

WriteSerialize Deserialize

4–10 Chapter 4: Functional Description
Multichannel Operation

FIR Compiler II August 2014 Altera Corporation
User Guide

Multichannel Operation
You can build multichannel systems directly using the required channel count, rather
than creating a single channel system and scaling it up. The IP core uses vectors of
wires to scale without having to cut and paste multiple blocks.

You can vectorize the FIR Compiler II. If data going into the block is a vector requiring
multiple instances of a FIR filter, teh IP core creates multiple FIR blocks in parallel
behind a single FIR Compiler II block. If a decimating filter requires a smaller vector
on the output, the data from individual filters is automatically time-division
multiplexed onto the output vector. This feature relieves the necessity of gluing filters
together with custom logic.

Vectorized Inputs
The data inputs and outputs for the FIR Compiler II blocks can be vectors. USe this
capability when the clock rate is insufficiently high to carry the total aggregate data.
For example, 10 channels at 20 MSPS require 10 × 20 = 200 MSPS aggregate data rate.
If you set the system clock rate to 100 MHz, two wires are required to carry this data,
and so the FIR Compiler II uses a vector of width 2.

This approach is unlike traditional methods because you do not need to manually
instantiate two FIR filters and pass a single wire to each in parallel. Each FIR
Compiler II block internally vectorizes itself. For example, a FIR Compiler II block can
build two FIR filters in parallel and wire one element of the vector up to each FIR. The
same paradigm is used on outputs, where high data rates on multiple wires are
represented as vectors.

The input and output wire counts are determined by each FIR Compiler II based on
the clock rate, sample rate, and number of channels.

The output wire count is also affected by any rate changes in the FIR Compiler II. If
there is a rate change, such interpolating by two, the output aggregate sample rate
doubles. The output channels are then packed into the fewest number of wires (vector
width) that will support that rate. For example, an interpolate by two FIR Compiler II
filters might have two wires at the input, but three wires at the output.

Any necessary multiplexing and packing is performed by the FIR Compiler II. The
blocks connected to the inputs and outputs must have the same vector widths. Vector
width errors can usually be resolved by carefully changing the sample rates.

Chapter 4: Functional Description 4–11
Multichannel Operation

August 2014 Altera Corporation FIR Compiler II
User Guide

Channelization
The number of wires and the number of channels carried on each wire are determined
by parameterization, which you can specify using the following variables:

■ clockRate is the system clock frequency (MHz).

■ inputRate is the data sample rate per channel (MSPS).

■ inputChannelNum is the number of channels. Channels are enumerated from 0 to
inputChannelNum–1.

■ The period (or TDM factor) is the ratio of the clock rate to the sample rate and
determines the number of available time slots.

■ ChanWireCount is the number of channel wires required to carry all the channels. It
can be calculated by dividing the number of channels by the TDM factor. More
specifically:

■ PhysChanIn = Number of channel input wires

■ PhysChanOut = Number of channel output wires

■ ChanCycleCount is the number of channels carried per wire. It is calculated by
dividing the number of channels by the number of channels per wire. The channel
signal counts from 0 to ChanCycleCount–1. More specifically:

■ ChansPerPhyIn = Number of channels per input wire

■ ChansPerPhyOut = Number of channels per output wire

If the number of channels is greater than the clock period, multiple wires are required.
Each FIR Compiler II in your design is internally vectorized to build multiple FIR
filters in parallel.

Figure 4–9 shows how a TDM factor of 3 combines two input channels into a single
output wire. (inputChannelNum = 2, ChanWireCount = 1, ChanCycleCount = 2).

Figure 4–9. Channelization of Two Channels with a TDM Factor of 3 (1)

Note to Figure 4–9:

(1) In this example, there are three available time slots in the output channel and every third time slot has a ‘don't care’ value when the valid signal is
low. The value of the channel signal while the valid signal is low does not matter.

clock

input_valid

input_data_channel_0

input_data_channel_1

input_channel

output_valid

TDM_output_data

output_channel

c0(0) c0(1) c0(2)

c1(0) c1(1) c1(2)

c0(0) c1(0) don’t care c0(1) c1(1) don’t care c0(2) c1(2)

4–12 Chapter 4: Functional Description
Multichannel Operation

FIR Compiler II August 2014 Altera Corporation
User Guide

Figure 4–10 shows how a TDM factor of 3 combines four input channels into two
wires (inputChannelNum = 4, ChanWireCount = 2, ChanCycleCount = 2).

The channel signal is used for synchronization and scheduling of data. It specifies the
channel data separation per wire. Note that the channel signal counts from 0 to
ChanCycleCount–1 in synchronization with the data. Thus, for ChanCycleCount = 1, the
channel signal is the same as the channel count, enumerated from 0 to
inputChannelNum–1.

For a case with single wire, the channel signal is the same as a channel count. For
example, Figure 4–11 shows the case for four channels of data on one data wire with
no invalid cycles.

For ChanWireCount > 1, the channel signal specifies the channel data separation per
wire, rather than the actual channel number. The channel signal counts from 0 to
ChanCycleCount–1 rather than 0 to inputChannelNum–1. Figure 4–12 shows the case for
four channels on two wires with no invalid cycles.

Figure 4–10. Channelization for Four Channels with a TDM Factor of 3 (1)

Note to Figure 4–10:

(1) In this example, two wires are required to carry the four channels and the cycle count is two on each wire. The channels are evenly distributed on
each wire leaving the third time slot as don't care on each wire.

clock

input_valid

input_data_channel_0

input_data_channel_1

input_data_channel_2

input_data_channel_3

input_channel

output_valid

output_data_wire_1

output_data_wire_2

output_channel

c0(0) c0(1) c0(2)

c1(0) c1(1) c1(2)

c2(0) c2(1) c2(2)

c3(0) c3(1) c3(2)

c0(0) c0(1) c0(2)c1(0) c1(1) c1(2)

c2(0) c2(1) c2(2)c3(0) c3(1) c3(2)

don’t care

don’t care

don’t care

don’t care

Figure 4–11. Four Channels on One Wire

valid

channel

data0

0 1 2 3 0 1 2 3

c0(0) c1(0) c2(0) c3(0) c0(1) c1(1) c2(1) c3(1)

Figure 4–12. Four Channels on Two Wires

valid

channel

data0

data1

0 1 0 1 0 1 0 1

c0(0) c1(0) c0(1) c1(1) c0(2) c1(2) c0(3) c1(3)

c2(0) c3(0) c2(1) c3(1) c2(2) c3(2) c2(3) c2(3)

Chapter 4: Functional Description 4–13
Multichannel Operation

August 2014 Altera Corporation FIR Compiler II
User Guide

Notice that the channel signal remains a single wire, not a wire for each data wire. It
counts from 0 to ChanCycleCount–1. Figure 4–13 shows the case with four channels
simultaneously on four wires.

Figure 4–13. Four Channels on Four Wires

valid

channel

data0

data0

data1

data1

c0(0) c0(1) c0(2) c0(3) c0(4) c0(5) c0(6) c0(7)

0

c1(0) c1(1) c1(2) c1(3) c1(4) c1(5) c1(6) c1(7)

c2(0) c2(1) c2(2) c2(3) c2(4) c2(5) c2(6) c2(7)

c3(0) c3(1) c3(2) c3(3) c3(4) c3(5) c3(6) c3(7)

4–14 Chapter 4: Functional Description
Multichannel Operation

FIR Compiler II August 2014 Altera Corporation
User Guide

Channel Input/Output Format
The FIR Compiler II requires the inputs and the outputs to be in the same format
when the number of input channel is more than one. The input data to the MegaCore
must be arranged horizontally according to the channels and vertically according to
the wires. The outputs should then come out in the same order, counting along
horizontal row first, vertical column second.

Example—Eight Channels on Three Wires
Figure 4–14 shows the input format for eight channels on three wires.

Figure 4–15 shows the expected output format for eight channels on three wires.

Example—Four Channels on Four Wires
Figure 4–16 shows the input format for four channels on four wires.

Figure 4–14. Eight Channels on Three Wires (Input)

Figure 4–15. Eight Channels on Three Wires (Output)

Figure 4–16. Four Channels on Four Wires (Input)

clk

xln_v

xln_0

xln_1

xln_2

C0 C1 C2

C3 C4 C5

C6 C7 --

clk

xOut_v

xOut_1

xOut_2

xOut_0 C0 C1 C2

C3 C4 C5

C6 C7 --

clk

xln_v

xln_0

xln_1

xln_2

C0

C1

C2

xln_3 C3

Chapter 4: Functional Description 4–15
Multichannel Operation

August 2014 Altera Corporation FIR Compiler II
User Guide

Figure 4–17 shows the expected output format for four channels on four wires.

This result appears to be vertical, but that is because the number of cycles is 1, so on
each wire there is only space for one piece of data.

Figure 4–18 and Figure 4–19 show the input and output format when the clock rate is
doubled and the sample rate remains the same.

Example—15 Channels with 15 Valid Cycles and 17 Invalid Cycles
Sometimes invalid cycles are inserted between the input data. Consider an example
where the clock rate = 320, sample rate = 10, which yields a TDM factor of 32,
inputChannelNum = 15, and interpolation factor is 10. In this case, the TDM factor is
greater than inputChannelNum. The optimization produces a filter with PhysChanIn =
1, ChansPerPhyIn = 15, PhysChanOut = 5, and ChansPerPhyOut = 3.

Figure 4–17. Four Channels on Four Wires (Output)

Figure 4–18. Four Channels on Four Wires with Double Clock Rate (Input)

Figure 4–19. Four Channels on Four Wires with Double Clock Rate (Output)

clk

xOut_v

xOut_0

xOut_1

xOut_2

C0

C1

C2

xOut_3 C3

clk

xln_v

xln_0

xln_1

C0 C1

C2 C3

clk

xOut_v

xOut_0

xOut_1

C0 C1

C2 C3

4–16 Chapter 4: Functional Description
Multichannel Operation

FIR Compiler II August 2014 Altera Corporation
User Guide

The input data format in this case is 32 cycles long, which comes from the TDM factor.
The number of channels is 15, so the filter expects 15 valid cycles together in a block,
followed by 17 invalid cycles. Refer to Figure 4–20. If the number of invalid cycles is
less than 17, the output format is incorrect, as shown in Figure 4–21. You can insert
extra invalid cycles at the end, but they must not interrupt the packets of data after the
process has started. Refer to Figure 4–22. If the input sample rate is less than the clock
rate, the pattern is always the same: a repeating cycle, as long as the TDM factor, with
the number of channels as the number of valid cycles required, and the remainder as
invalid cycles.

Figure 4–20. Correct Input Format (15 valid cycles, 17 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8

1 0

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

8 16 24 6

32 40 48 24 3

56 64 72 42

80 88 96 60

104 112 120 78

Figure 4–21. Incorrect Input Format (15 valid cycles, 0 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

1 0

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

8 1

32 4

56 6

80 8

104 1

Chapter 4: Functional Description 4–17
Multichannel Operation

August 2014 Altera Corporation FIR Compiler II
User Guide

Example—22 Channels with 11 Valid Cycles and 9 Invalid Cycles
Consider another example where the clock rate = 200, sample rate = 10, which yields a
TDM factor of 20, inputChannelNum = 22 and interpolation factor is 10. In this case, the
TDM factor is less than inputChannelNum. The optimization produces a filter with
PhysChanIn = 2, ChansPerPhyIn = 11, PhysChanOut = 11, and ChansPerPhyOut = 2.

The input format in this case is 20 cycles long, which comes from the TDM factor. The
number of channels is 22, so the filter expects 11 (ChansPerPhyIn) valid cycles,
followed by 9 invalid cycles (TDM factor – ChansPerPhyIn = 20 – 11) (refer to
Figure 4–23). If the number of invalid cycles is less than 17, the output format is
incorrect, as shown in Figure 4–24. You can insert extra invalid cycles at the end,
which mean the number of invalid cycles can be greater than 9, but they must not
interrupt the packets of data after the process has started (Figure 4–25).

Figure 4–22. Correct Input Format (15 valid cycles, 20 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8

1 0

1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

8 16 24 6 1

32 40 48 24 3

56 64 72 42 4

80 88 96 60 6

104 112 120 78 8

Figure 4–23. Correct Input Format (11 valid cycles, 9 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xin_1[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

xout_5[17:0]

xout_6[17:0]

xout_7[17:0]

xout_8[17:0]

xout_9[17:0]

xout_10[17:0]

1 0

1 2 3 4 5 6 7 8 9 10 11 4 1 2

12 13 14 15 16 17 18 19 20 21 22 15 12 13

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

8

24

40

56

72

88

104

120

136

152

168

4–18 Chapter 4: Functional Description
Multichannel Operation

FIR Compiler II August 2014 Altera Corporation
User Guide

Figure 4–24. Incorrect Input Format (11 valid cycles, 0 invalid cycles)

areset

clk

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xin_1[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

xout_5[17:0]

xout_6[17:0]

xout_7[17:0]

xout_8[17:0]

xout_9[17:0]

xout_10[17:0]

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 0 150 186 177

12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 0 206 172 212

0

00 01 00 01 00 01 00 01 00 01 0

Figure 4–25. Correct Input Format (11 valid cycles, 11 invalid cycles)

clk

areset

xin_v[0]

xin_c[7:0]

xin_0[7:0]

xin_1[7:0]

xout_v[0]

xout_c[7:0]

xout_0[17:0]

xout_1[17:0]

xout_2[17:0]

xout_3[17:0]

xout_4[17:0]

xout_5[17:0]

xout_6[17:0]

xout_7[17:0]

xout_8[17:0]

xout_9[17:0]

xout_10[17:0]

1 0

2 3 4 5 6 7 8 9 10 11 4 1

13 14 15 16 17 18 19 20 21 22 15 12

11 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

8 16

24 32

40 48

56 64

72 80

88 96

104 112

120 128

136 144

152 160

168 176

1

12

Chapter 4: Functional Description 4–19
Multichannel Operation

August 2014 Altera Corporation FIR Compiler II
User Guide

Example—Super Sample Rate
Consider an example of a “super sample rate” filter where the sample rate is greater
than the clock rate. In this example, clock rate = 100, sample rate = 200,
inputChannelNum = 1, and single rate. The optimization produces a filter with
PhysChanIn = 2, ChansPerPhyIn = 1, PhysChanOut = 2, and ChansPerPhyOut = 1.

The input format expected by the FIR filter is shown in Figure 4–26. A0 is the first
sample of channel A, A1 is the second sample of channel A, and so forth.

If inputChannelNum = 2, then the expected input format is shown in Figure 4–27.

Figure 4–26. Super Sample Rate Filter (clkRate=100, inputRate=200) with inChans=1

clk

xln_v

xln_0

xln_1

xOut_v

xOut_c

xOut_0

xOut_1

A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28

A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29

A0 A2 A4 A6 A8 A10 A12 A14

A1 A3 A5 A7 A9 A11 A13 A15

00

00

Figure 4–27. Super Sample Rate Filter (clkRate=100, inputRate=200) with inChans=2

clk

xln_v

xln_0

xln_1

xOut_v

xOut_c

xOut_0

xOut_1

xOut_2

xOut_3

xln_2

xln_3

A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28

A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29

A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28

A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29

A0 A2 A4 A6 A8 A10 A12 A14

A1 A3 A5 A7 A9 A11 A13 A15

A0 A2 A4 A6 A8 A10 A12 A14

A1 A3 A5 A7 A9 A11 A13 A15

00

00

00

00

4–20 Chapter 4: Functional Description
Multiple Coefficient Banks

FIR Compiler II August 2014 Altera Corporation
User Guide

Multiple Coefficient Banks
The FIR Compiler II supports multiple coefficient banks. The FIR filter can switch
between different coefficient banks dynamically, which enables the filter to switch
between infinite number of coefficient sets. Therefore, while the filter uses one
coefficient set, you can update other coefficient sets.You can also set different
coefficient banks for different channels and use the channel signal to switch between
coefficient sets.

The IP core uses multiple coefficient banks when you load multiple sets of coefficients
from a file. Refer to “Loading Coefficients from a File” on page 3–2. Based on the
number of coefficient banks you specify, the IP core extends the width of the
ast_sink_data signal to support two additional signals— bank signal (bankIn) and
input data (xIn) signal. The most significant bits represent the bank signals and the
least significant bits represent the input data.

Figure 4–28 shows a timing diagram for a single-channel filter with four coefficient
banks. You can switch the coefficient bank from 0–3 using the bankIn signal when the
filter runs.

Figure 4–29 shows a timing diagram for a four-channel filter with four coefficient
banks and each channel has a separate corresponding coefficient set. The bank inputs
for different channels are driven with their channel number respectively throughout
the filter operation.

Figure 4–28. Timing Diagram of a Single-Channel Filter with 4 Coefficient Banks

clk

ast_sink_valid

ast_sink_data[9:0]

bankin_0[1:0]

xin_0[7:0]

xout_v[0]

xout_0[21:0]

256 -478 -179 118 408 -259 -159 135 427 -433 -79 122 481 -396 -15 48 429 -262

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

34 77 118 -104 -3 97 -121 -85 79 -79 122 -31 116 -15 48 -83 -6

411 279

0

0

0

0

0

1

Figure 4–29. Timing Diagram of a Four-Channel Filter with 4 Coefficient Banks

clk
ast_sink_valid

ast_sink_data[39:0]
bankin_0[1:0]

xin_0[7:0]
bankin_1[1:0]

xin_1[7:0]
bankin_2[1:0]

xin_2[7:0]
bankin_3[1:0]

xin_3[7:0]
xout_v[0]

xout_0[21:0]
xout_1[21:0]
xout_2[21:0]
xout_3[21:0]

-15... -17... -55... -20... -23... -30... -30... -16... -21... -24... -14... -14... -12... -41... -25... -17... -26...

-41 24 29 -65 -109 34 -15 18 77 -82 25 127 -42 -18 -96 -4 79

52 67 71 -78 -82 -22 55 115 120 -51 -28 -124 -81 -16 67 -104

46 -37 22 29 -102 -125 -12 -10 -21 -48 56 15 32 31 -23 125 -105

109 96 -52 67 33 -29 99 57 29 125 122 -114 -39 21 88 4

-82 -75 7 -12 -261 -1
104 186 157 -4

46 -83 -
109 -13 -1

0
0
0
0

0
0
0

0
0

0 1
0

0
0
0

1

2

3

Chapter 4: Functional Description 4–21
Coefficient Reloading

August 2014 Altera Corporation FIR Compiler II
User Guide

Coefficient Reloading
The internal data coefficients are accessed via a memory-mapped interface that
consists of the input address, write data, write enable, read data, and read valid
signals. The Avalon Memory-Mapped (Avalon-MM) interfaces function as read/write
interfaces on the master and slave components in a memory-mapped system. The
memory-mapped system components include microprocessors, memories, UARTs,
timers, and a system interconnect fabric that connects the master and slave interfaces.
The Avalon-MM interfaces describe a wide variety of components, from an SRAM
that supports simple, fixed -cycle read/write transfers to a complex, pipelined
interface capable of burst transfers. In Read mode, the memory-mapped coefficients
are read over a specified address range while in Write mode, the coefficients are
written over a specified address range. In Read/Write mode, the coefficients can be
read or written over a specified address range. You can use a separate bus clock for
this interface. When coefficient reloading option is not enabled, the processor cannot
access the specified address range, and the coefficient data is not read or written.

Coefficient reloading starts anytime during the filter run time. However, you must
reload the coefficients only after all the desired output data are obtained to avoid
unpredictable results. If you are using multiple coefficient banks, you can reload
coefficient banks that are not used and switch over to the new coefficient set when
coefficient reloading is completed. You must toggle the coeff_in_areset signal before
reloading the coefficient with new data. The new coefficient data is read out after
coefficient reloading to verify whether the coefficient reloading process is successful.
When the coefficient reloading ends by deasserting the coeff_in_we, the input data is
inserted immediately to the filter that is reloaded with the new coefficients.

The symmetrical or anti-symmetrical filters have fewer genuine coefficients, use
fewer registers, and require fewer writes to reload the coefficients. For example, only
the first 19 addresses must be written for a 37-tap symmetrical filter. When you write
to all 37 addresses, the last 18 addresses are ignored because they are not part of the
address space of the filter. Similarly, reading coefficient data from the last 18 addresses
is also ignored.

When the FIR uses multiple coefficient banks, it arranges the addresses of all the
coefficients in consecutive order according to the bank number.
The following example shows a 37-tap symmetrical/anti-symmetrical filter with four
coefficient banks:

Address 0–18: Bank 0

Address 19–37: Bank 1

Address 38–56: Bank 2

Address 57–75: Bank 3

The following example shows a 37-tap non-symmetrical/anti-symmetrical filter with
2 coefficient banks:

Address 0–36: Bank 0

Address 37–73: Bank 1

If the coefficient bit width parameter is equal to or less than 16 bits, the width of the
write data is fixed at 16 bits. If the coefficient bit width parameter is more than 16 bits,
the width of the write data is fixed at 32 bits.

4–22 Chapter 4: Functional Description
Coefficient Reloading

FIR Compiler II August 2014 Altera Corporation
User Guide

Figure 4–30 shows the timing diagram for a coefficient reloading configuration with
Read/Write mode. There are a total of nine coefficients in this configuration. A write
cycle of 9 clock cycles are performed to reload the whole coefficient data set shown in
Figure 4–30. To complete the write cycle, assert the coeff_in_we signal, and provide
the address (from base address to the max address) together with the new coefficient
data. Then, load the new coefficient data into the memory corresponding to the
address of the coefficient. The new coefficient data is read during the write cycle when
you deassert the coeff_in_we signal. When the coeff_out_valid signal is high, the
read data is available on coeff_out_data.

Figure 4–31 shows the timing diagram of a coefficient reloading configuration in
Write mode. In this mode, one coefficient data is reloaded. The new coefficient data
(123) is loaded into a single address (7).

Figure 4–30. Timing Diagram of Coefficient Reloading in Read or Write mode

clk

coeff_in_areset

coeff_in_address[11:0]

coeff_in_data[15:0]

coeff_in_we[0]

coeff_out_data[15:0]

coeff_out_valid[0]

-1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

-1

0 -26 45

-1

45 -50 7 -121 -32 49 -1 108 124 -1

-25 13 80 127 80 0 -26 0 -50 7 -1 -32 49 -1 108 124 45

Figure 4–31. Timing Diagram of Coefficient Reloading in Write mode

clk

coeff_in_areset

coeff_in_address[11:0]

coeff_in_data[15:0]

coeff_in_we[0]

-1 7

0 123

-1

0

Chapter 4: Functional Description 4–23
Coefficient Reloading

August 2014 Altera Corporation FIR Compiler II
User Guide

Figure 4–32 shows the timing diagram of a coefficient reloading configuration in Read
mode. When the coeff_in_address is 3, the coefficient data at the location is read, the
coefficient data 80 is available on coeff_out_data when the coeff_out_valid signal is
high.

Figure 4–33 shows the timing diagram of a filter with multiple coefficient banks and
writable coefficients. It is a symmetry, 13-tap filter. The coefficients data of bank 1
(address 7-13) is reloaded while the filter is running on bank 0. When the coefficient
reloading is completed, bank 1 is used to produce an impulse response of the filter
and the new coefficient data (-58,18,106…) from bank 1 can be observed on the filter
output.

Figure 4–32. Timing Diagram of Coefficient Reloading in Read mode

clk

coeff_in_areset

coeff_in_address[11:0]

coeff_out_data[15:0]

coeff_out_valid[0]

-1 3

0 0 80

-1

Figure 4–33. Timing Diagram of Multiple Coefficient Banks

clk

xin_v[0]

bankin_0[0]

xin_0[7:0]

coeff_in_data[15:0]

coeff_in_address[11:0]

coeff_in_we[0]

xout_v[0]

xout_0[19:0]

51 -14 -48 33 112 125 -10 -71 119 40 -105 -125 -114 0 1 0

-58 18 106 -34 119 112 105 -1

7 8 9 10 11 12 13

342 1530 3636 5490 6400 8064 11 16 20 20 23 28 30 26 16 12 -14 12 -22 -51 -27 -26 -13 5198 6612 0 -58 18 106 119 112 105 112

-1

6

0

-1

-13 -82 -34

4–24 Chapter 4: Functional Description
Coefficient Reloading

FIR Compiler II August 2014 Altera Corporation
User Guide

August 2014 Altera Corporation FIR Compiler II
User Guide

Additional Information

This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

Date Version Changes

August 2014
14.0

Arria 10
Edition

■ Added support for Arria 10 devices.

■ Added Arria 10 generated files description.

■ Removed table with generated file descriptions.

June 2014 14.0

■ Corrected TDM timing diagram TDM_output_data signal.

■ Removed device support for Cyclone III and Stratix III devices

■ Added support for MAX 10 FPGAs.

■ Added instructions for using IP Catalog

November 2013 13.1

■ Corrected coefficient file description.

■ Removed device support for following devices:

■ HardCopy II, HardCopy III, HardCopy IV E, HardCopy IV GX

■ Stratix, Stratix GX, Stratix II, Stratix II GX

■ Cyclone, Cyclone II

■ Arria GX

May 2013 13.0 Updated interpolation and decimation factor ranges.

November 2012 12.1 Added support for Arria V GZ devices.

February 2012 11.1 Added a new parameter.

November 2011 11.1 Updated Chapter 1, About This IP Core with new resource utilization information for Stratix V
and Cyclone III.

May 2011 11.0
■ Updated Chapter 1, About This IP Core with new resource utilization information for

Stratix V.

■ Updated Chapter 3, Parameters.

December 2010 10.1
■ Updated Chapter 3, Parameters and Chapter 4, Functional Description to include new

output options and multiple coefficient bands.

■ Updated Chapter 1, About This IP Core with new resource utilization information.

July 2010 10.0 Updated Chapter 3, Parameters and Chapter 4, Functional Description with backpressure
and coefficient reloading features.

January 2010 9.1 SP1 Initial release.

Info–2 Additional Information
How to Contact Altera

FIR Compiler II August 2014 Altera Corporation
User Guide

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Additional Information Info–3
Typographic Conventions

August 2014 Altera Corporation FIR Compiler II
User Guide

Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections in a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h The question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Info–4 Additional Information
Typographic Conventions

FIR Compiler II August 2014 Altera Corporation
User Guide

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Intel manufacturer:

Other Similar products are found below :

RAPPID-567XFSW SRP004001-01 SW163052 SYSWINEV21 Core429-SA WS01NCTF1E W128E13 SW89CN0-ZCC IPS-EMBEDDED

IP-UART-16550 MPROG-PRO535E AFLCF-08-LX-CE060-R21 WS02-CFSC1-EV3-UP SYSMAC-STUDIO-EIPCPLR LIB-PL-PC-N-

1YR-DISKID LIB-PL-A-F SW006026-COV 1120270005 1120270006 MIKROBASIC PRO FOR FT90X (USB DONGLE) MIKROC PRO

FOR FT90X (USB DONGLE) MIKROC PRO FOR PIC (USB DONGLE LICENSE) MIKROBASIC PRO FOR AVR (USB DONGLE LICEN

MIKROBASIC PRO FOR FT90X MIKROC PRO FOR DSPIC30/33 (USB DONGLE LI MIKROPASCAL PRO FOR ARM (USB DONGLE

LICE MIKROPASCAL PRO FOR FT90X MIKROPASCAL PRO FOR FT90X (USB DONGLE) MIKROPASCAL PRO FOR PIC32 (USB

DONGLE LI SW006021-2H ATATMELSTUDIO 2400573 2702579 2988609 2702546 SW006022-DGL 2400303 2701356 VDSP-21XX-

PCFLOAT VDSP-BLKFN-PC-FULL 88970111 DG-ACC-NET-CD 55195101-102 SW1A-W1C MDK-ARM PCI-EXP1-E3-US PCI-T32-

E3-US SW006021-2NH SW006021-1H SW006021-2

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/development-software
https://www.x-on.com.au/manufacturer/intel
https://www.x-on.com.au/mpn/nxp/rappid567xfsw
https://www.x-on.com.au/mpn/lantronix/srp00400101
https://www.x-on.com.au/mpn/microchip/sw163052
https://www.x-on.com.au/mpn/omron/syswinev21
https://www.x-on.com.au/mpn/microsemi/core429sa
https://www.x-on.com.au/mpn/omron/ws01nctf1e
https://www.x-on.com.au/mpn/omron/w128e13
https://www.x-on.com.au/mpn/toshiba/sw89cn0zcc
https://www.x-on.com.au/mpn/intel/ipsembedded
https://www.x-on.com.au/mpn/intel/ipuart16550
https://www.x-on.com.au/mpn/advantech/mprogpro535e
https://www.x-on.com.au/mpn/iei/aflcf08lxce060r21
https://www.x-on.com.au/mpn/omron/ws02cfsc1ev3up
https://www.x-on.com.au/mpn/omron/sysmacstudioeipcplr
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microchip/libplaf
https://www.x-on.com.au/mpn/microchip/sw006026cov
https://www.x-on.com.au/mpn/molex/1120270005
https://www.x-on.com.au/mpn/molex/1120270006
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforpicusbdonglelicense
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforavrusbdonglelicen
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikrocprofordspic3033usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/microchip/sw0060212h
https://www.x-on.com.au/mpn/microchip/atatmelstudio
https://www.x-on.com.au/mpn/phoenixcontact/2400573
https://www.x-on.com.au/mpn/phoenixcontact/2702579
https://www.x-on.com.au/mpn/phoenixcontact/2988609
https://www.x-on.com.au/mpn/phoenixcontact/2702546
https://www.x-on.com.au/mpn/microchip/sw006022dgl
https://www.x-on.com.au/mpn/phoenixcontact/2400303
https://www.x-on.com.au/mpn/phoenixcontact/2701356
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdspblkfnpcfull
https://www.x-on.com.au/mpn/crouzet/88970111
https://www.x-on.com.au/mpn/digiinternational/dgaccnetcd
https://www.x-on.com.au/mpn/honeywell/55195101102
https://www.x-on.com.au/mpn/idec/sw1aw1c
https://www.x-on.com.au/mpn/keil/mdkarm
https://www.x-on.com.au/mpn/lattice/pciexp1e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/microchip/sw0060212nh
https://www.x-on.com.au/mpn/microchip/sw0060211h
https://www.x-on.com.au/mpn/microchip/sw0060212

