
101 Innovation Drive
San Jose, CA 95134
www.altera.com

 

UG-PCI10605-2014.08.18
 

User Guide

IP Compiler for PCI Express

Document publication date: August 2014

IP Compiler for PCI Express User Guide



IP Compiler for PCI Express User Guide August 2014 Altera Corporation

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

1. Datasheet

This document describes the Altera® IP Compiler for PCI Express IP core. PCI Express 
is a high-performance interconnect protocol for use in a variety of applications 
including network adapters, storage area networks, embedded controllers, graphic 
accelerator boards, and audio-video products. The PCI Express protocol is software 
backwards-compatible with the earlier PCI and PCI-X protocols, but is significantly 
different from its predecessors. It is a packet-based, serial, point-to-point interconnect 
between two devices. The performance is scalable based on the number of lanes and 
the generation that is implemented. Altera offers both endpoints and root ports that 
are compliant with PCI Express Base Specification 1.0a or 1.1 for Gen1 and PCI Express 
Base Specification 2.0 for Gen1 or Gen2. Both endpoints and root ports can be 
implemented as a configurable hard IP block rather than programmable logic, saving 
significant FPGA resources. The IP Compiler for PCI Express is available in ×1, ×2, ×4, 
and ×8 configurations. Table 1–1 shows the aggregate bandwidth of a PCI Express 
link for Gen1 and Gen2 IP Compilers for PCI Express for 1, 2, 4, and 8 lanes. The 
protocol specifies 2.5 giga-transfers per second for Gen1 and 5 giga-transfers per 
second for Gen2. Because the PCI Express protocol uses 8B/10B encoding, there is a 
20% overhead which is included in the figures in Table 1–1. Table 1–1 provides 
bandwidths for a single TX or RX channel, so that the numbers in Table 1–1 would be 
doubled for duplex operation.

f Refer to the PCI Express High Performance Reference Design for bandwidth numbers 
for the hard IP implementation in Stratix® IV GX and Arria® II GX devices. 

Features
Altera’s IP Compiler for PCI Express offers extensive support across multiple device 
families. It supports the following key features:

■ Hard IP implementation—PCI Express Base Specification 1.1 or 2.0. The PCI Express 
protocol stack including the transaction, data link, and physical layers is hardened 
in the device.

■ Soft IP implementation: 

■ PCI Express Base Specification 1.0a or 1.1. 

■ Many device families supported. Refer to Table 1–4.

■ The PCI Express protocol stack including transaction, data link, and physical 
layer is implemented using FPGA fabric logic elements

Table 1–1. IP Compiler for PCI Express Throughput

Link Width

×1 ×2 ×4 ×8

PCI Express Gen1 Gbps (1.x compliant) 2 4 8 16

PCI Express Gen2 Gbps (2.0 compliant) 4 8 16 32

August 2014
<edit Part Number variable in chapter>



1–2 Chapter 1: Datasheet
Features

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

■ Feature rich:

■ Support for ×1, ×2, ×4, and ×8 configurations. You can select the ×2 lane 
configuration for the Cyclone® IV GX without down configuring a ×4 
configuration.

■ Optional end-to-end cyclic redundancy code (ECRC) generation and checking 
and advanced error reporting (AER) for high reliability applications.

■ Extensive maximum payload size support: 

Stratix IV GX hard IP—Up to 2 KBytes (128, 256, 512, 1,024, or 2,048 bytes).

Arria II GX, Arria II GZ, and Cyclone IV GX hard IP—Up to 256 bytes (128 or 
256 bytes).

Soft IP Implementations—Up to 2 KBytes (128, 256, 512, 1,024, or 2,048 bytes).

■ Easy to use:

■ Easy parameterization.

■ Substantial on-chip resource savings and guaranteed timing closure using the 
IP Compiler for PCI Express hard IP implementation.

■ Easy adoption with no license requirement for the hard IP implementation.

■ Example designs to get started.

■ Qsys support.

■ Stratix V support is provided by the Stratix V Hard IP for PCI Express.

■ Stratix V support is not available with the IP Compiler for PCI Express. 

■ The Stratix V Hard IP for PCI Express is documented in the Stratix V Hard 
IP for PCI Express User Guide.

Different features are available for the soft and hard IP implementations and for the 
three possible design flows. Table 1–2 outlines these different features. 

Table 1–2. IP Compiler for PCI Express Features (Part 1 of 2)

Feature
Hard IP Soft IP

MegaCore License Free Required

Root port Not supported Not supported

Gen1 ×1, ×2, ×4, ×8 ×1, ×4

Gen2 ×1, ×4 No

Avalon Memory-Mapped (Avalon-MM) 
Interface Supported Supported

64-bit Avalon Streaming (Avalon-ST) Interface Not supported Not supported

128-bit Avalon-ST Interface Not supported Not supported

Descriptor/Data Interface (1) Not supported Not supported

Legacy Endpoint Not supported Not supported



Chapter 1: Datasheet 1–3
Release Information

August 2014 Altera Corporation IP Compiler for PCI Express

Release Information
Table 1–3 provides information about this release of the IP Compiler for PCI Express.

Transaction layer packet type (TLP) (2)

■ Memory read 
request

■ Memory write 
request

■ Completion with 
or without data

■ Memory read request

■ Memory write 
request

■ Completion with or 
without data

Maximum payload size 128–256 bytes 128–256 bytes

Number of virtual channels 1 1

Reordering of out–of–order completions 
(transparent to the application layer) Supported Supported

Requests that cross 4 KByte address 
boundary (transparent to the application layer) Supported Supported

Number of tags supported for non-posted 
requests 16 16

ECRC forwarding on RX and TX Not supported Not supported

MSI-X Not supported Not supported

Notes to Table 1–2:

(1) Not recommended for new designs.
(2) Refer to Appendix A, Transaction Layer Packet (TLP) Header Formats for the layout of TLP headers.

Table 1–2. IP Compiler for PCI Express Features (Part 2 of 2)

Feature
Hard IP Soft IP

Table 1–3. IP Compiler for PCI Express Release Information

Item Description

Version 14.0

Release Date June 2014

Ordering Codes

IP-PCIE/1
IP-PCIE/4
IP-PCIE/8

IP-AGX-PCIE/1
IP-AGX-PCIE/4

No ordering code is required for the hard IP implementation.

Product IDs 

■ Hard IP Implementation

■ Soft IP Implementation

FFFF

×1–00A9
×4–00AA
×8–00AB

Vendor ID

■ Hard IP Implementation

■ Soft IP Implementation

6AF7

6A66



1–4 Chapter 1: Datasheet
Device Family Support

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Altera verifies that the current version of the Quartus® II software compiles the 
previous version of each IP core. Any exceptions to this verification are reported in the 
MegaCore IP Library Release Notes and Errata. Altera does not verify compilation with 
IP core versions older than one release.Table 1–4 shows the level of support offered by 
the IP Compiler for PCI Express for each Altera device family.

Device Family Support

f In the Quartus II 11.0 release, support for Stratix V devices is offered with the Stratix V 
Hard IP for PCI Express, and not with the IP Compiler for PCI Express. For more 
information, refer to the Stratix V Hard IP for PCI Express User Guide .

General Description
The IP Compiler for PCI Express generates customized variations you use to design 
PCI Express root ports or endpoints, including non-transparent bridges, or truly 
unique designs combining multiple IP Compiler for PCI Express variations in a single 
Altera device. The IP Compiler for PCI Express implements all required and most 
optional features of the PCI Express specification for the transaction, data link, and 
physical layers.

Table 1–4. Device Family Support

Device Family Support (1)

Arria II GX Final

Arria II GZ Final

Cyclone IV GX Final

Stratix IV E, GX Final

Stratix IV GT Final

Other device families No support

Note to Table 1–4:

(1) Refer to the What's New for IP in Quartus II page for device support level information.



Chapter 1: Datasheet 1–5
General Description

August 2014 Altera Corporation IP Compiler for PCI Express

The hard IP implementation includes all of the required and most of the optional 
features of the specification for the transaction, data link, and physical layers. 
Depending upon the device you choose, one to four instances of the IP Compiler for 
PCI Express hard implementation are available. These instances can be configured to 
include any combination of root port and endpoint designs to meet your system 
requirements. A single device can also use instances of both the soft and hard 
implementations of the IP Compiler for PCI Express. Figure 1–1 provides a high-level 
block diagram of the hard IP implementation.

This user guide includes a design example and testbench that you can configure as a 
root port (RP) or endpoint (EP). You can use these design examples as a starting point 
to create and test your own root port and endpoint designs. 

f The purpose of the IP Compiler for PCI Express User Guide is to explain how to use the 
IP Compiler for PCI Express and not to explain the PCI Express protocol. Although 
there is inevitable overlap between the two documents, this document should be used 
in conjunction with an understanding of the following PCI Express specifications:
PHY Interface for the PCI Express Architecture PCI Express 3.0 and PCI Express Base 
Specification 1.0a, 1.1, or 2.0.

Support for IP Compiler for PCI Express Hard IP
If you target an Arria II GX, Arria II GZ, Cyclone IV GX, or Stratix IV GX device, you 
can parameterize the IP core to include a full hard IP implementation of the PCI 
Express stack including the following layers:

■ Physical (PHY) 

■ Physical Media Attachment (PMA)

Figure 1–1. IP Compiler for PCI Express Hard IP Implementation High-Level Block Diagram (Note 1) (2)

Notes to Figure 1–1:

(1) Stratix IV GX devices have two virtual channels.
(2) LMI stands for Local Management Interface.

PCI Express
Protocol Stack

Adapter

Clock & Reset 
Selection

PCIe Hard IP Block

TL
Interface

F
P

G
A

 F
ab

ric
 In

te
rf

ac
e

P
IP

E
  I

nt
er

fa
ce

LMI

PCIe
ReconfigBuffer

Virtual
Channel

Buffer
Retry

PCIe Hard IP Block Reconfiguration

RX

FPGA Fabric

Application
Layer

Test, Debug &
Configuration

Logic

PMAPCS

Transceivers



1–6 Chapter 1: Datasheet
General Description

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

■ Physical Coding Sublayer (PCS)

■ Media Access Control (MAC) 

■ Data link

■ Transaction

Optimized for Altera devices, the hard IP implementation supports all memory, I/O, 
configuration, and message transactions. The IP cores have a highly optimized 
application interface to achieve maximum effective throughput. Because the compiler 
is parameterizeable, you can customize the IP cores to meet your design 
requirements.Table 1–5 lists the configurations that are available for the IP Compiler 
for PCI Express hard IP implementation. 

Table 1–6 lists the Total RX buffer space, Retry buffer size, and Maximum Payload 
size for device families that include the hard IP implementation. You can find these 
parameters on the Buffer Setup page of the parameter editor. 

Table 1–5. Hard IP Configurations for the IP Compiler for PCI Express in Quartus II Software Version 11.0

Device Link Rate (Gbps)  ×1 ×2 (1)  ×4  ×8

Avalon Streaming (Avalon-ST) Interface 

Arria II GX
2.5 yes no yes yes (2)

5.0 no no no no

Arria II GZ
2.5 yes no yes yes (2)

5.0 yes no yes (2) no

Cyclone IV GX
2.5 yes yes yes no

5.0 no no no no

Stratix IV GX
2.5 yes no yes yes

5.0 yes no yes yes 

Avalon-MM Interface using Qsys Design Flow (3)

Arria II GX 2.5 yes no yes no

Cyclone IV GX 2.5 yes yes yes no

Stratix IV GX
2.5 yes no yes yes

5.0 yes no yes no

Notes to Table 1–5:

(1) For devices that do not offer a ×2 initial configuration, you can use a ×4 configuration with the upper two lanes left unconnected at the device 
pins. The link will negotiate to ×2 if the attached device is ×2 native or capable of negotiating to ×2.

(2) The ×8 support uses a 128-bit bus at 125 MHz. 
(3) The Qsys design flow supports the generation of endpoint variations only.

Table 1–6. IP Compiler for PCI Express Buffer and Payload Information (Part 1 of 2)

Devices Family Total RX Buffer Space Retry Buffer Max Payload Size

Arria II GX 4 KBytes 2 KBytes 256 Bytes



Chapter 1: Datasheet 1–7
General Description

August 2014 Altera Corporation IP Compiler for PCI Express

The IP Compiler for PCI Express supports ×1, ×2, ×4, and ×8 variations (Table 1–7 on 
page 1–8) that are suitable for either root port or endpoint applications. You can use 
the parameter editor to customize the IP core. The Qsys design flows do not support 
root port variations. Figure 1–2 shows a relatively simple application that includes 
two IP Compilers for PCI Express, one configured as a root port and the other as an 
endpoint. 

Arria II GZ 16 KBytes 16 KBytes 2 KBytes

Cyclone IV GX 4 KBytes 2 KBytes 256 Bytes

Stratix IV GX 16 KBytes 16 KBytes 2 KBytes

Table 1–6. IP Compiler for PCI Express Buffer and Payload Information (Part 2 of 2)

Devices Family Total RX Buffer Space Retry Buffer Max Payload Size

Figure 1–2. PCI Express Application with a Single Root Port and Endpoint

Altera FPGA with Embedded 
PCIe Hard IP Block

User Application
Logic

PCIe
Hard IP
Block

PCIe
Hard IP
Block

RP EP

User Application
 Logic

PCI Express Link

Altera FPGA with Embedded
PCIe Hard IP Block



1–8 Chapter 1: Datasheet
General Description

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 1–3 illustrates a heterogeneous topology, including an Altera device with two 
PCIe hard IP root ports. One root port connects directly to a second FPGA that 
includes an endpoint implemented using the hard IP IP core. The second root port 
connects to a switch that multiplexes among three PCI Express endpoints. 

If you target a device that includes an internal transceiver, you can parameterize the 
IP Compiler for PCI Express to include a complete PHY layer, including the MAC, 
PCS, and PMA layers. If you target other device architectures, the IP Compiler for PCI 
Express generates the IP core with the Intel-designed PIPE interface, making the IP 
core usable with other PIPE-compliant external PHY devices.

Table 1–7 lists the protocol support for devices that include HSSI transceivers.

Figure 1–3. PCI Express Application with Two Root Ports

PCIe Link

PCIe Hard IP Block

RP Switch

PCIe
Hard IP
Block

RP

User Application
Logic

PCIe Hard IP Block

EP

PCIe
Hard IP
Block

EP
User Application

 Logic

IP Compiler
for

PCI Express
Soft IP

Implementation

EP

User Application
 Logic

PHY

PIPE
Interface

User 
Application

 Logic

PCIe Link

PCIe Link

PCIe Link

PCIe Link
User Application

Logic

Altera FPGA with Embedded PCIe
Hard IP Blocks

Altera FPGA with Embedded PCIe
Hard IP Blocks

Altera FPGA with Embedded PCIe
Hard IP Blocks

Altera FPGA Supporting IP Compiler for
PCI Express Soft IP Implementation

IP Compiler
for

PCI Express
Soft IP

Implementation

Table 1–7.  Operation in Devices with HSSI Transceivers (Part 1 of 2) (Note 1)

Device Family  ×1  ×4  ×8

Stratix IV GX hard IP–Gen1 Yes Yes Yes

Stratix IV GX hard IP–Gen 2 Yes (2) Yes (2) Yes (3)

Stratix IV soft IP–Gen1 Yes Yes No

Cyclone IV GX hard IP–Gen1 Yes Yes No



Chapter 1: Datasheet 1–9
IP Core Verification

August 2014 Altera Corporation IP Compiler for PCI Express

1 The device names and part numbers for Altera FPGAs that include internal 
transceivers always include the letters GX, GT, or GZ. If you select a device that does 
not include an internal transceiver, you can use the PIPE interface to connect to an 
external PHY. Table 3–9 on page 3–8 lists the available external PHY types. 

You can customize the payload size, buffer sizes, and configuration space (base 
address registers support and other registers). Additionally, the IP Compiler for PCI 
Express supports end-to-end cyclic redundancy code (ECRC) and advanced error 
reporting for ×1, ×2, ×4, and ×8 configurations.

External PHY Support
Altera IP Compiler for PCI Express variations support a wide range of PHYs, 
including the TI XIO1100 PHY in 8-bit DDR/SDR mode or 16-bit SDR mode; NXP 
PX1011A for 8-bit SDR mode, a serial PHY, and a range of custom PHYs using 
8-bit/16-bit SDR with or without source synchronous transmit clock modes and 8-bit 
DDR with or without source synchronous transmit clock modes. You can constrain TX 
I/Os by turning on the Fast Output Enable Register option in the parameter editor, 
or by editing this setting in the Quartus II Settings File (.qsf). This constraint ensures 
fastest tCO timing.

Debug Features
The IP Compiler for PCI Express also includes debug features that allow observation 
and control of the IP cores for faster debugging of system-level problems. 

f For more information about debugging refer to Chapter 17, Debugging.

IP Core Verification
To ensure compliance with the PCI Express specification, Altera performs extensive 
validation of the IP Compiler for PCI Express. Validation includes both simulation 
and hardware testing. 

Arria II GX–Gen1 Hard IP Implementation Yes Yes Yes

Arria II GX–Gen1 Soft IP Implementation Yes Yes No

Arria II GZ–Gen1 Hard IP Implementation Yes Yes Yes

Arria II GZ–Gen2 Hard IP Implementation Yes Yes No

Notes to Table 1–7:

(1) Refer to Table 1–2 on page 1–2 for a list of features available in the different implementations and design flows.
(2) Not available in -4 speed grade. Requires -2 or -3 speed grade.
(3) Gen2 ×8 is only available in the -2 and I3 speed grades.

Table 1–7.  Operation in Devices with HSSI Transceivers (Part 2 of 2) (Note 1)

Device Family  ×1  ×4  ×8



1–10 Chapter 1: Datasheet
Performance and Resource Utilization

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Simulation Environment
Altera’s verification simulation environment for the IP Compiler for PCI Express uses 
multiple testbenches that consist of industry-standard BFMs driving the PCI Express 
link interface. A custom BFM connects to the application-side interface. 

Altera performs the following tests in the simulation environment:

■ Directed tests that test all types and sizes of transaction layer packets and all bits of 
the configuration space

■ Error injection tests that inject errors in the link, transaction layer packets, and data 
link layer packets, and check for the proper response from the IP cores

■ PCI-SIG® Compliance Checklist tests that specifically test the items in the checklist

■ Random tests that test a wide range of traffic patterns across one or more virtual 
channels

Compatibility Testing Environment
Altera has performed significant hardware testing of the IP Compiler for PCI Express 
to ensure a reliable solution. The IP cores have been tested at various PCI-SIG PCI 
Express Compliance Workshops in 2005–2009 with Arria GX, Arria II GX, 
Cyclone IV GX, Stratix II GX, and Stratix IV GX devices and various external PHYs. 
They have passed all PCI-SIG gold tests and interoperability tests with a wide 
selection of motherboards and test equipment. In addition, Altera internally tests 
every release with motherboards and switch chips from a variety of manufacturers. 
All PCI-SIG compliance tests are also run with each IP core release.

Performance and Resource Utilization
The hard IP implementation of the IP Compiler for PCI Express is available in 
Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX devices. 

Table 1–8 shows the resource utilization for the hard IP implementation using either 
the Avalon-ST or Avalon-MM interface with a maximum payload of 256 bytes and 32 
tags for the Avalon-ST interface and 16 tags for the Avalon-MM interface. 

Table 1–8. Performance and Resource Utilization in Arria II GX, Arria II GZ, Cyclone IV GX, and 
Stratix IV GX Devices (Part 1 of 2)

Parameters Size

 Lane 
Width

Internal
Clock (MHz)

Virtual 
Channel

Combinational
ALUTs

Dedicated
Registers

Memory Blocks
M9K

Avalon-ST Interface

 ×1 125 1 100 100 0

 ×1 125 2 100 100 0

 ×4 125 1 200 200 0

 ×4 125 2 200 200 0

 ×8 250 1 200 200 0

 ×8 250 2 200 200 0



Chapter 1: Datasheet 1–11
Recommended Speed Grades

August 2014 Altera Corporation IP Compiler for PCI Express

f Refer to Appendix C, Performance and Resource Utilization Soft IP Implementation 
for performance and resource utilization for the soft IP implementation.

Recommended Speed Grades
Table 1–9 shows the recommended speed grades for each device family for the 
supported link widths and internal clock frequencies. For soft IP implementations of 
the IP Compiler for PCI Express, the table lists speed grades that are likely to meet 
timing; it may be possible to close timing in a slower speed grade. For the hard IP 
implementation, the speed grades listed are the only speed grades that close timing. 
When the internal clock frequency is 125 MHz or 250 MHz, Altera recommends 
setting the Quartus II Analysis & Synthesis Settings Optimization Technique to 
Speed. 

 ×4 125 1

Avalon-MM Interface–Qsys Design Flow 

 ×1 125 1

1600 1600 18 ×4 125 1

 ×8 250 1

Avalon-MM Interface–Qsys Design Flow - Completer Only

 ×1 125 1
1000 1150 10

 ×4 125 1

Avalon-MM Interface–Qsys Design Flow - Completer Only Single Dword

 ×1 125 1

430 450 0 ×4 125 1

×4 250 1

Note to Table 1–8:

(1) The transaction layer of the Avalon-MM implementation is implemented in programmable logic to improve latency.

Table 1–8. Performance and Resource Utilization in Arria II GX, Arria II GZ, Cyclone IV GX, and 
Stratix IV GX Devices (Part 2 of 2)

Parameters Size

 Lane 
Width

Internal
Clock (MHz)

Virtual 
Channel

Combinational
ALUTs

Dedicated
Registers

Memory Blocks
M9K



1–12 Chapter 1: Datasheet
Recommended Speed Grades

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

f Refer to “Setting Up and Running Analysis and Synthesis” in Quartus II Help and 
Area and Timing Optimization in volume 2 of the Quartus II Handbook for more 
information about how to effect this setting.

Table 1–9. Recommended Device Family Speed Grades (Part 1 of 2)

Device Family Link Width Internal Clock
Frequency (MHz)

Recommended
Speed Grades

Avalon-ST Hard IP Implementation

Arria II GX Gen1 with ECC Support (1)

×1 62.5 (2) –4,–5,–6

×1 125 –4,–5,–6

×4 125 –4,–5,–6

×8 125 –4,–5,–6

Arria II GZ Gen1 with ECC Support

×1 125 -3, -4

×4 125 -3, -4

×8 125 -3, -4

Arria II GZ Gen 2 with ECC Support
×1 125 -3

×4 125 -3

Cyclone IV GX Gen1 with ECC Support
×1 62.5 (2) all speed grades

×1, ×2, ×4 125 all speed grades

Stratix IV GX Gen1 with ECC Support (1)

×1 62.5 (2) –2, –3 (3)

×1 125 –2, –3, –4

×4 125 –2, –3, –4

×8 250 –2, –3, –4 (3)

Stratix IV GX Gen2 with ECC Support (1)
×1 125 –2, –3 (3)

×4 250 –2, –3 (3)

Stratix IV GX Gen2 without ECC Support  ×8 500 –2, I3 (4)

Avalon–MM Interface–Qsys Flow

Arria II GX ×1, ×4 125 –6

Cyclone IV GX
×1, ×2, ×4 125 –6, –7

×1 62.5 –6, –7, –8

Stratix IV GX Gen1
×1, ×4 125 –2, –3, –4

×8 250 –2, –3

Stratix IV GX Gen2
×1 125 –2, –3

×4 250 –2, –3

Avalon-ST or Descriptor/Data Interface Soft IP Implementation

Arria II GX ×1, ×4 125 –4. –5 (5)

Cyclone IV GX ×1 125 –6, –7 (5)

Stratix IV E Gen1
×1 62.5 all speed grades

×1, ×4 125 all speed grades



Chapter 1: Datasheet 1–13
Recommended Speed Grades

August 2014 Altera Corporation IP Compiler for PCI Express

Stratix IV GX Gen1 
×1 62.5 all speed grades

×4 125 all speed grades

Notes to Table 1–9:

(1) The RX Buffer and Retry Buffer ECC options are only available in the hard IP implementation. 
(2) This is a power-saving mode of operation.
(3) Final results pending characterization by Altera for speed grades -2, -3, and -4. Refer to the .fit.rpt file generated 

by the Quartus II software.
(4) Closing timing for the –3 speed grades in the provided endpoint example design requires seed sweeping.
(5) You must turn on the following Physical Synthesis settings in the Quartus II Fitter Settings to achieve timing 

closure for these speed grades and variations: Perform physical synthesis for combinational logic, Perform 
register duplication, and Perform register retiming. In addition, you can use the Quartus II Design Space 
Explorer or Quartus II seed sweeping methodology. Refer to the Netlist Optimizations and Physical Synthesis 
chapter in volume 2 of the Quartus II Handbook for more information about how to set these options.

(6) Altera recommends disabling the OpenCore Plus feature for the ×8 soft IP implementation because including this 
feature makes it more difficult to close timing. 

Table 1–9. Recommended Device Family Speed Grades (Part 2 of 2)

Device Family Link Width Internal Clock
Frequency (MHz)

Recommended
Speed Grades



1–14 Chapter 1: Datasheet
Recommended Speed Grades

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

2. Getting Started

This section provides step-by-step instructions to help you quickly set up and 
simulate the IP Compiler for PCI Express testbench. The IP Compiler for PCI Express 
provides numerous configuration options. The parameters chosen in this chapter are 
the same as those chosen in the PCI Express High-Performance Reference Design 
available on the Altera website.

Installing and Licensing IP Cores
The Altera IP Library provides many useful IP core functions for production use 
without purchasing an additional license. You can evaluate any Altera IP core in 
simulation and compilation in the Quartus II software using the OpenCore evaluation 
feature. 

Some Altera IP cores, such as MegaCore® functions, require that you purchase a 
separate license for production use. You can use the OpenCore Plus feature to 
evaluate IP that requires purchase of an additional license until you are satisfied with 
the functionality and performance. After you purchase a license, visit the Self Service 
Licensing Center to obtain a license number for any Altera product. For additional 
information, refer to Altera Software Installation and Licensing.

1 The default installation directory on Windows is <drive>:\altera\<version number>; 
on Linux it is <home directory>/altera/<version number>.

OpenCore Plus IP Evaluation
Altera's free OpenCore Plus feature allows you to evaluate licensed MegaCore IP 
cores in simulation and hardware before purchase. You need only purchase a license 
for MegaCore IP cores if you decide to take your design to production. OpenCore Plus 
supports the following evaluations:

■ Simulate the behavior of a licensed IP core in your system.

■ Verify the functionality, size, and speed of the IP core quickly and easily.

■ Generate time-limited device programming files for designs that include IP cores.

■ Program a device with your IP core and verify your design in hardware

OpenCore Plus evaluation supports the following two operation modes:

■ Untethered—run the design containing the licensed IP for a limited time.

Figure 2–1. IP core Installation Path

acds

quartus - Contains the Quartus II software

ip - Contains the Altera IP Library and third-party IP cores

altera - Contains the Altera IP Library source code

<IP core name> - Contains the IP core source files  

August 2014
<edit Part Number variable in chapter>



2–2 Chapter 2: Getting Started
IP Catalog and Parameter Editor

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

■ Tethered—run the design containing the licensed IP for a longer time or 
indefinitely. This requires a connection between your board and the host 
computer.

All IP cores that use OpenCore Plus time out simultaneously when any IP core in the 
design times out.

IP Catalog and Parameter Editor
The Quartus II IP Catalog (Tools > IP Catalog) and parameter editor help you easily 
customize and integrate IP cores into your project. You can use the IP Catalog and 
parameter editor to select, customize, and generate files representing your custom IP 
variation.

1 The IP Catalog (Tools > IP Catalog) and parameter editor replace the MegaWizard™ 
Plug-In Manager for IP selection and parameterization, beginning in Quartus II 
software version 14.0. Use the IP Catalog and parameter editor to locate and 
paramaterize Altera IP cores.

The IP Catalog lists IP cores available for your design. Double-click any IP core to 
launch the parameter editor and generate files representing your IP variation. The 
parameter editor prompts you to specify an IP variation name, optional ports, and 
output file generation options. The parameter editor generates a top level Qsys 
system file (.qsys) or Quartus II IP file (.qip) representing the IP core in your project. 
You can also parameterize an IP variation without an open project.

Use the following features to help you quickly locate and select an IP core:

■ Filter IP Catalog to Show IP for active device family or Show IP for all device 
families.

■ Search to locate any full or partial IP core name in IP Catalog. Click Search for 
Partner IP, to access partner IP information on the Altera website.



Chapter 2: Getting Started 2–3
IP Catalog and Parameter Editor

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ Right-click an IP core name in IP Catalog to display details about supported 
devices, installation location, and links to documentation.

1 The IP Catalog is also available in Qsys (View > IP Catalog). The Qsys IP Catalog 
includes exclusive system interconnect, video and image processing, and other 
system-level IP that are not available in the Quartus II IP Catalog.

Using the Parameter Editor
The parameter editor helps you to configure your IP variation ports, parameters, 
architecture features, and output file generation options:

■ Use preset settings in the parameter editor (where provided) to instantly apply 
preset parameter values for specific applications.

■ View port and parameter descriptions and links to detailed documentation.

Figure 2–2. Quartus II IP Catalog

Search and filter IP for your target device

Double-click to customize, right-click for information



2–4 Chapter 2: Getting Started
Upgrading Outdated IP Cores

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

■ Generate testbench systems or example designs (where provided).

Modifying an IP Variation

You can easily modify the parameters of any Altera IP core variation in the parameter 
editor to match your design requirements. Use any of the following methods to 
modify an IP variation in the parameter editor. 

Upgrading Outdated IP Cores
IP core variants generated with a previous version of the Quartus II software may 
require upgrading before use in the current version of the Quartus II software. Click 
Project > Upgrade IP Components to identify and upgrade IP core variants.

The Upgrade IP Components dialog box provides instructions when IP upgrade is 
required, optional, or unsupported for specific IP cores in your design. You must 
upgrade IP cores that require it before you can compile the IP variation in the current 
version of the Quartus II software. Many Altera IP cores support automatic upgrade.

Figure 2–3. IP Parameter Editors

View IP port
and parameter 
details

Apply preset parameters for
specific applications

Specify your IP variation name
and target device

Legacy parameter 
editors

Table 2–1. Modifying an IP Variation

Menu Command Action

File > Open
Select the top-levelHDL(.v, or .vhd) IP variation file to 
launch the parameter editor and modify the IP variation. 
Regenerate the IP variation to implement your changes.

View > Utility Windows > 
Project Navigator > IP Components

Double-click the IP variation to launch the parameter 
editor and modify the IP variation. Regenerate the IP 
variation to implement your changes.

Project > Upgrade IP Components
Select the IP variation and click Upgrade in Editor to 
launch the parameter editor and modify the IP variation. 
Regenerate the IP variation to implement your changes.



Chapter 2: Getting Started 2–5
Upgrading Outdated IP Cores

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

The upgrade process renames and preserves the existing variation file (.v, .sv, or .vhd) 
as <my_ip>_ BAK.v, .sv, .vhd in the project directory.

Before you begin

■ Archive the Quartus II project containing outdated IP cores in the original version 
of the Quartus II software: Click Project > Archive Project to save the project in 
your previous version of the Quartus II software. This archive preserves your 
original design source and project files.

■ Restore the archived project in the latest version of the Quartus II software: Click 
Project > Restore Archived Project. Click OK if prompted to change to a 
supported device or overwrite the project database. File paths in the archive must 
be relative to the project directory. File paths in the archive must reference the IP 
variation .v or .vhd file or .qsys file (not the .qip file).

1. In the latest version of the Quartus II software, open the Quartus II project 
containing an outdated IP core variation. The Upgrade IP Components dialog 
automatically displays the status of IP cores in your project, along with 
instructions for upgrading each core. Click Project > Upgrade IP Components to 
access this dialog box manually.

Table 2–2. IP Core Upgrade Status

IP Core Status Corrective Action

Required Upgrade IP 
Components

You must upgrade the IP variation before compiling in the current 
version of the Quartus II software.

Optional Upgrade IP 
Components

Upgrade is optional for this IP variation in the current version of the 
Quartus II software. You can upgrade this IP variation to take 
advantage of the latest development of this IP core. Alternatively you 
can retain previous IP core characteristics by declining to upgrade.

Upgrade Unsupported

Upgrade of the IP variation is not supported in the current version of 
the Quartus II software due to IP core end of life or incompatibility 
with the current version of the Quartus II software. You are prompted 
to replace the obsolete IP core with a current equivalent IP core from 
the IP Catalog.



2–6 Chapter 2: Getting Started
Upgrading Outdated IP Cores

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

2. To simultaneously upgrade all IP cores that support automatic upgrade, click 
Perform Automatic Upgrade. The Status and Version columns update when 
upgrade is complete. Example designs provided with any Altera IP core 
regenerate automatically whenever you upgrade the IP core.

Upgrading IP Cores at the Command Line
You can upgrade IP cores that support auto upgrade at the command line. IP cores 
that do not support automatic upgrade do not support command line upgrade.

■ To upgrade a single IP core that supports auto-upgrade, type the following 
command:
quartus_sh –ip_upgrade –variation_files <my_ip_filepath/my_ip>.<hdl> 
<qii_project>
Example: quartus_sh -ip_upgrade -variation_files mega/pll25.v hps_testx

■ To simultaneously upgrade multiple IP cores that support auto-upgrade, type the 
following command:
quartus_sh –ip_upgrade –variation_files “<my_ip_filepath/my_ip1>.<hdl>; 
<my_ip_filepath/my_ip2>.<hdl>” <qii_project>
Example: quartus_sh -ip_upgrade -variation_files 
"mega/pll_tx2.v;mega/pll3.v" hps_testx

f IP cores older than Quartus II software version 12.0 do not support upgrade. Altera 
verifies that the current version of the Quartus II software compiles the previous 
version of each IP core. The MegaCore IP Library Release Notes reports any verification 
exceptions for MegaCore IP. The Quartus II Software and Device Support Release Notes 
reports any verification exceptions for other IP cores. Altera does not verify 
compilation for IP cores older than the previous two releases.

Figure 2–4. Upgrading IP Cores

Displays upgrade
status for all IP cores
in the Project

Upgrades all IP core that support “Auto Upgrade”
Upgrades individual IP cores unsupported by “Auto Upgrade”

Checked IP cores
support “Auto Upgrade”

Successful
“Auto Upgrade”

Upgrade
unavailable

Double-click to
individually migrate



Chapter 2: Getting Started 2–7
Parameterizing the IP Compiler for PCI Express

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Parameterizing the IP Compiler for PCI Express
This section guides you through the process of parameterizing the IP Compiler for 
PCI Express as an endpoint, using the same options that are chosen in Chapter 15, 
Testbench and Design Example. Complete the following steps to specify the 
parameters:

1. In the IP Catalog (Tools > IP Catalog), locate and double-click the name of the IP 
core to customize. The parameter editor appears.

2. Specify a top-level name for your custom IP variation. This name identifies the IP 
core variation files in your project. For this walkthrough, specify top.v for the 
name of the IP core file: <working_dir>\top.v. 

3. Specify the following values in the parameter editor:

4. To enable all of the tests in the provided testbench and chaining DMA example 
design, make the base address register (BAR) assignments. Bar2 or Bar3 is 
required.Table 2–4. provides the BAR assignments in tabular format.

Table 2–3. System Settings Parameters

Parameter Value
PCIe Core Type PCI Express hard IP
PHY type Stratix IV GX
PHY interface serial
Configure transceiver block Use default settings.
Lanes  ×8
Xcvr ref_clk 100 MHz
Application interface Avalon-ST 128 -bit 
Port type Native Endpoint
PCI Express version  2.0 
Application clock 250 MHz
Max rate Gen 2 (5.0 Gbps)
Test out width 64 bits 
HIP reconfig Disable

Table 2–4. PCI Registers (Part 1 of 2)

PCI Base Registers (Type 0 Configuration Space)

BAR BAR TYPE BAR Size

0 32-Bit Non-Prefetchable Memory 256 MBytes - 28 bits

1 32-Bit Non-Prefetchable Memory 256 KBytes - 18 bits

2 32-bit Non-Prefetchable Memory 256 KBytes -18 bits

PCI Read-Only Registers

Register Name Value

Device ID 0xE001

Subsystem ID 0x2801

Revision ID 0x01

Vendor ID 0x1172



2–8 Chapter 2: Getting Started
Parameterizing the IP Compiler for PCI Express

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

5. Specify the following settings for the Capabilities parameters. 

Subsystem vendor ID 0x5BDE

Class code 0xFF0000

Table 2–5. Capabilities Parameters 

Parameter Value

Device Capabilities

Tags supported 32

Implement completion timeout disable Turn this option On 

Completion timeout range ABCD

Error Reporting

Implement advanced error reporting Off

Implement ECRC check Off

Implement ECRC generation Off

Implement ECRC forwarding Off

MSI Capabilities

MSI messages requested 4

MSI message 64–bit address capable On

Link Capabilities

Link common clock On

Data link layer active reporting Off

Surprise down reporting Off

Link port number 0x01

Slot Capabilities 

Enable slot capability Off

Slot capability register 0x0000000 

MSI-X Capabilities

Implement MSI-X Off

Table size 0x000

Offset 0x00000000

BAR indicator (BIR) 0

Pending Bit Array (PBA)

Offset 0x00000000

BAR Indicator 0

Table 2–4. PCI Registers (Part 2 of 2)

PCI Base Registers (Type 0 Configuration Space)



Chapter 2: Getting Started 2–9
Parameterizing the IP Compiler for PCI Express

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

6. Click the Buffer Setup tab to specify settings on the Buffer Setup page.

1 For the PCI Express hard IP implementation, the RX Buffer Space Allocation is fixed 
at Maximum performance. This setting determines the values for a read-only table 
that lists the number of posted header credits, posted data credits, non-posted header 
credits, completion header credits, completion data credits, total header credits, and 
total RX buffer space. 

7. Specify the following power management settings. 

8. On the EDA tab, turn on Generate simulation model to generate an IP functional 
simulation model for the IP core. An IP functional simulation model is a 
cycle-accurate VHDL or Verilog HDL model produced by the Quartus II software.

c Use the simulation models only for simulation and not for synthesis or any 
other purposes. Using these models for synthesis creates a non-functional 
design.

Table 2–6. Buffer Setup Parameters 

Parameter Value

Maximum payload size 512 bytes

Number of virtual channels 1 

Number of low-priority VCs None

Auto configure retry buffer size On

Retry buffer size 16 KBytes 

Maximum retry packets 64 

Desired performance for received requests Maximum

Desired performance for received completions Maximum

Table 2–7. Power Management Parameters 

Parameter Value

L0s Active State Power Management (ASPM)

Idle threshold for L0s entry 8,192 ns 

Endpoint L0s acceptable latency < 64 ns 

Number of fast training sequences (N_FTS)

Common clock Gen2: 255

Separate clock Gen2: 255

Electrical idle exit (EIE) before FTS 4

L1s Active State Power Management (ASPM)

Enable L1 ASPM Off

Endpoint L1 acceptable latency < 1 µs

L1 Exit Latency Common clock > 64 µs 

L1 Exit Latency Separate clock > 64 µs



2–10 Chapter 2: Getting Started
Viewing the Generated Files

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

9. On the Summary tab, select the files you want to generate. A gray checkmark 
indicates a file that is automatically generated. All other files are optional.

10. Click Finish to generate the IP core, testbench, and supporting files. 

1 A report file, <variation name>.html, in your project directory lists each file 
generated and provides a description of its contents.

Viewing the Generated Files
Figure 2–5 illustrates the directory structure created for this design after you generate 
the IP Compiler for PCI Express. The directories includes the following files:

■ The IP Compiler for PCI Express design files, stored in <working_dir>.

■ The chaining DMA design example file, stored in the 
<working_dir>\top_examples\chaining_dma directory. This design example tests 
your generated IP Compiler for PCI Express variation. For detailed information 
about this design example, refer to Chapter 15, Testbench and Design Example.

■ The simulation files for the chaining DMA design example, stored in the 
<working_dir>\top_examples\chaining_dma\testbench directory. The Quartus II 
software generates the testbench files if you turn on Generate simulation model 
on the EDA tab while generating the IP Compiler for PCI Express.

0

Figure 2–5. Directory Structure for IP Compiler for PCI Express and Testbench

Notes to Figure 2–5:

(1) The chaining_dma directory contains the Quartus II project and settings files.
(2) <variation>_plus.v is only available for the hard IP implementation.

<working_dir>  
<variation>.v = top.v, the parameterized PCI Express IP Core
<variation>.sdc = top.sdc, the timing constraints file
<variation>.tcl = top.tcl, general Quartus II settings

<variation>_examples = top_examples

ip_compiler_for_pci_express-library 
contains local copy of the pci express library files needed for
simulation, or compilation, or both

Testbench and
Design Example

Files

IP Compiler for
PCI Express

Files

   Includes testbench and incremental compile directories
common

chaining_dma, files to implement the chaining DMA
   top_example_chaining_top.qpf, the Quartus II project file
   top_example_chaining_top.qsf, the Quartus II settings file
<variation>_plus.v = top_plus.v, 
the parameterized PCI Express IP Core including reset and
calibration circuitry

 testbench,  scripts to run the testbench
   runtb.do, script to run the testbench
   <variation>_chaining_testbench = top_chaining_testbench.v
   altpcietb_bfm_driver_chaining.v , provides test stimulus

Simulation and
Quartus II

 Compilation

(1) (2)



Chapter 2: Getting Started 2–11
Viewing the Generated Files

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 2–6 illustrates the top-level modules of this design. As this figure illustrates, 
the IP Compiler for PCI Express connects to a basic root port bus functional model 
(BFM) and an application layer high-performance DMA engine. These two modules, 
when combined with the IP Compiler for PCI Express, comprise the complete 
example design. The test stimulus is contained in altpcietb_bfm_driver_chaining.v. 
The script to run the tests is runtb.do. For a detailed explanation of this example 
design, refer to Chapter 15, Testbench and Design Example. 

f The design files used in this design example are the same files that are used for the 
PCI Express High-Performance Reference Design. You can download the required 
files on the PCI Express High-Performance Reference Design product page. This 
product page includes design files for various devices. The example in this document 
uses the Stratix IV GX files. You can generate, simulate, and compile the design 
example with the files and capabilities provided in your Quartus II software and IP 
installation. However, to configure the example on a device, you must also download 
altpcie_demo.zip, which includes a software driver that the example design uses, 
from the PCI Express High-Performance Reference Design. 

Figure 2–6. Testbench for the Chaining DMA Design Example 

Endpoint Example

Root Port Driver

x8 Root Port Model

Root Port BFM

IP Compiler
for PCI Express

PCI Express Link

Endpoint Application 
Layer Example

DMA
Write

RC
Slave

(Optional)

Endpoint 
Memory

(32 KBytes) 

Traffic Control/Virtual Channel Mapping
Request/Completion Routing

DMA
Read



2–12 Chapter 2: Getting Started
Simulating the Design

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The Stratix IV .zip file includes files for Gen1 and Gen2 ×1, ×4, and ×8 variants. The 
example in this document demonstrates the Gen2 ×8 variant. After you download 
and unzip this .zip file, you can copy the files for this variant to your project directory, 
<working_dir>. The files for the example in this document are included in the 
hip_s4gx_gen2x8_128 directory. The Quartus II project file, top.qsf, is contained in 
<working_dir>. You can use this project file as a reference for the .qsf file for your own 
design.

Simulating the Design
As Figure 2–5 illustrates, the scripts to run the simulation files are located in the 
<working_dir>\top_examples\chaining_dma\testbench directory. Follow these 
steps to run the chaining DMA testbench.

1. Start your simulation tool. This example uses the ModelSim® software.

1 The endpoint chaining DMA design example DMA controller requires the 
use of BAR2 or BAR3.

2. In the testbench directory, 
<working_dir>\top_examples\chaining_dma\testbench, type the following 
command: 

do runtb.do r
This script compiles the testbench for simulation and runs the chaining DMA 
tests. 

Example 2–1 shows the partial transcript from a successful simulation. As this 
transcript illustrates, the simulation includes the following stages:

■ Link training

■ Configuration

■ DMA reads and writes



Chapter 2: Getting Started 2–13
Simulating the Design

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ Root port to endpoint memory reads and writes

Example 2–1. Excerpts from Transcript of Successful Simulation Run

 Time: 56000  Instance: top_chaining_testbench.ep.epmap.pll_250mhz_to_500mhz.
altpll_component.pll0
# INFO:             464 ns Completed initial configuration of Root Port. 
# INFO: Core Clk Frequency: 251.00 Mhz
# INFO: 3608 ns  EP LTSSM State: DETECT.ACTIVE 
# INFO: 3644 ns  EP LTSSM State: POLLING.ACTIVE                                                                     
# INFO: 3660 ns  RP LTSSM State: DETECT.ACTIVE                                                                      
# INFO: 3692 ns  RP LTSSM State: POLLING.ACTIVE 
# INFO: 6012 ns  RP LTSSM State: POLLING.CONFIG 
# INFO: 6108 ns  EP LTSSM State: POLLING.CONFIG 
# INFO: 7388 ns  EP LTSSM State: CONFIG.LINKWIDTH.START 
# INFO: 7420 ns  RP LTSSM State: CONFIG.LINKWIDTH.START 
# INFO: 7900 ns  EP LTSSM State: CONFIG.LINKWIDTH.ACCEPT 
# INFO: 8316 ns  RP LTSSM State: CONFIG.LINKWIDTH.ACCEPT 
# INFO: 8508 ns  RP LTSSM State: CONFIG.LANENUM.WAIT 
# INFO: 9004 ns  EP LTSSM State: CONFIG.LANENUM.WAIT 
# INFO: 9196 ns  EP LTSSM State: CONFIG.LANENUM.ACCEPT 
# INFO: 9356 ns  RP LTSSM State: CONFIG.LANENUM.ACCEPT 
# INFO: 9548 ns  RP LTSSM State: CONFIG.COMPLETE 
# INFO: 9964 ns  EP LTSSM State: CONFIG.COMPLETE 
# INFO: 11052 ns  EP LTSSM State: CONFIG.IDLE 
# INFO: 11276 ns  RP LTSSM State: CONFIG.IDLE 
# INFO: 11356 ns  RP LTSSM State: L0 
# INFO: 11580 ns  EP LTSSM State: L0 



2–14 Chapter 2: Getting Started
Simulating the Design

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Example 2-1 continued

## INFO: 12536 ns 
# INFO: 15896 ns   EP PCI Express Link Status Register (1081): 
# INFO: 15896 ns     Negotiated Link Width: x8 
# INFO: 15896 ns         Slot Clock Config: System Reference Clock Used 
# INFO: 16504 ns  RP LTSSM State: RECOVERY.RCVRLOCK 
# INFO: 16840 ns  EP LTSSM State: RECOVERY.RCVRLOCK 
# INFO: 17496 ns  EP LTSSM State: RECOVERY.RCVRCFG 
# INFO: 18328 ns  RP LTSSM State: RECOVERY.RCVRCFG 
# INFO: 20440 ns  RP LTSSM State: RECOVERY.SPEED 
# INFO: 20712 ns  EP LTSSM State: RECOVERY.SPEED 
# INFO: 21600 ns  EP LTSSM State: RECOVERY.RCVRLOCK 
# INFO: 21614 ns  RP LTSSM State: RECOVERY.RCVRLOCK 
# INFO: 22006 ns  RP LTSSM State: RECOVERY.RCVRCFG 
# INFO: 22052 ns  EP LTSSM State: RECOVERY.RCVRCFG 
# INFO: 22724 ns  EP LTSSM State: RECOVERY.IDLE 
# INFO: 22742 ns  RP LTSSM State: RECOVERY.IDLE 
# INFO: 22846 ns  RP LTSSM State: L0 
# INFO: 22900 ns  EP LTSSM State: L0 
# INFO: 23152 ns        Current Link Speed: 5.0GT/s 
# INFO: 27936 ns ---------                                                                                           
# INFO: 27936 ns TASK:dma_set_header READ                                                                            
# INFO: 27936 ns Writing Descriptor header                                                                           
# INFO: 27976 ns data content of the DT header                                                                       
# INFO: 27976 ns                                                                                                     
# INFO: 27976 ns Shared Memory Data Display:                                                                         
# INFO: 27976 ns Address  Data                                                                                       
# INFO: 27976 ns -------  ----                                                                                       
# INFO: 27976 ns 00000900 00000003 00000000 00000900 CAFEFADE                                                        
# INFO: 27976 ns ---------                                                                                           
# INFO: 27976 ns TASK:dma_set_rclast                                                                                 
# INFO: 27976 ns    Start READ DMA : RC issues MWr (RCLast=0002)                                                     
# INFO: 27992 ns ---------                                                                                           
# INFO: 28000 ns TASK:msi_poll    Polling MSI Address:07F0---> Data:FADE......                                       
# INFO: 28092 ns TASK:rcmem_poll  Polling RC Address0000090C   current data (0000FADE)  
expected data (00000002)     
# INFO: 29592 ns TASK:rcmem_poll  Polling RC Address0000090C   current data (00000000)  
expected data (00000002)     
# INFO: 31392 ns TASK:rcmem_poll  Polling RC Address0000090C   current data (00000002)  
expected data (00000002)     
# INFO: 31392 ns TASK:rcmem_poll   ---> Received Expected Data (00000002)                                            
# INFO: 31440 ns TASK:msi_poll    Received DMA Read MSI(0000) : B0FC
# INFO: 31448 ns Completed DMA Read                                                                                  
# INFO: 31448 ns ---------                                                                                           
# INFO: 31448 ns TASK:chained_dma_test                                                                               
# INFO: 31448 ns    DMA: Write                                                                                       
# INFO: 31448 ns ---------                                                                                           
# INFO: 31448 ns TASK:dma_wr_test                                                                                    
# INFO: 31448 ns    DMA: Write                                                                                       
# INFO: 31448 ns ---------                                                                                           
# INFO: 31448 ns TASK:dma_set_wr_desc_data                                                                           
# INFO: 31448 ns ---------                                         
INFO: 31448 ns TASK:dma_set_msi WRITE                                                                              
# INFO: 31448 ns  Message Signaled Interrupt Configuration                                                           
# INFO: 1448 ns   msi_address (RC memory)= 0x07F0                                                                   
# INFO: 31760 ns   msi_control_register = 0x00A5                                                                     
# INFO: 32976 ns   msi_expected = 0xB0FD                                                                             



Chapter 2: Getting Started 2–15
Simulating the Design

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Example 2-1 continued

# INFO: 32976 ns   msi_capabilities address = 0x0050                                                                 
# INFO: 32976 ns   multi_message_enable = 0x0002                                                                     
# INFO: 32976 ns   msi_number = 0001                                                                                 
# INFO: 32976 ns   msi_traffic_class = 0000                                                                          
# INFO: 32976 ns ---------                               
# INFO: 26416 ns TASK:chained_dma_test 
# INFO: 26416 ns    DMA: Read 
# INFO: 26416 ns --------- 
# INFO: 26416 ns TASK:dma_rd_test                                                                                    
# INFO: 26416 ns ---------                                                                                           
# INFO: 26416 ns TASK:dma_set_rd_desc_data                                                                           
# INFO: 26416 ns ---------                                                                                           
# INFO: 26416 ns TASK:dma_set_msi READ                                                                               
# INFO: 26416 ns  Message Signaled Interrupt Configuration                                                           
# INFO: 26416 ns   msi_address (RC memory)= 0x07F0                                                                   
# INFO: 26720 ns   msi_control_register = 0x0084                                                                     
# INFO: 27936 ns   msi_expected = 0xB0FC                                                                             
# INFO: 27936 ns   msi_capabilities address = 0x0050                                                                 
# INFO: 27936 ns   multi_message_enable = 0x0002                                                                     
# INFO: 27936 ns   msi_number = 0000                                                                                 
# INFO: 27936 ns   msi_traffic_class = 0000 
# INFO: 32976 ns TASK:dma_set_header WRITE                                                                           
# INFO: 32976 ns Writing Descriptor header                                                                           
# INFO: 33016 ns data content of the DT header                                                                       
# INFO: 33016 ns                                                                                                     
# INFO: 33016 ns Shared Memory Data Display:                                                                         
# INFO: 33016 ns Address  Data                                                                                       
# INFO: 33016 ns -------  ----                                                                                       
# INFO: 33016 ns 00000800 10100003 00000000 00000800 CAFEFADE                                                        
# INFO: 33016 ns ---------                                                                                           
# INFO: 33016 ns TASK:dma_set_rclast                                                                                 
# INFO: 33016 ns    Start WRITE DMA : RC issues MWr (RCLast=0002)                                                    
# INFO: 33032 ns ---------                                                                                           
# INFO: 33038 ns TASK:msi_poll    Polling MSI Address:07F0---> Data:FADE......                                       
# INFO: 33130 ns TASK:rcmem_poll  Polling RC Address0000080C   current data (0000FADE)  
expected data (00000002)     
# INFO: 34130 ns TASK:rcmem_poll  Polling RC Address0000080C   current data (00000000)  
expected data (00000002)     
# INFO: 35910 ns TASK:msi_poll    Received DMA Write MSI(0000) : B0FD                                                
# INFO: 35930 ns TASK:rcmem_poll  Polling RC Address0000080C   current data (00000002)  
expected data (00000002)     
# INFO: 35930 ns TASK:rcmem_poll   ---> Received Expected Data (00000002)                                            
# INFO: 35938 ns ---------                                                                                           
# INFO: 35938 ns Completed DMA Write                                                                                 
# INFO: 35938 ns ---------                                                                                           
# INFO: 35938 ns TASK:check_dma_data                                                                                 
# INFO: 35938 ns   Passed : 0644 identical dwords.                                                                   
# INFO: 35938 ns ---------                                                                                           
# INFO: 35938 ns TASK:downstream_loop                                                                                
# INFO: 36386 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# INFO: 36826 ns Passed: 0008 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# INFO: 37266 ns Passed: 0012 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# INFO: 37714 ns Passed: 0016 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# INFO: 38162 ns Passed: 0020 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# INFO: 38618 ns Passed: 0024 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# INFO: 39074 ns Passed: 0028 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# INFO: 39538 ns Passed: 0032 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# INFO: 40010 ns Passed: 0036 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# INFO: 40482 ns Passed: 0040 same bytes in BFM mem addr 0x00000040 and 0x00000840                                   
# SUCCESS: Simulation stopped due to successful completion!



2–16 Chapter 2: Getting Started
Constraining the Design

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Constraining the Design
The Quartus project directory for the chaining DMA design example is in 
<working_dir>\top_examples\chaining_dma\. Before compiling the design using 
the Quartus II software, you must apply appropriate design constraints, such as 
timing constraints. The Quartus II software automatically generates the constraint 
files when you generate the IP Compiler for PCI Express. 

Table 2–8 describes these constraint files.

If you want to perform an initial compilation to check any potential issues without 
creating pin assignments for a specific board, you can do so after running the 
following two steps that constrain the chaining DMA design example:

1. To apply Quartus II constraint files, type the following commands at the Tcl 
console command prompt:

source ../../top.tcl r

1 To display the Quartus II Tcl Console, on the View menu, point to Utility 
Windows and click Tcl Console.

2. To add the Synopsys timing constraints to your design, follow these steps: 

a. On the Assignments menu, click Settings.

b. Click TimeQuest Timing Analyzer. 

c. Under SDC files to include in the project, click the Browse button. Browse to 
your <working_dir> to add top.sdc.

d. Click Add.

e. Click OK.

Table 2–8. Automatically Generated Constraints Files

Constraint Type Directory Description

General <working_dir>/<variation>.tcl (top.tcl)

This file includes various Quartus II constraints. In 
particular, it includes virtual pin assignments. Virtual 
pin assignments allow you to avoid making specific 
pin assignments for top-level signals while you are 
simulating and not yet ready to map the design to 
hardware. 

Timing <working_dir>/<variation>.sdc (top.sdc) This file is the Synopsys Design Constraints File (.sdc) 
which includes timing constraints.



Chapter 2: Getting Started 2–17
Constraining the Design

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Example 2–2 illustrates the Synopsys timing constraints. 

Specifying Device and Pin Assignments
If you want to download the design to a board, you must specify the device and pin 
assignments for the chaining DMA example design. To make device and pin 
assignments, follow these steps: 

1. To select the device, on the Assignments menu, click Device. 

2. In the Family list, select Stratix IV (GT/GX/E).

3. Scroll through the Available devices to select EP4SGX230KF40C2.

4. To add pin assignments for the EP4SGX230KF40C2 device, copy all the text 
included in  to the chaining DMA design example .qsf file, 
<working_dir>\top_examples\chaining_dma\top_example_chaining_top.qsf to 
your project .qsf file.

Example 2–2. Synopsys Timing Constraints

derive_pll_clocks 
derive_clock_uncertainty
create_clock -period "100 MHz" -name {refclk} {refclk}
set_clock_groups -exclusive -group [get_clocks { refclk*clkout }] -group [get_clocks { 
*div0*coreclkout}]
set_clock_groups -exclusive -group [get_clocks { *central_clk_div0* }] -group 
[get_clocks { *_hssi_pcie_hip* }] -group [get_clocks { *central_clk_div1* }]

<The following 4 additional constraints are for Stratix IV ES Silicon only>
set_multicycle_path -from [get_registers *delay_reg*] -to [get_registers *all_one*] -
hold -start 1
set_multicycle_path -from [get_registers *delay_reg*] -to [get_registers *all_one*] -
setup -start 2
set_multicycle_path -from [get_registers *align*chk_cnt*] -to [get_registers 
*align*chk_cnt*] -hold -start 1
set_multicycle_path -from [get_registers *align*chk_cnt*] -to [get_registers 
*align*chk_cnt*] -setup -start 2



2–18 Chapter 2: Getting Started
Constraining the Design

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

1 The pin assignments provided in the .qsf are valid for the Stratix IV GX 
FPGA Development Board and the EP4SGX230KF40C2 device. If you are 
using different hardware you must determine the correct pin assignments. 

Example 2–3. Pin Assignments for the Stratix IV GX (EP4SGX230KF40C2) FPGA Development Board

set_location_assignment PIN_AK35 -to local_rstn_ext 
set_location_assignment PIN_R32 -to pcie_rstn
set_location_assignment PIN_AN38 -to refclk
set_location_assignment PIN_AU38 -to rx_in0
set_location_assignment PIN_AR38 -to rx_in1
set_location_assignment PIN_AJ38 -to rx_in2
set_location_assignment PIN_AG38 -to rx_in3
set_location_assignment PIN_AE38 -to rx_in4
set_location_assignment PIN_AC38 -to rx_in5
set_location_assignment PIN_U38 -to rx_in6
set_location_assignment PIN_R38 -to rx_in7
set_instance_assignment -name INPUT_TERMINATION DIFFERENTIAL -to free_100MHz -disable
set_location_assignment PIN_AT36 -to tx_out0
set_location_assignment PIN_AP36 -to tx_out1
set_location_assignment PIN_AH36 -to tx_out2
set_location_assignment PIN_AF36 -to tx_out3
set_location_assignment PIN_AD36 -to tx_out4
set_location_assignment PIN_AB36 -to tx_out5
set_location_assignment PIN_T36 -to tx_out6
set_location_assignment PIN_P36 -to tx_out7
set_location_assignment PIN_AB28 -to gen2_led
set_location_assignment PIN_F33 -to L0_led
set_location_assignment PIN_AK33 -to alive_led
set_location_assignment PIN_W28 -to comp_led
set_location_assignment PIN_R29 -to lane_active_led[0]
set_location_assignment PIN_AH35 -to lane_active_led[2]
set_location_assignment PIN_AE29 -to lane_active_led[3]
set_location_assignment PIN_AL35 -to usr_sw[0]
set_location_assignment PIN_AC35 -to usr_sw[1]
set_location_assignment PIN_J34 -to usr_sw[2]
set_location_assignment PIN_AN35 -to usr_sw[3]
set_location_assignment PIN_G33 -to usr_sw[4]
set_location_assignment PIN_K35 -to usr_sw[5]
set_location_assignment PIN_AG34 -to usr_sw[6]
set_location_assignment PIN_AG31 -to usr_sw[7]
set_instance_assignment -name IO_STANDARD "2.5 V" -to local_rstn_ext 
set_instance_assignment -name IO_STANDARD "2.5 V" -to pcie_rstn
set_instance_assignment -name INPUT_TERMINATION OFF -to refclk
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to rx_in0
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to rx_in1
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to rx_in2
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to rx_in3
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to rx_in4
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to rx_in5
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to rx_in6
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to rx_in7
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to tx_out0
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to tx_out1
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to tx_out2
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to tx_out3
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to tx_out4
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to tx_out5
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to tx_out6
set_instance_assignment -name IO_STANDARD "1.4-V PCML" -to tx_out7



Chapter 2: Getting Started 2–19
Compiling the Design

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Specifying QSF Constraints
This section describes two additional constraints to improve performance in specific 
cases. 

■ Constraints for Stratix IV GX ES silicon–add the following constraint to your .qsf 
file:

set_instance_assignment -name GLOBAL_SIGNAL "GLOBAL CLOCK" -to 
*wire_central_clk_div*_coreclkout

This constraint aligns the PIPE clocks (core_clk_out) from each quad to reduce 
clock skew in ×8 variants.

■ Constraints for design running at frequencies higher than 250 MHz:

set_global_assignment -name PHYSICAL_SYNTHESIS_ASYNCHRONOUS_SIGNAL_PIPELINING ON

This constraint improves performance for designs in which asynchronous signals 
in very fast clock domains cannot be distributed across the FPGA fast enough due 
to long global network delays. This optimization performs automatic pipelining of 
these signals, while attempting to minimize the total number of registers inserted.

Compiling the Design
To test your IP Compiler for PCI Express in hardware, your initial Quartus II 
compilation includes all of the directories shown in Figure 2–5. After you have fully 
tested your customized design, you can exclude the testbench directory from the 
Quartus II compilation.

On the Processing menu, click Start Compilation to compile your design.

Pin Assignments for the Stratix IV (EP4SGX230KF40C2) Development Board (continued)

set_instance_assignment -name IO_STANDARD "2.5 V" -to usr_sw[0]
set_instance_assignment -name IO_STANDARD "2.5 V" -to usr_sw[1]
set_instance_assignment -name IO_STANDARD "2.5 V" -to usr_sw[2]
set_instance_assignment -name IO_STANDARD "2.5 V" -to usr_sw[3]
set_instance_assignment -name IO_STANDARD "2.5 V" -to usr_sw[4]
set_instance_assignment -name IO_STANDARD "2.5 V" -to usr_sw[5]
set_instance_assignment -name IO_STANDARD "2.5 V" -to usr_sw[6]
set_instance_assignment -name IO_STANDARD "2.5 V" -to usr_sw[7]
set_instance_assignment -name IO_STANDARD "2.5 V" -to 
lane_active_led[0]
set_instance_assignment -name IO_STANDARD "2.5 V" -to 
lane_active_led[2]
set_instance_assignment -name IO_STANDARD "2.5 V" -to 
lane_active_led[3]
set_instance_assignment -name IO_STANDARD "2.5 V" -to L0_led
set_instance_assignment -name IO_STANDARD "2.5 V" -to alive_led
set_instance_assignment -name IO_STANDARD "2.5 V" -to comp_led
# Note reclk_free uses 100 MHz input
# On the S4GX Dev kit make sure that
#        SW4.5 = ON
#        SW4.6 = ON
set_instance_assignment -name IO_STANDARD LVDS -to free_100MHz
set_location_assignment PIN_AV22 -to free_100MHz



2–20 Chapter 2: Getting Started
Reusing the Example Design

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Reusing the Example Design
To use this example design as the basis of your own design, replace the endpoint 
application layer example shown in Figure 2–6 with your own application layer 
design. Then, modify the BFM driver to generate the transactions needed to test your 
application layer.



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

3. Parameter Settings

You customize the IP Compiler for PCI Express by specifying parameters in the IP 
Compiler for PCI Express parameter editor, which you access from the IP Catalog. 

Some IP Compiler for PCI Express variations are supported in only one or two of the 
design flows. Soft IP implementations are supported only in the Quartus II IP Catalog. 
For more information about the hard IP implementation variations available in the 
different design flows, refer to Table 1–5 on page 1–6.

This chapter describes the parameters and how they affect the behavior of the IP core.

The IP Compiler for PCI Express parameter editor that appears in the Qsys flow is 
different from the IP Compiler for PCI Express parameter editor that appears in the 
other two design flows. Because the Qsys design flow supports only a subset of the 
variations supported in the other two flows, and generates only hard IP 
implementations with specific characteristics, the Qsys flow parameter editor 
supports only a subset of the parameters described in this chapter.

Parameters in the Qsys Design Flow
The following sections describe the IP Compiler for PCI Express parameters available 
in the Qsys design flow. Separate sections describe the parameters available in 
different sections of the IP Compiler for PCI Express parameter editor.

The available parameters reflect the fact that the Qsys design flow supports only the 
following functionality:

■ Hard IP implementation

■ Native endpoint, with no support for:

■ I/O space BAR 

■ 32-bit prefetchable memory

■ 16 Tags

■ 1 Message Signaled Interrupt (MSI)

■ 1 virtual channel

■ Up to 256 bytes maximum payload

August 2014
<edit Part Number variable in chapter>



3–2 Chapter 3: Parameter Settings
Parameters in the Qsys Design Flow

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

System Settings
The first parameter section of the IP Compiler for PCI Express parameter editor in the 
Qsys flow contains the parameters for the overall system settings. Table 3–1 describes 
these settings.

PCI Base Address Registers
The ×1 and ×4 IP cores support memory space BARs ranging in size from 128 bytes to 
the maximum allowed by a 32-bit or 64-bit BAR. The ×8 IP cores support memory 
space BARs from 4 KBytes to the maximum allowed by a 32-bit or 64-bit BAR.

The available BARs reflect the fact that the Qsys design flow supports only native 
endpoints, with no support for I/O space BARs or 32-bit prefetchable memory.

The Avalon-MM address is the translated base address corresponding to a BAR hit of 
a received request from the PCI Express link. 

In the Qsys design flow, the PCI Base Address Registers (Type 0 Configuration 
Space) Bar Size and Avalon Base Address information populates from Qsys. You 
cannot enter this information in the IP Compiler for PCI Express parameter editor. 
After you set the base addresses in Qsys, either automatically or by entering them 
manually, the values appear when you reopen the parameter editor.

Altera recommends using the Qsys option—on the System menu, click Assign Base 
Addresses—to set the base addresses automatically. If you decide to enter the address 
translation entries manually, then you must avoid conflicts in address assignment 
when adding other components, making interconnections, and assigning base 
addresses. 

Table 3–1. Qsys Flow System Settings Parameters

Parameter Value Description

Gen2 Lane Rate Mode Off/On

Specifies the maximum data rate at which the link can operate. Turning 
on Gen2 Lane Rate Mode sets the Gen2 rate, and turning it off sets the 
Gen1 rate. Refer to Table 1–5 on page 1–6 for a complete list of Gen1 
and Gen2 support.

Number of Lanes  ×1, ×2, ×4, ×8 Specifies the maximum number of lanes supported. Refer to Table 1–5 
on page 1–6 for a complete list of device support for numbers of lanes.

Reference clock 
frequency 100 MHz, 125 MHz You can select either a 100 MHz or 125 MHz reference clock for Gen1 

operation; Gen2 requires a 100 MHz clock.

Use 62.5 MHz 
application clock Off/On

Specifies whether the application interface clock operates at the slower 
62.5 MHz frequency to support power saving. This parameter can only 
be turned on for some Gen1 ×1 variations. Refer to Table 4–1 on 
page 4–4 for a list of the supported application interface clock 
frequencies in different device families. 

Test out width None, 9 bits, or 64 bits
Indicates the width of the test_out signal. Most of these signals are 
reserved. Refer to Table 5–33 on page 5–59 for more information. 

Altera recommends that you configure the 64-bit width.



Chapter 3: Parameter Settings 3–3
Parameters in the Qsys Design Flow

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 3–2 describes the PCI register parameters. You can configure a BAR with value 
other than Not used only if the preceding BARs are configured. When an 
even-numbered BAR is set to 64 bit Prefetchable, the following BAR is labelled 
Occupied and forced to value Not used.

Device Identification Registers
The device identification registers are part of the PCI Type 0 configuration space 
header. You can set these register values only at device configuration. Table 3–3 
describes the PCI read-only device identification registers.

Table 3–2. PCI Registers (Note 1), (2)

Parameter Value Description

PCI Base Address Registers (0x10, 0x14, 0x18, 0x1C, 0x20, 0x24)

BAR Table (BAR0)
BAR Type

64 bit Prefetchable
32 but Non-Prefetchable
Not used

BAR0 size and type mapping (memory space). BAR0 and BAR1 can 
be combined to form a 64-bit prefetchable BAR. BAR0 and BAR1 can 
be configured separately as 32-bit non-prefetchable memories.) (2) 

BAR Table (BAR1)
BAR Type

32 but Non-Prefetchable
Not used

BAR1 size and type mapping (memory space). BAR0 and BAR1 can 
be combined to form a 64-bit prefetchable BAR. BAR0 and BAR1 can 
be configured separately as 32-bit non-prefetchable memories.) 

BAR Table (BAR2)
BAR Type 

64 bit Prefetchable
32 but Non-Prefetchable
Not used

BAR2 size and type mapping (memory space). BAR2 and BAR3 can 
be combined to form a 64-bit prefetchable BAR. BAR2 and BAR3 can 
be configured separately as 32-bit non-prefetchable memories.) (2)

BAR Table (BAR3)
BAR Type 

32 but Non-Prefetchable
Not used

BAR3 size and type mapping (memory space). BAR2 and BAR3 can 
be combined to form a 64-bit prefetchable BAR. BAR2 and BAR3 can 
be configured separately as 32-bit non-prefetchable memories.)

BAR Table (BAR4)
BAR Type 

64 bit Prefetchable
32 but Non-Prefetchable
Not used

BAR4 size and type mapping (memory space). BAR4 and BAR5 can 
be combined to form a 64-bit BAR. BAR4 and BAR5 can be 
configured separately as 32-bit non-prefetchable memories.) (2)

BAR Table (BAR5)
BAR Type 

32 but Non-Prefetchable
Not used

BAR5 size and type mapping (memory space). BAR4 and BAR5 can 
be combined to form a 64-bit BAR. BAR4 and BAR5 can be 
configured separately as 32-bit non-prefetchable memories.)

Notes to Table 3–2:

(1) A prefetchable 64-bit BAR is supported. A non-prefetchable 64-bit BAR is not supported because in a typical system, the root port configuration 
register of type 1 sets the maximum non-prefetchable memory window to 32-bits. 

(2) The Qsys design flow does not support I/O space for BAR type mapping. I/O space is only supported for legacy endpoint port types.

Table 3–3. PCI Registers (Part 1 of 2)

Parameter Value Description

Vendor ID 

0x000
0x1172 Sets the read-only value of the vendor ID register. This parameter 

can not be set to 0xFFFF per the PCI Express Specification.

Device ID 

0x000 
0x0004 Sets the read-only value of the device ID register.

Revision ID

0x008
0x01 Sets the read-only value of the revision ID register.

Class code 

0x008
0xFF0000 Sets the read-only value of the class code register.



3–4 Chapter 3: Parameter Settings
Parameters in the Qsys Design Flow

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Link Capabilities
Table 3–4 describes the capabilities parameter available in the Link Capabilities 
section of the IP Compiler for PCI Express parameter editor in the Qsys design flow.

Error Reporting
The parameters in the Error Reporting section control settings in the PCI Express 
advanced error reporting extended capability structure, at byte offsets 0x800 through 
0x834. Table 3–5 describes the error reporting parameters available in the Qsys design 
flow.

Subsystem ID 

0x02C 
0x0004 Sets the read-only value of the subsystem device ID register.

Subsystem vendor ID

0x02C 
0x1172

Sets the read-only value of the subsystem vendor ID register. This 
parameter can not be set to 0xFFFF per the PCI Express Base 
Specification 1.1 or 2.0. 

Table 3–3. PCI Registers (Part 2 of 2)

Table 3–4. Link Capabilities Parameter

Parameter Value Description

Link port number 1
Sets the read-only value of the port number field in the link 
capabilities register. (offset 0x08C in the PCI Express capability 
structure or PCI Express Capability List register).

Table 3–5. Error Reporting Capabilities Parameters 

Parameter Value Description

Implement 
advanced error 
reporting 

On/Off Implements the advanced error reporting (AER) capability.

Implement ECRC 
check On/Off

Enables ECRC checking capability. Sets the read-only value of the ECRC check 
capable bit in the advanced error capabilities and control register. This parameter 
requires you to implement the advanced error reporting capability.

Implement ECRC 
generation On/Off

Enables ECRC generation capability. Sets the read-only value of the ECRC generation 
capable bit in the advanced error capabilities and control register. This parameter 
requires you to implement the advanced error reporting capability. 



Chapter 3: Parameter Settings 3–5
Parameters in the Qsys Design Flow

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Buffer Configuration
The Buffer Configuration section of the IP Compiler for PCI Express parameter editor 
in the Qsys design flow includes parameters for the receive and retry buffers. The IP 
Compiler for PCI Express parameter editor also displays the read-only RX buffer 
space allocation information. Table 3–6 describes the parameters and information in 
this section of the parameter editor in the Qsys design flow. 

Table 3–6. Buffer Configuration Parameters 

Parameter Value Description

Maximum
payload size

0x084

128 bytes, 
256 bytes

Specifies the maximum payload size supported. This parameter sets the read-only 
value of the max payload size supported field of the device capabilities register 
(0x084[2:0]) and optimizes the IP core for this size payload. Maximum payload size 
is 128 bytes or 256 bytes, depending on the device. 

RX buffer credit 
allocation – 
performance for 
received requests 

Maximum, 
High, 
Medium, Low

Low—Provides the minimal amount of space for desired traffic. Select this option 
when the throughput of the received requests is not critical to the system design. 
This setting minimizes the device resource utilization. 

Because the Arria II GX and Stratix IV hard IP implementations have a fixed RX 
Buffer size, the only available value for these devices is Maximum.

Note that the read-only values for header and data credits update as you change 
this setting.

For more information, refer to Chapter 11, Flow Control. 

Posted header 
credit

Posted data credit

Non-posted 
header credit

Completion 
header credit

Completion data 
credit

Read-only 
entries

These values show the credits and space allocated for each flow-controllable type, 
based on the RX buffer size setting. All virtual channels use the same RX buffer 
space allocation. 

The entries show header and data credits for RX posted (memory writes) and 
completion requests, and header credits for non-posted requests (memory reads). 
The table does not show non-posted data credits because the IP core always 
advertises infinite non-posted data credits and automatically has room for the 
maximum number of dwords of data that can be associated with each non-posted 
header.

The numbers shown for completion headers and completion data indicate how much 
space is reserved in the RX buffer for completions. However, infinite completion 
credits are advertised on the PCI Express link as is required for endpoints. The 
application layer must manage the rate of non-posted requests to ensure that the RX 
buffer completion space does not overflow. The hard IP RX buffer is fixed at 16 
KBytes for Stratix IV GX devices and 4 KBytes for Arria II GX devices. 



3–6 Chapter 3: Parameter Settings
Parameters in the Qsys Design Flow

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Avalon-MM Settings
The Avalon-MM Settings section of the Qsys design flow IP Compiler for PCI 
Express parameter editor contains configuration settings for the PCI Express 
Avalon-MM bridge. Table 3–7 describes these parameters.

Table 3–7. Avalon-MM Configuration Settings

Parameter Value Description

Peripheral Mode

Requester/Completer,

Completer-Only,

Completer-Only 
single dword

Specifies whether the IP Compiler for PCI Express component is 
capable of sending requests to the upstream PCI Express devices, and 
whether the incoming requests are pipelined. 

Requester/Completer—Enables the IP Compiler for PCI Express to 
send request packets on the PCI Express TX link as well as receiving 
request packets on the PCI Express RX link.

Completer-Only—In this mode, the IP Compiler for PCI Express 
can receive requests, but cannot initiate upstream requests. 
However, it can transmit completion packets on the PCI Express TX 
link. This mode removes the Avalon-MM TX slave port and thereby 
reduces logic utilization.

Completer-Only single dword—Non-pipelined version of 
Completer-Only mode. At any time, only a single request can be 
outstanding. Completer-Only single dword uses fewer resources 
than Completer-Only.

Control Register Access 
(CRA) Avalon slave port 
(Qsys flow)

Off/On

Allows read/write access to bridge registers from the Avalon 
interconnect fabric using a specialized slave port. Disabling this option 
disallows read/write access to bridge registers, except in the 
Completer-Only single dword variations.

Auto Enable PCIe 
Interrupt (enabled at 
power-on) 

Off/On

Turning this option on enables the IP Compiler for PCI Express 
interrupt register at power-up. Turning it off disables the interrupt 
register at power-up. The setting does not affect run-time 
configurability of the interrupt enable register.



Chapter 3: Parameter Settings 3–7
Parameters in the Qsys Design Flow

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Address Translation
The Address Translation section of the Qsys design flow IP Compiler for PCI Express 
parameter editor contains parameter settings for address translation in the PCI 
Express Avalon-MM bridge. Table 3–8 describes these parameters.

Address Translation Table Contents
The address translation table in the Qsys design flow IP Compiler for PCI Express 
parameter editor is valid only for the fixed translation table configuration. The table 
provides information for translating Avalon-MM addresses to PCI Express addresses. 
The number of address pages available in the table is the number of address pages 
you specify in the Address Translation section of the parameter editor. 

The table entries specify the PCI Express base addresses of memory that the bridge 
can access. In translation of Avalon-MM addresses to PCI Express addresses, the 
upper bits of the Avalon-MM address are replaced with part of a specific entry. The 
most significant bits of the Avalon-MM address index the table, selecting the address 
page to use for each request. 

The PCIe address field comprises two parameters, bits [31:0] and bits [63:32] of the 
address. The Size of address pages value you specify in the Address Translation 
section of the parameter editor determines the number of least significant bits in the 
address that are replaced by the lower bits of the incoming Avalon-MM address. 

Table 3–8. Avalon-MM Address Translation Settings

Parameter Value Description

Address Translation 
Table Configuration

Dynamic translation 
table, 
Fixed translation 
table

Sets Avalon-MM-to-PCI Express address translation scheme to 
dynamic or fixed.

Dynamic translation table—Enables application software to write 
the address translation table contents using the control register 
access slave port. On-chip memory stores the table. Requires that 
the Avalon-MM CRA Port be enabled. Use several address 
translation table entries to avoid updating a table entry before 
outstanding requests complete. This option supports up to 512 
address pages.

Fixed translation table—Configures the address translation table 
contents to hardwired fixed values at the time of system generation. 
This option supports up to 16 address pages.

Number of address 
pages 

1, 2, 4, 8, 16, 32, 64, 
128, 256, 512

Specifies the number of PCI Express base address pages of memory 
that the bridge can access. This value corresponds to the number of 
entries in the address translation table. The Avalon address range is 
segmented into one or more equal-sized pages that are individually 
mapped to PCI Express addresses. Select the number and size of the 
address pages. If you select Dynamic translation table, use several 
address translation table entries to avoid updating a table entry before 
outstanding requests complete. Dynamic translation table supports up 
to 512 address pages, and fixed translation table supports up to 16 
address pages.

Size of address pages 4 Kbyte–4 Gbytes Specifies the size of each PCI Express memory segment accessible by 
the bridge. This value is common for all address translation entries.



3–8 Chapter 3: Parameter Settings
IP Core Parameters

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

However, bit 0 of PCIe Address 31:0 has the following special significance:

■ If bit 0 of PCIe Address 31:0 has value 0, the PCI Express memory accessed 
through this address page is 32-bit addressable.

■ If bit 0 of PCIe Address 31:0 has value 1, the PCI Express memory accessed 
through this address page is 64-bit addressable.

IP Core Parameters
The following sections describe the IP Compiler for PCI Express parameters

System Settings
The first page of the Parameter Settings tab contains the parameters for the overall 
system settings. Table 3–9 describes these settings.

The IP Compiler for PCI Express parameter editor that appears in the Qsys flow 
provides only the Gen2 Lane Rate Mode, Number of lanes, Reference clock 
frequency, Use 62.5 MHz application clock, and Test out width system settings 
parameters. For more information, refer to “Parameters in the Qsys Design Flow” on 
page 3–1.

Table 3–9. System Settings Parameters (Part 1 of 4)

Parameter Value Description

PCIe Core Type
Hard IP for PCI Express

Soft IP for PCI Express

The hard IP implementation uses embedded dedicated logic to 
implement the PCI Express protocol stack, including the physical layer, 
data link layer, and transaction layer.

The soft IP implementation uses optimized PLD logic to implement the 
PCI Express protocol stack, including physical layer, data link layer, and 
transaction layer.

The Qsys design flows support only the hard IP implementation.



Chapter 3: Parameter Settings 3–9
IP Core Parameters

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

PCIe System Parameters

PHY type (1)

Custom
Allows all types of external PHY interfaces (except serial). The number of 
lanes can be ×1 or ×4. This option is only available for the soft IP 
implementation.

Stratix II GX
Serial interface where Stratix II GX uses the Stratix II GX device family's 
built-in transceiver. Selecting this PHY allows only a serial PHY interface 
with the lane configuration set to Gen1 ×1, ×4, or ×8. 

Stratix IV GX

Serial interface where Stratix IV GX uses the Stratix IV GX device 
family's built-in transceiver to support PCI Express Gen1 and Gen2 ×1, 
×4, and ×8. For designs that may target HardCopy IV GX, the 
HardCopy IV GX setting must be used even when initially compiling for 
Stratix IV GX devices. This procedure ensures that you only apply 
HardCopy IV GX compatible settings in the Stratix IV GX 
implementation. 

Cyclone IV GX
Serial interface where Cyclone IV GX uses the Cyclone IV GX device 
family’s built-in transceiver. Selecting this PHY allows only a serial PHY 
interface with the lane configuration set to Gen1 ×1, ×2, or ×4.

HardCopy IV GX

Serial interface where HardCopy IV GX uses the HardCopy IV GX device 
family's built-in transceiver to support PCI Express Gen1 and Gen2 ×1, 
×4, and ×8. For designs that may target HardCopy IV GX, the 
HardCopy IV GX setting must be used even when initially compiling for 
Stratix IV GX devices. This procedure ensures HardCopy IV GX 
compatible settings in the Stratix IV GX implementation. For Gen2 ×8 
variations, this procedure will set the RX Buffer and Retry Buffer to be 
only 8 KBytes which is the HardCopy IV GX compatible implementation. 

Arria GX
Serial interface where Arria GX uses the Arria GX device family’s built-in 
transceiver. Selecting this PHY allows only a serial PHY interface with 
the lane configuration set to Gen1 ×1 or ×4.

Arria II GX Serial interface where Arria II GX uses the Arria II GX device family's 
built-in transceiver to support PCI Express Gen1 ×1, ×4, and ×8.

Arria II GZ
Serial interface where Arria II GZ uses the Arria II GZ device family's 
built-in transceiver to support PCI Express Gen1 ×1, ×4, and ×8, Gen2 
×1, Gen2 ×4.

TI XIO1100

TI XIO1100 uses an 8-bit DDR/SDR with a TXClk or a 16-bit SDR with a 
transmit clock PHY interface. Both of these options restrict the number 
of lanes to ×1. This option is only available for the soft IP 
implementation.

NXP PX1011A
Philips NPX1011A uses an 8-bit SDR with a TXClk and a PHY interface. 
This option restricts the number of lanes to ×1. This option is only 
available for the soft IP implementation.

Table 3–9. System Settings Parameters (Part 2 of 4)

Parameter Value Description



3–10 Chapter 3: Parameter Settings
IP Core Parameters

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

PHY interface

16-bit SDR,
16-bit SDR w/TxClk, 
8-bit DDR,
8-bit DDR w/TxClk, 
8-bit DDR/SDR 
w/TXClk,
8 bit SDR,
8-bit SDR w/TxClk,
serial

Selects the specific type of external PHY interface based on the interface 
datapath width and clocking mode. Refer to Chapter 14, External PHYs 
for additional detail on specific PHY modes. 

The PHY interface setting only applies to the soft IP implementation.

Configure transceiver 
block

Clicking this button brings up the transceiver parameter editor, allowing 
you to access a much greater subset of the transceiver parameters than 
was available in earlier releases. The parameters that you can access are 
different for the soft and hard IP versions of the IP Compiler for PCI 
Express and may change from release to release. (2)

For Arria II GX, Cyclone IV GX, Stratix II GX, and Stratix IV GX 
transceivers, refer to the “Protocol Settings for PCI Express (PIPE)” in 
the ALTGX Transceiver Setup Guide for an explanation of these settings.

Lanes  ×1, ×2, ×4, ×8

Specifies the maximum number of lanes supported. The ×8 soft IP 
configuration is only supported for Stratix II GX devices. For information 
about ×8 support in hard IP configurations, refer to Table 1–5 on 
page 1–6.

Xcvr ref_clk

PHY pclk
100 MHz, 125 MHz

For Arria II GX, Cyclone IV GX, HardCopy IV GX, and Stratix IV GX, you 
can select either a 100 MHz or 125 MHz reference clock for Gen1 
operation; Gen2 requires a 100 MHz clock. The Arria GX and 
Stratix II GX devices require a 100 MHz clock. If you use a PIPE 
interface (and the PHY type is not Arria GX, Arria II GX, Cyclone IV GX, 
HardCopy IV GX, Stratix II GX, or Stratix IV GX) the refclk is not 
required. 

For Custom and TI X101100 PHYs, the PHY pclk frequency is 125 MHz. 
For the NXP PX1011A PHY, the pclk value is 250 MHz. 

Application Interface

64-bit Avalon-ST,
128-bit Avalon-ST,
Descriptor/Data,
Avalon-MM 

Specifies the interface between the PCI Express transaction layer and the 
application layer. When using the parameter editor, this parameter can 
be set to Avalon-ST or Descriptor/Data. Altera recommends the Avalon-
ST option for all new designs. 128-bit Avalon-ST is only available when 
using the hard IP implementation.

Port type 
Native Endpoint
Legacy Endpoint
Root Port

Specifies the port type. Altera recommends Native Endpoint for all new 
endpoint designs. Select Legacy Endpoint only when you require I/O 
transaction support for compatibility. The Qsys design flow only 
supports Native Endpoint and the Avalon-MM interface to the user 
application. The Root Port option is available in the hard IP 
implementations.

The endpoint stores parameters in the Type 0 configuration space which 
is outlined in Table 6–2 on page 6–2. The root port stores parameters in 
the Type 1 configuration space which is outlined in Table 6–3 on 
page 6–3.

PCI Express version 1.0A, 1.1, 2.0

Selects the PCI Express specification with which the variation is 
compatible. Depending on the device that you select, the IP Compiler for 
PCI Express hard IP implementation supports PCI Express versions 1.1 
and 2.0. The IP Compiler for PCI Express soft IP implementation 
supports PCI Express versions 1.0a and 1.1

Table 3–9. System Settings Parameters (Part 3 of 4)

Parameter Value Description



Chapter 3: Parameter Settings 3–11
IP Core Parameters

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

PCI Registers
The ×1 and ×4 IP cores support memory space BARs ranging in size from 128 bits to 
the maximum allowed by a 32-bit or 64-bit BAR. 

The ×1 and ×4 IP cores in legacy endpoint mode support I/O space BARs sized from 
16 Bytes to 4 KBytes. The ×8 IP core only supports I/O space BARs of 4 KBytes.

ITable 3–10 describes the PCI register parameters. 

Application clock

62.5 MHz

125 MHz

250 MHz

Specifies the frequency at which the application interface clock operates. 
This frequency can only be set to 62.5 MHz or 125 MHz for some Gen1 
×1 variations. For all other variations this field displays the frequency of 
operation which is controlled by the number of lanes, application 
interface width and Max rate setting. Refer to Table 4–1 on page 4–4 for 
a list of the supported combinations. 

Max rate Gen 1 (2.5 Gbps)
Gen 2 (5.0 Gbps)

Specifies the maximum data rate at which the link can operate. The Gen2 
rate is only supported in the hard IP implementations. Refer to Table 1–5 
on page 1–6 for a complete list of Gen1 and Gen2 support in the hard IP 
implementation.

Test out width 0, 9, 64, 128 or 512 
bits 

Indicates the width of the test_out signal. The following widths are 
possible:

Hard IP test_out width: None, 9 bits, or 64 bits

Soft IP ×1 or ×4 test_out width: None, 9 bits, or 512 bits

Soft IP ×8 test_out width: None, 9 bits, or 128 bits

Most of these signals are reserved. Refer to Table 5–33 on page 5–59 
for more information. 

Altera recommends the 64-bit width for the hard IP implementation.

HIP reconfig Enable/Disable
Enables reconfiguration of the hard IP PCI Express read-only 
configuration registers. This parameter is only available for the hard IP 
implementation.

Notes to Table 3–9:

(1) To specify an IP Compiler for PCI Express that targets a Stratix IV GT device, select Stratix IV GX as the PHY type, You must make sure that any 
transceiver settings you specify in the transceiver parameter editor are valid for Stratix IV GT devices, otherwise errors will result during 
Quartus II compilation.

(2) When you configure the ALT2GXB transceiver for an Arria GX device, the Currently selected device family entry is Stratix II GX. However you 
must make sure that any transceiver settings applied in the ALT2GX parameter editor are valid for Arria GX devices, otherwise errors will result 
during Quartus II compilation.

Table 3–9. System Settings Parameters (Part 4 of 4)

Parameter Value Description

Table 3–10. PCI Registers (Part 1 of 3)

Parameter Value Description

PCI Base Address Registers (0x10, 0x14, 0x18, 0x1C, 0x20, 0x24)

BAR Table (BAR0) BAR type and size

BAR0 size and type mapping (I/O space (1), memory space). BAR0 
and BAR1 can be combined to form a 64-bit prefetchable BAR. BAR0 
and BAR1 can be configured separate as 32-bit non-prefetchable 
memories.) (2) 



3–12 Chapter 3: Parameter Settings
IP Core Parameters

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

BAR Table (BAR1) BAR type and size

BAR1 size and type mapping (I/O space (1), memory space. BAR0 
and BAR1 can be combined to form a 64-bit prefetchable BAR. BAR0 
and BAR1 can be configured separate as 32-bit non-prefetchable 
memories.) 

BAR Table (BAR2)

(3)
BAR type and size

BAR2 size and type mapping (I/O space (1), memory space. BAR2 
and BAR3 can be combined to form a 64-bit prefetchable BAR. BAR2 
and BAR3 can be configured separate as 32-bit non-prefetchable 
memories.) (2)

BAR Table (BAR3) 

(3)
BAR type and size

BAR3 size and type mapping (I/O space (1), memory space. BAR2 
and BAR3 can be combined to form a 64-bit prefetchable BAR. BAR2 
and BAR3 can be configured separate as 32-bit non-prefetchable 
memories.)

BAR Table (BAR4)

(3)
BAR type and size

BAR4 size and type mapping (I/O space (1), memory space. BAR4 
and BAR5 can be combined to form a 64-bit BAR. BAR4 and BAR5 
can be configured separate as 32-bit non-prefetchable 
memories.) (2)

BAR Table (BAR5)

(3)
BAR type and size

BAR5 size and type mapping (I/O space (1), memory space. BAR4 
and BAR5 can be combined to form a 64-bit BAR. BAR4 and BAR5 
can be configured separate as 32-bit non-prefetchable memories.)

BAR Table (EXP-ROM) 
(4) Disable/Enable Expansion ROM BAR size and type mapping (I/O space, memory 

space, non-prefetchable). 

PCIe Read-Only Registers 

Device ID 

0x000 
0x0004 Sets the read-only value of the device ID register.

Subsystem ID 

0x02C (3)
0x0004 Sets the read-only value of the subsystem device ID register.

Revision ID

0x008
0x01 Sets the read-only value of the revision ID register.

Vendor ID 

0x000
0x1172 Sets the read-only value of the vendor ID register. This parameter 

can not be set to 0xFFFF per the PCI Express Specification.

Subsystem vendor ID

0x02C (3)
0x1172

Sets the read-only value of the subsystem vendor ID register. This 
parameter can not be set to 0xFFFF per the PCI Express Base 
Specification 1.1 or 2.0. 

Class code 

0x008
0xFF0000 Sets the read-only value of the class code register.

Base and Limit Registers

Input/Output (5)
Disable
16-bit I/O addressing
32-bit I/O addressing

Specifies what address widths are supported for the IO base and 
IO limit registers. 

Table 3–10. PCI Registers (Part 2 of 3)



Chapter 3: Parameter Settings 3–13
IP Core Parameters

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Capabilities Parameters
The Capabilities page contains the parameters setting various capability properties of 
the IP core. These parameters are described in Table 3–11. Some of these parameters 
are stored in the Common Configuration Space Header. The byte offset within the 
Common Configuration Space Header indicates the parameter address.

The IP Compiler for PCI Express parameter editor that appears in the Qsys flow 
provides only the Link port number, Implement advance error reporting, 
Implement ECRC check, and Implement ECRC generation capabilities parameters. 
For more information, refer to “Parameters in the Qsys Design Flow” on page 3–1.

Prefetchable memory 
(5)

Disable
32-bit I/O addressing
64-bit I/O addressing

Specifies what address widths are supported for the prefetchable 
memory base register and prefetchable memory limit register. 

Notes to Table 3–10:

(1) A prefetchable 64-bit BAR is supported. A non-prefetchable 64-bit BAR is not supported because in a typical system, the root port configuration 
register of type 1 sets the maximum non-prefetchable memory window to 32-bits. 

(2) The Qsys design flows do not support I/O space for BAR type mapping. I/O space is only supported for legacy endpoint port types.
(3) Only available for EP designs which require the use of the Header type 0 PCI configuration register.
(4) The Qsys design flows do not support the expansion ROM.
(5) Only available for RP designs which require the use of the Header type 1 PCI configuration register. Therefore, this option is not available in the 

Qsys design flows.

Table 3–10. PCI Registers (Part 3 of 3)

Table 3–11. Capabilities Parameters (Part 1 of 4)

Parameter Value Description

Device Capabilities
0x084

Tags supported 4–256

Indicates the number of tags supported for non-posted requests transmitted by the 
application layer. The following options are available:

Hard IP: 32 or 64 tags for ×1, ×4, and ×8

Soft IP: 4–256 tags for ×1 and ×4; 4–32 for ×8 

Qsys design flows: 16 tags

This parameter sets the values in the Device Control register (0x088) of the PCI 
Express capability structure described in Table 6–7 on page 6–4. 

The transaction layer tracks all outstanding completions for non-posted requests 
made by the application. This parameter configures the transaction layer for the 
maximum number to track. The application layer must set the tag values in all 
non-posted PCI Express headers to be less than this value. Values greater than 32 
also set the extended tag field supported bit in the configuration space device 
capabilities register. The application can only use tag numbers greater than 31 if 
configuration software sets the extended tag field enable bit of the device control 
register. This bit is available to the application as cfg_devcsr[8]. 

Implement 
completion timeout 
disable 

0x0A8

On/Off

This option is only selectable for PCI Express version 2.0 and higher root ports . For 
PCI Express version 2.0 and higher endpoints this option is forced to On. For PCI 
Express version 1.0a and 1.1 variations, this option is forced to Off. The timeout 
range is selectable. When On, the core supports the completion timeout disable 
mechanism via the PCI Express Device Control Register 2. The application layer logic 
must implement the actual completion timeout mechanism for the required ranges. 



3–14 Chapter 3: Parameter Settings
IP Core Parameters

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Completion 
timeout range

Ranges A–D

This option is only available for PCI Express version 2.0 and higher. It indicates 
device function support for the optional completion timeout programmability 
mechanism. This mechanism allows system software to modify the completion 
timeout value. This field is applicable only to root ports and endpoints that issue 
requests on their own behalf. Completion timeouts are specified and enabled via the 
Device Control 2 register (0x0A8) of the PCI Express Capability Structure Version 2.0 
described in Table 6–8 on page 6–5. For all other functions this field is reserved and 
must be hardwired to 0x0. Four time value ranges are defined:

Range A: 50 µs to 10 ms

Range B: 10 ms to 250 ms

Range C: 250 ms to 4 s

Range D: 4 s to 64 s

Bits are set according to the list below to show timeout value ranges supported. 0x0 
completion timeout programming is not supported and the function must implement 
a timeout value in the range 50 s to 50 ms. 

Completion 
timeout range

(continued)

Each range is turned on or off to specify the full range value. Bit 0 controls Range A, 
bit 1 controls Range B, bit 2 controls Range C, and bit 3 controls Range D. The 
following values are supported:

0x1: Range A 

0x2: Range B

0x3: Ranges A and B

0x6: Ranges B and C

0x7: Ranges A, B, and C

0xE: Ranges B, C and D

0xF: Ranges A, B, C, and D

All other values are reserved. This parameter is not available for PCIe version 1.0. 

Altera recommends that the completion timeout mechanism expire in no less than 
10 ms.

Error Reporting 
0x800–0x834

Implement 
advanced error 
reporting 

On/Off Implements the advanced error reporting (AER) capability.

Implement ECRC 
check On/Off

Enables ECRC checking capability. Sets the read-only value of the ECRC check 
capable bit in the advanced error capabilities and control register. This parameter 
requires you to implement the advanced error reporting capability.

Implement ECRC 
generation On/Off

Enables ECRC generation capability. Sets the read-only value of the ECRC generation 
capable bit in the advanced error capabilities and control register. This parameter 
requires you to implement the advanced error reporting capability. 

Implement ECRC 
forwarding On/Off

Available for hard IP implementation only. Forward ECRC to the application layer. On 
the Avalon-ST receive path, the incoming TLP contains the ECRC dword and the TD 
bit is set if an ECRC exists. On the Avalon-ST transmit path, the TLP from the 
application must contain the ECRC dword and have the TD bit set.

Table 3–11. Capabilities Parameters (Part 2 of 4)

Parameter Value Description



Chapter 3: Parameter Settings 3–15
IP Core Parameters

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

MSI Capabilities
0x050–0x05C

MSI messages 
requested

1, 2, 4, 8, 
16, 32

Indicates the number of messages the application requests. Sets the value of the 
multiple message capable field of the message control register, 0x050[31:16]. The 
Qsys design flow supports only 1 MSI.

MSI message
64–bit address 
capable

On/Off Indicates whether the MSI capability message control register is 64-bit addressing 
capable. PCI Express native endpoints always support MSI 64-bit addressing. 

Link Capabilities
0x090

Link common clock On/Off
Indicates if the common reference clock supplied by the system is used as the 
reference clock for the PHY. This parameter sets the read-only value of the slot clock 
configuration bit in the link status register.

Data link layer active 
reporting 

0x094
On/Off

Turn this option On for a downstream port if the component supports the optional 
capability of reporting the DL_Active state of the Data Link Control and Management 
State Machine. For a hot-plug capable downstream port (as indicated by the Hot-
Plug Capable field of the Slot Capabilities register), this option must be 
turned on. For upstream ports and components that do not support this optional 
capability, turn this option Off. Endpoints do not support this option.

Surprise down 
reporting On/Off When this option is On, a downstream port supports the optional capability of 

detecting and reporting the surprise down error condition. 

Link port number 0x01 Sets the read-only value of the port number field in the link capabilities register.

Slot Capabilities 
0x094

Enable slot 
capability On/Off

The slot capability is required for root ports if a slot is implemented on the port. Slot 
status is recorded in the PCI Express Capabilities register. This capability is 
only available for root port variants. Therefore, this option is not available in the Qsys 
design flow.

Slot capability 
register 0x00000000 

Defines the characteristics of the slot. You turn this option on by selecting Enable 
slot capability. The various bits are defined as follows:

MSI-X Capabilities (0x68, 0x6C, 0x70)

Implement MSI-X On/Off The MSI-X functionality is only available in the hard IP implementation. The Qsys 
design flow does not support MSI-X functionality.

Table 3–11. Capabilities Parameters (Part 3 of 4)

Parameter Value Description

31 19 18 17 16 15 14 7 6 5

Physical Slot Number

No Command Completed Support
Electromechanical Interlock Present

Slot Power Limit Scale
Slot Power Limit Value

Hot-Plug Capable
Hot-Plug Surprise

Power Indicator Present
Attention Indicator Present

MRL Sensor Present
Power Controller Present
Attention Button Present

04 3 2 1



3–16 Chapter 3: Parameter Settings
IP Core Parameters

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Buffer Setup
The Buffer Setup page contains the parameters for the receive and retry buffers. 
Table 3–12 describes the parameters you can set on this page. 

The IP Compiler for PCI Express parameter editor that appears in the Qsys flow 
provides only the Maximum payload size and RX buffer credit allocation – 
performance for received requests buffer setup parameters. This parameter editor 
also displays the read-only RX buffer space allocation information without the space 
usage or totals information. For more information, refer to “Parameters in the Qsys 
Design Flow” on page 3–1.

MSI-X Table size

0x068[26:16] 10:0
System software reads this field to determine the MSI-X Table size <N>, which is 
encoded as <N–1>. For example, a returned value of 10’b00000000011 indicates a 
table size of 4. This field is read-only. 

MSI-X Table 
Offset 31:3

Points to the base of the MSI-X Table. The lower 3 bits of the table BAR indicator 
(BIR) are set to zero by software to form a 32-bit qword-aligned offset. This field is 
read-only.

MSI-X Table BAR 
Indicator <5–1>:0

Indicates which one of a function’s Base Address registers, located beginning at 
0x10 in configuration space, is used to map the MSI-X table into memory space. 
This field is read-only. 

Pending Bit Array (PBA)

Offset
31:3

Used as an offset from the address contained in one of the function’s Base Address 
registers to point to the base of the MSI-X PBA. The lower 3 bits of the PBA BIR are 
set to zero by software to form a 32-bit qword-aligned offset. This field is read-only.

BAR Indicator 
(BIR) <5–1>:0

Indicates which of a function’s Base Address registers, located beginning at 0x10 in 
configuration space, is used to map the function’s MSI-X PBA into memory space. 
This field is read-only.

Note to Table 3–11:

(1) Throughout The PCI Express User Guide, the terms word, dword and qword have the same meaning that they have in the PCI Express Base 
Specification Revision 1.0a, 1.1, or 2.0. A word is 16 bits, a dword is 32 bits, and a qword is 64 bits.

Table 3–11. Capabilities Parameters (Part 4 of 4)

Parameter Value Description

Table 3–12. Buffer Setup Parameters (Part 1 of 3)

Parameter Value Description

Maximum
payload size

0x084

128 bytes, 
256 bytes, 
512 bytes, 
1  KByte, 
2  KBytes

Specifies the maximum payload size supported. This parameter sets the read-only 
value of the max payload size supported field of the device capabilities register 
(0x084[2:0]) and optimizes the IP core for this size payload.

Number of
virtual channels
0x104

1–2 

Specifies the number of virtual channels supported. This parameter sets the 
read-only extended virtual channel count field of port virtual channel capability 
register 1 and controls how many virtual channel transaction layer interfaces are 
implemented. The number of virtual channels supported depends upon the 
configuration, as follows:

Hard IP: 1–2 channels for Stratix IV GX devices, 1 channel for Arria II GX, 
Arria II GZ, Cyclone IV GX, and HardCopy IV GX devices

Soft IP: 2 channels

Qsys: 1 channel



Chapter 3: Parameter Settings 3–17
IP Core Parameters

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Number of
low-priority VCs

0x104
None, 1

Specifies the number of virtual channels in the low-priority arbitration group. The 
virtual channels numbered less than this value are low priority. Virtual channels 
numbered greater than or equal to this value are high priority. Refer to “Transmit 
Virtual Channel Arbitration” on page 4–10 for more information. This parameter sets 
the read-only low-priority extended virtual channel count field of the port virtual 
channel capability register 1.

Auto configure 
retry buffer size On/Off Controls automatic configuration of the retry buffer based on the maximum payload 

size. For the hard IP implementation, this is set to On.

Retry buffer size
256 Bytes– 
16 KBytes 
(powers of 2)

Sets the size of the retry buffer for storing transmitted PCI Express packets until 
acknowledged. This option is only available if you do not turn on Auto configure 
retry buffer size. The hard IP retry buffer is fixed at 4 KBytes for Arria II GX and 
Cyclone IV GX devices and at 16 KBytes for Stratix IV GX devices.

Maximum retry 
packets

4–256 
(powers of 2) 

Set the maximum number of packets that can be stored in the retry buffer. For the 
hard IP implementation this parameter is set to 64.

Desired 
performance for 
received requests

Maximum, 
High, 
Medium, Low

Low—Provides the minimal amount of space for desired traffic. Select this option 
when the throughput of the received requests is not critical to the system design. 
This setting minimizes the device resource utilization. 

Because the Arria II GX and Stratix IV hard IP have a fixed RX Buffer size, the 
choices for this parameter are limited to a subset of these values. For Max 
payload size of 512 bytes or less, the only available value is Maximum. For Max 
payload size of 1 KBytes or 2 KBytes a tradeoff has to be made between how 
much space is allocated to requests versus completions. At 1 KByte and 2 KByte 
Max payload size, selecting a lower value for this setting forces a higher setting 
for the Desired performance for received completions. 

Note that the read-only values for header and data credits update as you change 
this setting.

For more information, refer to Chapter 11, Flow Control. This analysis explains 
how the Maximum payload size and Desired performance for received 
completions that you choose affect the allocation of flow control credits.

Table 3–12. Buffer Setup Parameters (Part 2 of 3)

Parameter Value Description



3–18 Chapter 3: Parameter Settings
IP Core Parameters

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Power Management
The Power Management page contains the parameters for setting various power 
management properties of the IP core. These parameters are not available in the Qsys 
design flow.

Desired 
performance for 
received 
completions

Maximum, 
High, 
Medium, Low

Specifies how to configure the RX buffer size and the flow control credits:

Maximum—Provides additional space to allow for additional external delays (link 
side and application side) and still allows full throughput. 
If you need more buffer space than this parameter supplies, select a larger 
payload size and this setting. The maximum setting increases the buffer size and 
slightly increases the number of logic elements (LEs), to support a larger payload 
size than is used. This is the default setting for the hard IP implementation.

Medium—Provides a moderate amount of space for received completions. Select 
this option when the received completion traffic does not need to use the full link 
bandwidth, but is expected to occasionally use short bursts of maximum sized 
payload packets. 

Low—Provides the minimal amount of space for received completions. Select 
this option when the throughput of the received completions is not critical to the 
system design. This is used when your application is never expected to initiate 
read requests on the PCI Express links. Selecting this option minimizes the device 
resource utilization. 

For the hard IP implementation, this parameter is not directly adjustable. The 
value set is derived from the values of Max payload size and the Desired 
performance for received requests parameter.

For more information, refer to Chapter 11, Flow Control. This analysis explains 
how the Maximum payload size and Desired performance for received 
completions that you choose affects the allocation of flow control credits.

RX Buffer Space 
Allocation (per 
VC) 

Read-Only 
table

Shows the credits and space allocated for each flow-controllable type, based on the 
RX buffer size setting. All virtual channels use the same RX buffer space allocation. 

The table shows header and data credits for RX posted (memory writes) and 
completion requests, and header credits for non-posted requests (memory reads). 
The table does not show non-posted data credits because the IP core always 
advertises infinite non-posted data credits and automatically has room for the 
maximum number of dwords of data that can be associated with each non-posted 
header.

The numbers shown for completion headers and completion data indicate how much 
space is reserved in the RX buffer for completions. However, infinite completion 
credits are advertised on the PCI Express link as is required for endpoints. The 
application layer must manage the rate of non-posted requests to ensure that the RX 
buffer completion space does not overflow. The hard IP RX buffer is fixed at 16 
KBytes for Stratix IV GX devices and 4 KBytes for Arria II GX devices. 

Table 3–12. Buffer Setup Parameters (Part 3 of 3)

Parameter Value Description



Chapter 3: Parameter Settings 3–19
IP Core Parameters

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 3–13 describes the parameters you can set on this page. 

Table 3–13. Power Management Parameters (Part 1 of 2)

Parameter Value Description

L0s Active State Power Management (ASPM)

Idle threshold for L0s 
entry

256 ns–8,192 ns 
(in 256 ns 
increments)

This design parameter indicates the idle threshold for L0s entry. This 
parameter specifies the amount of time the link must be idle before the 
transmitter transitions to L0s state. The PCI Express specification states 
that this time should be no more than 7 μs, but the exact value is 
implementation-specific. If you select the Arria GX, Arria II GX, 
Cyclone IV GX, Stratix II GX, or Stratix IV GX PHY, this parameter is 
disabled and set to its maximum value. If you are using an external PHY, 
consult the PHY vendor's documentation to determine the correct value for 
this parameter. 

Endpoint L0s 
acceptable latency < 64 ns – > 4 µs

This design parameter indicates the acceptable endpoint L0s latency for the 
device capabilities register. Sets the read-only value of the endpoint L0s 
acceptable latency field of the device capabilities register (0x084). This 
value should be based on how much latency the application layer can 
tolerate. This setting is disabled for root ports. 

Number of fast training sequences (N_FTS)

Common clock Gen1: 0–255

Gen2: 0–255

Indicates the number of fast training sequences needed in common clock 
mode. The number of fast training sequences required is transmitted to the 
other end of the link during link initialization and is also used to calculate 
the L0s exit latency field of the device capabilities register (0x084). If you 
select the Arria GX, Arria II GX, Stratix II GX, or Stratix IV GX PHY, this 
parameter is disabled and set to its maximum value. If you are using an 
external PHY, consult the PHY vendor's documentation to determine the 
correct value for this parameter.

Separate clock
Gen1: 0–255

Gen2: 0–255

Indicates the number of fast training sequences needed in separate clock 
mode. The number of fast training sequences required is transmitted to the 
other end of the link during link initialization and is also used to calculate 
the L0s exit latency field of the device capabilities register (0x084). If you 
select the Arria GX, Arria II GX, Stratix II GX, or Stratix IV GX PHY, this 
parameter is disabled and set to its maximum value. If you are using an 
external PHY, consult the PHY vendor's documentation to determine the 
correct value for this parameter.

Electrical idle exit 
(EIE) before FTS 3:0

Sets the number of EIE symbols sent before sending the N_FTS sequence. 
Legal values are 4–8. N_FTS is disabled for Arria II GX and Stratix IV GX 
devices pending device characterization.

L1s Active State Power Management (ASPM)

Enable L1 ASPM On/Off

Sets the L1 active state power management support bit in the link 
capabilities register (0x08C). If you select the Arria GX, Arria II GX, 
Cyclone IV GX, Stratix II GX, or Stratix IV GX PHY, this option is turned off 
and disabled.



3–20 Chapter 3: Parameter Settings
IP Core Parameters

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Avalon-MM Configuration 
The Avalon Configuration page contains parameter settings for the PCI Express 
Avalon-MM bridge. The bridge is available only in the Qsys design flow.For more 
information about the Avalon-MM configuration parameters in the Qsys design flow, 
refer to “Parameters in the Qsys Design Flow” on page 3–1.

Endpoint L1 
acceptable latency < 1 µs to > 64 µs

This value indicates the acceptable latency that an endpoint can withstand 
in the transition from the L1 to L0 state. It is an indirect measure of the 
endpoint’s internal buffering. This setting is disabled for root ports. Sets the 
read-only value of the endpoint L1 acceptable latency field of the device 
capabilities register. It provides information to other devices which have 
turned On the Enable L1 ASPM option. If you select the Arria GX, 
Arria II GX, Cyclone IV GX, Stratix II GX, or Stratix IV GX PHY, this option 
is turned off and disabled.

L1 Exit Latency 

Common clock
< 1µs to > 64 µs 

Indicates the L1 exit latency for the separate clock. Used to calculate the 
value of the L1 exit latency field of the device capabilities register (0x084). If 
you select the Arria GX, Arria II GX, Cyclone IV GX, Stratix II GX, or 
Stratix IV GX PHY this parameter is disabled and set to its maximum value. 
If you are using an external PHY, consult the PHY vendor's documentation 
to determine the correct value for this parameter.

L1 Exit Latency 
Separate clock < 1µs to > 64 µs

Indicates the L1 exit latency for the common clock. Used to calculate the 
value of the L1 exit latency field of the device capabilities register (0x084). If 
you select the Arria GX, Arria II GX, Cyclone IV GX, Stratix II GX, or 
Stratix IV GX PHY, this parameter is disabled and set to its maximum value. 
If you are using an external PHY, consult the PHY vendor's documentation 
to determine the correct value for this parameter.

Table 3–13. Power Management Parameters (Part 2 of 2)

Parameter Value Description



Chapter 3: Parameter Settings 3–21
IP Core Parameters

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 3–14. Avalon Configuration Settings (Part 1 of 2)

Parameter Value Description

Avalon Clock Domain
Use PCIe core clock

Use separate clock

Allows you to specify one or two clock domains for your application 
and the IP Compiler for PCI Express. The single clock domain is higher 
performance because it avoids the clock crossing logic that separate 
clock domains require.

Use PCIe core clock—In this mode, the IP Compiler for PCI Express 
provides a clock output, clk125_out or pcie_clk_out, to be used 
as the single clock for the IP Compiler for PCI Express and the 
system application clock.

Use separate clock—In this mode, the protocol layers of the IP 
Compiler for PCI Express operate on an internally generated clock. 
The IP Compiler for PCI Express exports clk125_out; however, this 
clock is not visible and cannot drive the components. The Avalon-
MM bridge logic of the IP Compiler for PCI Express operates on a 
different clock. 

For more information about these two modes, refer to“Avalon-MM 
Interface–Hard IP and Soft IP Implementations” on page 7–11 .

PCIe Peripheral Mode

Requester/Completer,

Completer-Only,

Completer-Only 
single dword

Specifies whether the IP Compiler for PCI Express component is 
capable of sending requests to the upstream PCI Express devices, and 
whether the incoming requests are pipelined. 

Requester/Completer—Enables the IP Compiler for PCI Express to 
send request packets on the PCI Express TX link as well as receiving 
request packets on the PCI Express RX link.

Completer-Only—In this mode, the IP Compiler for PCI Express can 
receive requests, but cannot initiate upstream requests. However, it 
can transmit completion packets on the PCI Express TX link. This 
mode removes the Avalon-MM TX slave port and thereby reduces 
logic utilization. When selecting this option, you should also select 
Low for the Desired performance for received completions option 
on the Buffer Setup page to minimize the device resources 
consumed. Completer-Only is only available in hard IP 
implementations.

Completer-Only single dword—Non-pipelined version of 
Completer-Only mode. At any time, only a single request can be 
outstanding. Completer-Only single dword uses fewer resources 
than Completer-Only and is only available in hard IP 
implementations.

Address translation 
table configuration

Dynamic translation 
table, 
Fixed translation 
table

Sets Avalon-MM-to-PCI Express address translation scheme to 
dynamic or fixed.

Dynamic translation table—Enables application software to write 
the address translation table contents using the control register 
access slave port. On-chip memory stores the table. Requires that 
the Avalon-MM CRA Port be enabled. Use several address 
translation table entries to avoid updating a table entry before 
outstanding requests complete. 

Fixed translation table—Configures the address translation table 
contents to hardwired fixed values at the time of system generation. 



3–22 Chapter 3: Parameter Settings
IP Core Parameters

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Address translation table size Sets Avalon-MM-to-PCI Express address translation windows and size.

Number of address 
pages 1, 2, 4, 8, 16, 32, 64, 

128, 256, 512

Specifies the number of PCI Express base address pages of memory 
that the bridge can access. This value corresponds to the number of 
entries in the address translation table. The Avalon address range is 
segmented into one or more equal-sized pages that are individually 
mapped to PCI Express addresses. Select the number and size of the 
address pages. If you select Dynamic translation table, use several 
address translation table entries to avoid updating a table entry before 
outstanding requests complete.

Size of address pages
1 MByte–2 GBytes Specifies the size of each PCI Express memory segment accessible by 

the bridge. This value is common for all address translation entries.

Fixed Address Translation Table Contents Specifies the type and PCI Express base addresses of memory that the 
bridge can access. The upper bits of the Avalon-MM address are 
replaced with part of a specific entry. The MSBs of the Avalon-MM 
address, used to index the table, select the entry to use for each 
request. The values of the lower bits (as specified in the size of address 
pages parameter) entered in this table are ignored. Those lower bits are 
replaced by the lower bits of the incoming Avalon-MM addresses.

PCIe base address
32-bit
64-bit

Type 32-bit Memory
64-bit Memory

Avalon-MM CRA port
Enable/Disable

Allows read/write access to bridge registers from Avalon using a 
specialized slave port. Disabling this option disallows read/write access 
to bridge registers. 

Table 3–14. Avalon Configuration Settings (Part 2 of 2)

Parameter Value Description



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

4. IP Core Architecture

This chapter describes the architecture of the IP Compiler for PCI Express. For the 
hard IP implementation, you can design an endpoint using the Avalon-ST interface or 
Avalon-MM interface, or a root port using the Avalon-ST interface. For the soft IP 
implementation, you can design an endpoint using the Avalon-ST, Avalon-MM, or 
Descriptor/Data interface. All configurations contain a transaction layer, a data link 
layer, and a PHY layer with the following functions:

■ Transaction Layer—The transaction layer contains the configuration space, which 
manages communication with the application layer: the receive and transmit 
channels, the receive buffer, and flow control credits. You can choose one of the 
following two options for the application layer interface from parameter editor:

■ Avalon-ST Interface

■ Descriptor/Data Interface (not recommended for new designs)

■ Data Link Layer—The data link layer, located between the physical layer and the 
transaction layer, manages packet transmission and maintains data integrity at the 
link level. Specifically, the data link layer performs the following tasks:

■ Manages transmission and reception of data link layer packets

■ Generates all transmission cyclical redundancy code (CRC) values and checks 
all CRCs during reception

■ Manages the retry buffer and retry mechanism according to received 
ACK/NAK data link layer packets

■ Initializes the flow control mechanism for data link layer packets and routes 
flow control credits to and from the transaction layer

■ Physical Layer—The physical layer initializes the speed, lane numbering, and lane 
width of the PCI Express link according to packets received from the link and 
directives received from higher layers.

1 IP Compiler for PCI Express soft IP endpoints comply with the PCI Express Base 
Specification 1.0a, or 1.1. IP Compiler PCI Express hard IP endpoints and root ports 
comply with the PCI Express Base Specification 1.1. 2.0, or 2.1. 

August 2014
<edit Part Number variable in chapter>



4–2 Chapter 4: IP Core Architecture
Application Interfaces

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 4–1 broadly describes the roles of each layer of the PCI Express IP core. 

This chapter provides an overview of the architecture of the Altera IP Compiler for 
PCI Express. It includes the following sections:

■ Application Interfaces

■ Transaction Layer

■ Data Link Layer

■ Physical Layer

■ PCI Express Avalon-MM Bridge

■ Completer Only PCI Express Endpoint Single DWord

Application Interfaces
You can generate the IP Compiler for PCI Express with the following application 
interfaces:

■ Avalon-ST Application Interface 

■ Avalon-MM Interface

Appendix B describes the Descriptor/Data interface.

Avalon-ST Application Interface
You can create an IP Compiler for PCI Express root port or endpoint using the 
parameter editor to specify the Avalon-ST interface. It includes a PCI Express 
Avalon-ST adapter module in addition to the three PCI Express layers. 

Figure 4–1. IP Compiler for PCI Express Layers 

Tx

Rx

Transaction Layer Data Link Layer Physical Layer

IP Compiler for PCI Express

To Application Layer To Link

Application Interfaces

Avalon-ST Interface

Data/Descriptor 
Interface

Avalon-MM Interface

Tx Port

Rx Port

or

or

With information sent 
by the application 
layer, the transaction 
layer generates a TLP, 
which includes a 
header and, optionally, 
a data payload.

The physical layer 
encodes the packet 
and transmits it to the 
receiving device on the 
other side of the link.

The transaction layer
disassembles the
transaction and 
transfers data to the 
application layer in a 
form that it recognizes.

The data link layer 
verifies the packet's 
sequence number and 
checks for errors.

The physical layer 
decodes the packet 
and transfers it to the 
data link layer.

The data link layer 
ensures packet 
integrity, and adds a 
sequence number and 
link cyclic redundancy 
code (LCRC) check to 
the packet.



Chapter 4: IP Core Architecture 4–3
Application Interfaces

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

The PCI Express Avalon-ST adapter maps PCI Express transaction layer packets 
(TLPs) to the user application RX and TX busses. Figure 4–2 illustrates this interface. 

In both the hard IP and soft IP implementations of the IP Compiler for PCI Express, 
the adapter maps the user application Avalon-ST interface to PCI Express TLPs. The 
hard IP and soft IP implementations differ in the following respects: 

■ The hard IP implementation includes dedicated clock domain crossing logic 
between the PHYMAC and data link layers. In the soft IP implementation you can 
specify one or two clock domains for the IP core. 

■ The hard IP implementation includes the following interfaces to access the 
configuration space registers:

■ The LMI interface

■ The Avalon-MM PCIe reconfig bus which can access any read-only 
configuration space register

■ In root port configuration, you can also access the configuration space registers 
with a configuration type TLP using the Avalon-ST interface. A type 0 
configuration TLP is used to access the RP configuration space registers, and a 
type 1 configuration TLP is used to access the configuration space registers of 
downstream nodes, typically endpoints on the other side of the link.

Figure 4–2. IP Core with PCI Express Avalon-ST Interface Adapter

Tx

Rx

Transaction Layer Data Link Layer Physical Layer

IP Compiler for PCI Express

To Application Layer To Link

Avalon-ST
Tx Port

Avalon-ST
Rx Port

Avalon-ST
 Adapter

 

With information sent 
by the application 
layer, the transaction 
layer generates a TLP, 
which includes a 
header and, optionally, 
a data payload.

The data link layer 
ensures packet 
integrity, and adds a 
sequence number and 
link cyclic redundancy 
code (LCRC) check to 
the packet.

The physical layer 
encodes the packet 
and transmits it to the 
receiving device on the 
other side of the link.

The transaction layer
disassembles the
transaction and 
transfers data to the 
application layer in a 
form that it recognizes.

The physical layer 
decodes the packet 
and transfers it to the 
data link layer.

The data link layer 
verifies the packet's 
sequence number and 
checks for errors.



4–4 Chapter 4: IP Core Architecture
Application Interfaces

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 4–3 and Figure 4–4 illustrate the hard IP and soft IP implementations of the IP 
Compiler for PCI Express with an Avalon-ST interface.

Figure 4–3. PCI Express Hard IP Implementation with Avalon-ST Interface to User Application 

Figure 4–4. PCI Express Soft IP Implementation with Avalon-ST Interface to User Application

Clock
Domain
Crossing

(CDC)

Data 
Link

Layer
(DLL)

Transaction Layer
(TL)

PHYMAC

IP Compiler for PCI Express Hard IP Implementation
Avalon-ST Rx

Avalon-ST Tx

Side Band

LMI

(Avalon-MM)  

PCIe Reconfig 

PIPE
Adapter

To
 A

pp
lic

at
io

n 
La

ye
r

LMI

Reconfig
Block

Clock & Reset
Selection

Transceiver
Configuration

Space

Data 
Link

Layer
(DLL)

Transaction Layer
(TL)

PHYMAC

Avalon-ST Rx

Avalon-ST Tx

Side Band

Test_in/Test_out

PIPE Adapter
To

 A
pp

lic
at

io
n 

La
ye

r

Test

Clock & Reset
Selection

Transceiver

IP Compiler for PCI Express Soft IP Implementation



Chapter 4: IP Core Architecture 4–5
Application Interfaces

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 4–1 provides the application clock frequencies for the hard IP and soft IP 
implementations. As this table indicates, the Avalon-ST interface can be either 64 or 
128 bits for the hard IP implementation. For the soft IP implementation, the Avalon-ST 
interface is 64 bits.

The following sections introduce the functionality of the interfaces shown in 
Figure 4–3 and Figure 4–4. For more detailed information, refer to “64- or 128-Bit 
Avalon-ST RX Port” on page 5–6 and “64- or 128-Bit Avalon-ST TX Port” on page 5–15.

Table 4–1. Application Clock Frequencies

Hard IP Implementation— Stratix IV GX and Hardcopy IV GX Devices

Lanes Gen1 Gen2

×1 62.5 MHz @ 64 bits (1) or 125 MHz @ 64 bits 125 MHz @ 64 bits

×4 125 MHz @ 64 bits
250 MHz @ 64 bits or

125 MHz @ 128 bits

×8 250 MHz @ 64 bits or 125 MHz @ 128 bits 250 MHz @ 128 bits 

Hard IP Implementation—Arria II GX Devices

Lanes Gen1 Gen2

×1 62.5 MHz @ 64 bits (1) or 125 MHz @ 64 bits —

×4 125 MHz @ 64 bits —

×8 125 MHz @ 128 bits —

Hard IP Implementation—Arria II GZ Devices

Lanes Gen1 Gen2

×1 62.5 MHz @ 64 bits (1) or 125 MHz @ 64 bits 125 MHz @ 64 bits

×4 125 MHz @ 64 bits 125 MHz @ 128 bits

×8 125 MHz @ 128 bits —

Hard IP Implementation—Cyclone IV GX Devices

Lanes Gen1 Gen2

×1 62.5 MHz @ 64 bits or 125 MHz @ 64 bits —

×2 125 MHz @ 64 bits —

×4 125 MHz @ 64 bits —

Soft IP Implementation

Lanes Gen1 Gen2

×1 62.5 MHz @ 64 bits or125 MHz @64 bits —

×4 125 MHz @ 64 bits —

×8 250 MHz @ 64 bits —

Notes to Table 4–1:

(1) The 62.5 MHz application clock is available in parameter editor-generated Gen1:×1 hard IP implementations in any 
device.



4–6 Chapter 4: IP Core Architecture
Application Interfaces

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

RX Datapath
The RX datapath transports data from the transaction layer to the Avalon-ST interface. 
A FIFO buffers the RX data from the transaction layer until the streaming interface 
accepts it. The adapter autonomously acknowledges all packets it receives from the 
PCI Express IP core. The rx_abort and rx_retry signals of the transaction layer 
interface are not used. Masking of non-posted requests is partially supported. Refer to 
the description of the rx_st_mask<n> signal for further information about masking. 

TX Datapath
The TX datapath transports data from the application's Avalon-ST interface to the 
transaction layer. In the hard IP implementation, a FIFO buffers the Avalon-ST data 
until the transaction layer accepts it. 

If required, TLP ordering should be implemented by the application layer. The TX 
datapath provides a TX credit (tx_cred) vector which reflects the number of credits 
available. For non–posted requests, this vector accounts for credits pending in the 
Avalon-ST adapter. For example, if the tx_cred value is 5, the application layer has 5 
credits available to it. For completions and posted requests, the tx_cred vector reflects 
the credits available in the transaction layer of the IP Compiler for PCI Express. For 
example, for completions and posted requests, if tx_cred is 5, the actual number of 
credits available to the application is (5 – <the number of credits in the adaptor>). You 
must account for completion and posted credits which may be pending in the 
Avalon-ST adapter. You can use the read and write FIFO pointers and the FIFO empty 
flag to track packets as they are popped from the adaptor FIFO and transferred to the 
transaction layer. 

TLP Reordering

Applications that use the non-posted tx_cred signal must ensure they never send 
more packets than tx_cred allows. While the IP core always obeys PCI Express flow 
control rules, the behavior of the tx_cred signal itself is unspecified if the credit limit 
is violated. When evaluating tx_cred, the application must take into account TLPs 
that are in flight, and not yet reflected in tx_cred. Altera recommends your 
application implement the following procedure, beginning from a state in which the 
application has not yet issued any TLPs: 

1. For calibration, ensure this application has issued no TLPs.

2. Wait for tx_cred to indicate that credits are available. 

3. Send as many TLPs as are allowed by tx_cred. For example, if tx_cred indicates 3 
credits of non-posted headers are available, the application sends 3 non-posted 
TLPs, then stops.

In this step, the application exhausts tx_cred before waiting for more credits to 
free. This step is required. 

4. Wait for the TLPs to cross the Avalon-ST TX interface. 

5. Wait at least 3 more clock cycles for tx_cred to reflect the consumed credits. 

6. Repeat from Step 2.



Chapter 4: IP Core Architecture 4–7
Application Interfaces

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

1 The value of the non-posted tx_cred represents that there are at least that number of 
credits available. The non-posted credits displayed may be less than what is actually 
available to the IP core. 

LMI Interface (Hard IP Only) 
The LMI bus provides access to the PCI Express configuration space in the transaction 
layer. For more LMI details, refer to the “LMI Signals—Hard IP Implementation” on 
page 5–37. 

PCI Express Reconfiguration Block Interface (Hard IP Only)
The PCI Express reconfiguration bus allows you to dynamically change the read-only 
values stored in the configuration registers. For detailed information refer to the “IP 
Core Reconfiguration Block Signals—Hard IP Implementation” on page 5–38.

MSI (Message Signal Interrupt) Datapath 
The MSI datapath contains the MSI boundary registers for incremental compilation. 
The interface uses the transaction layer's request–acknowledge handshaking protocol. 

You use the TX FIFO empty flag from the TX datapath FIFO for TX/MSI 
synchronization. When the TX block application drives a packet to the Avalon-ST 
adapter, the packet remains in the TX datapath FIFO as long as the IP core throttles 
this interface. When you must send an MSI request after a specific TX packet, you can 
use the TX FIFO empty flag to determine when the IP core receives the TX packet. 

For example, you may want to send an MSI request only after all TX packets are 
issued to the transaction layer. Alternatively, if you cannot interrupt traffic flow to 
synchronize the MSI, you can use a counter to count 16 writes (the depth of the FIFO) 
after a TX packet has been written to the FIFO (or until the FIFO becomes empty) to 
ensure that the transaction layer interface receives the packet, before you issue the 
MSI request. 



4–8 Chapter 4: IP Core Architecture
Application Interfaces

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 4–5 illustrates the Avalon-ST TX and MSI datapaths.

Incremental Compilation 
The IP core with Avalon-ST interface includes a fully registered interface between the 
user application and the PCI Express transaction layer. For the soft IP implementation, 
you can use incremental compilation to lock down the placement and routing of the 
IP Compiler for PCI Express with the Avalon-ST interface to preserve placement and 
timing while changes are made to your application.

1 Incremental recompilation is not necessary for the PCI Express hard IP 
implementation. This implementation is fixed. All signals in the hard IP 
implementation are fully registered.

Avalon-MM Interface 
IP Compiler for PCI Express variations generated in the Qsys design flow are PCI 
Express Avalon-MM bridges: PCI Express endpoints with an Avalon-MM interface to 
the application layer. The hard IP implementation of the PHYMAC and data link 
layers communicates with a soft IP implementation of the transaction layer optimized 
for the Avalon-MM protocol. 

Figure 4–5. Avalon-ST TX and MSI Datapaths

FIFO
Buffer

tx_st_data0

app_msi_req

Non-Posted Credits

To Transaction
Layer

To Application
Layer

tx_cred0 for Completion
and Posted Requests

(from Transaction Layter)

tx_cred0 for
Non-Posted Requests

tx_fifo_empty0

tx_fifo_wrptr0

tx_fifo_rdptr0

R
eg

is
te

rs



Chapter 4: IP Core Architecture 4–9
Transaction Layer

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 4–6 shows the block diagram of an IP Compiler for PCI Express with an 
Avalon-MM interface. 

The PCI Express Avalon-MM bridge provides an interface between the PCI Express 
transaction layer and other components across the system interconnect fabric.

Transaction Layer
The transaction layer sits between the application layer and the data link layer. It 
generates and receives transaction layer packets. Figure 4–7 illustrates the transaction 
layer of a component with two initialized virtual channels (VCs). The transaction 
layer contains three general subblocks: the transmit datapath, the configuration space, 
and the receive datapath, which are shown with vertical braces in Figure 4–7.

1 You can parameterize the Stratix IV GX IP core to include one or two virtual channels. 
The Arria II GX and Cyclone IV GX implementations include a single virtual channel.

Tracing a transaction through the receive datapath includes the following steps:

1. The transaction layer receives a TLP from the data link layer.

2. The configuration space determines whether the transaction layer packet is well 
formed and directs the packet to the appropriate virtual channel based on traffic 
class (TC)/virtual channel (VC) mapping.

3. Within each virtual channel, transaction layer packets are stored in a specific part 
of the receive buffer depending on the type of transaction (posted, non-posted, or 
completion transaction).

4. The transaction layer packet FIFO block stores the address of the buffered 
transaction layer packet.

Figure 4–6. IP Compiler for PCI Express with Avalon-MM Interface 

Tx

Rx

Transaction Layer Data Link Layer Physical Layer

IP Compiler for PCI Express

To Application Layer To Link

Avalon-MM
Master Port

IP Compiler for PCI Express
Avalon-MM Interface

Avalon-MM
Slave Port

(Control Register
Access)

Avalon-MM
Slave Port

Qsys component 
controls the upstream
PCI Express devices.

Qsys component 
controls access to 
internal control and
status registers.

Root port controls the
downstream Qsys 
component.

With information sent 
by the application 
layer, the transaction 
layer generates a TLP, 
which includes a 
header and, optionally, 
a data payload.

The data link layer 
ensures packet 
integrity, and adds a 
sequence number and 
link cyclic redundancy 
code (LCRC) check to 
the packet.

The physical layer 
encodes the packet 
and transmits it to the 
receiving device on the 
other side of the link.

The transaction layer
disassembles the
transaction and 
transfers data to the 
application layer in a 
form that it recognizes.

The data link layer 
verifies the packet's 
sequence number and 
checks for errors.

The physical layer 
decodes the packet 
and transfers it to the 
data link layer.



4–10 Chapter 4: IP Core Architecture
Transaction Layer

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

5. The receive sequencing and reordering block shuffles the order of waiting 
transaction layer packets as needed, fetches the address of the priority transaction 
layer packet from the transaction layer packet FIFO block, and initiates the transfer 
of the transaction layer packet to the application layer. 

Figure 4–7. Architecture of the Transaction Layer: Dedicated Receive Buffer per Virtual Channel

Tx1 Data

Tx1 Descriptor

Tx1 Control

Virtual Channel 1

Tx0 Data

Tx0 Descriptor

Tx0 Control

Virtual Channel 0

Rx Flow 
Control Credits

Tx Transaction Layer 
Packet Description 
& Data

Virtual Channel
Arbitration & Tx

Sequencing

Rx0 Data

Rx0 Descriptor

Rx0 Control
& Status

Virtual Channel 0

Rx1 Data

Rx1 Descriptor

Rx1 Control
& Status

Type 0 Configuration Space

Receive Buffer

Tx Flow 
Control Credits

Rx Transaction 
Layer Packet

Interface Established per Virtual Channel Interface Established per Component

Transmit
Data Path

Configuration
Space

Receive
Data Path

Towards Data Link LayerTowards Application Layer

Tx0 Request
Sequencing

Flow Control 
Check & Reordering

Tx1 Request
Sequencing

Flow Control 
Check & Reordering

Rx0 Sequencing
& Reordering

Posted & Completion

Non-Posted

Rx1 Sequencing
& Reordering

Virtual Channel 1

Flow Control Update

Transaction Layer 
Packet FIFO

Receive Buffer

Posted & Completion

Non-Posted

Flow Control Update

Transaction Layer 
Packet FIFO



Chapter 4: IP Core Architecture 4–11
Transaction Layer

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Tracing a transaction through the transmit datapath involves the following steps:

1. The IP core informs the application layer that sufficient flow control credits exist 
for a particular type of transaction. The IP core uses tx_cred[21:0] for the soft IP 
implementation and tx_cred[35:0] for the hard IP implementation. The 
application layer may choose to ignore this information.

2. The application layer requests a transaction layer packet transmission. The 
application layer must provide the PCI Express transaction and must be prepared 
to provide the entire data payload in consecutive cycles. 

3. The IP core verifies that sufficient flow control credits exist, and acknowledges or 
postpones the request.

4. The application layer forwards the transaction layer packet. The transaction layer 
arbitrates among virtual channels, and then forwards the priority transaction layer 
packet to the data link layer.

Transmit Virtual Channel Arbitration
For Stratix IV GX devices, the IP Compiler for PCI Express allows you to specify a 
high and low priority virtual channel as specified in Chapter 6 of the PCI Express Base 
Specification 1.0a, 1.1, or 2.0. You can use the settings on the Buffer Setup page, 
accessible from the Parameter Settings tab, to specify the number of virtual channels. 
Refer to “Buffer Setup Parameters” on page 3–16. 

Configuration Space
The configuration space implements the following configuration registers and 
associated functions: 

■ Header Type 0 Configuration Space for Endpoints

■ Header Type 1 Configuration Space for Root Ports

■ PCI Power Management Capability Structure

■ Message Signaled Interrupt (MSI) Capability Structure

■ Message Signaled Interrupt–X (MSI–X) Capability Structure

■ PCI Express Capability Structure

■ Virtual Channel Capabilities

The configuration space also generates all messages (PME#, INT, error, slot power 
limit), MSI requests, and completion packets from configuration requests that flow in 
the direction of the root complex, except slot power limit messages, which are 
generated by a downstream port in the direction of the PCI Express link. All such 
transactions are dependent upon the content of the PCI Express configuration space 
as described in the PCI Express Base Specification 1.0a, 1.1, or 2.0. 

f Refer To “Configuration Space Register Content” on page 6–1 or Chapter 7 in the PCI 
Express Base Specification 1.0a, 1.1, or 2.0 for the complete content of these registers.



4–12 Chapter 4: IP Core Architecture
Data Link Layer

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Data Link Layer
The data link layer is located between the transaction layer and the physical layer. It is 
responsible for maintaining packet integrity and for communication (by data link 
layer packet transmission) at the PCI Express link level (as opposed to component 
communication by transaction layer packet transmission in the interconnect fabric).

The data link layer is responsible for the following functions:

■ Link management through the reception and transmission of data link layer 
packets, which are used for the following functions:

■ To initialize and update flow control credits for each virtual channel

■ For power management of data link layer packet reception and transmission

■ To transmit and receive ACK/NACK packets

■ Data integrity through generation and checking of CRCs for transaction layer 
packets and data link layer packets

■ Transaction layer packet retransmission in case of NAK data link layer packet 
reception using the retry buffer

■ Management of the retry buffer

■ Link retraining requests in case of error through the LTSSM of the physical layer

Figure 4–8 illustrates the architecture of the data link layer.

Figure 4–8. Data Link Layer

To Transaction Layer

Tx Transaction Layer
Packet Description & Data Transaction Layer

Packet Generator

Retry Buffer

To Physical Layer

Tx Packets

Ack/Nack
Packets

Receive
Data Path

Transmit
Data Path

Rx Packets

DLLP
Checker

Transaction Layer
Packet Checker

DLLP
Generator

Tx Arbitration

Data Link Control
& Management
State Machine

Control
& Status

Configuration Space

Tx Flow Control Credits

Rx Flow Control Credits

Rx Transation Layer
Packet Description & Data

Power
Management

Function



Chapter 4: IP Core Architecture 4–13
Data Link Layer

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

The data link layer has the following subblocks:

■ Data Link Control and Management State Machine—This state machine is 
synchronized with the physical layer’s LTSSM state machine and is also connected 
to the configuration space registers. It initializes the link and virtual channel flow 
control credits and reports status to the configuration space. (Virtual channel 0 is 
initialized by default, as is a second virtual channel if it has been physically 
enabled and the software permits it.)

■ Power Management—This function handles the handshake to enter low power 
mode. Such a transition is based on register values in the configuration space and 
received PM DLLPs.

■ Data Link Layer Packet Generator and Checker—This block is associated with the 
data link layer packet’s 16-bit CRC and maintains the integrity of transmitted 
packets.

■ Transaction Layer Packet Generator—This block generates transmit packets, 
generating a sequence number and a 32-bit CRC. The packets are also sent to the 
retry buffer for internal storage. In retry mode, the transaction layer packet 
generator receives the packets from the retry buffer and generates the CRC for the 
transmit packet.

■ Retry Buffer—The retry buffer stores transaction layer packets and retransmits all 
unacknowledged packets in the case of NAK DLLP reception. For ACK DLLP 
reception, the retry buffer discards all acknowledged packets.

■ ACK/NAK Packets—The ACK/NAK block handles ACK/NAK data link layer 
packets and generates the sequence number of transmitted packets.

■ Transaction Layer Packet Checker—This block checks the integrity of the received 
transaction layer packet and generates a request for transmission of an ACK/NAK 
data link layer packet.

■ TX Arbitration—This block arbitrates transactions, basing priority on the 
following order:

1. Initialize FC data link layer packet

2. ACK/NAK data link layer packet (high priority)

3. Update FC data link layer packet (high priority)

4. PM data link layer packet

5. Retry buffer transaction layer packet

6. Transaction layer packet

7. Update FC data link layer packet (low priority)

8. ACK/NAK FC data link layer packet (low priority)



4–14 Chapter 4: IP Core Architecture
Physical Layer

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Physical Layer
The physical layer is the lowest level of the IP core. It is the layer closest to the link. It 
encodes and transmits packets across a link and accepts and decodes received 
packets. The physical layer connects to the link through a high-speed SERDES 
interface running at 2.5 Gbps for Gen1 implementations and at 2.5 or 5.0 Gbps for 
Gen2 implementations. Only the hard IP implementation supports the Gen2 rate of 
5.0 Gbps.

The physical layer is responsible for the following actions:

■ Initializing the link

■ Scrambling and descrambling and 8B/10B encoding and decoding of 2.5 Gbps 
(Gen1) or 5.0 Gbps (Gen2) per lane 8B/10B

■ Serializing and deserializing data

The hard IP implementation includes the following additional functionality:

■ PIPE 2.0 Interface Gen1/Gen2: 8-bit@250/500 MHz (fixed width, variable clock)

■ Auto speed negotiation (Gen2)

■ Training sequence transmission and decode

■ Hardware autonomous speed control

■ Auto lane reversal



Chapter 4: IP Core Architecture 4–15
Physical Layer

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Physical Layer Architecture
Figure 4–9 illustrates the physical layer architecture.

The physical layer is subdivided by the PIPE Interface Specification into two layers 
(bracketed horizontally in Figure 4–9):

■ Media Access Controller (MAC) Layer—The MAC layer includes the Link 
Training and Status state machine (LTSSM) and the scrambling/descrambling and 
multilane deskew functions.

■ PHY Layer—The PHY layer includes the 8B/10B encode/decode functions, elastic 
buffering, and serialization/deserialization functions. 

The physical layer integrates both digital and analog elements. Intel designed the 
PIPE interface to separate the MAC from the PHY. The IP core is compliant with the 
PIPE interface, allowing integration with other PIPE-compliant external PHY devices. 

Depending on the parameters you set in the parameter editor, the IP core can 
automatically instantiate a complete PHY layer when targeting an Arria II GX, Arria 
II GZ, Cyclone IV GX, HardCopy IV GX, Stratix II GX, or Stratix IV GX device.

Figure 4–9. Physical Layer

Scrambler
8B10B

Encoder

Lane n
Tx+ / Tx-

Scrambler
8B10B

Encoder

Lane 0
Tx+ / Tx-

Descrambler
8B10B

Decoder

Lane n
Rx+ / Rx-Elastic

Buffer

LTSSM 
State Machine

SKIP
Generation

Control & Status
PIPE

Emulation Logic

Li
nk

 S
er

ia
liz

er
fo

r 
an

 x
8 

Li
nk

Tx Packets

Rx MAC 
Lane

 D
ev

ic
e 

 T
ra

ns
ce

iv
er

 (
pe

r 
La

ne
) 

w
ith

 2
.5

 o
r 

5.
0 

 G
bp

s 
S

E
R

D
E

S
 &

 P
LL

Descrambler
8B10B

Decoder

Lane 0
Rx+ / Rx-Elastic

Buffer

Rx MAC 
Lane

PIPE
Interface

M
ul

til
an

e 
D

es
ke

w

Li
nk

 S
er

ia
liz

er
 fo

r 
an

 x
8 

Li
nk

Rx Packets

Transmit
Data Path

Receive
Data Path

MAC Layer PHY layer

To LinkTo Data Link Layer



4–16 Chapter 4: IP Core Architecture
Physical Layer

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The PHYMAC block is divided in four main sub-blocks:

■ MAC Lane—Both the receive and the transmit path use this block. 

■ On the receive side, the block decodes the physical layer packet (PLP) and 
reports to the LTSSM the type of TS1/TS2 received and the number of TS1s 
received since the LTSSM entered the current state. The LTSSM also reports the 
reception of FTS, SKIP and IDL ordered sets and the reception of eight 
consecutive D0.0 symbols. 

■ On the transmit side, the block multiplexes data from the data link layer and 
the LTSTX sub-block. It also adds lane specific information, including the lane 
number and the force PAD value when the LTSSM disables the lane during 
initialization.

■ LTSSM—This block implements the LTSSM and logic that tracks what is received 
and transmitted on each lane. 

■ For transmission, it interacts with each MAC lane sub-block and with the 
LTSTX sub-block by asserting both global and per-lane control bits to generate 
specific physical layer packets. 

■ On the receive path, it receives the PLPs reported by each MAC lane sub-block. 
It also enables the multilane deskew block and the delay required before the TX 
alignment sub-block can move to the recovery or low power state. A higher 
layer can direct this block to move to the recovery, disable, hot reset or low 
power states through a simple request/acknowledge protocol. This block 
reports the physical layer status to higher layers.

■ LTSTX (Ordered Set and SKP Generation)—This sub-block generates the physical 
layer packet (PLP). It receives control signals from the LTSSM block and generates 
PLP for each lane of the core. It generates the same PLP for all lanes and PAD 
symbols for the link or lane number in the corresponding TS1/TS2 fields. 

The block also handles the receiver detection operation to the PCS sub-layer by 
asserting predefined PIPE signals and waiting for the result. It also generates a 
SKIP ordered set at every predefined timeslot and interacts with the TX alignment 
block to prevent the insertion of a SKIP ordered set in the middle of packet.

■ Deskew—This sub-block performs the multilane deskew function and the RX 
alignment between the number of initialized lanes and the 64-bit data path. 

The multilane deskew implements an eight-word FIFO for each lane to store 
symbols. Each symbol includes eight data bits and one control bit. The FTS, COM, 
and SKP symbols are discarded by the FIFO; the PAD and IDL are replaced by 
D0.0 data. When all eight FIFOs contain data, a read can occur. 

When the multilane lane deskew block is first enabled, each FIFO begins writing 
after the first COM is detected. If all lanes have not detected a COM symbol after 7 
clock cycles, they are reset and the resynchronization process restarts, or else the 
RX alignment function recreates a 64-bit data word which is sent to the data link 
layer.



Chapter 4: IP Core Architecture 4–17
PCI Express Avalon-MM Bridge

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Reverse Parallel Loopback
In Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX devices, the IP 
Compiler for PCI Express hard IP implementation supports a reverse parallel 
loopback path you can use to test the IP Compiler for PCI Express endpoint link 
implementation from a PCI Express root complex. When this path is enabled, data 
that the IP Compiler for PCI Express endpoint receives on the PCI Express link passes 
through the RX PMA and the word aligner and rate matching FIFO buffer in the RX 
PCS as usual. From the rate matching FIFO buffer, it passes along both of the 
following two paths:

■ The usual data path through the IP Compiler for PCI Express hard IP block. 

■ A reverse parallel loopback path to the TX PMA block and out to the PCI Express 
link. The input path to the TX PMA is gated by a multiplexor that controls whether 
the TX PMA receives data from the TX PCS or from the reverse parallel loopback 
path. 

f For information about the reverse parallel loopback mode and an illustrative block 
diagram, refer to “PCIe (Reverse Parallel Loopback)” in the Transceiver Architecture in 
Arria II Devices chapter of the Arria II Device Handbook, “Reverse Parallel Loopback” in 
the Cyclone IV Transceivers Architecture chapter of the Cyclone IV Device Handbook, or 
“PCIe Reverse Parallel Loopback” in the Transceiver Architecture in Stratix IV Devices 
chapter of the Stratix IV Device Handbook.

For information about configuring and using the reverse parallel loopback path for 
testing, refer to “Link and Transceiver Testing” on page 17–3.

PCI Express Avalon-MM Bridge
The IP Compiler for PCI Express uses the IP Compiler for PCI Express Avalon-MM 
bridge module to connect the PCI Express link to the system interconnect fabric. The 
bridge facilitates the design of PCI Express endpoints that include Qsys components. 

The full-featured PCI Express Avalon-MM bridge provides three possible Avalon-MM 
ports: a bursting master, an optional bursting slave, and an optional non-bursting 
slave. The PCI Express Avalon-MM bridge comprises the following three modules:

■ TX Slave Module—This optional 64-bit bursting, Avalon-MM dynamic addressing 
slave port propagates read and write requests of up to 4 KBytes in size from the 
system interconnect fabric to the PCI Express link. The bridge translates requests 
from the interconnect fabric to PCI Express request packets.

■ RX Master Module—This 64-bit bursting Avalon-MM master port propagates PCI 
Express requests, converting them to bursting read or write requests to the system 
interconnect fabric.

■ Control Register Access (CRA) Slave Module—This optional, 32-bit Avalon-MM 
dynamic addressing slave port provides access to internal control and status 
registers from upstream PCI Express devices and external Avalon-MM masters. 
Implementations that use MSI or dynamic address translation require this port.



4–18 Chapter 4: IP Core Architecture
PCI Express Avalon-MM Bridge

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 4–10 shows the block diagram of a full-featured PCI Express Avalon-MM 
bridge.

The PCI Express Avalon-MM bridge supports the following TLPs:

■ Memory write requests

■ Received downstream memory read requests of up to 512 bytes in size 

Figure 4–10. PCI Express Avalon-MM Bridge

Tr
an

sa
ct

io
n 

La
ye

r

PCI Express
Tx Controller

PCI Express
Rx Controller

Da
ta

 L
in

k 
La

ye
r

Ph
ys

ic
al

 L
ay

er

PCI Express MegaCore Function

Clock Domain
Boundary

Tx Slave Module

Control & Status
Reg (CSR)

Sync

Avalon Clock Domain PCI Express Clock Domain

Rx Master ModuleRx Master Module

Clock
 Domain 
Crossing

Clock
 Domain 
Crossing

PCI Express Avalon-MM Bridge

Sy
st

em
 In

te
rc

on
ne

ct
 F

ab
ric

PCI Link

CRA Slave Module

Address
Translator

Avalon-MM
Tx Read

Response

Avalon-MM
Tx Slave

Address
Translator

Avalon-MM
Rx Read

Response

Avalon-MM
Rx Master

MSI or
Legacy Interrupt

Generator
Control Register

Access Slave



Chapter 4: IP Core Architecture 4–19
PCI Express Avalon-MM Bridge

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ Transmitted upstream memory read requests of up to 256 bytes in size

■ Completions

1 The PCI Express Avalon-MM bridge supports native PCI Express endpoints, but not 
legacy PCI Express endpoints. Therefore, the bridge does not support I/O space BARs 
and I/O space requests cannot be generated. 

The bridge has the following additional characteristics:

■ Type 0 and Type 1 vendor-defined incoming messages are discarded

■ Completion-to-a-flush request is generated, but not propagated to the system 
interconnect fabric 

Each PCI Express base address register (BAR) in the transaction layer maps to a 
specific, fixed Avalon-MM address range. You can use separate BARs to map to 
various Avalon-MM slaves connected to the RX Master port. 

The following sections describe the following modes of operation:

■ Avalon-MM-to-PCI Express Write Requests

■ Avalon-MM-to-PCI Express Upstream Read Requests

■ PCI Express-to-Avalon-MM Read Completions

■ PCI Express-to-Avalon-MM Downstream Write Requests

■ PCI Express-to-Avalon-MM Downstream Read Requests

■ PCI Express-to-Avalon-MM Read Completions

■ Avalon-MM-to-PCI Express Address Translation

■ Generation of PCI Express Interrupts

■ Generation of Avalon-MM Interrupts

Avalon-MM-to-PCI Express Write Requests 
A Qsys-generated PCI Express Avalon-MM bridge accepts Avalon-MM burst write 
requests with a burst size of up to 512 bytes. 

The PCI Express Avalon-MM bridge converts the write requests to one or more PCI 
Express write packets with 32– or 64–bit addresses based on the address translation 
configuration, the request address, and the maximum payload size.

The Avalon-MM write requests can start on any address in the range defined in the 
PCI Express address table parameters. The bridge splits incoming burst writes that 
cross a 4 KByte boundary into at least two separate PCI Express packets. The bridge 
also considers the root complex requirement for maximum payload on the PCI 
Express side by further segmenting the packets if needed.

The bridge requires Avalon-MM write requests with a burst count of greater than one 
to adhere to the following byte enable rules:

■ The Avalon-MM byte enable must be asserted in the first qword of the burst.

■ All subsequent byte enables must be asserted until the deasserting byte enable.

■ The Avalon-MM byte enable may deassert, but only in the last qword of the burst.



4–20 Chapter 4: IP Core Architecture
PCI Express Avalon-MM Bridge

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

1 To improve PCI Express throughput, Altera recommends using an Avalon-MM burst 
master without any byte-enable restrictions. 

Avalon-MM-to-PCI Express Upstream Read Requests 
The PCI Express Avalon-MM bridge converts read requests from the system 
interconnect fabric to PCI Express read requests with 32-bit or 64-bit addresses based 
on the address translation configuration, the request address, and the maximum read 
size.

The Avalon-MM TX slave interface of a Qsys-generated PCI Express Avalon-MM 
bridge can receive read requests with burst sizes of up to 512 bytes sent to any 
address. However, the bridge limits read requests sent to the PCI Express link to a 
maximum of 256 bytes. Additionally, the bridge must prevent each PCI Express read 
request packet from crossing a 4 KByte address boundary. Therefore, the bridge may 
split an Avalon-MM read request into multiple PCI Express read packets based on the 
address and the size of the read request.

For Avalon-MM read requests with a burst count greater than one, all byte enables 
must be asserted. There are no restrictions on byte enable for Avalon-MM read 
requests with a burst count of one. An invalid Avalon-MM request can adversely 
affect system functionality, resulting in a completion with abort status set. An 
example of an invalid request is one with an incorrect address.

PCI Express-to-Avalon-MM Read Completions
The PCI Express Avalon-MM bridge returns read completion packets to the initiating 
Avalon-MM master in the issuing order. The bridge supports multiple and 
out-of-order completion packets.

PCI Express-to-Avalon-MM Downstream Write Requests
When the PCI Express Avalon-MM bridge receives PCI Express write requests, it 
converts them to burst write requests before sending them to the system interconnect 
fabric. The bridge translates the PCI Express address to the Avalon-MM address space 
based on the BAR hit information and on address translation table values configured 
during the IP core parameterization. Malformed write packets are dropped, and 
therefore do not appear on the Avalon-MM interface. 

For downstream write and read requests, if more than one byte enable is asserted, the 
byte lanes must be adjacent. In addition, the byte enables must be aligned to the size 
of the read or write request. 

PCI Express-to-Avalon-MM Downstream Read Requests
The PCI Express Avalon-MM bridge sends PCI Express read packets to the system 
interconnect fabric as burst reads with a maximum burst size of 512 bytes. The bridge 
converts the PCI Express address to the Avalon-MM address space based on the BAR 
hit information and address translation lookup table values. The address translation 
lookup table values are user configurable. Unsupported read requests generate a 
completer abort response.

1 IP Compiler for PCI Express variations using the Avalon-ST interface can handle burst 
reads up to the specified Maximum Payload Size. 



Chapter 4: IP Core Architecture 4–21
PCI Express Avalon-MM Bridge

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

As an example, Table 4–2 lists the byte enables for 32-bit data. 

In burst mode, the IP Compiler for PCI Express supports only byte enable values that 
correspond to a contiguous data burst. For the 32-bit data width example, valid values 
in the first data phase are 4’b1111, 4’b1100, and 4’b1000, and valid values in the final 
data phase of the burst are 4’b1111, 4’b0011, and 4’b0001. Intermediate data phases in 
the burst can only have byte enable value 4’b1111.

Avalon-MM-to-PCI Express Read Completions
The PCI Express Avalon-MM bridge converts read response data from the external 
Avalon-MM slave to PCI Express completion packets and sends them to the 
transaction layer. 

A single read request may produce multiple completion packets based on the 
Maximum Payload Size and the size of the received read request. For example, if the 
read is 512 bytes but the Maximum Payload Size 128 bytes, the bridge produces four 
completion packets of 128 bytes each. The bridge does not generate out-of-order 
completions. You can specify the Maximum Payload Size parameter on the Buffer 
Setup page of the IP Compiler for PCI Express parameter editor. Refer to “Buffer 
Setup Parameters” on page 3–16. 

PCI Express-to-Avalon-MM Address Translation
The PCI Express address of a received request packet is translated to the Avalon-MM 
address before the request is sent to the system interconnect fabric. This address 
translation proceeds by replacing the MSB bits of the PCI Express address with the 
value from a specific translation table entry; the LSB bits remain unchanged. The 
number of MSB bits to replace is calculated from the total memory allocation of all 
Avalon-MM slaves connected to the RX Master Module port. Six possible address 
translation entries in the address translation table are configurable manually by Qsys. 
Each entry corresponds to a PCI Express BAR. The BAR hit information from the 
request header determines the entry that is used for address translation. 

Table 4–2. Valid Byte Enable Configurations 

Byte Enable Value Description

4’b1111 Write full 32 bits

4’b0011 Write the lower 2 bytes

4’b1100 Write the upper 2 bytes

4’b0001 Write byte 0 only

4’b0010 Write byte 1 only

4’b0100 Write byte 2 only

4’b1000 Write byte 3 only



4–22 Chapter 4: IP Core Architecture
PCI Express Avalon-MM Bridge

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 4–11 depicts the PCI Express Avalon-MM bridge address translation process.

The Avalon-MM RX master module port has an 8-byte datapath. The Qsys 
interconnect fabric does not support native addressing. Instead, it supports dynamic 
bus sizing. In this method, the interconnect fabric handles mismatched port widths 
transparently. 

f For more information about both native addressing and dynamic bus sizing, refer to 
the “Address Alignment” section in the “Avalon Memory-Mapped Interfaces” 
chapter of the Avalon Interface Specifications.

Avalon-MM-to-PCI Express Address Translation
The Avalon-MM address of a received request on the TX Slave Module port is 
translated to the PCI Express address before the request packet is sent to the 
transaction layer. This address translation process proceeds by replacing the MSB bits 
of the Avalon-MM address with the value from a specific translation table entry; the 
LSB bits remain unchanged. The number of MSB bits to be replaced is calculated 
based on the total address space of the upstream PCI Express devices that the IP 
Compiler for PCI Express can access. 

The address translation table contains up to 512 possible address translation entries 
that you can configure. Each entry corresponds to a base address of the PCI Express 
memory segment of a specific size. The segment size of each entry must be identical. 
The total size of all the memory segments is used to determine the number of address 
MSB bits to be replaced. In addition, each entry has a 2-bit field, Sp[1:0], that 

Figure 4–11. PCI Express Avalon-MM Bridge Address Translation (Note 1) 

Note to Figure 4–11:

(1) N is the number of pass-through bits (BAR specific). M is the number of Avalon-MM address bits. P is the number of PCI Express address bits 
(32 or 64).

PCI Express Address

Inside IP Compiler for PCI Express

Matched BAR
selects Avalon-MM

address

Low address bits unchanged
(BAR-specific number of bits)

Hard-coded BAR-specific
Avalon-MM Addresses

Avalon-MM Address

BAR-specific Number of
High Avalon-MM Bits

Avalon Address B0

Avalon Address B1

Avalon Address B2

Avalon Address B3

Avalon Address B4

Avalon Address B5

M-1 N N-1 0P-1 N N-1 0

High Low LowHigh

BAR0 (or 0:1)

BAR1

BAR2

BAR3

BAR4

BAR5



Chapter 4: IP Core Architecture 4–23
PCI Express Avalon-MM Bridge

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

specifies 32-bit or 64-bit PCI Express addressing for the translated address. Refer to 
Figure 4–12 on page 4–24. The most significant bits of the Avalon-MM address are 
used by the system interconnect fabric to select the slave port and are not available to 
the slave. The next most significant bits of the Avalon-MM address index the address 
translation entry to be used for the translation process of MSB replacement.

For example, if the core is configured with an address translation table with the 
following attributes: 

■ Number of Address Pages—16

■ Size of Address Pages—1 MByte

■ PCI Express Address Size—64 bits

then the values in Figure 4–12 are:

■ N = 20 (due to the 1 MByte page size)

■ Q = 16 (number of pages)

■ M = 24 (20 + 4 bit page selection)

■ P = 64

In this case, the Avalon address is interpreted as follows:

■ Bits [31:24] select the TX slave module port from among other slaves connected to 
the same master by the system interconnect fabric. The decode is based on the base 
addresses assigned in Qsys.

■ Bits [23:20] select the address translation table entry. 

■ Bits [63:20] of the address translation table entry become PCI Express address bits 
[63:20]. 

■ Bits [19:0] are passed through and become PCI Express address bits [19:0]. 

The address translation table can be hardwired or dynamically configured at run 
time. When the IP core is parameterized for dynamic address translation, the address 
translation table is implemented in memory and can be accessed through the CRA 
slave module. This access mode is useful in a typical PCI Express system where 
address allocation occurs after BIOS initialization.

For more information about how to access the dynamic address translation table 
through the control register access slave, refer to the “Avalon-MM-to-PCI Express 
Address Translation Table” on page 6–9.



4–24 Chapter 4: IP Core Architecture
PCI Express Avalon-MM Bridge

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 4–12 depicts the Avalon-MM-to-PCI Express address translation process.
 

Generation of PCI Express Interrupts
The PCI Express Avalon-MM bridge supports MSI or legacy interrupts. The completer 
only, single dword variant includes an interrupt generation module. For other 
variants with the Avalon-MM interface, interrupt support requires instantiation of the 
CRA slave module where the interrupt registers and control logic are implemented. 

The Qsys-generated PCI Express Avalon-MM bridge supports the Avalon-MM 
individual requests interrupt scheme: multiple input signals indicate incoming 
interrupt requests, and software must determine priorities for servicing simultaneous 
interrupts the IP Compiler for PCI Express receives on the Avalon-MM interface.

In the Qsys-generated IP Compiler for PCI Express, the RX master module port has as 
many as 16 Avalon-MM interrupt input signals (RXmirq_irq[<n>:0], where <n> ≤ 15)) . 
Each interrupt signal indicates a distinct interrupt source. Assertion of any of these 
signals, or a PCI Express mailbox register write access, sets a bit in the PCI Express 
interrupt status register. Multiple bits can be set at the same time; software determines 
priorities for servicing simultaneous incoming interrupt requests. Each set bit in the 
PCI Express interrupt status register generates a PCI Express interrupt, if enabled, 
when software determines its turn.

Software can enable the individual interrupts by writing to the IP Compiler for PCI 
Express “Avalon-MM to PCI Express Interrupt Enable Register Address: 0x0050” on 
page 6–8 through the CRA slave. 

Figure 4–12. Avalon-MM-to-PCI Express Address Translation (Note 1) (2) (3) (4) (5)

Notes to Figure 4–12:

(1) N is the number of pass-through bits.
(2) M is the number of Avalon-MM address bits.
(3) P is the number of PCI Express address bits.
(4) Q is the number of translation table entries.
(5) Sp[1:0] is the space indication for each entry.

PCIe Address Q-1 SpQ-1

Space Indication

PCI Express address from Table Entry
becomes High PCI Express address bits

PCI Express Address

High Low

P-1 N N-1 0

Low address bits unchanged

Avalon-MM-to-PCI Express
Address Translation Table

(Q entries by P-N bits wide)

PCIe Address 0 Sp0

PCIe Address 1 Sp1

Avalon-MM Address

HighSlave Base
Address

Low

M-131 M N N-1 0

Table updates from
control register port

High Avalon-MM Address
Bits Index table



Chapter 4: IP Core Architecture 4–25
PCI Express Avalon-MM Bridge

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

In Qsys-generated systems, when any interrupt input signal is asserted, the 
corresponding bit is written in the “Avalon-MM to PCI Express Interrupt Status 
Register  Address: 0x0040” on page 6–7. Software reads this register and decides 
priority on servicing requested interrupts. 

After servicing the interrupt, software must clear the appropriate serviced interrupt 
status bit and ensure that no other interrupts are pending. For interrupts caused by 
“Avalon-MM to PCI Express Interrupt Status Register  Address: 0x0040” mailbox 
writes, the status bits should be cleared in the “Avalon-MM to PCI Express Interrupt 
Status Register  Address: 0x0040”. For interrupts due to the incoming interrupt 
signals on the Avalon-MM interface, the interrupt status should be cleared in the 
Avalon-MM component that sourced the interrupt. This sequence prevents interrupt 
requests from being lost during interrupt servicing.

Figure 4–13 shows the logic for the entire PCI Express interrupt generation process.

The PCI Express Avalon-MM bridge selects either MSI or legacy interrupts 
automatically based on the standard interrupt controls in the PCI Express 
configuration space registers. The Interrupt Disable bit, which is bit 10 of the 
Command register (at configuration space offset 0x4) can be used to disable legacy 
interrupts. The MSI Enable bit, which is bit 0 of the MSI Control Status register in the 
MSI capability register (bit 16 at configuration space offset 0x50), can be used to 
enable MSI interrupts. 

Figure 4–13. IP Compiler for PCI Express Avalon-MM Interrupt Propagation to the PCI Express Link

SET

CLR

D Q

Q

Interrupt Disable
(Configuration Space Command Register [10])

Avalon-MM-to-PCI-Express
Interrupt Status and Interrupt
Enable Register Bits

A2P_MAILBOX_INT7
A2P_MB_IRQ7

A2P_MAILBOX_INT6
A2P_MB_IRQ6

A2P_MAILBOX_INT5
A2P_MB_IRQ5

A2P_MAILBOX_INT4
A2P_MB_IRQ4

A2P_MAILBOX_INT3
A2P_MB_IRQ3

A2P_MAILBOX_INT2
A2P_MB_IRQ2

A2P_MAILBOX_INT1
A2P_MB_IRQ1

A2P_MAILBOX_INT0
A2P_MB_IRQ0

AV_IRQ_ASSERTED
AVL_IRQ

MSI Enable
(Configuration Space Message Control Register[0])

MSI Request

PCI Express Virtual INTA signalling
(When signal rises ASSERT_INTA Message Sent)
(When signal falls DEASSERT_INTA Message Sent)



4–26 Chapter 4: IP Core Architecture
Completer Only PCI Express Endpoint Single DWord

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Only one type of interrupt can be enabled at a time. However, to change the selection 
of MSI or legacy interrupts during operation, software must ensure that no interrupt 
request is dropped. Therefore, software must first enable the new selection and then 
disable the old selection. To set up legacy interrupts, software must first clear the 
Interrupt Disable bit and then clear the MSI enable bit. To set up MSI interrupts, 
software must first set the MSI enable bit and then set the Interrupt Disable bit.

Generation of Avalon-MM Interrupts 
Generation of Avalon-MM interrupts requires the instantiation of the CRA slave 
module where the interrupt registers and control logic are implemented. The CRA 
slave port has an Avalon-MM Interrupt (CraIrq_irq in Qsys systems) output signal. 
A write access to an Avalon-MM mailbox register sets one of the P2A_MAILBOX_INT<n> 
bits in the “PCI Express to Avalon-MM Interrupt Status Register  Address: 0x3060” 
on page 6–11 and asserts the CraIrq_o or CraIrq_irq output, if enabled. Software can 
enable the interrupt by writing to the “PCI Express to Avalon-MM Interrupt Enable 
Register Address: 0x3070” on page 6–11 through the CRA slave. After servicing the 
interrupt, software must clear the appropriate serviced interrupt status bit in the 
PCI-Express-to-Avalon-MM Interrupt Status register and ensure that there is no 
other interrupt pending.

Completer Only PCI Express Endpoint Single DWord
The completer only single dword endpoint is intended for applications that use the 
PCI Express protocol to perform simple read and write register accesses from a host 
CPU. The completer only single dword endpoint is a hard IP implementation 
available for Qsys systems, and includes an Avalon-MM interface to the application 
layer. The Avalon-MM interface connection in this variation is 32 bits wide. This 
endpoint is not pipelined; at any time a single request can be outstanding. 

The completer-only single dword endpoint supports the following requests:

■ Read and write requests of a single dword (32 bits) from the root complex

■ Completion with completer abort status generation for other types of non-posted 
requests

■ INTX or MSI support with one Avalon-MM interrupt source

As this figure illustrates, the IP Compiler for PCI Express links to a PCI Express root 
complex. A bridge component in the IP Compiler for PCI Express includes IP 
Compiler for PCI Express TX and RX blocks, an Avalon-MM RX master, and an 
interrupt handler. The bridge connects to the FPGA fabric using an Avalon-MM 
interface. The following sections provide an overview of each block in the bridge.

IP Compiler for PCI Express RX Block
The IP Compiler for PCI Express RX control logic interfaces to the hard IP block to 
process requests from the root complex. It supports memory reads and writes of a 
single dword. It generates a completion with Completer Abort (CA) status for reads 
greater than four bytes and discards all write data without further action for write 
requests greater than four bytes. 



Chapter 4: IP Core Architecture 4–27
Completer Only PCI Express Endpoint Single DWord

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

The RX block passes header information to the Avalon-MM master, which generates 
the corresponding transaction to the Avalon-MM interface. The bridge accepts no 
additional requests while a request is being processed. While processing a read 
request, the RX block deasserts the ready signal until the TX block sends the 
corresponding completion packet to the hard IP block. While processing a write 
request, the RX block sends the request to the Avalon-MM system interconnect fabric 
before accepting the next request. 

Avalon-MM RX Master Block
The 32-bit Avalon-MM master connects to the Avalon-MM system interconnect fabric. 
It drives read and write requests to the connected Avalon-MM slaves, performing the 
required address translation. The RX master supports all legal combinations of byte 
enables for both read and write requests.

f For more information about legal combinations of byte enables, refer to Chapter 3, 
Avalon Memory-Mapped Interfaces in the Avalon Interface Specifications.

IP Compiler for PCI Express TX Block
The TX block sends completion information to the IP Compiler for PCI Express hard 
IP block. The IP core then sends this information to the root complex. The TX 
completion block generates a completion packet with Completer Abort (CA) status 
and no completion data for unsupported requests. The TX completion block also 
supports the zero-length read (flush) command. 

Interrupt Handler Block
The interrupt handler implements both INTX and MSI interrupts. The msi_enable bit 
in the configuration register specifies the interrupt type. The msi_enable_bit is part 
of MSI message control portion in MSI Capability structure. It is bit[16] of 0x050 in the 
configuration space registers. If the msi_enable bit is on, an MSI request is sent to the 
IP Compiler for PCI Express when received, otherwise INTX is signaled. The interrupt 
handler block supports a single interrupt source, so that software may assume the 
source. You can disable interrupts by leaving the interrupt signal unconnected in the 
interrupt signals unconnected in the IRQ column of Qsys. When the MSI registers in 
the configuration space of the completer only single dword IP Compiler for PCI 
Express are updated, there is a delay before this information is propagated to the 
Bridge module. You must allow time for the Bridge module to update the MSI register 
information. Under normal operation, initialization of the MSI registers should occur 
substantially before any interrupt is generated. However, failure to wait until the 
update completes may result in any of the following behaviors:

■ Sending a legacy interrupt instead of an MSI interrupt

■ Sending an MSI interrupt instead of a legacy interrupt

■ Loss of an interrupt request



4–28 Chapter 4: IP Core Architecture
Completer Only PCI Express Endpoint Single DWord

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

5. IP Core Interfaces

This chapter describes the signals that are part of the IP Compiler for PCI Express for 
each of the following primary configurations:

■ Signals in the Hard IP Implementation Root Port with Avalon-ST Interface Signals

■ Signals in the Hard IP Implementation Endpoint with Avalon-ST Interface

■ Signals in the Soft IP Implementation with Avalon-ST Interface

■ Signals in the Soft or Hard Full-Featured IP Core with Avalon-MM Interface

■ Signals in the Qsys Hard Full-Featured IP Core with Avalon-MM Interface

■ Signals in the Completer-Only, Single Dword, IP Core with Avalon-MM Interface

■ Signals in the Qsys Completer-Only, Single Dword, IP Core with Avalon-MM 
Interface

1 Altera does not recommend the Descriptor/Data interface for new designs. 

Avalon-ST Interface
The main functional differences between the hard IP and soft IP implementations 
using an Avalon-ST interface are the configuration and clocking schemes. In addition, 
the hard IP implementation offers a 128-bit Avalon-ST bus for some configurations. In 
128-bit mode, the streaming interface clock, pld_clk, is one-half the frequency of the 
core clock, core_clk, and the streaming data width is 128 bits. In 64-bit mode, the 
streaming interface clock, pld_clk, is the same frequency as the core clock, core_clk, 
and the streaming data width is 64 bits. 

Figure 5–1, Figure 5–2, and Figure 5–3 illustrate the top-level signals for IP cores that 
use the Avalon-ST interface.

August 2014
<edit Part Number variable in chapter>



5–2 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

rx_st_ready0
rx_st_valid0
rx_st_data0[63..0], [127:0]
rx_st_sop0
rx_st_eop0
rx_st_empty
rx_st_err0
rx_st_mask0
rx_st_bardec0[7:0]
rx_st_be0[7:0], [15:0]
rx_fifo_full0
rx_fifo_empty0

Signals in the PCI Express Hard IP MegaCore Function

Test
Interface

 Rx Port 
(Path to
Virtual 

Channel 0)

tx_st_ready0
tx_st_valid0
tx_st_data0[63..0], [127:0]
tx_st_sop0
tx_st_eop0
tx_st_empty
tx_st_err0
tx_fifo_full0
tx_fifo_empty0
tx_fifo_rdptr0[3:0]
tx_fifo_wrptr0[3:0]
tx_cred0[35..0]

refclk
pld_clk
core_clk_out

npor
srst
crst
l2_exit
hotrst_exit
dlup_exit

app_msi_req
app_msi_ack
app_msi_tc [2:0]
app_msi_num [4:0]
pex_msi_num [4:0]
app_int_sts
app_int_ack 

pme_to_cr
pme_to_sr

cpl_err [6:0]
cpl_pending0

pclk_in
clk250_out
clk500_out

Interrupt

Reset

Clocks

Power
Mnmt

Completion
Interface

Clocks -
Simulation
Only (2)

Tx Port
(Path to
Virtual 

Channel 0)

Config

LMI

(1)

(1)

(1)

lmi_dout[31:0]

lmi_ack
lmi_addr[11:0]

lmi_din[31:0]

lmi_rden
lmi_wren

pipe_mode
rate_ext

txdata0_ext[7:0]
txdatak0_ext

txdetectrx0_ext
txelecidle0_ext

txcompl0_ext
rxpolarity0_ext

powerdown0_ext[1:0]
rxdata0_ext[7:0]

rxdatak0_ext
rxvalid0_ext

phystatus0_ext
rxelecidle0_ext

rxstatus0_ext[2:0]

8-bit 
PIPE

Repeated for
Lanes 1-7 PIPE 

Interface
Simulation 

Only (2)

test_out[64:0]
test_in[15:0]

tl_cfg_add[3:0]
tl_cfg_ctl[31:0]

tl_cfg_ctl_wr
tl_cfg_sts[52:0]

tl_cfg_sts_wr

reconfig_fromgxb[1:0]
reconfig_clk

reconfig_togxb[2:0]
cal_blk_clk

Transceiver
Control

for
internal

PHY

tx_out0
tx_out1
tx_out2
tx_out3
tx_out4
tx_out5
tx_out6
tx_out7

rx_in0
rx_in1
rx_in2
rx_in3
rx_in4
rx_in5
rx_in6
rx_in7

Serial 
IF to 
PIPE

Avalon-ST

Avalon-ST

Component
Specific

Component
Specific

Figure 5–1. Signals in the Hard IP Implementation Root Port with Avalon-ST Interface Signals

Notes to Figure 5–1:

(1) Available in Arria II GX, Arria II GZ, Cyclone IV GX,, and Stratix IV G devices. TFor Stratix IV GX devices, <n> = 16 for ×1 and ×4 IP cores and <n> 
= 33 in the ×8 IP core. 

(2) Available in Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX devices. For Stratix IV GX reconfig_togxb, <n> = 3.

rx_st_ready<n>
rx_st_valid<n>
rx_st_data<n>[63:0], [127:0] 
rx_st_sop<n>
rx_st_eop<n>
rx_st_empty<n> 
rx_st_err<n>

rx_st_mask<n>
rx_st_bardec<n>[7:0]
rx_st_be<n>[7:0], [15:0] 

avs_pcie_reconfig_address[7:0]
avs_pcie_reconfig_byteenable[1:0]
avs_pcie_reconfig_chipselect
avs_pcie_reconfig_write
avs_pcie_reconfig_writedata[15:0]
avs_pcie_reconfig_waitrequest
avs_pcie_reconfig_read
avs_pcie_reconfig_readdata[15:0]
avs_pcie_reconfig_readdatavalid
avs_pcie_reconfig_clk
avs_pcie_reconfig_rstn

IP Compiler for PCI Express Hard IP Implementation

Test
Interface

 Rx Port 
(Path to
Virtual 

Channel <n>)

tx_st_ready<n>
tx_st_valid<n>
tx_st_data<n>[63:0], [127:0] 
tx_st_sop<n>
tx_st_eop<n>
tx_st_empty<n> 
tx_st_err<n>
tx_fifo_full<n>
tx_fifo_empty<n>
tx_fifo_rdptr<n>[3:0]
tx_fifo_wrptr<n>[3:0]
tx_cred<n>[35:0]
nph_alloc_1cred_vc0
npd_alloc_1cred_vc0
npd_cred_vio_vc0
nph_cred_vio_vc0

Clocks

Power
Mnmt

Completion
Interface

Clocks -
Simulation

Only 

Tx Port
(Path to
Virtual 

Channell <n>)

Reconfiguration
Block

(optional)

Config

ECC Error

Interrupts LMI

(1)
(2)

lmi_dout[31:0]

lmi_ack
lmi_addr[11:0]

lmi_din[31:0]

lmi_rden

pclk_in
clk250_out
clk500_out

lmi_wren

pipe_mode
rate_ext

txdata0_ext[7:0]
txdatak0_ext

txdetectrx0_ext
txelecidle0_ext

txcompl0_ext
rxpolarity0_ext

powerdown0_ext[1:0]
tx_pipemargin

tx_pipedeemph
rxdata0_ext[7:0]

rxdatak0_ext
rxvalid0_ext

phystatus0_ext
rxelecidle0_ext

rxstatus0_ext[2:0]
pipe_rstn

pipe_txclk

8-bit 
PIPE

PIPE 
Interface

Simulation 
Only 

test_out[63:0]
test_in[39:0]

lane_act[3:0]
rx_st_fifo_full<n>

rx_st_fifo_empty<n>

tl_cfg_add[3:0]
tl_cfg_ctl[31:0]

tl_cfg_ctl_wr
tl_cfg_sts[52:0]

tl_cfg_sts_wr
hpg_ctrler[4:0]

reconfig_fromgxb[<n>:0]
reconfig_togxb[<n>:0]

reconfig_clk
cal_blk_clk

fixedclk_serdes
busy_altgxb_reconfig

reset_reconfig_altgxb_reconfig
gxb_powerdown

Transceiver
Control

These signals are
internal for

<variant>_plus.v or .vhd)

for
internal

PHY

tx_out0
tx_out1
tx_out2
tx_out3
tx_out4
tx_out5
tx_out6
tx_out7

rx_in0
rx_in1
rx_in2
rx_in3
rx_in4
rx_in5
rx_in6
rx_in7

Serial 
IF to 
PIPE

Avalon-ST

Avalon-ST

Component
Specific

Component
Specific

derr_cor_ext_rcv[1:0]
derr_rpl
derr_cor_ext_rpl
r2c_err0
r2c_err1
aer_msi_num[4:0]
pex_msi_num[4:0]
int_status[4:0]
serr_out

pme_to_cr
pme_to_sr
pm_data
pm_auxpwr

cpl_err[6:0]
cpl_pending<n>

refclk
pld_clk
core_clk_out

pcie_rstn
local_rstn
suc_spd_neg
dl_ltssm[4:0]
npor
srst
crst
l2_exit
hotrst_exit
dlup_exit
reset_status
rc_pll_locked

Reset &
 Link

Training
<variant>

<variant>_plus



Chapter 5: IP Core Interfaces 5–3
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 5–2. Signals in the Hard IP Implementation Endpoint with Avalon-ST Interface

Notes to Figure 5–2:

(1) Available in Stratix IV GX, devices. For Stratix IV GX devices, <n> = 16 for ×1 and ×4 IP cores and <n> = 33 in the ×8 IP core. 
(2) Available in Stratix IV GX. For Stratix IV GX reconfig_togxb, <n> = 3.

rx_st_ready<n>
rx_st_valid<n>
rx_st_data<n>[63:0], [127:0] 
rx_st_sop<n>
rx_st_eop<n>
rx_st_empty<n> 
rx_st_err<n>
rx_st_mask<n>
rx_st_bardec<n>[7:0]
rx_st_be<n>[7:0], [15:0] 

IP Compiler for PCI Express Hard IP Implementation

Test
Interface

 Rx Port 
(Path to
Virtual 

Channel <n>)

tx_st_ready<n>
tx_st_valid<n>
tx_st_data<n>[63:0], [127:0] 
tx_st_sop<n>
tx_st_eop<n>
tx_st_empty<n> 
tx_st_err<n>
tx_fifo_full<n>
tx_fifo_empty<n>
tx_fifo_rdptr<n>[3:0]
tx_fifo_wrptr<n>[3:0]
tx_cred<n>[35:0]
nph_alloc_1cred_vc0
npd_alloc_1cred_vc0
npd_cred_vio_vc0
nph_cred_vio_vc0

Interrupt

Power
Mnmt

Completion
Interface

Clocks -
Simulation

Only 

Tx Port
(Path to
Virtual 

Channel <n>)

Config

LMI

(1)
(2)

lmi_dout[31:0]

lmi_ack
lmi_addr[11:0]

lmi_din[31:0]

lmi_rden
lmi_wren

pipe_mode
rate_ext

txdata0_ext[7:0]
txdatak0_ext

txdetectrx0_ext
txelecidle0_ext

txcompl0_ext
rxpolarity0_ext

powerdown0_ext[1:0]
tx_pipemargin

tx_pipedeemph
rxdata0_ext[7:0]

rxdatak0_ext
rxvalid0_ext

phystatus0_ext
rxelecidle0_ext

rxstatus0_ext[2:0]
pipe_rstn

pipe_txclk

8-bit 
PIPE

PIPE 
Interface

Simulation 
Only (4)

test_out[63:0]
test_in[39:0]

lane_act[3:0]
rx_st_fifo_full<n>

rx_st_fifo_empty<n>

tl_cfg_add[3:0]
tl_cfg_ctl[31:0]

tl_cfg_ctl_wr
tl_cfg_sts[52:0]

tl_cfg_sts_wr
hpg_ctrler

pclk_in
clk250_out
clk500_out

reconfig_fromgxb[<n>:0]
reconfig_togxb[<n>:0]

reconfig_clk
cal_blk_clk

fixedclk_serdes
busy_altgxb_reconfig

pll_powerdown
gxb_powerdown

for
internal

PHY

tx_out0
tx_out1
tx_out2
tx_out3
tx_out4
tx_out5
tx_out6
tx_out7

rx_in0
rx_in1
rx_in2
rx_in3
rx_in4
rx_in5
rx_in6
rx_in7

Serial 
IF to 
PIPE

Avalon-ST

Avalon-ST

Component
Specific

Component
Specific

ECC Error

avs_pcie_reconfig_address[7:0]
avs_pcie_reconfig_byteenable[1:0]
avs_pcie_reconfig_chipselect
avs_pcie_reconfig_write
avs_pcie_reconfig_writedata[15:0]
avs_pcie_reconfig_waitrequest
avs_pcie_reconfig_read
avs_pcie_reconfig_readdata[15:0]
avs_pcie_reconfig_readdatavalid
avs_pcie_reconfig_clk
avs_pcie_reconfig_rstn

derr_cor_ext_rcv[1:0]
derr_rpl
derr_cor_ext_rpl
r2c_err0
r2c_err1

pme_to_cr
pme_to_sr
pm_event
pm_data
pm_auxpwr

cpl_err[6:0]
cpl_pending<n>

refclk
pld_clk
core_clk_out

app_msi_req
app_msi_ack
app_msi_tc[2:0]
app_msi_num[4:0]
pex_msi_num[4:0]
app_int_sts
app_int_ack

Reconfiguration
Block

(optional)

Clocks

pcie_rstn
local_rstn
suc_spd_neg
ltssm[4:0]
npor
srst
crst
l2_exit
hotrst_exit
dlup_exit
reset_status
rc_pll_locked

Reset &
 Link

Training

<variant>

<variant>_plus

These signals are
internal for

<variant>_plus.v or .vhd)

Transceiver
Control



5–4 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–3. Signals in the Soft IP Implementation with Avalon-ST Interface

Notes to Figure 5–3:

(1) Available in Stratix IV GX devices. For Stratix IV GX devices, <n> = 16 for ×1 and ×4 IP cores and <n> = 33 in the ×8 IP core. 
(2) Available in Stratix IV GX devices. For Stratix IV GX reconfig_togxb, <n> = 3.

rx_st_ready0
rx_st_valid0
rx_st_data0[63:0]
rx_st_sop0
rx_st_eop0
rx_st_err0
rx_st_mask0
rx_st_bardec0[7:0]
rx_st_be0[7:0]

tx_st_ready0
tx_st_valid0
tx_st_data0[63:0]
tx_st_sop0
tx_st_eop0
tx_st_err0
tx_cred0[35..0]
tx_fifo_empty0
tx_fifo_rdptr0[3:0]
tx_fifo_wrptr0[3:0]
tx_fifo_full0

refclk 
clk250_in - x8
clk250_out - x8
clk125_in - x1 and x4
clk125_out - x1 and x4

npor
srst - x1 and x4
crst - x1 and x4
rstn - x8 
l2_exit
hotrst_exit
dlup_exit
dl_ltssm[4:0]

app_msi_req
app_msi_ack 
app_msi_tc [2:0]
app_msi_num [4:0]
pex_msi_num [4:0]
app_int_sts
app_int_ack - x1 and x4

pme_to_cr
pme_to_sr
cfg_pmcsr[31:0]

cfg_tcvcmap [23:0]
cfg_busdev [12:0]
cfg_prmcsr [31:0]
cfg_devcsr  [31:0]
cfg_linkcsr [31:0]
cfg_msicsr [15:0]

cpl_err[6:0]
cpl_pending
err_desc_func0 [127:0]- x1, x4 

pipe_mode
pipe_rstn

pipe_txclk
rate_ext

xphy_pll_areset
xphy_pll_locked

txdetectrx_ext
txdata0_ext[15:0]
txdatak0_ext[1:0]

txelecidle0_ext
txcompl0_ext

rxpolarity0_ext
rxdata0_ext[15:0]
rxdatak0_ext[1:0]

rxvalid0_ext
rxelecidle0_ext

rxstatus0_ext[2:0]
phystatus_ext

powerdown_ext[1:0]

txdetectrx_ext
txdata0_ext[7:0]

txdatak0_ext
txelecidle0_ext

txcompl0_ext
rxpolarity0_ext

powerdown_ext[1:0]
rxdata0_ext[7:0]

rxdatak0_ext
rxvalid0_ext

phystatus_ext
rxelecidle0_ext

rxstatus0_ext[2:0]

test_in[31:0]
test_out[511:0]

tx_st_fifo_empty0
tx_st_fifo_full0

IP Compiler for PCI Express Soft IP Implementation

Interrupt

Clock

Reset

Test
Interface

 Tx Port
(Path to
Virtual 
Channel 0)

Power
Mnmt

Config

Completion
Interface

 Rx Port
(Path to
Virtual 
Channel 0)

reconfig_fromgxb[<n>:0]
reconfig_togxb[<n>:0]

reconfig_clk
cal_blk_clk

gxb_powerdown

Transceiver
Control

8-bit 
PIPE
for x8 

16-bit 
PIPE 
for x1 
and x4

for
external 

PHY

for
internal

PHY

Repeated for
Lanes 1-7 in

x8 MegaCore

Repeated for
Lanes 1-3 in

x4 MegaCore

tx_out0
tx_out1
tx_out2
tx_out3
tx_out4
tx_out5
tx_out6
tx_out7

rx_in0
rx_in1
rx_in2
rx_in3
rx_in4
rx_in5
rx_in6
rx_in7

Serial 
IF to 
PIPE

( user specified,
up to 512 bits)

Avalon-ST

Avalon-ST

Component
Specific

Component
Specific

 ×1 and ×4 only

(1)
(2)



Chapter 5: IP Core Interfaces 5–5
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 5–1 lists the interfaces of both the hard IP and soft IP implementations with 
links to the subsequent sections that describe each interface.

Table 5–1. Signal Groups in the IP Compiler for PCI Express with Avalon-ST Interface

Signal Group

Hard IP
Soft 
IP DescriptionEnd

point
Root 
Port

Logical 

Avalon-ST RX v v v “64- or 128-Bit Avalon-ST RX Port” on page 5–6

Avalon-ST TX v v v “64- or 128-Bit Avalon-ST TX Port” on page 5–15

Clock v v — “Clock Signals—Hard IP Implementation” on page 5–23

Clock — — v “Clock Signals—Soft IP Implementation” on page 5–23

Reset and link training v v v “Reset and Link Training Signals” on page 5–24

ECC error v v — “ECC Error Signals” on page 27

Interrupt v — v “PCI Express Interrupts for Endpoints” on page 5–27

Interrupt and global error — v — “PCI Express Interrupts for Root Ports” on page 5–29

Configuration space v v — “Configuration Space Signals—Hard IP Implementation” on page 5–29

Configuration space — — v “Configuration Space Signals—Soft IP Implementation” on page 5–36

LMI v v — “LMI Signals—Hard IP Implementation” on page 5–37

PCI Express 
reconfiguration block v v — “IP Core Reconfiguration Block Signals—Hard IP Implementation” on 

page 5–38

Power management v v v “Power Management Signals” on page 5–39

Completion v v v “Completion Side Band Signals” on page 5–41

Physical 

Transceiver control v v v “Transceiver Control Signals” on page 5–53

Serial v v v “Serial Interface Signals” on page 5–55

PIPE (1) (1) v “PIPE Interface Signals” on page 5–56

Test 

Test v v “Test Interface Signals—Hard IP Implementation” on page 5–59

Test — — v “Test Interface Signals—Soft IP Implementation” on page 5–61

Test v v v
Note to Table 5–1:

(1) Provided for simulation only



5–6 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

64- or 128-Bit Avalon-ST RX Port
Table 5–2 describes the signals that comprise the Avalon-ST RX Datapath. 

Table 5–2. 64- or 128-Bit Avalon-ST RX Datapath (Part 1 of 3)

Signal Width Dir Avalon-ST 
Type Description

rx_st_ready<n> (1) (2) 1 I ready
Indicates that the application is ready to accept data. The 
application deasserts this signal to throttle the data stream.

rx_st_valid<n> (2) 1 O valid

Clocks rx_st_data<n> into application. Deasserts within 3 
clocks of rx_st_ready<n> deassertion and reasserts within 3 
clocks of rx_st_ready<n> assertion if more data is available 
to send. rx_st_valid can be deasserted between the 
rx_st_sop and rx_st_eop even if rx_st_ready is asserted.

rx_st_data<n>
64, 
128 O data

Receive data bus. Refer to Figure 5–5 through Figure 5–13 for 
the mapping of the transaction layer’s TLP information to 
rx_st_data. Refer to Figure 5–15 for the timing. Note that the 
position of the first payload dword depends on whether the TLP 
address is qword aligned. The mapping of message TLPs is the 
same as the mapping of transaction layer TLPs with 4 dword 
headers. When using a 64-bit Avalon-ST bus, the width of 
rx_st_data<n> is 64. When using a 128-bit Avalon-ST bus, 
the width of rx_st_data<n> is 128. 

rx_st_sop<n> 1 O start of 
packet

When asserted with rx_st_valid<n>, indicates that this is the 
first cycle of the TLP.

rx_st_eop<n> 1 O end of 
packet

When asserted with rx_st_valid<n>, indicates that this is the 
final cycle of the TLP.

rx_st_empty<n> 1 O empty

Indicates that the TLP ends in the lower 64 bits of rx_st_data. 
Valid only when rx_st_eop<n> is asserted. This signal only 
applies to 128-bit mode in the hard IP implementation.

When rx_st_eop<n> is asserted and rx_st_empty<n> has 
value 1, rx_st_data[63:0] holds valid data but 
rx_st_data[127:64] does not hold valid data.
When rx_st_eop<n> is asserted and rx_st_empty<n> has 
value 0, rx_st_data[127:0] holds valid data.



Chapter 5: IP Core Interfaces 5–7
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

rx_st_err<n> 1 O error

Indicates that there is an uncorrectable error correction coding 
(ECC) error in the core’s internal RX buffer of the associated VC. 
This signal is only active for the hard IP implementations when 
ECC is enabled. ECC is automatically enabled by the Quartus II 
assembler in memory blocks, the retry buffer, and the RX buffer 
for all hard IP variants with the exception of Gen2 ×8. ECC 
corrects single–bit errors and detects double–bit errors on a 
per byte basis. 

When an uncorrectable ECC error is detected, rx_st_err is 
asserted for at least 1 cycle while rx_st_valid is asserted. If 
the error occurs before the end of a TLP payload, the packet 
may be terminated early with an rx_st_eop and with 
rx_st_valid deasserted on the cycle after the eop. 

Altera recommends resetting the IP Compiler for PCI Express 
when an uncorrectable (double–bit) ECC error is detected and 
the TLP cannot be terminated early. Resetting guarantees that 
the Configuration Space Registers are not corrupted by an 
errant packet.

This signal is not available for the hard IP implementation in 
Arria II GX devices.

Component Specific Signals

rx_st_mask<n> 1 I component 
specific

Application asserts this signal to tell the IP core to stop sending 
non-posted requests. This signal does not affect non-posted 
requests that have already been transferred from the 
transaction layer to the Avalon-ST Adaptor module. This signal 
can be asserted at any time. The total number of non-posted 
requests that can be transferred to the application after 
rx_st_mask is asserted is not more than 26 for 128-bit mode 
and not more than 14 for 64-bit mode. 

Do not design your application layer logic so that rx_st_mask 
remains asserted until certain Posted Requests or Completions 
are received. To function correctly, the rx_st_mask is 
eventually deasserted without waiting for posted requests or 
completions.

rx_st_bardec<n> 8 O component 
specific

The decoded BAR bits for the TLP. They correspond to the 
transaction layer's rx_desc[135:128]. Valid for MRd, MWr, 
IOWR, and IORD TLPs; ignored for the CPL or message TLPs. 
They are valid on the 2nd cycle of rx_st_data<n> for a 64-bit 
datapath. For a 128-bit datapath rx_st_bardec<n> is valid on 
the first cycle. Figure 5–8 and Figure 5–10 illustrate the timing 
of this signal for 64- and 128-bit data, respectively.

Table 5–2. 64- or 128-Bit Avalon-ST RX Datapath (Part 2 of 3)

Signal Width Dir Avalon-ST 
Type Description



5–8 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

To facilitate the interface to 64-bit memories, the IP core always aligns data to the 
qword or 64 bits; consequently, if the header presents an address that is not qword 
aligned, the IP core, shifts the data within the qword to achieve the correct alignment. 
Figure 5–4 shows how an address that is not qword aligned, 0x4, is stored in memory. 
The byte enables only qualify data that is being written. This means that the byte 
enables are undefined for 0x0–0x3. This example corresponds to Figure 5–5 on 
page 5–9. Qword alignment is a feature of the IP core that cannot be turned off. 
Qword alignment applies to all types of request TLPs with data, including memory 
writes, configuration writes, and I/O writes. The alignment of the request TLP 
depends on bit 2 of the request address. For completion TLPs with data, alignment 
depends on bit 2 of the lower address field. This bit is always 0 (aligned to qword 
boundary) for completion with data TLPs that are for configuration read or I/O read 
requests.

f Refer to Appendix A, Transaction Layer Packet (TLP) Header Formats for the formats 
of all TLPs.

rx_st_be<n> 8, 16 O component 
specific

These are the byte enables corresponding to the transaction 
layer's rx_be. The byte enable signals only apply to PCI 
Express TLP payload fields. When using a 64-bit Avalon-ST 
bus, the width of rx_st_be is 8. When using a 128-bit Avalon-
ST bus, the width of rx_st_be is 16. This signal is optional. 
You can derive the same information decoding the FBE and LBE 
fields in the TLP header. The correspondence between byte 
enables and data is as follows when the data is aligned:
rx_st_data[63:56] = rx_st_be[7]
rx_st_data[55:48] = rx_st_be[6]
rx_st_data[47:40] = rx_st_be[5]
rx_st_data[39:32] = rx_st_be[4]
rx_st_data[31:24] = rx_st_be[3]
rx_st_data[23:16] = rx_st_be[2]
rx_st_data[15:8] = rx_st_be[1]
rx_st_data[7:0] = rx_st_be[0]

Notes to Table 5–2:

(1) In Stratix IV GX devices, <n> is the virtual channel number, which can be 0 or 1.
(2) The RX interface supports a readyLatency of 2 cycles for the hard IP implementation and 3 cycles for the soft IP implementation.

Table 5–2. 64- or 128-Bit Avalon-ST RX Datapath (Part 3 of 3)

Signal Width Dir Avalon-ST 
Type Description

Figure 5–4. Qword Alignment

.

.

.

0x0

0x8

0x10

0x18

Header Addr = 0x4

64 bits
PCB Memory

Valid Data

Valid Data



Chapter 5: IP Core Interfaces 5–9
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 5–3 shows the byte ordering for header and data packets for Figure 5–5 through 
Figure 5–13. 

Figure 5–5 illustrates the mapping of Avalon-ST RX packets to PCI Express TLPs for a 
three dword header with non-qword aligned addresses with a 64-bit bus. In this 
example, the byte address is unaligned and ends with 0x4, causing the first data to 
correspond to rx_st_data[63:32].

f For more information about the Avalon-ST protocol, refer to the Avalon Interface 
Specifications.

1 The Avalon-ST protocol, as defined in Avalon Interface Specifications, is big endian, but 
the IP Compiler for PCI Express packs symbols into words in little endian format. 
Consequently, you cannot use the standard data format adapters that use the Avalon-
ST interface.

Table 5–3. Mapping Avalon-ST Packets to PCI Express TLPs 

Packet TLP

Header0 pcie_hdr_byte0, pcie_hdr _byte1, pcie_hdr _byte2, pcie_hdr _byte3

Header1 pcie_hdr _byte4, pcie_hdr _byte5, pcie_hdr byte6, pcie_hdr _byte7

Header2 pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _byte10, pcie_hdr _byte11

Header3 pcie_hdr _byte12, pcie_hdr _byte13, header_byte14, pcie_hdr _byte15

Data0 pcie_data_byte3, pcie_data_byte2, pcie_data_byte1, pcie_data_byte0

Data1 pcie_data_byte7, pcie_data_byte6, pcie_data_byte5, pcie_data_byte4

Data2 pcie_data_byte11, pcie_data_byte10, pcie_data_byte9, pcie_data_byte8

Data<n> pcie_data_byte<n>, pcie_data_byte<n-1>, pcie_data_byte<n>-2, pcie_data_byte<n-3>

Figure 5–5. 64-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-DWord Header TLPs with Non-QWord Aligned Address

clk

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_be[7:4]

rx_st_be[3:0]

Header1 Data0 Data2

Header0 Header2 Data1

F F

F



5–10 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–6 illustrates the mapping of Avalon-ST RX packets to PCI Express TLPs for a 
three dword header with qword aligned addresses. Note that the byte enables 
indicate the first byte of data is not valid and the last dword of data has a single valid 
byte.

Figure 5–7 shows the mapping of Avalon-ST RX packets to PCI Express TLPs for TLPs 
for a four dword with qword aligned addresses with a 64-bit bus.

Figure 5–6. 64-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-DWord Header TLPs with QWord Aligned Address 
(Note 1)

Note to Figure 5–6:

(1) rx_st_be[7:4] corresponds to rx_st_data[63:32]. rx_st_be[3:0] corresponds to rx_st_data[31:0]

clk

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_be[7:4]

rx_st_be[3:0]

Header 1 Data1 Data3

Header 0 Header2 Data0 Data2

F 1

FE

Figure 5–7. 64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-DWord Header TLPs with QWord Aligned Addresses 

clk

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_be[7:4]

rx_st_be[3:0]

header1 header3 data1

header0 header2 data0

F

F



Chapter 5: IP Core Interfaces 5–11
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 5–8 shows the mapping of Avalon-ST RX packet to PCI Express TLPs for TLPs 
for a four dword header with non-qword addresses with a 64-bit bus. Note that the 
address of the first dword is 0x4.   The address of the first enabled byte is 0x6. This 
example shows one valid word in the first dword, as indicated by the rx_st_be signal.

Figure 5–9 illustrates the timing of the RX interface when the application 
backpressures the IP Compiler for PCI Express by deasserting rx_st_ready. The 
rx_st_valid signal must deassert within three cycles after rx_st_ready is deasserted. 
In this example, rx_st_valid is deasserted in the next cycle. rx_st_data is held until 
the application is able to accept it.

Figure 5–8. 64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-DWord Header TLPs with Non-QWord Addresses 
(Note 1)

Note to Figure 5–8:

(1) rx_st_be[7:4] corresponds to rx_st_data[63:32]. rx_st_be[3:0] corresponds to rx_st_data[31:0].

clk

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_bardec[7:0]

rx_st_be[7:4]

rx_st_be[3:0]

header1 header3 data0 data2

header0 header2 data1

10

C F

F

Figure 5–9. 64-Bit Application Layer Backpressures Transaction Layer

clk

rx_st_data[63:0]

rx_st_sop

rx_st_eop

rx_st_ready

rx_st_valid

rx_st_err

000 . 010 . CCCC0002CCCC0001 CC . CC . CC . CC . CC . CC .



5–12 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–10 shows the mapping of 128-bit Avalon-ST RX packets to PCI Express TLPs 
for TLPs with a three dword header and qword aligned addresses. 

Figure 5–11 shows the mapping of 128-bit Avalon-ST RX packets to PCI Express TLPs 
for TLPs with a 3 dword header and non-qword aligned addresses.

Figure 5–10. 128-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-DWord Header TLPs with QWord Aligned Addresses

clk

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_bardec[7:0]

rx_st_sop

rx_st_eop

rx_st_empty

data3

header2 data2

header1 data1 data<n>

header0 data0 data<n-1>

01

Figure 5–11. 128-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-DWord Header TLPs with non-QWord Aligned 
Addresses

clk

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_empty

Data0 Data 4

Header 2 Data 3

Header 1 Data 2 Data (n)

Header 0 Data 1 Data (n-1)



Chapter 5: IP Core Interfaces 5–13
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 5–12 shows the mapping of 128-bit Avalon-ST RX packets to PCI Express TLPs 
for a four dword header with non-qword aligned addresses. In this example, 
rx_st_empty is low because the data ends in the upper 64 bits of rx_st_data.

Figure 5–13 shows the mapping of 128-bit Avalon-ST RX packets to PCI Express TLPs 
for a four dword header with qword aligned addresses.

f For a complete description of the TLP packet header formats, refer to Appendix A, 
Transaction Layer Packet (TLP) Header Formats.

Figure 5–12. 128-Bit Avalon-ST rx_st_data Cycle Definition for 4-DWord Header TLPs with non-QWord Aligned Addresses

clk

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_empty

Header 3 Data 2

Header 2 Data 1 Data n

Header 1 Data 0 Data n-1

Header 0 Data n-2

Figure 5–13. 128-Bit Avalon-ST rx_st_data Cycle Definition for 4-DWord Header TLPs with QWord Aligned Addresses

clk

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_empty

Header3 Data3 Data n

Header 2 Data 2  Data n-1

Header 1 Data 1 Data n-2

Header 0 Data 0 Data n-3



5–14 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–14 illustrates the timing of the RX interface when the application 
backpressures the IP Compiler for PCI Express by deasserting rx_st_ready. The 
rx_st_valid signal must deassert within three cycles after rx_st_ready is deasserted. 
In this example, rx_st_valid is deasserted in the next cycle. rx_st_data is held until 
the application is able to accept it.

Figure 5–15 illustrates the timing of the Avalon-ST RX interface. On this interface, the 
core deasserts rx_st_valid in response to the deassertion of rx_st_ready from the 
application. 

Figure 5–14. 128-Bit Application Layer Backpressures Hard IP Transaction Layer

clk

rx_st_data[127:0]

rx_st_sop

rx_st_eop

rx_st_empty

rx_st_ready

rx_st_valid

rx_st_err

0000 .

Figure 5–15. Avalon-ST RX Interface Timing

clk

rx_st_ready

rx_st_valid

rx_st_data[63:0]

rx_st_sop

rx_st_eop

h1 h2 data0 data1 data2 data3 data4 data5 data6

3 cycles 
max latency

 1 2 3 4 5 6 7 8 9 1110



Chapter 5: IP Core Interfaces 5–15
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

64- or 128-Bit Avalon-ST TX Port
Table 5–4 describes the signals that comprise the Avalon-ST TX Datapath.

Table 5–4. 64- or 128-Bit Avalon-ST TX Datapath (Part 1 of 3)

Signal Width Dir Avalon-ST 
Type Description

tx_st_ready<n> (1) (2) 1 O ready

Indicates that the PCIe core is ready to accept data for 
transmission. The core deasserts this signal to throttle 
the data stream. In the hard IP implementation, 
tx_st_ready<n> may be asserted during reset. The 
application should wait at least 2 clock cycles after the 
reset is released before issuing packets on the Avalon-ST 
TX interface. The reset_status signal can also be used 
to monitor when the IP core has come out of reset.

When tx_st_ready<n>, tx_st_valid<n> and 
tx_st_data<n> are registered (the typical case) Altera 
recommends a readyLatency of 2 cycles to facilitate 
timing closure; however, a readyLatency of 1 cycle is 
possible.

To facilitate timing closure, Altera recommends that you 
register both the tx_st_ready and tx_st_valid 
signals. If no other delays are added to the ready-valid 
latency, this corresponds to a readyLatency of 2.

tx_st_valid<n> (2) 1 I valid

Clocks tx_st_data<n> into the core. Between 
tx_st_sop<n> and tx_st_eop<n>, must be asserted if 
tx_st_ready<n> is asserted. When tx_st_ready<n> 
deasserts, this signal must deassert within 1, 2, or 3 
clock cycles for soft IP implementation and within 1 or 2 
clock cycles for hard IP 

tx_st_valid<n> (2) 1 I valid

implementation. When tx_st_ready<n> reasserts, and 
tx_st_data<n> is in mid-TLP, this signal must reassert 
within 3 cycles for soft IP and 2 cycles for the hard IP 
implementation. Refer to Figure 5–24 on page 5–21 for 
the timing of this signal. 

To facilitate timing closure, Altera recommends that you 
register both the tx_st_ready and tx_st_valid 
signals. If no other delays are added to the ready-valid 
latency, this corresponds to a readyLatency of 2

tx_st_data<n>
64, 
128 I data

Data for transmission.Transmit data bus. Refer to 
Figure 5–18 through Figure 5–23 for the mapping of TLP 
packets to tx_st_data<n>. Refer to Figure 5–24 for the 
timing of this interface. When using a 64-bit Avalon-ST 
bus, the width of tx_st_data is 64. When using 128-bit 
Avalon-ST bus, the width of tx_st_data is 128. The 
application layer must provide a properly formatted TLP 
on the TX interface. The mapping of message TLPs is the 
same as the mapping of transaction layer TLPs with 4 
dword headers. The number of data cycles must be 
correct for the length and address fields in the header. 
Issuing a packet with an incorrect number of data cycles 
results in the TX interface hanging and unable to accept 
further requests. 



5–16 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

tx_st_sop<n> 1 I start of 
packet

When asserted with tx_st_valid<n>, indicates first 
cycle of a TLP.

tx_st_eop<n> 1 I end of 
packet

When asserted with tx_st_valid<n>, indicates final 
cycle of a TLP.

tx_st_empty<n> 1 I empty

Indicates that the TLP ends in the lower 64 bits of 
tx_st_data<n>. Valid only when tx_st_eop<n> is 
asserted.This signal only applies to 128-bit mode in the 
hard IP implementation.

When tx_st_eop<n> is asserted and tx_st_empty<n> 
has value 1, tx_st_data[63:0] holds valid data but 
tx_st_data[127:64] does not hold valid data.
When tx_st_eop<n> is asserted and tx_st_empty<n> 
has value 0, tx_st_data[127:0] holds valid data.

tx_st_err<n> 1 I error

Indicates an error on transmitted TLP. This signal is used 
to nullify a packet. It should only be applied to posted and 
completion TLPs with payload.   To nullify a packet, assert 
this signal for 1 cycle after the SOP and before the EOP.   
In the case that a packet is nullified, the following packet 
should not be transmitted until the next clock cycle. This 
signal is not available on the ×8 Soft IP. tx_st_err is not 
available for packets that are 1 or 2 cycles long.

Refer to Figure 5–21 on page 5–20 for a timing diagram 
that illustrates the use of the error signal. Note that it 
must be asserted while the valid signal is asserted.

Component Specific Signals 

tx_fifo_full<n> 1 O component 
specific

Indicates that the adapter TX FIFO is almost full. 

tx_fifo_empty<n> 1 O component 
specific

Indicates that the adapter TX FIFO is empty.

tx_fifo_rdptr<n>[3:0] 4 O component 
specific

This is the read pointer for the adaptor TX FIFO. 

tx_fifo_wrptr[3:0] 4 O component 
specific

This is the write pointer for the adaptor TX FIFO. 

Table 5–4. 64- or 128-Bit Avalon-ST TX Datapath (Part 2 of 3)

Signal Width Dir Avalon-ST 
Type Description



Chapter 5: IP Core Interfaces 5–17
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

tx_cred<n> (3) (4) (5) (6) 36 O component 
specific

This vector contains the available header and data credits 
for each type of TLP (completion, non-posted, and 
posted). Each data credit is 4 dwords or 16 bytes as per 
the PCI Express Base Specification. Use of the signal is 
optional.

If more TX credits are available than the tx_cred bus can 
display, tx_cred shows the maximum number given the 
number of bits available for that particular TLP type. 
tx_cred is a saturating bus and for a given TLP type, it 
does not change until enough credits have been 
consumed to fall within the range tx_cred can display.

Refer to Figure 5–16 for the layout of fields in this signal.

For information about how to use the tx_cred signal to 
optimize flow control, refer to “TX Datapath” on 
page 4–6.

Component Specific Signals for Arria II GX, Arria II GZ, and Stratix IV Devices

nph_alloc_1cred_vc0 (5) (6) 1 O component 
specific

Used in conjunction with the optional tx_cred<n> 
signal. When 1, indicates that the non-posted header 
credit limit was initialized to only 1 credit. This signal is 
asserted after FC Initialization and remains asserted until 
the link is reinitialized. 

npd_alloc_1cred_vc0 (5) (6) 1 O component 
specific

Used in conjunction with the optional tx_cred<n> 
signal. When 1, indicates that the non-posted data credit 
limit was initialized to only 1 credit. This signal is 
asserted after FC Initialization and remains asserted until 
the link is reinitialized. 

npd_cred_vio_vc0 (5) (6) 1 O component 
specific

Used in conjunction with the optional tx_cred<n> 
signal. When 1, means that the non-posted data credit 
field is no longer valid so that more credits were 
consumed than the tx_cred signal advertised. Once a 
violation is detected, this signal remains high until the IP 
core is reset. 

nph_cred_vio_vc0 (5) (6) 1 O component 
specific

Used in conjunction with the optional tx_cred<n> 
signal. When 1, means that the non-posted header credit 
field is no longer valid. This indicates that more credits 
were consumed than the tx_cred signal advertised.    
Once a violation is detected, this signal remains high until 
the IP core is reset. 

Notes to Table 5–4:

(1) For all signals, <n> is the virtual channel number, which can be 0 or 1.
(2) To be Avalon-ST compliant, you must use a readyLatency of 1 or 2 for hard IP implementation, and a readyLatency of 1 or 2 or 3 for the 

soft IP implementation. To facilitate timing closure, Altera recommends that you register both the tx_st_ready and tx_st_valid signals. If 
no other delays are added to the ready-valid latency, this corresponds to a readyLatency of 2. 

(3) For the completion header, posted header, non-posted header, and non-posted data fields, a value of 7 indicates 7 or more available 
credits.

(4) These signals only apply to hard IP implementations in Arria II GX and Stratix IV GX devices. 
(5) In Stratix IV and Arria II GX hard IP implementations, the non-posted TLP credit field is valid for systems that support more than 1 NP credit.   

In systems that allocate only 1 NP credit, the receipt of completions should be used to detect the credit release.
(6) These signals apply only to hard IP implementations in Arria II GX and Stratix IV devices.

Table 5–4. 64- or 128-Bit Avalon-ST TX Datapath (Part 3 of 3)

Signal Width Dir Avalon-ST 
Type Description



5–18 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–16 illustrates the TLP fields of the tx_cred bus. For completion header, 
non-posted header, non-posted data and posted header fields, a saturation value of 
seven indicates seven or more available transmit credits. 

For the hard IP implementation in Arria II GX, Arria II GZ, and Stratix IV GX devices, 
a saturation value of six or greater should be used for non-posted header and 
non-posted data. If your system allocates a single non-posted credit, you can use the 
receipt of completions to detect the release of credit for non-posted writes.

Mapping of Avalon-ST Packets to PCI Express TLPs
Figure 5–17 through Figure 5–24 illustrate the mappings between Avalon-ST packets 
and PCI Express TLPs. These mappings apply to all types of TLPs, including posted, 
non-posted and completion. Message TLPs use the mappings shown for four dword 
headers. TLP data is always address-aligned on the Avalon-ST interface whether or 
not the lower dwords of the header contain a valid address as may be the case with 
TLP type (message request with data payload).

f For additional information about TLP packet headers, refer to Appendix A, 
Transaction Layer Packet (TLP) Header Formats and Section 2.2.1 Common Packet 
Header Fields in the PCI Express Base Specification 2.0.

Figure 5–17 illustrates the mapping between Avalon-ST TX packets and PCI Express 
TLPs for 3 dword header TLPs with non-qword aligned addresses with a 64-bit bus. 
(Figure 5–4 on page 5–8 illustrates the storage of non-qword aligned data.)

Figure 5–16. TX Credit Signal 

35 24 23 21 20 18 17 15 14 3 2 0

Completion Data
(1) Comp Hdr NPData NP Hdr Posted Data

Posted 
Header

(1)

Note to Figure 5–16:

(1) When infinite credits are available, the corresponding credit field is all 1's.

Figure 5–17. 64-Bit Avalon-ST tx_st_data Cycle Definition for 3-DWord Header TLP with Non-QWord Aligned Address

Notes to Figure 5–17:

(1) Header0 ={pcie_hdr_byte0, pcie_hdr _byte1, pcie_hdr _byte2, pcie_hdr _byte3} 
(2) Header1 = {pcie_hdr_byte4, pcie_hdr _byte5, header pcie_hdr byte6, pcie_hdr _byte7}
(3) Header2 = {pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _byte10, pcie_hdr _byte11}
(4) Data0 = {pcie_data_byte3, pcie_data_byte2, pcie_data_byte1, pcie_data_byte0}
(5) Data1 = {pcie_data_byte7, pcie_data_byte6, pcie_data_byte5, pcie_data_byte4}
(6) Data2 = {pcie_data_byte11, pcie_data_byte10, pcie_data_byte9, pcie_data_byte8}.

clk

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header1 Data0 Data2

Header0 Header2 Data1

 1 2 3



Chapter 5: IP Core Interfaces 5–19
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 5–18 illustrates the mapping between Avalon-ST TX packets and PCI Express 
TLPs for a four dword header with qword aligned addresses with a 64-bit bus.

Figure 5–19 illustrates the mapping between Avalon-ST TX packets and PCI Express 
TLPs for four dword header with non-qword aligned addresses with a 64-bit bus.

Figure 5–20 shows the mapping of 128-bit Avalon-ST TX packets to PCI Express TLPs 
for a three dword header with qword aligned addresses. 

Figure 5–18. 64-Bit Avalon-ST tx_st_data Cycle Definition for 4–DWord TLP with QWord Aligned Address

Notes to Figure 5–18:

(1) Header0 = {pcie_hdr_byte0, pcie_hdr _byte1, pcie_hdr _byte2, pcie_hdr _byte3}
(2) Header1 = {pcie_hdr _byte4, pcie_hdr _byte5, pcie_hdr byte6, pcie_hdr _byte7}
(3) Header2 = {pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _byte10, pcie_hdr _byte11}
(4) Header3 = pcie_hdr _byte12, pcie_hdr _byte13, header_byte14, pcie_hdr _byte15}, 4 dword header only
(5) Data0 = {pcie_data_byte3, pcie_data_byte2, pcie_data_byte1, pcie_data_byte0}
(6) Data1 = {pcie_data_byte7, pcie_data_byte6, pcie_data_byte5, pcie_data_byte4}

clk

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header1 Header3 Data1

Header0 Header2 Data0

 1 2 3

Figure 5–19. 64-Bit Avalon-ST tx_st_data Cycle Definition for TLP 4-DWord Header with Non-QWord Aligned Address

clk

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header 1 Header3 Data0 Data2

Header 0 Header2 Data1 

Figure 5–20. 128-Bit Avalon-ST tx_st_data Cycle Definition for 3-DWord Header TLP with QWord Aligned Address

Data3

Header2 Data 2

Header1 Data1 Data(n)

Header0 Data0 Data(n-1)

clk

tx_st_valid

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

tx_st_empty



5–20 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–21 shows the mapping of 128-bit Avalon-ST TX packets to PCI Express TLPs 
for a 3 dword header with non-qword aligned addresses. 

Figure 5–22 shows the mapping of 128-bit Avalon-ST TX packets to PCI Express TLPs 
for a four dword header TLP with qword aligned data.

Figure 5–23 shows the mapping of 128-bit Avalon-ST TX packets to PCI Express TLPs 
for a four dword header TLP with non-qword aligned addresses. In this example, 
tx_st_empty is low because the data ends in the upper 64 bits of tx_st_data.

Figure 5–21. 128-Bit Avalon-ST tx_st_data Cycle Definition for 3-DWord Header TLP with non-QWord Aligned Address

clk

tx_st_valid

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_err

tx_st_eop

tx_st_empty

Data0 Data 4

Header 2 Data 3

Header 1 Data 2 Data (n)

Header 0 Data 1 Data (n-1)

Figure 5–22. 128-Bit Avalon-ST tx_st_data Cycle Definition for 4-DWord Header TLP with QWord Aligned Address

clk

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

tx_st_empty

Header 3 Data 3
 

Header 2 Data 2

Header 1 Data 1

Header 0 Data 0 Data 4

Figure 5–23. 128-Bit Avalon-ST tx_st_data Cycle Definition for 4-DWord Header TLP with non-QWord Aligned Address

Header 3 Data 2

Header 2 Data 1 Data n

Header 1 Data 0 Data n-1

Header 0 Data n-2

clk

tx_st_valid

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

tx_st_empty



Chapter 5: IP Core Interfaces 5–21
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 5–24 illustrates the timing of the Avalon-ST TX interface. The core can deassert 
tx_st_ready<n> to throttle the application which is the source. 

Figure 5–25 illustrates the timing of the 64-bit TX interface when the IP Compiler for 
PCI Express backpressures the application by deasserting tx_st_ready. Because the 
readyLatency is two cycles, the application deasserts tx_st_valid after two cycles 
and holds tx_st_data until two cycles after tx_st_ready is asserted.

Figure 5–24. Avalon-ST TX Interface Timing

Notes to Figure 5–24:

(1) The maximum allowed response time is 3 clock cycles for the soft IP implementation and 2 clock cycles for the hard IP implementation.

clk

tx_st_ready

tx_st_valid

tx_st_data0[63:0]

tx_st_sop

tx_st_eop

response_time

cycle 1 cycle 2 cycle 3 cycle 4 cycle n . . . 

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5–25. 64-Bit Transaction Layer Backpressures the Application

coreclkout

tx_st_sop

tx_st_eop

tx_st_ready

tx_st_valid

tx_st_err

tx_st_data[63:0].. . . . . . . . . . .

readyLatency

 00. . 00 ... BB... BB ... BBBB0306BBB0305 BB... BB.. BB ... BB ... BB ... BB ... BB....



5–22 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–26 illustrates the timing of the 128-bit TX interface when the IP Compiler for 
PCI Express backpressures the application by deasserting tx_st_ready. Because the 
readyLatency is two cycles, the application deasserts tx_st_valid after two cycles 
and holds tx_st_data until two cycles after tx_st_ready is reasserted

Root Port Mode Configuration Requests
To ensure proper operation when sending CFG0 transactions in root port mode, the 
application should wait for the CFG0 to be transferred to the IP core’s configuration 
space before issuing another packet on the Avalon-ST TX port.   You can do this by 
waiting at least 10 clocks from the time the CFG0 SOP is issued on Avalon-ST and 
then checking for tx_fifo_empty0==1 before sending the next packet. 

If your application implements ECRC forwarding, it should not apply ECRC 
forwarding to CFG0 packets that it issues on Avalon-ST.   There should be no ECRC 
appended to the TLP, and the TD bit in the TLP header should be set to 0.   These 
packets are internally consumed by the IP core and are not transmitted on the PCI 
Express link.

ECRC Forwarding
On the Avalon-ST interface, the ECRC field follows the same alignment rules as 
payload data. For packets with payload, the ECRC is appended to the data as an extra 
dword of payload.   For packets without payload, the ECRC field follows the address 
alignment as if it were a one dword payload. Depending on the address alignment, 
Figure 5–7 on page 5–10 through Figure 5–13 on page 5–13 illustrate the position of 
the ECRC data for RX data. Figure 5–17 on page 5–18 through Figure 5–23 on 
page 5–20 illustrate the position of ECRC data for TX data. For packets with no 
payload data, the ECRC would correspond to Data0 in these figures. 

Figure 5–26. 128-Bit Transaction Layer Backpressures the Application

clk

tx_st_data[127:0]

tx_st_sop

tx_st_eop

tx_st_empty

tx_st_ready

tx_st_valid

tx_st_err

.. 000 . CC . CC . CC . CCCC021 . CC . CC . CC . CC . CC . CC . CC .



Chapter 5: IP Core Interfaces 5–23
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Clock Signals—Hard IP Implementation
Table 5–5 describes the clock signals that comprise the clock interface used in the hard 
IP implementation. 

Refer to Chapter 7, Reset and Clocks for a complete description of the clock interface 
for each IP Compiler for PCI Express variation.

Clock Signals—Soft IP Implementation

Table 5–5. Clock Signals Hard IP Implementation (Note 1)

Signal I/O Description

refclk I Reference clock for the IP core. It must be the frequency specified on the System Settings page 
accessible from the Parameter Settings tab using the parameter editor. 

pld_clk I Clocks the application layer and part of the adapter. You must drive this clock from 
core_clk_out.

core_clk_out O
This is a fixed frequency clock used by the data link and transaction layers. To meet PCI Express 
link bandwidth constraints, it has minimum frequency requirements which are outlined in 
Table 7–1 on page 7–7.

pclk_in I This is used for simulation only, and is derived from the refclk. It is the PIPE interface clock 
used for PIPE mode simulation.

clk250_out O This is used for simulation only. The testbench uses this to generate pclk_in.

clk500_out O This is used for simulation only. The testbench uses this to generate pclk_in.

Note to Table 5–5:

(1) These clock signals are illustrated by Figure 7–5 on page 7–6. 

Table 5–6. Clock Signals Soft IP Implementation (Note 1)

Signal I/O Description

refclk I Reference clock for the IP core. It must be the frequency specified on the System Settings 
page accessible from the Parameter Settings tab using the parameter editor. 

clk125_in I
Input clock for the ×1 and ×4 IP core. All of the IP core I/O signals (except refclk, 
clk125_out, and npor) are synchronous to this clock signal. This signal must be connected 
to the clk125_out signal. This signal is not on the ×8 IP core.

clk125_out O Output clock for the ×1 and ×4 IP core. 125-MHz clock output derived from the refclk input. 
This signal is not on the ×8 IP core.

clk250_in I
Input clock for the ×8 IP core. All of the IP core I/O signals (except refclk, clk250_out, and 
npor) are synchronous to this clock signal. This signal must be connected to the clk250_out 
signal.

clk250_out O Output from the ×8 IP core. 250 MHz clock output derived from the refclk input. This signal 
is only on the ×8 IP core.

Note to Table 5–6:

(1) Refer to Figure 7–6 on page 7–9.



5–24 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Reset and Link Training Signals
Table 5–7 describes the reset signals available in configurations using the Avalon-ST 
interface or descriptor/data interface. 

Table 5–7. Reset and Link Training Signals (Part 1 of 2)

Signal I/O Description

 <variant>_plus.v or .vhd 

pcie_rstn I
pcie_rstn directly resets all sticky IP Compiler for PCI Express configuration registers. 
Sticky registers are those registers that fail to reset in L2 low power mode or upon a 
fundamental reset. This is an asynchronous reset.

local_rstn I reset_n is the system-wide reset which resets all IP Compiler for PCI Express circuitry not 
affected by pcie_rstn. This is an asynchronous reset.

Both <variant>_plus.v or .vhd and <variant>.v or .vhd

suc_spd_neg O Indicates successful speed negotiation to Gen2 when asserted. 

ltssm[4:0] O

LTSSM state: The LTSSM state machine encoding defines the following states: 

■  00000: detect.quiet
■  00001: detect.active
■  00010: polling.active
■  00011: polling.compliance
■  00100: polling.configuration
■  00101: polling.speed
■  00110: config.linkwidthstart
■  00111: config.linkaccept
■  01000: config.lanenumaccept
■  01001: config.lanenumwait
■  01010: config.complete
■  01011: config.idle
■  01100: recovery.rcvlock
■  01101: recovery.rcvconfig
■ 01110: recovery.idle
■  01111: L0
■ 10000: disable
■  10001: loopback.entry
■  10010: loopback.active
■ 10011: loopback.exit
■ 10100: hot.reset 
■  10110: L1.entry
■  10111: L1.idle
■  11000: L2.idle
■  11001: L2.transmit.wake
■ 11010: speed.recovery

reset_status O

Reset Status signal. When asserted, this signal indicates that the IP core is in reset. This 
signal is only available in the hard IP implementation. When the npor signal asserts, 
reset_status is reset to zero. The reset_status signal is synchronous to the pld_clk 
and is deasserted only when the pld_clk is good.

<variant>.v or .vhd, only



Chapter 5: IP Core Interfaces 5–25
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Reset Details 
The hard IP implementation (×1, ×4, and ×8) or the soft IP implementation (×1 and 
×4) have three reset inputs: npor, srst, and crst. npor is used internally for all sticky 
registers that may not be reset in L2 low power mode or by the fundamental reset. 
npor is typically generated by a logical OR of the power-on-reset generator and the 
perst signal from the connector, as specified in the PCI Express card 
electromechanical specification. The srst signal is a synchronous reset of the datapath 
state machines. The crst signal is a synchronous reset of the nonsticky configuration 
space registers. For endpoints, whenever the l2_exit, hotrst_exit, dlup_exit, or 
other power-on-reset signals are asserted, srst and crst should be asserted for one or 
more cycles for the soft IP implementation and for at least 2 clock cycles for hard IP 
implementation.

rstn I Asynchronous reset of configuration space and datapath logic. Active Low. This signal is 
only available on the ×8 IP core. Used in ×8 soft IP implementation only. 

npor I
Power on reset. This signal is the asynchronous active-low power-on reset signal. This reset 
signal is used to initialize all configuration space sticky registers, PLL, and SERDES circuitry. 
It also resets the datapath and control registers.

srst I
Synchronous datapath reset. This signal is the synchronous reset of the datapath state 
machines of the IP core. It is active high. This signal is only available on the hard IP and soft 
IP ×1 and ×4 implementations.

crst I
Synchronous configuration reset. This signal is the synchronous reset of the nonsticky 
configuration space registers. It is active high. This signal is only available on the hard IP 
implementation and the ×1 and ×4 soft IP implementations. 

l2_exit O

L2 exit. The PCI Express specification defines fundamental hot, warm, and cold reset states. 
A cold reset (assertion of crst and srst for the hard IP implementation and the ×1 and ×4 
soft IP implementation, or rstn for ×8 soft IP implementation) must be performed when the 
LTSSM exits L2 state (signaled by assertion of this signal). This signal is active low and 
otherwise remains high. It is asserted for one cycle (going from 1 to 0 and back to 1) after 
the LTSSM transitions from l2_idl to detect.

hotrst_exit O

Hot reset exit. This signal is asserted for 1 clock cycle when the LTSSM exits the hot reset 
state. It informs the application layer that it is necessary to assert a global reset (crst and 
srst for the hard IP implementation and the ×1 and ×4 soft IP implementation, or rstn for 
×8 soft IP implementation). This signal is active low and otherwise remains high. In Gen1 
and Gen2, the hotrst_exit signal is asserted 1 ms after the ltssm signal exits the 
hot.reset state

dlup_exit O

This signal is active for one pld_clk cycle when the IP core exits the DLCSM DLUP state. In 
endpoints, this signal should cause the application to assert a global reset (crst and srst 
in the hard IP implementation and ×1 and ×4 soft IP implementation, or rstn in ×8 the soft 
IP implementation). In root ports, this signal should cause the application to assert srst, 
but not crst. This signal is active low and otherwise remains high.

rc_pll_locked O Indicates that the SERDES receiver PLL is in locked mode with the reference clock. In pipe 
simulation mode this signal is always asserted.

Table 5–7. Reset and Link Training Signals (Part 2 of 2)

Signal I/O Description



5–26 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–27 provides a simplified view of the logic controlled by the reset signals.

For root ports, srst should be asserted whenever l2_exit, hotrst_exit, dlup_exit, 
and power-on-reset signals are asserted. The root port crst signal should be asserted 
whenever l2_exit, hotrst_exit and other power-on-reset signals are asserted. 

The IP Compiler for PCI Express soft IP implementation (×8) has two reset inputs, 
npor and rstn. The npor reset is used internally for all sticky registers that may not be 
reset in L2 low power mode or by the fundamental reset. npor is typically generated 
by a logical OR of the power-on-reset generator and the perst# signal from the 
connector, as specified in the PCI Express Card Electromechanical Specification. 

The rstn signal is an asynchronous reset of the datapath state machines and the 
nonsticky configuration space registers. Whenever the l2_exit, hotrst_exit, 
dlup_exit, or other power-on-reset signals are asserted, rstn should be asserted for 
one or more cycles. When the perst# connector signal is asserted, rstn should be 
asserted for a longer period of time to ensure that the root complex is stable and ready 
for link training.

Figure 5–27. Reset Signal Domains

<variant>.v or .vhd 

<variant>_core.v or .vhd 

SERDES Reset
State Machine

Configuration Space
Sticky Registers

Datapath State Machines of
 MegaCore  Fucntion

Configuration Space
Non-Sticky Registers

srst

crst

altpcie_hip_pipen1b.v or .vhd 

npor



Chapter 5: IP Core Interfaces 5–27
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

ECC Error Signals
Table 5–8 shows the ECC error signals for the hard IP implementation.

PCI Express Interrupts for Endpoints
Table 5–9 describes the IP core’s interrupt signals for endpoints.

Table 5–8. ECC Error Signals for Hard IP Implementation (Note 1) (Note 2)

Signal I/O Description

derr_cor_ext_rcv[1:0] (3) O Indicates a correctable error in the RX buffer for the corresponding virtual 
channel. 

derr_rpl (3) O Indicates an uncorrectable error in the retry buffer. 

derr_cor_ext_rpl (3) O Indicates a correctable error in the retry buffer. 

r2c_err0 O

Indicates an uncorrectable ECC error on VC0. Altera recommends 
resetting the IP Compiler for PCI Express when an uncorrectable ECC error 
is detected and the packet cannot be terminated early. Resetting 
guarantees that the Configuration Space Registers are not corrupted by an 
errant TLP.

r2c_err1 O

Indicates an uncorrectable ECC error on VC1. Altera recommends 
reseeting the IP Compiler for PCI Express when an uncorrectable ECC 
error is detected and the packet cannot be terminated early. Resetting 
guarantees that the Configuration Space Registers are not corrupted by an 
errant TLP

Notes to Table 5–8:

(1) These signals are not available for the hard IP implementation in Arria II GX devices.
(2) The Avalon-ST rx_st_err<n> described in Table 5–2 on page 5–6 indicates an uncorrectable error in the RX buffer.
(3) This signal applies only when ECC is enabled in some hard IP configurations. Refer to Table 1–9 on page 1–12 for more information.

Table 5–9. Interrupt Signals for Endpoints (Part 1 of 2)

Signal I/O Description

app_msi_req I
Application MSI request. Assertion causes an MSI posted write TLP to be generated based 
on the MSI configuration register values and the app_msi_tc and app_msi_num input 
ports. 

app_msi_ack O Application MSI acknowledge. This signal is sent by the IP core to acknowledge the 
application's request for an MSI interrupt.

app_msi_tc[2:0] I Application MSI traffic class. This signal indicates the traffic class used to send the MSI 
(unlike INTX interrupts, any traffic class can be used to send MSIs).

app_msi_num[4:0] I Application MSI offset number. This signal is used by the application to indicate the offset 
between the base message data and the MSI to send.

cfg_msicsr[15:0] O Configuration MSI control status register. This bus provides MSI software control. Refer to 
Table 5–10 and Table 5–11 for more information.

pex_msi_num[4:0] I
Power management MSI number. This signal is used by power management and hot plug 
to determine the offset between the base message interrupt number and the message 
interrupt number to send through MSI.



5–28 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 5–10 shows the layout of the Configuration MSI Control Status Register. 
.

Table 5–11 outlines the use of the various fields of the Configuration MSI Control 
Status Register. 

app_int_sts I
Controls legacy interrupts. Assertion of app_int_sts causes an Assert_INTA message 
TLP to be generated and sent upstream. Deassertion of app_int_sts causes a 
Deassert_INTA message TLP to be generated and sent upstream. 

app_int_ack O

This signal is the acknowledge for app_int_sts. This signal is asserted for at least one 
cycle either when the Assert_INTA message TLP has been transmitted in response to the 
assertion of the app_int_sts signal or when the Deassert_INTA message TLP has been 
transmitted in response to the deassertion of the app_int_sts signal. It is included on the 
Avalon-ST interface for the hard IP implementation and the ×1 and ×4 soft IP 
implementation. Refer to Figure 10–5 on page 10–4 and Figure 10–6 on page 10–4 for 
timing information.

Table 5–9. Interrupt Signals for Endpoints (Part 2 of 2)

Signal I/O Description

Table 5–10. Configuration MSI Control Status Register

Field and Bit Map 

15 9 8 7 6 4 31 0

reserved
mask 

capability

64-bit 
address 

capability
multiple message enable

multiple message 
capable

MSI 
enable

Table 5–11.  Configuration MSI Control Status Register Field Descriptions (Part 1 of 2)

Bit(s) Field Description

[15:9] Reserved —

[8] mask 
capability

Per vector masking capable. This bit is hardwired to 0 because the IP core does not 
support the optional MSI per vector masking using the Mask_Bits and 
Pending_Bits registers defined in the PCI Local Bus Specification, Rev. 3.0. Per 
vector masking can be implemented using application layer registers. 

[7]
64-bit 
address 
capability

64-bit address capable

■ 1: IP core capable of sending a 64-bit message address

■ 0: IP core not capable of sending a 64-bit message address

[6:4]
multiple 
message 
enable

Multiple message enable: This field indicates permitted values for MSI signals. For 
example, if “100” is written to this field 16 MSI signals are allocated

■ 000: 1 MSI allocated

■ 001: 2 MSI allocated

■ 010: 4 MSI allocated

■ 011: 8 MSI allocated

■ 100: 16 MSI allocated

■ 101: 32 MSI allocated

■ 110: Reserved

■ 111: Reserved



Chapter 5: IP Core Interfaces 5–29
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

PCI Express Interrupts for Root Ports
Table 5–12 describes the signals available to a root port to handle interrupts. 

Configuration Space Signals—Hard IP Implementation
The hard IP implementation of the configuration space signals is the same for all 
devices that support the IP Compiler for PCI Express hard IP implementation.

[3:1]
multiple 
message 
capable

Multiple message capable: This field is read by system software to determine the 
number of requested MSI messages. 

■ 000: 1 MSI requested

■ 001: 2 MSI requested

■ 010: 4 MSI requested

■ 011: 8 MSI requested

■ 100: 16 MSI requested

■ 101: 32 MSI requested

■ 110: Reserved

[0] MSI Enable If set to 0, this IP core is not permitted to use MSI.

Table 5–11.  Configuration MSI Control Status Register Field Descriptions (Part 2 of 2)

Bit(s) Field Description

Table 5–12. Interrupt Signals for Root Ports

Signal I/O Description

int_status[3:0] O

These signals drive legacy interrupts to the application layer using a TLP of type Message 
Interrupt as follows:

■ int_status[0]: interrupt signal A

■ int_status[1]: interrupt signal B

■ int_status[2]: interrupt signal C

■ int_status[3]: interrupt signal D

aer_msi_num[4:0] I
Advanced error reporting (AER) MSI number. This signal is used by AER to determine the 
offset between the base message data and the MSI to send. This signal is only available 
for root port mode.

pex_msi_num[4:0] I
Power management MSI number. This signal is used by power management and/or hot 
plug to determine the offset between the base message interrupt number and the message 
interrupt number to send through MSI.

serr_out O

System Error: This signal only applies to hard IP root port designs that report each system 
error detected by the IP core, assuming the proper enabling bits are asserted in the root 
control register and the device control register. If enabled, serr_out is asserted for a 
single clock cycle when a system error occurs. System errors are described in the PCI 
Express Base Specification 1.1 or 2.0 in the root control register. 



5–30 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The configuration space signals provide access to some of the control and status 
information available in the configuration space registers; these signals provide access 
to unused registers that are labeled reserved in the PCI Express Base Specification 
Revision 2.0. This interface is synchronous to core_clk. To access the configuration 
space from the application layer, you must synchronize to the application layer clock. 
Table 5–13 describes the configuration space interface and hot plug signals that are 
available in the hard IP implementation. Refer to Chapter 6 of the PCI Express Base 
Specification Revision 2.0 for more information about the hot plug signals.

Table 5–13. Configuration Space Signals (Hard IP Implementation) (Part 1 of 2)

Signal Width Dir Description

tl_cfg_add 4 0
Address of the register that has been updated. This address space is described in 
Table 5–14 on page 5–33. The information updates every 8 core_clks along with 
tl_cfg_ctl.

tl_cfg_ctl 32 0
The tl_cfg_ctl signal is multiplexed and contains the contents of the configuration 
space registers shown in Table 5–14 on page 5–33. This register carries data that 
updates every 8 core_clk cycles.

tl_cfg_ctl_wr 1 0
Write signal. This signal toggles when tl_cfg_ctl has been updated (every 8 
core_clk cycles). The toggle edge marks where the tl_cfg_ctl data changes. You 
can use this edge as a reference to determine when the data is safe to sample. 

tl_cfg_sts 53 0

Configuration status bits. This information updates every 8 core_clk cycles. The 
cfg_sts group consists of (from MSB to LSB):

tl_cfg_sts[52:49]= cfg_devcsr[19:16]error detection signal as follows: 
[correctable error reporting, enable, non-fatal error reporting 
enable, fatal error reporting enable, unsupported request 
reporting enable]

tl_cfg_sts[48] = cfg_slotcsr[24]Data link layer state changed

tl_cfg_sts[47]= cfg_slotcsr[20]Command completed 

tl_cfg_sts[46:31] = cfg_linkcsr[31:16]Link status bits

tl_cfg_sts[30] = cfg_link2csr[16]Current de-emphasis level.

cfg_link2csr[31:17] are reserved per the PCIe Specification and are not 
available on tl_cfg_sts bus

tl_cfg_sts[29:25] = cfg_prmcsr[31:27]5 primary command status error bits

tl_cfg_sts[24] = cfg_prmcsr[24]6th primary command status error bit

tl_cfg_sts[23:6] = cfg_rootcsr[25:8]PME bits

tl_cfg_sts[5:1]= cfg_seccsr[31:27] 5 secondary command status error bits

tl_cfg_sts[0] = cfg_seccsr[24] 6th secondary command status error bit

tl_cfg_sts_wr 1 0
Write signal. This signal toggles when tl_cfg_sts has been updated (every 8 
core_clk cycles). The toggle marks the edge where tl_cfg_sts data changes. You 
can use this edge as a reference to determine when the data is safe to sample.



Chapter 5: IP Core Interfaces 5–31
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Configuration Space Register Access Timing
Figure 5–28 illustrates the timing of the tl_cfg_ctl interface for the Arria II GX, 
Cyclone IV GX, HardCopy IV, and Stratix IV GX devices when using a 64-bit 
interface.

hpg_ctrler 5 I

The hpg_ctrler signals are only available in root port mode and when the Enable slot 
capability parameter is set to On. Refer to the Enable slot capability and Slot capability 
register parameters in Table 3–11 on page 3–13. For endpoint variations the 
hpg_ctrler input should be hardwired to 0's. The bits have the following meanings:

[0]

Attention button pressed. This signal should be asserted when the attention 
button is pressed. If no attention button exists for the slot, this bit should be 
hardwired to 0, and the Attention Button Present bit (bit[0]) in the Slot 
capability register parameter should be set to 0. 

[1] Presence detect. This signal should be asserted when a presence detect change is 
detected in the slot via a presence detect circuit. 

 
[2]

Manually-operated retention latch (MRL) sensor changed. This signal should be 
asserted when an MRL sensor indicates that the MRL is Open. If an MRL Sensor 
does not exist for the slot, this bit should be hardwired to 0, and the MRL Sensor 
Present bit (bit[2]) in the Slot capability register parameter should be set to 0.

[3]

Power fault detected. This signal should be asserted when the power controller 
detects a power fault for this slot. If there is not a power controller for this slot 
this bit should be hardwired to 0, and the Power Controller Present bit 
(bit[1]) in the Slot capability register parameter should be set to 0.

 
[4]

Power controller status. This signal is used to set the command completed bit of 
the Slot Status register. Power controller status is equal to the power controller 
control signal. If there is not a power controller for this slot, this bit should be 
hardwired to 0 and the Power Controller Present bit (bit[1]) in the Slot 
capability register parameter should be set to 0.

Table 5–13. Configuration Space Signals (Hard IP Implementation) (Part 2 of 2)

Signal Width Dir Description

Figure 5–28. tl_cfg_ctl Timing (Hard IP Implementation)

core_clk

pld_clk 64-bit mode

tl_cfg_ctl[31:0]

tl_cfg_add[3:0]

tl_cfg_ctl_wr

data0 data1

addr0 addr1



5–32 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–29 illustrates the timing of the tl_cfg_ctl interface for the Arria II GX, 
Cyclone IV GX, HardCopy IV, and Stratix IV GX devices when using a 128-bit 
interface.

Figure 5–30 illustrates the timing of the tl_cfg_sts interface for the Arria II GX, 
Cyclone IV GX, HardCopy IV, and Stratix IV GX devices when using a 64-bit 
interface.

Figure 5–31 illustrates the timing of the tl_cfg_sts interface for the Arria II GX, 
Cyclone IV GX, HardCopy IV, and Stratix IV GX devices when using a 128-bit 
interface.

In the example design created with the IP Compiler for PCI Express, you can use a 
Verilog HDL module or VHDL entity included in the altpcierd_tl_cfg_sample.v or 
altpcierd_tl_cfg_sample.vhd file, respectively, to sample the configuration space 
signals. In this module or entity the tl_cfg_ctl_wr and tl_cfg_sts_wr signals are 
registered twice and then the edges of the delayed signals are used to enable sampling 
of the tl_cfg_ctl and tl_cfg_sts busses. 

Because the hard IP core_clk is much earlier than the pld_clk, the Quartus II 
software tries to add delay to the signals to avoid hold time violations. This delay is 
only necessary for the tl_cfg_ctl_wr and tl_cfg_sts_wr signals. You can place 
multicycle setup and hold constraints of three cycles on them to avoid timing issues if 
the logic shown in Figure 5–28 and Figure 5–30 is used. The multicycle setup and hold 
contraints are automatically included in the <variation_name>.sdc file that is created 
with the hard IP variation. In some cases, depending on the exact device, speed grade, 

Figure 5–29. tl_cfg_ctl Timing (Hard IP Implementation)

Figure 5–30. tl_cfg_sts Timing (Hard IP Implementation)

Figure 5–31. tl_cfg_sts Timing (Hard IP Implementation)

core_clk

tl_cfg_ctl[31:0]

tl_cfg_add[3:0]

tl_cfg_ctl_wr

data0 data1

addr0 addr1

pld_clk 128-bit mode

core_clk

pld_clk 64-bit mode

tl_cfg_sts[52:0]

tl_cfg_sts_wr

data0 data1

core_clk

pld_clk 128-bit mode

tl_cfg_sts[52:0]

tl_cfg_sts_wr

data0 data1



Chapter 5: IP Core Interfaces 5–33
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

and global routing resources used for the pld_clk, the Quartus II software may have 
difficulty avoiding hold time violations on the tl_cfg_ctl_wr and tl_cfg_sts_wr 
signals. If hold time violations occur in your design, you can reduce the multicycle 
setup time for these signals to 0. The exact time the signals are clocked is not critical to 
the design, just that the signals are reliably sampled. There are instruction comments 
in the <variation_name>.sdc file about making these modifications. 

Configuration Space Register Access
The tl_cfg_ctl signal is a multiplexed bus that contains the contents of configuration 
space registers as shown in Table 5–13. Information stored in the configuration space 
is accessed in round robin order where tl_cfg_add indicates which register is being 
accessed. Table 5–14 shows the layout of configuration information that is 
multiplexed on tl_cfg_ctl.
 

Table 5–14. Multiplexed Configuration Register Information Available on tl_cfg_ctl (Note 1)

Address 31:24 23:16 15:8 7:0

0
cfg_devcsr[15:0] cfg_dev2csr[15:0]

cfg_devcsr[14:12]= 
Max Read Req Size (2)

cfg_devcsr[7:5]=
Max Payload (2)

1 cfg_slotcsr[31:16] cfg_slotcsr[15:0]

2 cfg_linkscr[15:0] cfg_link2csr[15:0]

3 8’h00 cfg_prmcsr[15:0] cfg_rootcsr[7:0]

4 cfg_seccsr[15:0] cfg_secbus[7:0] cfg_subbus[7:0]

5 12’h000 cfg_io_bas[19:0]

6 12’h000 cfg_io_lim[19:0]

7 8h’00 cfg_np_bas[11:0] cfg_np_lim[11:0]

8 cfg_pr_bas[31:0]

9 20’h00000 cfg_pr_bas[43:32]

A cfg_pr_lim[31:0]

B 20’h00000 cfg_pr_lim[43:32]

C cfg_pmcsr[31:0]

D cfg_msixcsr[15:0] cfg_msicsr[15:0]

E 8’h00 cfg_tcvcmap[23:0]

F 16’h0000 3’b000 cfg_busdev[12:0]

Note to Table 5–14:

(1) Items in blue are only available for root ports. 
(2) This field is encoded as specified in Section 7.8.4 of the PCI Express Base Specification.(3’b000–3b101 correspond to 128–4096 bytes).



5–34 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 5–15 describes the configuration space registers referred to in Table 5–13 and 
Table 5–14.

Table 5–15. Configuration Space Register Descriptions (Part 1 of 3)

Register Width Dir Description Register 
Reference

cfg_devcsr

cfg_dev2csr
32 O

cfg_devcsr[31:16]is status and cfg_devcsr[15:0] is device 
control for the PCI Express capability structure.

cft_dev2csr[31:16] is status 2 and cfg_dev2csr[15:0] is 
device control 2 for the PCI Express capability structure. 

Table 6–7 on 
page 6–4
0x088 (Gen1)

Table 6–8 on 
page 6–5
0x0A8 (Gen2)

cfg_slotcsr 16 O

cfg_slotcsr[31:16] is the slot control and 
cfg_slotcsr[15:0]is the slot status of the PCI Express 
capability structure. This register is only available in root port 
mode.

Table 6–7 on 
page 6–4
0x098 (Gen1)

Table 6–8 on 
page 6–5
0x098 (Gen2)

cfg_linkcsr 32 O
cfg_linkcsr[31:16] is the primary link status and 
cfg_linkcsr[15:0]is the primary link control of the PCI 
Express capability structure.

Table 6–7 on 
page 6–4
0x090 (Gen1)

Table 6–8 on 
page 6–5
0x090 (Gen2)

cfg_link2csr

cfg_link2csr[31:16] is the secondary link status and 
cfg_link2csr[15:0]is the secondary link control of the PCI 
Express capability structure which was added for Gen2.

When tl_cfg_addr=2, tl_cfg_ctl returns the primary and 
secondary link control registers, {cfg_linkcsr[15:0], 
cfg_lin2csr[15:0]}, the primary link status register, 
cfg_linkcsr[31:16], is available on tl_cfg_sts[46:31].

For Gen1 variants, the link bandwidth notification bit is always set 
to 0. For Gen2 variants, this bit is set to 1.

Table 6–8 on 
page 6–5
0x0B0 (Gen2, 
only)

cfg_prmcsr 16 O Base/Primary control and status register for the PCI configuration 
space. 

Table 6–2 on 
page 6–2
0x004 (Type 0)
Table 6–3 on 
page 6–3
0x004 (Type 1)

cfg_rootcsr 8 O Root control and status register of the PCI-Express capability. This 
register is only available in root port mode.

Table 6–7 on 
page 6–4
0x0A0 (Gen1)

Table 6–8 on 
page 6–5
0x0A0 (Gen2)

cfg_seccsr 16 O Secondary bus control and status register of the PCI-Express 
capability. This register is only available in root port mode.

Table 6–3 on 
page 6–3
0x01C 



Chapter 5: IP Core Interfaces 5–35
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

cfg_secbus 8 O Secondary bus number. Available in root port mode.
Table 6–3 on 
page 6–3
0x018

cfg_subbus 8 O Subordinate bus number. Available in root port mode.
Table 6–3 on 
page 6–3
0x018

cfg_io_bas 20 O IO base windows of the Type1 configuration space. This register is 
only available in root port mode.

Table 6–3 on 
page 6–3
0x01C 

cfg_io_lim 20 O IO limit windows of the Type1 configuration space. This register is 
only available in root port mode.

Table 6–8 on 
page 6–5
0x01C 

cfg_np_bas 12 O Non-prefetchable base windows of the Type1 configuration space. 
This register is only available in root port mode.

Table 3–10 on 
page 3–11
EXP ROM

cfg_np_lim 12 O Non-prefetchable limit windows of the Type1 configuration space. 
This register is only available in root port mode.

Table 3–10 on 
page 3–11
EXP ROM

cfg_pr_bas 44 O Prefetchable base windows of the Type1 configuration space. This 
register is only available in root port mode. 

Table 6–3 on 
page 6–3
0x024
Table 3–10 on 
page 3–11
Prefetchable 
memory

cfg_pr_lim 12 O Prefetchable limit windows of the Type1 configuration space. 
Available in root port mode. 

Table 6–3 on 
page 6–3
0x024
Table 3–10 on 
page 3–11
Prefetchable 
memory

cfg_pmcsr 32 O
cfg_pmcsr[31:16] is power management control and 
cfg_pmcsr[15:0]the power management status register. This 
register is only available in root port mode. 

Table 6–6 on 
page 6–4
0x07C

cfg_msixcsr 16 O MSI-X message control. Duplicated for each function 
implementing MSI-X.

Table 6–5 on 
page 6–4
0x068

cfg_msicsr 16 O MSI message control. Duplicated for each function implementing 
MSI.

Table 6–4 on 
page 6–3
0x050

Table 5–15. Configuration Space Register Descriptions (Part 2 of 3)

Register Width Dir Description Register 
Reference



5–36 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Configuration Space Signals—Soft IP Implementation
The signals in Table 5–16 reflect the current values of several configuration space 
registers that the application layer may need to access. These signals are available in 
configurations using the Avalon-ST interface (soft IP implementation) or the 
descriptor/data interface.

cfg_tcvcmap 24 O

Configuration traffic class (TC)/virtual channel (VC) mapping. The 
application layer uses this signal to generate a transaction layer 
packet mapped to the appropriate virtual channel based on the 
traffic class of the packet.

cfg_tcvcmap[2:0]: Mapping for TC0 (always 0).
cfg_tcvcmap[5:3]: Mapping for TC1.
cfg_tcvcmap[8:6]: Mapping for TC2.
cfg_tcvcmap[11:9]: Mapping for TC3.
cfg_tcvcmap[14:12]: Mapping for TC4.
cfg_tcvcmap[17:15]: Mapping for TC5.
cfg_tcvcmap[20:18]: Mapping for TC6.
cfg_tcvcmap[23:21]: Mapping for TC7.

Table 6–9 on 
page 6–5

cfg_busdev 13 O Bus/device number captured by or programmed in the core.
Table A–6 on 
page A–2
0x08

Table 5–15. Configuration Space Register Descriptions (Part 3 of 3)

Register Width Dir Description Register 
Reference

Table 5–16. Configuration Space Signals (Soft IP Implementation)

Signal I/O Description

cfg_tcvcmap[23:0] O

Configuration traffic class/virtual channel mapping: The application layer uses this signal 
to generate a transaction layer packet mapped to the appropriate virtual channel based on 
the traffic class of the packet.

cfg_tcvcmap[2:0]: Mapping for TC0 (always 0).
cfg_tcvcmap[5:3]: Mapping for TC1.
cfg_tcvcmap[8:6]: Mapping for TC2.
cfg_tcvcmap[11:9]: Mapping for TC3.
cfg_tcvcmap[14:12]: Mapping for TC4.
cfg_tcvcmap[17:15]: Mapping for TC5.
cfg_tcvcmap[20:18]: Mapping for TC6.
cfg_tcvcmap[23:21]: Mapping for TC7.

cfg_busdev[12:0] O

Configuration bus device: This signal generates a transaction ID for each transaction layer 
packet, and indicates the bus and device number of the IP core. Because the IP core only 
implements one function, the function number of the transaction ID must be set to 000b.

cfg_busdev[12:5]: Bus number.
cfg_busdev[4:0]: Device number.

cfg_prmcsr[31:0] O Configuration primary control status register. The content of this register controls the PCI 
status.

cfg_devcsr[31:0] O Configuration device control status register. Refer to the PCI Express Base Specification 
for details.

cfg_linkcsr[31:0] O Configuration link control status register. Refer to the PCI Express Base Specification for 
details.



Chapter 5: IP Core Interfaces 5–37
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

LMI Signals—Hard IP Implementation
LMI writes log error descriptor information in the AER header log registers. These 
writes record completion errors as described in “Completion Signals for the Avalon-
ST Interface” on page 5–42. 

Altera does not recommend using the LMI bus to access other configuration space 
registers for the following reasons:

■ LMI write—An LMI write updates the internally captured bus and device 
numbers incorrectly; however, configuration writes received from the PCIe link 
provide the correct bus and device numbers.

■ LMI read—For other configuration space registers, an LMI request can fail to be 
acknowledged if it occurs at the same time that a configuration request is 
processed from the RX Buffer. Simultaneous requests may lead to collisions that 
corrupt the data stored in the configuration space registers.

Figure 5–32 illustrates the LMI interface.

The LMI interface is synchronized to pld_clk and runs at frequencies up to 250 MHz. 
The LMI address is the same as the PCIe configuration space address. The read and 
write data are always 32 bits. The LMI interface provides the same access to 
configuration space registers as configuration TLP requests. Register bits have the 
same attributes, (read only, read/write, and so on) for accesses from the LMI interface 
and from configuration TLP requests. 

Table 5–17 describes the signals that comprise the LMI interface.

Figure 5–32. Local Management Interface

Table 5–17. LMI Interface

Signal Width Dir Description

lmi_dout 32 O Data outputs

lmi_rden 1 I Read enable input

lmi_wren 1 I Write enable input

lmi_ack 1 O Write execution done/read data valid

Configuration Space
128 32-bit registers

(4 KBytes)

LMI

32lmi_dout

lmi_ack

12lmi_addr

32lmi_din

lmi_rden

lmi_wren

pld_clk

IP Compiler for
PCI Express



5–38 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

LMI Read Operation
Figure 5–33 illustrates the read operation. The read data remains available until the 
next local read or system reset.

LMI Write Operation
Figure 5–34 illustrates the LMI write. Only writeable configuration bits are 
overwritten by this operation. Read-only bits are not affected. LMI write operations 
are not recommended for use during normal operation with the exception of AER 
header logging.

IP Core Reconfiguration Block Signals—Hard IP Implementation
The IP Compiler for PCI Express reconfiguration block interface is implemented using 
an Avalon-MM slave interface with an 8–bit address and 16–bit data. This interface is 
available when you select Enable for the PCIe Reconfig option on the System 
Settings page of the IP Compiler for PCI Express parameter editor. You can use this 
interface to change the value of configuration registers that are read-only at run time. 
For a description of the registers available through this interface refer to Chapter 13, 
Reconfiguration and Offset Cancellation.

lmi_addr 12 I Address inputs, [1:0] not used

lmi_din 32 I Data inputs

Figure 5–33. LMI Read

Figure 5–34. LMI Write

Table 5–17. LMI Interface

Signal Width Dir Description

pld_clk

lmi_rden

lmi_addr[11:0]

lmi_dout[31:0]

lmi_ack

pld_clk

lmi_wren

lmi_din[31:0]

lmi_addr[11:0]

lmi_ack



Chapter 5: IP Core Interfaces 5–39
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

f For a detailed description of the Avalon-MM protocol, refer to the Avalon 
Memory-Mapped Interfaces chapter in the Avalon Interface Specifications. 

Power Management Signals 
Table 5–19 shows the IP core’s power management signals. These signals are available 
in configurations using the Avalon-ST interface or Descriptor/Data interface. 

Table 5–18. Reconfiguration Block Signals (Hard IP Implementation)

Signal I/O Description

avs_pcie_reconfig_address[7:0] I A 8-bit address.

avs_pcie_reconfig_byteeenable[1:0] I Byte enables, currently unused.

avs_pcie_reconfig_chipselect I Chipselect.

avs_pcie_reconfig_write I Write signal.

avs_pcie_reconfig_writedata[15:0] I 16-bit write data bus.

avs_pcie_reconfig_waitrequest O

Asserted when unable to respond to a read or write request. 
When asserted, the control signals to the slave remain constant. 
waitrequest can be asserted during idle cycles. An 
Avalon-MM master may initiate a transaction when 
waitrequest is asserted.

avs_pcie_reconfig_read I Read signal.

avs_pcie_reconfig_readdata[15:0] O 16-bit read data bus.

avs_pcie_reconfig_readdatavalid O Read data valid signal.

avs_pcie_reconfig_clk I Reconfiguration clock for the hard IP implementation. This 
clock should not exceed 50MHz.

avs_pcie_reconfig_rstn I
Active-low Avalon-MM reset. Resets all of the dynamic 
reconfiguration registers to their default values as described in 
Table 13–1 on page 13–2.

Table 5–19. Power Management Signals 

Signal I/O Description

pme_to_cr I

Power management turn off control register. 

Root port—When this signal is asserted, the root port sends the PME_turn_off message.

Endpoint—This signal is asserted to acknowledge the PME_turn_off message by sending 
pme_to_ack to the root port.

pme_to_sr O

Power management turn off status register. 

Root port—This signal is asserted for 1 clock cycle when the root port receives the 
pme_turn_off acknowledge message.

Endpoint—This signal is asserted when the endpoint receives the PME_turn_off message 
from the root port. For the soft IP implementation, it is asserted until pme_to_cr is 
asserted. For the hard IP implementation, it is asserted for one cycle.

cfg_pmcsr[31:0] O

Power management capabilities register. This register is read-only and provides information 
related to power management for a specific function. Refer to Table 5–20 for additional 
information. This signal only exists in soft IP implementation. In the hard IP 
implementation, this information is accessed through the configuration interface. Refer to 
“Configuration Space Signals—Hard IP Implementation” on page 5–29.



5–40 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 5–20 outlines the use of the various fields of the Power Management 
Capabilities register.

pm_event I

Power Management Event. This signal is only available in the hard IP Endpoint 
implementation. 

Endpoint—initiates a a power_management_event message (PM_PME) that is sent to the 
root port. If the IP core is in a low power state, the link exists from the low-power state to 
send the message. This signal is positive edge-sensitive.

pm_data[9:0] I

Power Management Data. This signal is only available in the hard IP implementation.

This bus indicates power consumption of the component. This bus can only be 
implemented if all three bits of AUX_power (part of the Power Management Capabilities 
structure) are set to 0. This bus includes the following bits: 

■ pm_data[9:2]: Data Register: This register is used to maintain a value associated with 
the power consumed by the component. (Refer to the example below)

■ pm_data[1:0]: Data Scale: This register is used to maintain the scale used to find the 
power consumed by a particular component and can include the following values:

b’00: unknown

b’01: 0.1 ×

b’10: 0.01 ×

b’11: 0.001 ×

For example, the two registers might have the following values:

■ pm_data[9:2]: b’1110010 = 114

■ pm_data[1:0]: b’10, which encodes a factor of 0.01

To find the maximum power consumed by this component, multiply the data value by the 
data Scale (114 × .01 = 1.14). 1.14 watts is the maximum power allocated to this 
component in the power state selected by the data_select field.

pm_auxpwr I Power Management Auxiliary Power:   This signal is only available in the hard IP 
implementation. This signal can be tied to 0 because the L2 power state is not supported.

Table 5–19. Power Management Signals 

Signal I/O Description

Table 5–20.  Power Management Capabilities Register Field Descriptions (Part 1 of 2)

Bits Field Description

[31:24] Data register This field indicates in which power states a function can assert the PME# message.

[22:16] reserved —

[15] PME_status
When this signal is set to 1, it indicates that the function would normally assert the PME# 
message independently of the state of the PME_en bit.

[14:13] data_scale
This field indicates the scaling factor when interpreting the value retrieved from the data 
register. This field is read-only.

[12:9] data_select
This field indicates which data should be reported through the data register and the 
data_scale field.

[8] PME_EN
1: indicates that the function can assert PME#
0: indicates that the function cannot assert PME#



Chapter 5: IP Core Interfaces 5–41
Avalon-ST Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 5–35 illustrates the behavior of pme_to_sr and pme_to_cr in an endpoint. First, 
the IP core receives the PME_turn_off message which causes pme_to_sr to assert. 
Then, the application sends the PME_to_ack message to the root port by asserting 
pme_to_cr.

Completion Side Band Signals 
Table 5–21 describes the signals that comprise the completion side band signals for the 
Avalon-ST interface. The IP core provides a completion error interface that the 
application can use to report errors, such as programming model errors, to it.   When 
the application detects an error, it can assert the appropriate cpl_err bit to indicate to 
the IP core what kind of error to log. If separate requests result in two errors, both are 
logged. For example, if a completer abort and a completion timeout occur, cpl_err[2] 
and cpl_err[0] are both asserted for one cycle. The IP core sets the appropriate status 
bits for the error in the configuration space, and automatically sends error messages 
in accordance with the PCI Express Base Specification.   

The application is responsible for sending the completion with the appropriate 
completion status value for non-posted requests. Refer to Chapter 12, Error Handling 
for information about errors that are automatically detected and handled by the IP 
core.

[7:2] reserved —

[1:0] PM_state

Specifies the power management state of the operating condition being described. 
Defined encodings are:

■ 2b’00 D0

■ 2b’01 D1

■ 2b’10 D2

■ 2b’11 D

A device returns 2b’11 in this field and Aux or PME Aux in the type register to specify the 
D3-Cold PM state. An encoding of 2b’11 along with any other type register value 
specifies the D3-Hot state.

Table 5–20.  Power Management Capabilities Register Field Descriptions (Part 2 of 2)

Bits Field Description

Figure 5–35. pme_to_sr and pme_to_cr in an Endpoint IP core

clk

pme_to_sr

pme_to_cr

pme_to_sr

pme_to_cr

soft
IP

hard
IP



5–42 Chapter 5: IP Core Interfaces
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

f For a description of the completion rules, the completion header format, and 
completion status field values, refer to Section 2.2.9 of the PCI Express Base 
Specification, Rev. 2.0.

Table 5–21. Completion Signals for the Avalon-ST Interface (Part 1 of 2)

Signal I/O Description

cpl_err[6:0] I

Completion error. This signal reports completion errors to the configuration 
space. When an error occurs, the appropriate signal is asserted for one cycle.

■ cpl_err[0]: Completion timeout error with recovery. This signal should be 
asserted when a master-like interface has performed a non-posted request 
that never receives a corresponding completion transaction after the 50 ms 
timeout period when the error is correctable. The IP core automatically 
generates an advisory error message that is sent to the root complex. 

■ cpl_err[1]: Completion timeout error without recovery.   This signal should 
be asserted when a master-like interface has performed a non-posted request 
that never receives a corresponding completion transaction after the 50 ms 
time-out period when the error is not correctable. The IP core automatically 
generates a non-advisory error message that is sent to the root complex. 

■ cpl_err[2]:Completer abort error. The application asserts this signal to 
respond to a posted or non-posted request with a completer abort (CA) 
completion. In the case of a non-posted request, the application generates and 
sends a completion packet with completer abort (CA) status to the requestor 
and then asserts this error signal to the IP core. The IP core automatically sets 
the error status bits in the configuration space register and sends error 
messages in accordance with the PCI Express Base Specification.

■ cpl_err[3]:Unexpected completion error. This signal must be asserted when 
an application layer master block detects an unexpected completion 
transaction. Many cases of unexpected completions are detected and reported 
internally by the transaction layer of the IP core. For a list of these cases, refer 
to “Transaction Layer Errors” on page 12–3.

■ cpl_err[4]: Unsupported request error for posted TLP. The application 
asserts this signal to treat a posted request as an unsupported request (UR).   
The IP core automatically sets the error status bits in the configuration space 
register and sends error messages in accordance with the PCI Express Base 
Specification. Many cases of unsupported requests are detected and reported 
internally by the transaction layer of the IP core. For a list of these cases, refer 
to “Transaction Layer Errors” on page 12–3. 

I

■ cpl_err[5]: Unsupported request error for non-posted TLP. The application 
asserts this signal to respond to a non-posted request with an unsupported 
request (UR) completion. In this case, the application sends a completion 
packet with the unsupported request status back to the requestor, and asserts 
this error signal to the IP core. The IP core automatically sets the error status 
bits in the configuration space register and sends error messages in 
accordance with the PCI Express Base Specification. Many cases of 
unsupported requests are detected and reported internally by the transaction 
layer of the IP core. For a list of these cases, refer to “Transaction Layer 
Errors” on page 12–3.



Chapter 5: IP Core Interfaces 5–43
Avalon-MM Application Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Avalon-MM Application Interface
In the Qsys design flow, only the hard IP implementation is available. In both design 
flows, the hard IP implementation is available as a full-featured endpoint or a 
completer-only single dword endpoint. 

cpl_err[6:0] 
(continued)

■ cpl_err[6]: Log header. When asserted, logs err_desc_func0 header. 
Used in both the soft IP and hard IP implementations of the IP core that use 
the Avalon-ST interface. 

When asserted, the TLP header is logged in the AER header log register if it is 
the first error detected. When used, this signal should be asserted at the same 
time as the corresponding cpl_err error bit (2, 3, 4, or 5). 

In the soft IP implementation, the application presents the TLP header to the 
IP core on the err_desc_func0 bus. In the hard IP implementation, the 
application presents the header to the IP core by writing the following values 
to 4 registers via LMI before asserting cpl_err[6]:

■ lmi_addr:  12'h81C, lmi_din: err_desc_func0[127:96]

■ lmi_addr:  12'h820, lmi_din: err_desc_func0[95:64]

■ lmi_addr:  12'h824, lmi_din: err_desc_func0[63:32]

■ lmi_addr:  12'h828, lmi_din: err_desc_func0[31:0] 

Refer to the “LMI Signals—Hard IP Implementation” on page 5–37 for more 
information about LMI signalling.

For the ×8 soft IP, only bits [3:1] of cpl_err are available. For the ×1, ×4 soft IP 
implementation and all widths of the hard IP implementation, all bits are 
available. 

err_desc_func0 
[127:0] 

I

TLP Header corresponding to a cpl_err. Logged by the IP core when 
cpl_err[6] is asserted. This signal is only available for the ×1 and ×4 soft IP 
implementation. In the hard IP implementation, this information can be written to 
the AER header log register through the LMI interface. If AER is not implemented 
in your variation this bus should be tied to all 0’s. 

The dword header[3:0] order in err_desc_func0 is {header0, header1, header2, 
header3}.

cpl_pending I

Completion pending. The application layer must assert this signal when a master 
block is waiting for completion, for example, when a transaction is pending. If 
this signal is asserted and low power mode is requested, the IP core waits for the 
deassertion of this signal before transitioning into low-power state.

Table 5–21. Completion Signals for the Avalon-ST Interface (Part 2 of 2)

Signal I/O Description



5–44 Chapter 5: IP Core Interfaces
Avalon-MM Application Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–36 shows all the signals of a full-featured IP Compiler for PCI Express. Your 
parameterization may not include some of the ports. The Avalon-MM signals are 
shown on the left side of this figure.

Figure 5–36. Signals in the Soft or Hard Full-Featured IP Core with Avalon-MM Interface

Notes to Figure 5–36:

(1) Available in Stratix IV GX devices. For Stratix IV GX devices, <n> = 16 for ×1 and ×4 IP cores and <n> = 33 in the ×8 IP core. 
(2) Available in Stratix IV GX devices. For Stratix IV GX reconfig_togxb, <n> = 3.
(3) Signals in blue are for simulation only.

tx_out0,...,tx_out3

busy_altgxb_reconfig
fixedclk_serdes

rx_in0,...,rx_in3
pipe_mode

xphy_pll_areset
xphy_pll_locked

txdatak<n>_ext[1:0]
txdata<n>_ext[15:0]

txdetectrx_ext
txelectidle<n>_ext

rxpolarity<n>_ext
txcompl<n>_ext

powerdown<n>_ext[1:0]
rxdata<n>_ext[15:0]
rxdatak<n>_ext[1:0]

rxvalid<n>_ext
phystatus_ext

rxelectidle<n>_ext
rxstatus0_ext[2:0]

txdatak0_ext
txdata0_ext[7:0]

txdetectrx_ext
txelectidle0_ext

rxpolarity0_ext
txcompl0_ext

powerdown0_ext[1:0]
rxdata0_ext[7:0]

rxdatak0_ext
rxvalid0_ext

phystatus_ext
rxelectidle0_ext

rxstatus0_ext[2:0]
rate_ext

1-Bit Serial

Soft IP
Implementation

16-Bit PIPE 
for x1 and x4

(Repeat for lanes
 1-3 in x4)

CraIrq_o
CraReadData_o[31:0]
CraWaitRequest_o

CraByteEnable_i[3:0]
CraChipSelect_i

CraAddress_i[11:0]

CraRead_i
CraWrite_i
CraWriteData_i[31:0]

RxmIrqNum_i[5:0]
RxmIrq_i

RxmReadDataValid_i
RxmWaitRequest_i

RxmAddress_o[31:0]

RxmReadData_i[63:0]

RxmBurstCount_o[9:0]
RxmByteEnable_o[7:0]

RxmWrite_o
RxmRead_o

RxmWriteData_o[63:0]

RxmResetRequest_o

TxsWriteData_i[63:0]

TxsRead_i
TxsChipSelect_i

TxsWaitRequest_o

TxsWrite_i

TxsByteEnable_i[7:0]

TxsBurstCount_i[9:0]

TxsReadDataValid_o
TxsReadData_o[63:0]

TxsAddress_i[WIDTH-1:0]

32-Bit 
Avalon-MM 

CRA
Slave Port

64-Bit 
Avalon-MM Rx
Master Port

64-Bit
 Avalon-MM Tx

Slave Port

reset_n

reset_status

AvlClk_i

Clock 

Reset &
Status

clk125_out
refclk

pcie_rstn
suc_spd_neg

IP Compiler for PCI Express
with Avalon-MM Interface Signals

Hard IP
Implementation

Simulation
Only

8-Bit PIPE 

clk250_out
clk500_out

tl_cfg_{add, ctl, ctl_wr, sts, sts_wr}
Test
Interfacetest_out[511 or 127 or 63 or 8:0]

test_in[31:0]

(test_out is optional)

reconfig_fromgxb[<n>:0]
reconfig_togxb[<n>:0]

reconfig_clk
cal_blk_clk

gxb_powerdown

Transceiver
Control

rc_pll_locked
Transceiver

Status

(1)
(2)

(3)



Chapter 5: IP Core Interfaces 5–45
Avalon-MM Application Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 5–37 shows all the signals of a full-featured IP Compiler for PCI Express 
available in the Qsys design flow. Your parameterization may not include some of the 
ports. The Avalon-MM signals are shown on the left side of this figure.

1 The IP Compiler for PCI Express available in the Qsys design flow does not support 
the use of an external PHY.

Figure 5–37. Signals in the Qsys Hard Full-Featured IP Core with Avalon-MM Interface

Note to Figure 5–37:

(1) Signals in blue are for simulation only.

tx_out_tx_dataout[3:0]
rx_in_rx_datain[3:0]

pipe_mode
1-Bit Serial

CraIrq_irq
Cra_readdata[31:0]
Cra_waitrequest

Cra_byteenable[3:0]
Cra_chipselect

Cra_address[11:0]

Cra_read
Cra_write
Cra_writedata[31:0]

Txs_writedata[63:0]

Txs_read
Txs_chipselect

Txs_waitrequest

Txs_write

Txs_byteenable[7:0]

Txs_burstcount[6:0]

Txs_readdatavalid
Txs_readdata[63:0]

Txs_address[19:0]

32-Bit 
Avalon-MM 

CRA
Slave Port

64-Bit
 Avalon-MM Tx

Slave Port

avalon_reset_reset

Clock 

Reset &
Status

pcie_core_clk_clk
pcie_core_reset_reset_n
avalon_clk_clk

refclk_export

pcie_rstn_export
suc_spd_neg

Signals in the IP Compiler for PCI Express
with Avalon-MM Interface (Qsys)

Test
Interfacetest_out_test_out[63:0]

test_in_test_in[39:0]

(test_out is optional)

reconfig_fromgxb_data[<n>:0]
reconfig_togxb_data[<n>:0]

reconfig_gxbclk_clk
cal_blk_clk_clk

pipe_ext_gxb_powerdown
fixedclk_serdes

Transceiver
Control

Bar<a>_<b>_read<n>
Bar<a>_<b>_write<n>
Bar<a>_<b>_address<n>[<w>-1:0]
Bar<a>_<b>_writedata<n>[63:0]
Bar<a>_<b>_byteenable<n>[7:0]
Bar<a>_<b>_burstcount<n>[6:0]
Bar<a>_<b>_waitrequest<n>
Bar<a>_<b>_readdatavalid<n>
Bar<a>_<b>_readdata<n>[63:0]
RxmIrq[N:0], N < 16

64-Bit 
Avalon-MM Rx
Master Port

txdatak0_ext
txdata0_ext[7:0]

txdetectrx_ext
txelectidle0_ext

rxpolarity0_ext
txcompl0_ext

powerdown0_ext[1:0]
rxdata0_ext[7:0]

rxdatak0_ext
rxvalid0_ext

phystatus_ext
rxelectidle0_ext

rxstatus0_ext[2:0]
rate_ext

clocks_sim_clk125_export
clocks_sim_clk500_export
clocks_sim_clk250_export

Hard IP
Implementation

Simulation
Only

8-Bit PIPE 

(1)



5–46 Chapter 5: IP Core Interfaces
Avalon-MM Application Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–38 shows the signals of a completer-only, single dword, IP Compiler for PCI 
Express. 

Figure 5–38. Signals in the Completer-Only, Single Dword, IP Core with Avalon-MM Interface

Notes to Figure 5–38:

(1) This variant is only available in the hard IP implementation. 
(2) Signals in blue are for simulation only.

tx[3:0]
rx[3:0]

pipe_mode
xphy_pll_areset
xphy_pll_locked

txdatak0_ext
txdata0_ext[7:0]

txdetectrx_ext
txelectidle0_ext

rxpolarity0_ext
txcompl0_ext

powerdown0_ext[1:0]
rxdata0_ext[7:0]

rxdatak0_ext
rxvalid0_ext

phystatus_ext
rxelectidle0_ext

rxstatus0_ext[2:0]

1-Bit Serial

RxmIrq_i 

RxmReadDataValid_i
RxmWaitRequest_i

RxmAddress_o[31:0]

RxmReadData_i[31:0]

RxmByteEnable_o[3:0]

RxmWrite_o
RxmRead_o

RxmWriteData_o[31:0]

RxmResetRequest_o 
       

32-Bit 
Avalon-MM Rx
Master Port

reset_n

AvlClk_i
Clock 

Reset &
Status

clk125_out
refclk

pcie_rstn
suc_spd_neg

Signals in the Completer Only Single Dword
IP Compiler for PCI Express (1)

(SOPC Builder Generated)

Hard IP
Implementation

Simulation
Only

8-Bit PIPE 

Test
Interfacetest_out[511:0], [63:0], or [9:0]

test_in[31:0]

(test_out is optional)

reconfig_fromgxb[<n>:0]
reconfig_togxb[<n>:0]

reconfig_clk
cal_blk_clk

gxb_powerdown

Transceiver
Control

(2)



Chapter 5: IP Core Interfaces 5–47
Avalon-MM Application Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 5–39 shows the signals of a completer-only, single dword, IP Compiler for PCI 
Express. 

Table 5–22 lists the interfaces for these IP cores with links to the sections that describe 
them. 

Figure 5–39. Signals in the Qsys Completer-Only, Single Dword, IP Core with Avalon-MM Interface

Notes to Figure 5–39:

(1) This variant is only available in the hard IP implementation. 
(2) Signals in blue are for simulation only.

tx[3:0]
rx[3:0]

pipe_mode
xphy_pll_areset
xphy_pll_locked

txdatak0_ext
txdata0_ext[7:0]

txdetectrx_ext
txelectidle0_ext

rxpolarity0_ext
txcompl0_ext

powerdown0_ext[1:0]
rxdata0_ext[7:0]

rxdatak0_ext
rxvalid0_ext

phystatus_ext
rxelectidle0_ext

rxstatus0_ext[2:0]

1-Bit Serial

RxmIrq 

Bar<a>_<b>_readdatavalid
Bar<a>_<b>_waitrequest

Bar<a>_<b>_address<n>[31:0]

Bar<a>_<b>_readdata_i[31:0]

Bar<a>_<b>_byteenable<n>[3:0]

Bar<a>_<b>_write<n>
Bar<a>_<b>_read<n>

Bar<a>_<b>_writedata<n>[31:0]

       

32-Bit 
Avalon-MM Rx
Master Port

reset_n

Clock 

Reset &
Status

clk125_out
fixedclk_serdes

refclk

pcie_rstn
suc_spd_neg

Signals in the Completer Only Single Dword
IP Compiler for PCI Express (1)

(Qsys Generated)

Hard IP
Implementation

Simulation
Only

8-Bit PIPE 

Test
Interfacetest_out[511:0], [63:0], or [9:0]

test_in[31:0]

(test_out is optional)

reconfig_fromgxb[<n>:0]
reconfig_togxb[<n>:0]

reconfig_clk
cal_blk_clk

gxb_powerdown

Transceiver
Control

(2)

Table 5–22. Avalon-MM Signal Groups in the IP Compiler with PCI Express Variations with an Avalon-MM 
Interface (Part 1 of 2)

Signal Group Full 
Featured

Completer 
Only Description

Logical

Avalon-MM CRA Slave v — “32-Bit Non-Bursting Avalon-MM CRA Slave Signals” on page 5–48

Avalon-MM RX Master v v “RX Avalon-MM Master Signals” on page 5–49

Avalon-MM TX Slave v — “64-Bit Bursting TX Avalon-MM Slave Signals” on page 5–50



5–48 Chapter 5: IP Core Interfaces
Avalon-MM Application Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

f The IP Compiler for PCI Express variations with Avalon-MM interface implement the 
Avalon-MM protocol described in the Avalon Interface Specifications. Refer to this 
specification for information about the Avalon-MM protocol, including timing 
diagrams.

32-Bit Non-Bursting Avalon-MM CRA Slave Signals
This optional port for the full-featured IP core allows upstream PCI Express devices 
and external Avalon-MM masters to access internal control and status registers.

Table 5–23 describes the CRA slave ports.

Clock v v “Clock Signals” on page 5–51

Reset and Status v v “Reset and Status Signals” on page 5–51

Physical and Test

Transceiver Control v v “Transceiver Control Signals” on page 5–53

Serial v v “Serial Interface Signals” on page 5–55

Pipe v v “PIPE Interface Signals” on page 5–56

Test v v “Test Signals” on page 5–58

Table 5–22. Avalon-MM Signal Groups in the IP Compiler with PCI Express Variations with an Avalon-MM 
Interface (Part 2 of 2)

Signal Group Full 
Featured

Completer 
Only Description

Table 5–23. Avalon-MM CRA Slave Interface Signals  

Signal Name in
Qsys I/O Type Description

CraIrq_o/CraIrq_irq O Irq Interrupt request. A port request for an Avalon-MM interrupt.

CraReadData_o[31:0]/
Cra_readdata[31:0]

O Readdata Read data lines

CraWaitRequest_o/
Cra_waitrequest

O Waitrequest Wait request to hold off more requests

CraAddress_i[11:0]/
Cra_address[11:0]

I Address

An address space of 16,384 bytes is allocated for the control registers. 
Avalon-MM slave addresses provide address resolution down to the 
width of the slave data bus. Because all addresses are byte addresses, 
this address logically goes down to bit 2. Bits 1 and 0 are 0. 

CraByteEnable_i[3:0]/
Cra_byteenable[3:0]

I Byteenable Byte enable

CraChipSelect_i/
Cra_chipselect

I Chipselect Chip select signal to this slave

CraRead_i/Cra_read I Read Read enable

CraWrite_i/Cra_write I Write Write request

CraWriteData_i[31:0]/
Cra_writedata[31:0]

I Writedata Write data



Chapter 5: IP Core Interfaces 5–49
Avalon-MM Application Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

RX Avalon-MM Master Signals
This Avalon-MM master port propagates PCI Express requests to the Qsys 
interconnect fabric. For the full-feature IP core it propagates requests as bursting reads 
or writes. For the completer-only IP core, requests are a single dword. Table 5–24 lists 
the RX Master interface ports. 

Table 5–24. Avalon-MM RX Master Interface Signals  

Signal Name in
Qsys I/O Description

RxmRead_o/
Bar<a>_<b>_read<n>

O Asserted by the core to request a read.

RxmWrite_o/
Bar<a>_<b>_write<n>

O Asserted by the core to request a write to an Avalon-MM slave.

RxmAddress_o[31:0]/
Bar<a>_<b>_address<n>[11:0]

O The address of the Avalon-MM slave being accessed.

RxmWriteData_o[<n>:0]/
Bar<a>_<b>_writedata<n>[63:0]

O RX data being written to slave. <n> = 63 for the full-featured IP core. <n> 
= 31 for the completer-only, single dword IP core.

RxmByteEnable_o[<n>:0]/
Bar<a>_<b>_byteenable<n>[7:0]

O Byte enable for write data. <n> = 63 for the full-featured IP core. <n> = 31 
for the completer-only, single dword IP core.

RxmBurstCount_o[9:0]/
Bar<a>_<b>_burstcount<n>[6:0]

O
The burst count, measured in qwords, of the RX write or read request. The 
width indicates the maximum data that can be requested. In Qsys 
variations, the maximum data in a burst is 512 bytes.

RXmWaitRequest_i/
Bar<a>_<b>_waitrequest<n>

I Asserted by the external Avalon-MM slave to hold data transfer.

RxmReadData_i[<n>:0]/
Bar<a>_<b>_readdatavalid<n>

I
Read data returned from Avalon-MM slave in response to a read request. 
This data is sent to the IP core through the TX interface. <n> = 7 for the 
full-featured IP core. <n> = 3 for the completer-only, single dword IP core.

RxmReadDataValid_i/
Bar<a>_<b>_readdata<n>[63:0]

I Asserted by the system interconnect fabric to indicate that the read data on 
is valid. 

RxmIrq_i/RxmIrq[<n>:0] I

Indicates an interrupt request asserted from the system interconnect fabric. 
This signal is only available when the control register access port is 
enabled. Qsys-generated variations have as many as 16 individual interrupt 
signals (<n> ≤ 15). 

RXmIrqNum_i[5:0]
/not available in Qsys I

Indicates the ID of the interrupt request being asserted. This signal is 
available in completer only single dword variations without a control 
register access port. This signal is not available in Qsys-generated 
variations, because the Qsys variations implement the Avalon-MM 
individual requests interrupt scheme.

RxmResetRequest_o/not available in 
Qsys O

This reset signal is asserted if any of the following conditions are true: 
npor, l2_exit, hotrst_exist, dlup_exit, or reset_n are asserted, or 
ltssm == 5’h10. Refer to Figure 5–40 on page 5–52 for a schematic of 
the reset logic when using the IP Compiler for PCI Express. 



5–50 Chapter 5: IP Core Interfaces
Avalon-MM Application Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

64-Bit Bursting TX Avalon-MM Slave Signals
This optional Avalon-MM bursting slave port propagates requests from the 
interconnect fabric to the full-featured IP Compiler for PCI Express. Requests from the 
interconnect fabric are translated into PCI Express request packets. Incoming requests 
can be up to 512 bytes in Qsys systems. For better performance, Altera recommends 
using smaller read request size (a maximum 512 bytes).

Table 5–25 lists the TX slave interface ports.

Table 5–25. Avalon-MM TX Slave Interface Signals

Signal Name in
Qsys I/O Description

TxsChipSelect_i/Txs_chipselect I The system interconnect fabric asserts this signal to select the TX 
slave port.

TxsRead_i/Txs_read I Read request asserted by the system interconnect fabric to 
request a read.

TxsWrite_i/Txs_write I

Write request asserted by the system interconnect fabric to 
request a write. 

The IP Compiler for PCI Express requires that the Avalon-MM 
master assert this signal continuously from the first data phase 
through the final data phase of the burst. The Avalon-MM master 
application software must guarantee the data can be passed to 
the interconnect fabric with no pauses. This behavior is most 
easily implemented with a store and forward buffer in the 
Avalon-MM master.

TxsAddress_i[TXS_ADDR_WIDTH-1:0]/
Txs_address[TXS_ADDR_WIDTH-1:0]

I

Address of the read or write request from the external Avalon-MM 
master. This address translates to 64-bit or 32-bit PCI Express 
addresses based on the translation table. The TXS_ADDR_WIDTH 
value is determined when the system is created.

TxsBurstCount_i[9:0]/
Txs_burstcount[9:0]

I

Asserted by the system interconnect fabric indicating the amount 
of data requested. The count unit is the amount of data that is 
transfered in a single data phase, that is, the width of the bus. The 
amount of data requested is limited to 4 KBytes, the maximum 
data payload supported by the PCI Express protocol. In Qsys 
systems, the burst count is limited to 512 bytes.

TxsWriteData_i[63:0]/
Txs_writedata[63:0]

I  Write data sent by the external Avalon-MM master to the TX 
slave port. 

TxsByteEnable_i[7:0]/
Txs_byteenable[7:0]

I

Write byte enable for data. A burst must be continuous. Therefore 
all intermediate data phases of a burst must have byte enable 
value 0xFF. The first and final data phases of a burst can have 
other valid values.

TxsReadDataValid_o/Txs_readdatavalid O Asserted by the bridge to indicate that read data is valid.

TxsReadData_o[63:0]/
Txs_readdata[63:0]

O
The bridge returns the read data on this bus when the RX read 
completions for the read have been received and stored in the 
internal buffer.

TxsWaitRequest_o/Txs_waitrequest O

 Asserted by the bridge to hold off write data when running out of 
buffer space. If this signal is asserted during an operation, the 
master should maintain the TxsRead_i signal (or TxsWrite_i 
signal and TxsWriteData_i) stable until after TxsWaitRequest 
is deasserted.



Chapter 5: IP Core Interfaces 5–51
Avalon-MM Application Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Clock Signals
Table 5–26 describes the clock signals for IP Compiler for PCI Express variations 
generated in Qsys.

Refer to “Avalon-MM Interface–Hard IP and Soft IP Implementations” on page 7–11 
for a complete explanation of the clocking scheme.

Reset and Status Signals
Table 5–27 describes the reset and status signals for IP Compiler for PCI Express 
variations generated in Qsys.

Table 5–26. Avalon-MM Clock Signals

Signal Name in
Qsys I/O Description

refclk/refclk_export I

An external clock source. When you turn on the Use separate 
clock option on the Avalon Configuration page, the PCI Express 
protocol layers are driven by an internal clock that is generated 
from refclk. This option is not available in Qsys.

clk125_out/pcie_core_clk O
This clock is exported by the IP Compiler for PCI Express. It can be 
used for logic outside of the IP core. It is not visible and cannot be 
used to drive other Avalon-MM components in the system.

pcie_core_reset_reset_n (Qsys only) O This is the reset signal for the pcie_core_clk_clk domain in 
Qsys.

AvlClk_i/not available I
Avalon-MM global clock. clk connects to AvlClk_i which is the 
main clock source of the system. clk is user-specified. It can be 
generated on the PCB or derived from other logic in the system. 

Table 5–27. Avalon-MM Reset and Status Signals

Signal I/O Description

pcie_rstn/
pcie_rstn_export

I
Pcie_rstn directly resets all sticky IP Compiler for PCI Express configuration registers 
through the npor input. Sticky registers are those registers that fail to reset in L2 low 
power mode or upon a fundamental reset.

reset_n/
avalon_reset

I reset_n is the system-wide reset which resets all PCI Express IP core circuitry not 
affected by pcie_rstn/pcie_rstn_export.

suc_spd_neg/
suc_spd_neg

O suc_spd_neg is a status signal which Indicates successful speed negotiation to Gen2 
when asserted.



5–52 Chapter 5: IP Core Interfaces
Avalon-MM Application Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 5–40 shows the IP Compiler for PCI Express reset logic in Qsys systems.

Pcie_rstn also resets the rest of the IP Compiler for PCI Express, but only after the 
following synchronization process:

1. When pcie_rstn asserts, the reset request module asserts reset_request, 
synchronized to the Avalon-MM clock, to the Reset Synchronizer block. 

2. The Reset Synchronizer block sends a reset pulse, reset_n_pcie, synchronized to 
the Avalon-MM clock, to the IP Compiler for PCI Express. 

3. The Reset Synchronizer resynchronizes reset_n_pcie to the IP Compiler for PCI 
Express clock (pcie_core_clk or clk125_out) to reset the PCI Express Avalon-MM 
bridge as well as the three IP Compiler for PCI Express layers with srst and crst. 

4. The reset_request signal deasserts after Reset_n_pcie asserts.

The system-wide reset, reset_n, resets all IP Compiler for PCI Express circuitry not 
affected by Pcie_rstn. However, the reset logic first intercepts the asynchronous 
reset_n, synchronizes it to the Avalon-MM clock, and sends a reset pulse, 
Reset_n_pcie, to the IP Compiler for PCI Express. The Reset Synchronizer 
resynchronizes Reset_n_pcie to the IP Compiler for PCI Express clock to reset the PCI 
Express Avalon-MM bridge as well as the three IP Compiler for PCI Express layers 
with srst and crst.

Figure 5–40. PCI Express Reset Diagram

Note to figure

(1) The system-wide reset, reset_n/avalon_reset, indirectly resets all IP Compiler for PCI Express circuitry not affected by 
PCIe_rstn/pcie_rstn_export using the reset_n_pcie signal and the Reset Synchronizer module.

(2) For a description of the ltssm[4:0] bus, refer to Table 5–7.

S
ys

te
m

 In
te

rc
on

ne
ct

 F
ab

ric

Reset_n PCIe_rstn

npor

npor

srst

crst

l2_exit
hotrst_exit
dlup_exit
dl_ltssm[4:0]

Reset_request

RxmResetRequest_oReset Request
Module

PCI Express
Avalon-MM Bridge

Transaction Layer
Data Link Layer
Physical Layer

IP Compiler for PCI Express

Rstn_i
Reset_n_pcie

R
es

et
 S

yn
ch

ro
ni

ze
r

(t
o 

A
va

lo
n-

M
M

 c
lo

ck
)

Reset Synchronizer
(to IP Compiler for PCI Express

Clock)



Chapter 5: IP Core Interfaces 5–53
Physical Layer Interface Signals

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Physical Layer Interface Signals
This section describes the global PHY support signals which are only present in 
variations that target an Arria II GX, Arria II GZ, Cyclone IV GX, or Stratix IV GX 
device and use an integrated PHY. When selecting an integrated PHY, the parameter 
editor generates a SERDES variation file, <variation>_serdes.<v or vhd >, in addition 
to the IP core variation file, <variation>.<v or vhd>. 

Transceiver Control Signals
Table 5–28 describes the transceiver support signals.

Table 5–28. Transceiver Control Signals (Part 1 of 2)

Signal Name in
Qsys (1) I/O Description

cal_blk_clk 
/cal_blk_clk_clk I

The cal_blk_clk input signal is connected to the transceiver calibration block 
clock (cal_blk_clk) input. All instances of transceivers in the same device 
must have their cal_blk_clk inputs connected to the same signal because 
there is only one calibration block per device. This input should be connected to a 
clock operating as recommended by the Stratix II GX Transceiver User Guide, the 
Stratix IV Transceiver Architecture, or the Arria II GX Transceiver Architecture 
chapter in volume 2 of the Arria II GX Device Handbook. Connection information 
is also provided in Figure 7–4 on page 7–5, Figure 7–6 on page 7–9, and 
Figure 7–7 on page 7–10. 

gxb_powerdown/
pipe_ext_gxb_powerdown

I

The gxb_powerdown signal connects to the transceiver calibration block 
gxb_powerdown input. This input should be connected as recommended by the 
Stratix II GX Device Handbook or volume 2 of the Stratix IV Device Handbook.

When the calibration clock is not used, this input must be tied to ground.

reconfig_fromgxb[16:0]

(Stratix IV GX ×1 and ×4)

reconfig_fromgxb[33:0]

(Stratix IV GX ×8)

reconfig_togxb[3:0]

(Stratix IV GX)

reconfig_clk

(Arria II GX, Arria II GZ, 
Cyclone IV GX)/
reconfig_gxbclk_clk

O

O

I

I

I

These are the transceiver dynamic reconfiguration signals. These signals may be 
used for cases in which the IP Compiler for PCI Express instance shares a 
transceiver quad with another protocol that supports dynamic reconfiguration. 
They may also be used in cases in which the transceiver analog controls (VOD, 
pre-emphasis, and manual equalization) must be modified to compensate for 
extended PCI Express interconnects such as cables. In these cases, these signals 
must be connected as described in the Stratix II GX Device Handbook, otherwise, 
when unused, the reconfig_clk signal should be tied low, reconfig_togxb 
should be tied to b'010, and reconfig_fromgxb should be left open.

For Arria II GX and Stratix IV GX devices, dynamic reconfiguration is required for 
IP Compiler for PCI Express designs to compensate for variations due to 
process, voltage and temperature. You must connect the ALTGX_RECONFIG 
instance to the ALTGX instances with receiver channels in your design using 
these signals. The maximum frequency of reconfig_clk is 50 MHz. For more 
information about instantiating the ALTGX_RECONFIG megafunction in your 
design refer to “Transceiver Offset Cancellation” on page 13–9. 

fixedclk_serdes I

A 125 MHz free running clock that you must provide that serves as input to the 
fixed clock of the transceiver. fixedclk_serdes and the 50 MHz 
reconfig_clk must be free running and not derived from refclk. This signal 
is used in the hard IP implementation for Arria II GX, Arria II GZ, Cyclone IV GX, 
HardCopy IV GX, and Stratix IV GX devices.



5–54 Chapter 5: IP Core Interfaces
Physical Layer Interface Signals

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

An offset_cancellation_reset input signal keeps the altgxb_reconfig block in 
reset until the reconfig_clk and fixedclk_serdes clock are stable. This signal is not 
currently visible at the interface by default. Refer to Figure 7–1 on page 7–2 and its 
explanation.

The input signals listed in Table 5–29 connect from the user application directly to the 
transceiver instance.

 

f For more information refer to the Stratix II GX ALT2GXB_RECONFIG Megafunction 
User Guide, the Transceiver Configuration Guide in volume 3 of the Stratix IV Device 
Handbook, or AN 558: Implementing Dynamic Reconfiguration in Arria II GX Devices, as 
appropriate. 

The following sections describe signals for the three possible types of physical 
interfaces (1-bit, 20-bit, or PIPE). Refer to Figure 5–1 on page 5–2, Figure 5–2 on 
page 5–3, Figure 5–3 on page 5–4, and Figure 5–36 on page 5–44 for pinout diagrams 
of all of the IP Compiler for PCI Express variations.

busy_altgxb_reconfig I
When asserted, indicates that offset calibration is calibrating the transceiver. This 
signal is used in the hard IP implementation for Arria II GX, Arria II GZ, 
Cyclone IV GX, HardCopy IV GX, and Stratix IV GX devices.

Note to Table 5–28:

(1) Two signal names are listed only when the Qsys signal names differ.

Table 5–28. Transceiver Control Signals (Part 2 of 2)

Signal Name in
Qsys (1) I/O Description

Table 5–29. Transceiver Control Signal Use  

Signal Name in
Qsys (1) Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX Devices

cal_blk_clk/
cal_blk_clk_clk

Yes

reconfig_clk/
reconfig_gxbclk_clk 

Yes

reconfig_togxb Yes

reconfig_fromgxb Yes

Note to Table 5–29:

(1) Two signal names are listed only when the Qsys signal names differ.



Chapter 5: IP Core Interfaces 5–55
Physical Layer Interface Signals

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Serial Interface Signals
Table 5–30 describes the serial interface signals. These signals are available if you use 
the Arria II GX PHY, or Stratix IV GX PHY.

For the soft IP implementation of the ×1 IP core any channel of any transceiver block 
can be assigned for the serial input and output signals. For the hard IP 
implementation of the ×1 IP core the serial input and output signals must use channel 
0 of the master transceiver block associated with that hard IP block. 

For the ×4 IP core the serial inputs (rx_in[0-3]) and serial outputs (tx_out[0-3]) 
must be assigned to the pins associated with the like-number channels of the 
transceiver block. The signals rx_in[0]/tx_out[0] must be assigned to the pins 
associated with channel 0 of the transceiver block, rx_in[1]/tx_out[1] must be 
assigned to the pins associated with channel 1 of the transceiver block, and so on. 
Additionally, the ×4 hard IP implementation must use the four channels of the master 
transceiver block associated with that hard IP block.

For the ×8 IP core the serial inputs (rx_in[0-3]) and serial outputs (tx_out[0-3]) 
must be assigned to the pins associated with the like-number channels of the master 
transceiver block. The signals rx_in[0]/tx_out[0] must be assigned to the pins 
associated with channel 0 of the master transceiver block, rx_in[1]/tx_out[1] must 
be assigned to the pins associated with channel 1 of the master transceiver block, and 
so on. The serial inputs (rx_in[4-7]) and serial outputs (tx_out[4-7]) must be 

Table 5–30. 1-Bit Interface Signals 

Signal Name in
Qsys I/O Description

tx_out[0:7]/
tx_out_tx_dataout[0:7] (1) O Transmit input. These signals are the serial outputs of lanes 0–7.

rx_in<0:7>/
rx_in_rx_datain[0:7] (1) I Receive input. These signals are the serial inputs of lanes 0–7.

pipe_mode/pipe_mode I

pipe_mode selects whether the IP core uses the PIPE interface or the 1-bit 
interface. Setting pipe_mode to a 1 selects the PIPE interface, setting it to 0 
selects the 1-bit interface. When simulating, you can set this signal to indicate 
which interface is used for the simulation. When compiling your design for an 
Altera device, set this signal to 0.

xphy_pll_areset/not available I Reset signal to reset the PLL associated with the IP Compiler for PCI Express. This 
signal is not supported in Qsys.

xphy_pll_locked/not 
available

O

Asserted to indicate that the IP core PLL has locked. May be used to implement an 
optional reset controller to guarantee that the external PHY and PLL are stable 
before bringing the IP Compiler for PCI Express out of reset. For IP Compiler for 
PCI Express variations that require a PLL, the following sequence of events 
guarantees the IP core comes out of reset:

a. Deassert xphy_pll_areset to the PLL in the IP Compiler for PCI Express.

b. Wait for xphy_pll_locked to be asserted

c. Deassert reset signal to the IP Compiler for PCI Express. 

This signal is not available in Qsys because Qsys does not support the use of an 
external PHY.

Note to Table 5–30:

(1) The ×1 IP core only has lane 0. The ×4 IP core only has lanes 0–3.



5–56 Chapter 5: IP Core Interfaces
Physical Layer Interface Signals

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

assigned in order to the pins associated with channels 0-3 of the slave transceiver 
block. The signals rx_in[4]/tx_out[4] must be assigned to the pins associated with 
channel 0 of the slave transceiver block, rx_in[5]/tx_out[5] must be assigned to the 
pins associated with channel 1 of the slave transceiver block, and so on. Figure 5–41 
illustrates this connectivity.

1 You must verify the location of the master transceiver block before making pin 
assignments for the hard IP implementation of the IP Compiler for PCI Express.

f Refer to Pin-out Files for Altera Devices for pin-out tables for all Altera devices in 
.pdf, .txt, and .xls formats.

f Refer to Volume 2 of the Arria II Device Handbook, or Volume 2 of the Stratix IV Device 
Handbook for more information about the transceiver blocks. 

PIPE Interface Signals 
The ×1 and ×4 soft IP implementation of the IP core is compliant with the 16-bit 
version of the PIPE interface, enabling use of an external PHY. The ×8 soft IP 
implementation of the IP core is compliant with the 8-bit version of the PIPE interface. 
These signals are available even when you select a device with an internal PHY so that 
you can simulate using both the one-bit and the PIPE interface. Typically, simulation 
is much faster using the PIPE interface. For hard IP implementations, the 8-bit PIPE 
interface is also available for simulation purposes. However, it is not possible to use 
the hard IP PIPE interface in an actual device. Table 5–31 describes the PIPE interface 
signals used for a standard 16-bit SDR or 8-bit SDR interface. These interfaces are used 

Figure 5–41. Two PCI Express ×8 Links in a Four-Transceiver Block Device

Note to Figure 5–41:

(1) This connectivity is specified in <variation>_serdes.<v or vhd>

PCI Express Lane 7

PCI Express Lane 6

PCI Express Lane 5

PCI Express Lane 4

PCI Express Lane 3

PCI Express Lane 2

PCI Express Lane 1

PCI Express Lane 0

Transceiver Block GXBL1
(Slave)

Channel3

Channel2

Channel1

Channel0

Transceiver Block GXBL0
(Master)

Second PCI
Express
(PIPE)
 x8 Link

First PCI
Express
(PIPE)
 x8 Link

Transceiver Block GXBR1
(Slave)

Transceiver Block GXBR0
(Master)

Channel3

Channel2

Channel1

Channel0

Channel3

Channel2

Channel1

Channel0

Channel3

Channel2

Channel1

Channel0

PCI Express Lane 7

PCI Express Lane 6

PCI Express Lane 5

PCI Express Lane 4

PCI Express Lane 3

PCI Express Lane 2

PCI Express Lane 1

PCI Express Lane 0

Stratix IV GX Device



Chapter 5: IP Core Interfaces 5–57
Physical Layer Interface Signals

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

for simulation of the PIPE interface for variations using an internal transceiver. In 
Table 5–31, signals that include lane number 0 also exist for lanes 1-7, as marked in the 
table. Refer to Chapter 14, External PHYs for descriptions of the slightly modified 
PIPE interface signalling for use with specific external PHYs. The modifications 
include DDR signalling and source synchronous clocking in the TX direction. 

Table 5–31. PIPE Interface Signals (Part 1 of 2) 

Signal Name in
Qsys I/O Description

txdata<n>_ext[15:0]/
pipe_ext_txdata0_ext[15:0] (1)

O

Transmit data <n> (2 symbols on lane <n>). This bus transmits data on 
lane <n>. The first transmitted symbol is txdata_ext[7:0] and the 
second transmitted symbol is txdata0_ext[15:8]. For the 8-bit PIPE 
mode only txdata<n>_ext[7:0] is available. 

txdatak<n>_ext[1:0]/
pipe_ext_txdatak<n>_ext[1:0] (1)

O

Transmit data control <n> (2 symbols on lane <n>). This signal serves 
as the control bit for txdata<n>_ext; txdatak<n>_ext[0] for the 
first transmitted symbol and txdatak<n>_ext[1] for the second 
(8B/10B encoding). For 8-bit PIPE mode only the single bit signal 
txdatak<n>_ext is available.

txdetectrx<n>_ext/
pipe_ext_txdetectrx<n>_ext (1) O Transmit detect receive <n>. This signal tells the PHY layer to start a 

receive detection operation or to begin loopback.

txelecidle<n>_ext/
pipe_ext_txelecidle<n>_ext (1) O Transmit electrical idle <n>. This signal forces the transmit output to 

electrical idle.

txcompl<n>_ext/
pipe_ext_txcompl<n>_ext (1) O Transmit compliance <n>. This signal forces the running disparity to 

negative in compliance mode (negative COM character).

rxpolarity<n>_ext/
pipe_ext_rxpolarity<n>_ex (1) O Receive polarity <n>. This signal instructs the PHY layer to do a polarity 

inversion on the 8B/10B receiver decoding block.

powerdown<n>_ext[1:0]/
pipe_ext_powerdown<n>_ext[1:0] (1) O Power down <n>. This signal requests the PHY to change its power state 

to the specified state (P0, P0s, P1, or P2).

tx_pipemargin/internal signal in Qsys O
Transmit VOD margin selection. The IP Compiler for PCI Express hard IP 
sets the value for this signal based on the value from the Link Control 2 
Register. Available for simulation only. 

tx_pipedeemph/internal signal in 
Qsys

O

Transmit de-emphasis selection. In PCI Express Gen2 (5 Gbps) mode it 
selects the transmitter de-emphasis: 

■ 1'b0: -6 dB

■ 1'b1: -3.5 dB

The PCI Express IP core hard IP sets the value for this signal based on 
the indication received from the other end of the link during the Training 
Sequences (TS). You do not need to change this value.

rxdata<n>_ext[15:0]/
pipe_ext_rxdata<n>_ext[15:0]
(1) (2)

I

Receive data <n> (2 symbols on lane <n>). This bus receives data on 
lane <n>. The first received symbol is rxdata<n>_ext[7:0] and the 
second is rxdata<n>_ext[15:8]. For the 8 Bit PIPE mode only 
rxdata<n>_ext[7:0] is available.

rxdatak<n>_ext[1:0]/
pipe_ext_rxdatak<n>_ext[1:0]
(1) (2)

I

Receive data control <n> (2 symbols on lane <n>). This signal separates 
control and data symbols. The first symbol received is aligned with 
rxdatak<n>_ext[0] and the second symbol received is aligned with 
rxdata<n>_ext[1]. For the 8 Bit PIPE mode only the single bit signal 
rxdatak<n>_ext is available. 

rxvalid<n>_ext (1) (2) I Receive valid <n>. This symbol indicates symbol lock and valid data on 
rxdata<n>_ext and rxdatak<n>_ext.



5–58 Chapter 5: IP Core Interfaces
Test Signals

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Test Signals
The test_in and test_out busses provide run-time control and monitoring of the 
internal state of the IP cores. Additional signals in IP Compiler for PCI Express 
variations with an Avalon-ST interface provide status on the Avalon-ST interface. 
Table 5–33 describes the test signals for the hard IP implementation. 

c Altera recommends that you use the test_out and test_in signals for debug or 
non-critical status monitoring purposes such as LED displays of PCIe link status. 
They should not be used for design function purposes. Use of these signals will make 
it more difficult to close timing on the design. The signals have not been rigorously 
verified and do not function as documented in some corner cases.

The debug signals provided on test_out depend on the setting of test_in[11:8]. 
Table 5–32 provides the encoding for test_in.

phystatus<n>_ext/
pipe_ext_phystatus<n>_ext (1) (2) I PHY status <n>. This signal communicates completion of several PHY 

requests.

rxelecidle<n>_ext/
pipe_ext_rxelecidle<n>_ext (1) (2) I Receive electrical idle <n>. This signal forces the receive output to 

electrical idle.

rxstatus<n>_ext[2:0]/
pipe_ext_rxstatus<n>_ext[2:0]
(1) (2)

I Receive status <n>. This signal encodes receive status and error codes 
for the receive data stream and receiver detection.

pipe_rstn/not available O

Asynchronous reset to external PHY. This signal is tied high and expects 
a pull-down resistor on the board. During FPGA configuration, the pull-
down resistor resets the PHY and after that the FPGA drives the PHY out 
of reset. This signal is only on IP cores configured for the external PHY.

pipe_txclk/not available O
Transmit datapath clock to external PHY. This clock is derived from 
refclk and it provides the source synchronous clock for the transmit 
data of the PHY.

rate_ext/rate_ext O
 When asserted, indicates the interface is operating at the 5.0 Gbps rate. 
This signal is available for simulation purposes only in the hard IP 
implementation. 

Notes to Table 5–31:

(1) where <n> is the lane number ranging from 0-7
(2) For variants that use the internal transceiver, these signals are for simulation only. For Quartus II software compilation, these pipe signals can 

be left floating.

Table 5–31. PIPE Interface Signals (Part 2 of 2) 

Signal Name in
Qsys I/O Description

Table 5–32. Decoding of test_in[11:8]

test_in[11:8] Value Signal Group

4’b0011 PIPE Interface Signals

All other values Reserved



Chapter 5: IP Core Interfaces 5–59
Test Signals

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Test Interface Signals—Hard IP Implementation

Table 5–33. Test Interface Signals—Hard IP Implementation (Part 1 of 2)

Signal I/O Description

test_in[39:0] (hard IP) I

The test_in bus provides runtime control for specific IP core 
features. For normal operation, this bus can be driven to all 0's. The 
following bits are defined:

[0]–Simulation mode. This signal can be set to 1 to accelerate 
initialization by changing many initialization count.

[2:1]–reserved.

[3]–FPGA mode. Set this signal to 1 for an FPGA implementation.

[2:1]–reserved.

[6:5] Compliance test mode. Disable/force compliance mode: 

■ bit 0–when set, prevents the LTSSM from entering compliance 
mode. Toggling this bit controls the entry and exit from the 
compliance state, enabling the transmission of Gen1 and Gen2 
compliance patterns. 

■ bit 1–forces compliance mode. Forces entry to compliance mode 
when timeout is reached in polling.active state (and not all lanes 
have detected their exit condition). 

[7]–Disables low power state negotiation. When asserted, this signal 
disables all low power state negotiation. This bit is set to 1 for Qsys.

[11:8]–you must tie these signals low.
[15:13]–lane select.
[31:16, 12]–reserved.

[32] Compliance mode test switch. When set to 1, the IP core is in 
compliance mode which is used for Compliance Base Board testing 
(CBB) testing. When set to 0, the IP core is in operates normally. 
Connect this signal to a switch to turn on and off compliance mode. 
Refer to the PCI Express High Performance Reference Design for an 
actual coding example to specify CBB tests.



5–60 Chapter 5: IP Core Interfaces
Test Signals

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The test_out bus allows you to monitor the PIPE interface. (1) (2) 
If you select the 9-bit test_out bus width, a subset of the 64-bit test 
bus is brought out as follows:

test_out[63:0] or [8:0] O

■ bits [8:5] = test_out[28:25]–Reserved.

■ bits [4:0] = test_out[4:0]–txdata[3:0]

The following bits are defined: 

■ [7:0]–txdata

■ [8]–txdatak

■ [9]–txdetectrx

■ [10]–txelecidle

■ [11]–txcompl

■ [12]–rxpolarity

■ [14:13]–powerdown

■ [22:15]–rxdata

■ [23]–rxdatak

■ [24]–rxvalid

■ [63:25]–Reserved.

Notes to Table 5–33:

(1) All signals are per lane.
(2) Refer to “PIPE Interface Signals” on page 5–57 for definitions of the PIPE interface signals.

Table 5–33. Test Interface Signals—Hard IP Implementation (Part 2 of 2)

Signal I/O Description



Chapter 5: IP Core Interfaces 5–61
Test Signals

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Test Interface Signals—Soft IP Implementation
Table 5–34 describes the test signals for the soft IP implementation. 

Table 5–34. Test Interface Signals—Soft IP Implementation 

Signal I/O Description

test_in[31:0] I

The test_in bus provides runtime control for specific IP core 
features. For normal operation, this bus can be driven to all 0's. The 
following bits are defined:

[0]—Simulation mode. This signal can be set to 1 to accelerate 
MegaCore function initialization by changing many initialization 
count.

[2:1]—reserved.

[3]–FPGA mode. Set this signal to 1 for an FPGA implementation.

[4]—reserved.

[6:5] Compliance test mode. Disable/force compliance mode: 

■ bit 0—completely disables compliance mode; never enter 
compliance mode.

■ bit 1—forces compliance mode. Forces entry to compliance mode 
when timeout is reached in polling.active state (and not all lanes 
have detected their exit condition).

[7]–Disables low power state negotiation. When asserted, this signal 
disables all low power state negotiation. This bit is set to 1 for Qsys. 

[11:8]—You must tie these signals low.

[15:13]—selects the lane.

[32:16, 12]—reserved.

test_out[511:0] or [8:0] for ×1 or ×4 

test_out[127:0] or [8:0] for ×8
O

The test_out bus allows you to monitor the PIPE interface When you 
choose the 9-bit test_out bus width, a subset of the test_out 
signals are brought out as follows:

■ bits[4:0] = test_out[4:0] on the ×8 IP core.
bits[4:0] = test_out[324:320] on the ×4/×1 IP core.

■ bits[8:5] = test_out[91:88] on the ×8 IP core.
bits[8:5] = test_out[411:408] on the ×4/×1 IP core.

The following bits are defined when you choose the larger bus:

■ [7:0]—txdata.

■ [8]—txdatak.

■ [9]—txdetectrx.

■ [10]—txelecidle.

■ [11]—txcompl.

■ [12]—rxpolarity.

■ [14:13]—powerdown.

■ [22:15]—rxdata.

■ [23]—rxdatak.

■ [24]—rxvalid.

■ [63:25]—reserved.



5–62 Chapter 5: IP Core Interfaces
Test Signals

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Avalon-ST Test Signals
The Avalon-ST test signals carry the status of the Avalon-ST RX adapter FIFO buffer in 
IP Compiler for PCI Express variations with a Avalon-ST interface for both the hard IP 
and soft IP implementations. These signals are for debug purposes only and your 
design need not use them for normal operation.

Table 5–35. Avalon-ST Test Signals 

Signal I/O Description

rx_st_fifo_full0 O Indicates that the Avalon-ST adapter RX FIFO is almost full. Use this 
signal for debug only and not to qualify data.

rx_st_fifo_empty0 O Indicates that the Avalon-ST adapter RX FIFO is empty. Use this 
signal for debug only and not to qualify data.



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

6. Register Descriptions

This chapter describes registers that you can access in the PCI Express configuration 
space and the Avalon-MM bridge control registers. It includes the following sections:

■ Configuration Space Register Content

■ PCI Express Avalon-MM Bridge Control Register Content

■ Comprehensive Correspondence between Config Space Registers and PCIe Spec 
Rev 2.0

Configuration Space Register Content
Table 6–1 shows the common configuration space header. The following tables 
provide more details.

f For comprehensive information about these registers, refer to Chapter 7 of the PCI 
Express Base Specification Revision 1.0a, 1.1 or 2.0 depending on the version you specify 
on the System Setting page of the parameter editor. 

1 To facilitate finding additional information about these IP Compiler for PCI Express 
registers, the following tables provide the name of the corresponding section in the 
PCI Express Base Specification Revision 2.0. 

Table 6–1. Common Configuration Space Header (Part 1 of 2) 

Byte Offset 31:24 23:16 15:8 7:0

0x000:0x03C PCI Type 0 configuration space header (refer to Table 6–2 for details.)

0x000:0x03C PCI Type 1 configuration space header (refer to Table 6–3 for details.)

0x040:0x04C Reserved 

0x050:0x05C MSI capability structure, version 1.0a and 1.1 (refer to Table 6–4 for details.)

0x068:0x070 MSI–X capability structure, version 2.0 (refer to Table 6–5 for details.)

0x070:0x074 Reserved

0x078:0x07C Power management capability structure (refer to Table 6–6 for details.)

0x080:0x0B8 PCI Express capability structure (refer to Table 6–7 for details.)

0x080:0x0B8 PCI Express capability structure (refer to Table 6–8 for details.)

0x0B8:0x0FC Reserved

0x094:0x0FF Root port

0x100:0x16C Virtual channel capability structure (refer to Table 6–9 for details.)

0x170:0x17C Reserved

0x180:0x1FC Virtual channel arbitration table

0x200:0x23C  Port VC0 arbitration table (Reserved)

0x240:0x27C  Port VC1 arbitration table (Reserved)

0x280:0x2BC  Port VC2 arbitration table (Reserved)

August 2014
<edit Part Number variable in chapter>



6–2 Chapter 6: Register Descriptions
Configuration Space Register Content

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 6–2 describes the type 0 configuration settings.

1 In the following tables, the names of fields that are defined by parameters in the 
parameter editor are links to the description of that parameter. These links appear as 
green text.

0x2C0:0x2FC  Port VC3 arbitration table (Reserved)

0x300:0x33C  Port VC4 arbitration table (Reserved)

0x340:0x37C  Port VC5 arbitration table (Reserved)

0x380:0x3BC  Port VC6 arbitration table (Reserved)

0x3C0:0x3FC  Port VC7 arbitration table (Reserved)

0x400:0x7FC Reserved

0x800:0x834 Implement advanced error reporting (optional)

0x838:0xFFF Reserved

Table 6–1. Common Configuration Space Header (Part 2 of 2) 

Byte Offset 31:24 23:16 15:8 7:0

Table 6–2. PCI Type 0 Configuration Space Header (Endpoints), Rev2 Spec: Type 0 Configuration Space Header

Byte Offset 31:24 23:16 15:8 7:0

0x000 Device ID Vendor ID

0x004 Status Command

0x008 Class code Revision ID

0x00C 0x00
Header Type
(Port type) 0x00 Cache Line Size

0x010 BAR Table (BAR0)

0x014 BAR Table (BAR1)

0x018 BAR Table (BAR2)

0x01C BAR Table (BAR3)

0x020 BAR Table (BAR4)

0x024 BAR Table (BAR5)

0x028 Reserved 

0x02C Subsystem ID Subsystem vendor ID

0x030 Expansion ROM base address

0x034 Reserved Capabilities Pointer

0x038 Reserved

0x03C 0x00 0x00 Interrupt Pin Interrupt Line

Note to Table 6–2:

(1) Refer to Table 6–23 on page 6–12 for a comprehensive list of correspondences between the configuration space registers and the PCI Express 
Base Specification 2.0.



Chapter 6: Register Descriptions 6–3
Configuration Space Register Content

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 6–3 describes the type 1 configuration settings.

Table 6–4 describes the MSI capability structure.

Table 6–3. PCI Type 1 Configuration Space Header (Root Ports) , Rev2 Spec: Type 1 Configuration Space Header

Byte Offset 31:24 23:16 15:8 7:0

0x0000 Device ID Vendor ID

0x004 Status Command

0x008 Class code Revision ID

0x00C BIST Header Type
Primary Latency 

Timer
Cache Line Size

0x010 BAR Table (BAR0)

0x014 BAR Table (BAR1)

0x018 Secondary Latency 
Timer

Subordinate Bus 
Number

Secondary Bus 
Number

Primary Bus Number

0x01C Secondary Status I/O Limit I/O Base

0x020 Memory Limit Memory Base

0x024 Prefetchable Memory Limit Prefetchable Memory Base

0x028 Prefetchable Base Upper 32 Bits

0x02C Prefetchable Limit Upper 32 Bits

0x030 I/O Limit Upper 16 Bits I/O Base Upper 16 Bits

0x034 Reserved Capabilities 
Pointer

0x038 Expansion ROM Base Address

0x03C Bridge Control Interrupt Pin Interrupt Line

Note to Table 6–3:

(1) Refer to Table 6–23 on page 6–12 for a comprehensive list of correspondences between the configuration space registers and the PCI Express 
Base Specification 2.0.

Table 6–4. MSI Capability Structure, Rev2 Spec: MSI and MSI-X Capability Structures

Byte Offset 31:24 23:16 15:8 7:0

0x050
Message Control

Configuration MSI Control Status Register Field 
Descriptions

Next Cap Ptr Capability ID

0x054 Message Address

0x058 Message Upper Address

0x05C Reserved Message Data

Note to Table 6–4:

(1) Refer to Table 6–23 on page 6–12 for a comprehensive list of correspondences between the configuration space registers and the PCI Express 
Base Specification 2.0.



6–4 Chapter 6: Register Descriptions
Configuration Space Register Content

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 6–5 describes the MSI-X capability structure.

Table 6–6 describes the power management capability structure.

Table 6–7 describes the PCI Express capability structure for specification versions 1.0a 
and 1.1.

Table 6–5. MSI-X Capability Structure, Rev2 Spec: MSI and MSI-X Capability Structures

Byte Offset 31:24 23:16 15:8 7:3 2:0

0x068 Message Control
MSI-X Table size[26:16] Next Cap Ptr Capability ID

0x06C MSI-X Table Offset
BAR 

Indicator 
(BIR)

Note to Table 6–5:

(1) Refer to Table 6–23 on page 6–12 for a comprehensive list of correspondences between the configuration space registers and the PCI Express 
Base Specification 2.0.

Table 6–6. Power Management Capability Structure, Rev2 Spec: Power Management Capability Structure

Byte Offset 31:24 23:16 15:8 7:0

0x078 Capabilities Register Next Cap PTR Cap ID

0x07C Data PM Control/Status 
Bridge Extensions Power Management Status & Control

Note to Table 6–6:

(1) Refer to Table 6–23 on page 6–12 for a comprehensive list of correspondences between the configuration space registers and the PCI Express 
Base Specification 2.0.

Table 6–7. PCI Express Capability Structure Version 1.0a and 1.1 (Note 1), Rev2 Spec: PCI Express Capabilities 
Register and PCI Express Capability List Register

Byte Offset 31:24 23:16 15:8 7:0

0x080 PCI Express Capabilities Register Next Cap Pointer PCI Express Cap ID

0x084 Device Capabilities

0x088 Device Status Device Control

0x08C Link Capabilities

0x090 Link Status Link Control

0x094 Slot Capabilities

0x098 Slot Status Slot Control

0x09C Reserved Root Control

0x0A0 Root Status

Note to Table 6–7:

(1) Reserved and preserved. As per the PCI Express Base Specification 1.1, this register is reserved for future RW implementations. Registers are 
read-only and must return 0 when read. Software must preserve the value read for writes to bits. 

(2) Refer to Table 6–23 on page 6–12 for a comprehensive list of correspondences between the configuration space registers and the PCI Express 
Base Specification 2.0.



Chapter 6: Register Descriptions 6–5
Configuration Space Register Content

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 6–8 describes the PCI Express capability structure for specification version 2.0.

Table 6–9 describes the virtual channel capability structure.

Table 6–8. PCI Express Capability Structure Version 2.0, Rev2 Spec: PCI Express Capabilities Register and PCI Express 
Capability List Register

Byte Offset 31:16 15:8 7:0

0x080 PCI Express Capabilities Register Next Cap Pointer PCI Express Cap ID

0x084 Device Capabilities

0x088 Device Status Device Control 2

0x08C Link Capabilities

0x090 Link Status Link Control

0x094 Slot Capabilities

0x098 Slot Status Slot Control

0x09C Root Capabilities Root Control

0x0A0 Root Status

0x0A4 Device Capabilities 2

0x0A8 Device Status 2 Device Control 2
Implement completion timeout disable

0x0AC Link Capabilities 2

0x0B0 Link Status 2 Link Control 2

0x0B4 Slot Capabilities 2

0x0B8 Slot Status 2 Slot Control 2

Note to Table 6–8:

(1) Registers not applicable to a device are reserved.
(2) Refer to Table 6–23 on page 6–12 for a comprehensive list of correspondences between the configuration space registers and the PCI Express 

Base Specification 2.0.

Table 6–9. Virtual Channel Capability Structure, Rev2 Spec: Virtual Channel Capability (Part 1 of 2)

Byte Offset 31:24 23:16 15:8 7:0

0x100 Next Cap PTR Vers. Extended Cap ID

0x104 ReservedP Port VC Cap 1
Number of low-priority VCs

0x108 VAT offset ReservedP VC arbit. cap

0x10C Port VC Status Port VC control

0x110 PAT offset 0 (31:24) VC Resource Capability Register (0)

0x114 VC Resource Control Register (0)

0x118 VC Resource Status Register (0) ReservedP

0x11C PAT offset 1 (31:24) VC Resource Capability Register (1)

0x120 VC Resource Control Register (1)

0x124 VC Resource Status Register (1) ReservedP

...

0x164 PAT offset 7 (31:24) VC Resource Capability Register (7)



6–6 Chapter 6: Register Descriptions
PCI Express Avalon-MM Bridge Control Register Content

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 6–10 describes the PCI Express advanced error reporting extended capability 
structure.

PCI Express Avalon-MM Bridge Control Register Content
Control and status registers in the PCI Express Avalon-MM bridge are implemented 
in the CRA slave module. The control registers are accessible through the Avalon-MM 
slave port of the CRA slave module. This module is optional; however, you must 
include it to access the registers. 

The control and status register space is 16KBytes. Each 4 KByte sub-region contains a 
specific set of functions, which may be specific to accesses from the PCI Express root 
complex only, from Avalon-MM processors only, or from both types of processors. 
Because all accesses come across the system interconnect fabric —requests from the IP 
Compiler for PCI Express are routed through the interconnect fabric— hardware does 
not enforce restrictions to limit individual processor access to specific regions. 
However, the regions are designed to enable straight-forward enforcement by 
processor software. 

0x168 VC Resource Control Register (7)

Note to Table 6–9:

(1) Refer to Table 6–23 on page 6–12 for a comprehensive list of correspondences between the configuration space 
registers and the PCI Express Base Specification 2.0.

Table 6–9. Virtual Channel Capability Structure, Rev2 Spec: Virtual Channel Capability (Part 2 of 2)

Byte Offset 31:24 23:16 15:8 7:0

Table 6–10. PCI Express Advanced Error Reporting Extended Capability Structure, Rev2 Spec: Advanced Error Reporting 
Capability

Byte Offset 31:24 23:16 15:8 7:0

0x800 PCI Express Enhanced Capability Header

0x804 Uncorrectable Error Status Register

0x808 Uncorrectable Error Mask Register

0x80C Uncorrectable Error Severity Register

0x810 Correctable Error Status Register

0x814 Correctable Error Mask Register

0x818 Advanced Error Capabilities and Control Register

0x81C Header Log Register

0x82C Root Error Command

0x830 Root Error Status

0x834 Error Source Identification Register Correctable Error Source ID Register

Note to Table 6–10:

(1) Refer to Table 6–23 on page 6–12 for a comprehensive list of correspondences between the configuration space registers and the PCI Express 
Base Specification 2.0.



Chapter 6: Register Descriptions 6–7
PCI Express Avalon-MM Bridge Control Register Content

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

The four subregions are described Table 6–11:

1 The data returned for a read issued to any undefined address in this range is 
unpredictable.

The complete map of PCI Express Avalon-MM bridge registers is shown in Table 6–12:

Avalon-MM to PCI Express Interrupt Registers
The registers in this section contain status of various signals in the PCI Express 
Avalon-MM bridge logic and allow PCI Express interrupts to be asserted when 
enabled. These registers can be accessed by other PCI Express root complexes only; 
however, hardware does not prevent other Avalon-MM masters from accessing them.

Table 6–13 shows the status of all conditions that can cause a PCI Express interrupt to 
be asserted.

Table 6–11. Avalon-MM Control and Status Register Address Spaces

Address
Range Address Space Usage

0x0000-0x0FFF
Registers typically intended for access by PCI Express processors only. This includes PCI Express 
interrupt enable controls, write access to the PCI Express Avalon-MM bridge mailbox registers, and 
read access to Avalon-MM-to-PCI Express mailbox registers.

0x1000-0x1FFF Avalon-MM-to-PCI Express address translation tables. Depending on the system design these may be 
accessed by PCI Express processors, Avalon-MM processors, or both.

0x2000-0x2FFF Reserved.

0x3000-0x3FFF
Registers typically intended for access by Avalon-MM processors only. These include Avalon-MM 
Interrupt enable controls, write access to the Avalon-MM-to-PCI Express mailbox registers, and read 
access to PCI Express Avalon-MM bridge mailbox registers.

Table 6–12. PCI Express Avalon-MM Bridge Register Map

Address Range Register

0x0040 PCI Express Interrupt Status Register

0x0050 PCI Express Interrupt Enable Register

0x0800-0x081F PCI Express Avalon-MM Bridge Mailbox Registers, read/write

0x0900-0x091F Avalon-MM-to-PCI Express Mailbox Registers, read-only

0x1000-0x1FFF Avalon-MM-to PCI Express Address Translation Table

0x3060 Avalon-MM Interrupt Status Register

0x3070 Avalon-MM Interrupt Enable Register

0x3A00-0x3A1F Avalon-MM-to-PCI Express Mailbox Registers, read/write

0x3B00-0x3B1F PCI Express Avalon-MM Bridge Mailbox Registers, read-only

Table 6–13. Avalon-MM to PCI Express Interrupt Status Register (Part 1 of 2) Address: 0x0040

Bit Name Access Description

[31:24] Reserved — —

[23] A2P_MAILBOX_INT7 RW1C 1 when the A2P_MAILBOX7 is written to

[22] A2P_MAILBOX_INT6 RW1C 1 when the A2P_MAILBOX6 is written to



6–8 Chapter 6: Register Descriptions
PCI Express Avalon-MM Bridge Control Register Content

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

A PCI Express interrupt can be enabled for any of the conditions registered in the PCI 
Express interrupt status register by setting the corresponding bits in the 
Avalon-MM-to-PCI Express interrupt enable register (Table 6–14). Either MSI or 
legacy interrupts can be generated as explained in the section “Generation of PCI 
Express Interrupts” on page 4–22.

PCI Express Mailbox Registers

A Qsys-generated IP Compiler for PCI Express can have as many as 16 individual 
incoming interrupt signals, and requires a separate interrupt enable bit for each 
signal.

The PCI Express root complex typically requires write access to a set of PCI 
Express-to-Avalon-MM mailbox registers and read-only access to a set of 
Avalon-MM-to-PCI Express mailbox registers. Eight mailbox registers are available. 

[21] A2P_MAILBOX_INT5 RW1C 1 when the A2P_MAILBOX5 is written to

[20] A2P_MAILBOX_INT4 RW1C 1 when the A2P_MAILBOX4 is written to

[19] A2P_MAILBOX_INT3 RW1C 1 when the A2P_MAILBOX3 is written to

[18] A2P_MAILBOX_INT2 RW1C 1 when the A2P_MAILBOX2 is written to

[17] A2P_MAILBOX_INT1 RW1C 1 when the A2P_MAILBOX1 is written to

[16] A2P_MAILBOX_INT0 RW1C 1 when the A2P_MAILBOX0 is written to

[15:0] (Qsys) AVL_IRQ_ASSERTED[15:0] RO

Current value of the Avalon-MM interrupt (IRQ) input 
ports to the Avalon-MM RX master port:

0 – Avalon-MM IRQ is not being signaled.

1 – Avalon-MM IRQ is being signaled.

A Qsys-generated IP Compiler for PCI Express has as 
many as 16 distinct IRQ input ports. Each 
AVL_IRQ_ASSERTED[] bit reflects the value on the 
corresponding IRQ input port.

Table 6–13. Avalon-MM to PCI Express Interrupt Status Register (Part 2 of 2) Address: 0x0040

Bit Name Access Description

Table 6–14. Avalon-MM to PCI Express Interrupt Enable Register Address: 0x0050

Bits Name Access Description

[31:24] Reserved — —

[23:16] A2P_MB_IRQ RW
Enables generation of PCI Express interrupts when a 
specified mailbox is written to by an external 
Avalon-MM master.

[15:0] (Qsys) AVL_IRQ[15:0] RW

Enables generation of PCI Express interrupts when a 
specified Avalon-MM interrupt signal is asserted. Your 
Qsys system may have as many as 16 individual input 
interrupt signals.



Chapter 6: Register Descriptions 6–9
PCI Express Avalon-MM Bridge Control Register Content

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

The PCI Express-to-Avalon-MM mailbox registers are writable at the addresses shown 
in Table 6–15. Writing to one of these registers causes the corresponding bit in the 
Avalon-MM interrupt status register to be set to a one.

The Avalon-MM-to-PCI Express mailbox registers are read at the addresses shown in 
Table 6–16. The PCI Express root complex should use these addresses to read the 
mailbox information after being signaled by the corresponding bits in the PCI Express 
interrupt enable register.

Avalon-MM-to-PCI Express Address Translation Table
The Avalon-MM-to-PCI Express address translation table is writable using the CRA 
slave port if dynamic translation is enabled.

Table 6–15. PCI Express-to-Avalon-MM Mailbox Registers, Read/Write Address Range: 0x800-0x0815

Address Name Access Description

0x0800 P2A_MAILBOX0 RW PCI Express-to-Avalon-MM Mailbox 0

0x0804 P2A_MAILBOX1 RW PCI Express-to-Avalon-MM Mailbox 1

0x0808 P2A_MAILBOX2 RW PCI Express-to-Avalon-MM Mailbox 2

0x080C P2A_MAILBOX3 RW PCI Express-to-Avalon-MM Mailbox 3

0x0810 P2A_MAILBOX4 RW PCI Express-to-Avalon-MM Mailbox 4

0x0814 P2A_MAILBOX5 RW PCI Express-to-Avalon-MM Mailbox 5

0x0818 P2A_MAILBOX6 RW PCI Express-to-Avalon-MM Mailbox 6

0x081C P2A_MAILBOX7 RW PCI Express-to-Avalon-MM Mailbox 7

Table 6–16. Avalon-MM-to-PCI Express Mailbox Registers, read-only Address Range: 0x0900-0x091F

Address Name Access Description

0x0900 A2P_MAILBOX0 RO Avalon-MM-to-PCI Express Mailbox 0

0x0904 A2P_MAILBOX1 RO Avalon-MM-to-PCI Express Mailbox 1 

0x0908 A2P_MAILBOX2 RO Avalon-MM-to-PCI Express Mailbox 2

0x090C A2P_MAILBOX3 RO Avalon-MM-to-PCI Express Mailbox 3

0x0910 A2P_MAILBOX4 RO Avalon-MM-to-PCI Express Mailbox 4

0x0914 A2P_MAILBOX5 RO Avalon-MM-to-PCI Express Mailbox 5

0x0918 A2P_MAILBOX6 RO Avalon-MM-to-PCI Express Mailbox 6

0x091C A2P_MAILBOX7 RO Avalon-MM-to-PCI Express Mailbox 7



6–10 Chapter 6: Register Descriptions
PCI Express Avalon-MM Bridge Control Register Content

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Each entry in the PCI Express address translation table (Table 6–17) is 8 bytes wide, 
regardless of the value in the current PCI Express address width parameter. Therefore, 
register addresses are always the same width, regardless of IP Compiler for PCI 
Express address width.

The format of the address space field (A2P_ADDR_SPACEn) of the address 
translation table entries is shown in Table 6–18.

PCI Express to Avalon-MM Interrupt Status and Enable Registers
The registers in this section contain status of various signals in the PCI Express 
Avalon-MM bridge logic and allow Avalon interrupts to be asserted when enabled. A 
processor local to the system interconnect fabric that processes the Avalon-MM 
interrupts can access these registers. These registers must not be accessed by the PCI 
Express Avalon-MM bridge master ports; however, there is nothing in the hardware 
that prevents this.

Table 6–17. Avalon-MM-to-PCI Express Address Translation Table  Address Range: 0x1000-0x1FFF

Address Bits Name Access Description

0x1000
[1:0] A2P_ADDR_SPACE0 RW Address space indication for entry 0. Refer to Table 6–18 

for the definition of these bits.

[31:2] A2P_ADDR_MAP_LO0 RW Lower bits of Avalon-MM-to-PCI Express address map 
entry 0. 

0x1004 [31:0] A2P_ADDR_MAP_HI0 RW Upper bits of Avalon-MM-to-PCI Express address map 
entry 0. 

0x1008

[1:0] A2P_ADDR_SPACE1 RW Address space indication for entry 1. Refer to Table 6–18 
for the definition of these bits.

[31:2] A2P_ADDR_MAP_LO1 RW

Lower bits of Avalon-MM-to-PCI Express address map 
entry 1.

This entry is only implemented if number of table entries 
is greater than 1.

0x100C [31:0] A2P_ADDR_MAP_HI1 RW

Upper bits of Avalon-MM-to-PCI Express address map 
entry 1. 

This entry is only implemented if the number of table 
entries is greater than 1.

Note to Table 6–17:

(1) These table entries are repeated for each address specified in the Number of address pages parameter (Table 3–14 on page 3–21). If Number 
of address pages is set to the maximum of 512, 0x1FF8 contains A2P_ADDR_MAP_LO511 and 0x1FFC contains A2P_ADDR_MAP_HI511.

Table 6–18. PCI Express Avalon-MM Bridge Address Space Bit Encodings

Value
(Bits 1:0) Indication

00
Memory Space, 32-bit PCI Express address. 32-bit header is generated.

Address bits 63:32 of the translation table entries are ignored.

01 Memory space, 64-bit PCI Express address. 64-bit address header is generated.

10 Reserved

11 Reserved



Chapter 6: Register Descriptions 6–11
PCI Express Avalon-MM Bridge Control Register Content

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

The interrupt status register (Table 6–19) records the status of all conditions that can 
cause an Avalon-MM interrupt to be asserted.

An Avalon-MM interrupt can be asserted for any of the conditions noted in the 
Avalon-MM interrupt status register by setting the corresponding bits in the interrupt 
enable register (Table 6–20).

PCI Express interrupts can also be enabled for all of the error conditions described. 
However, it is likely that only one of the Avalon-MM or PCI Express interrupts can be 
enabled for any given bit. There is typically a single process in either the PCI Express 
or Avalon-MM domain that is responsible for handling the condition reported by the 
interrupt.

Avalon-MM Mailbox Registers
A processor local to the system interconnect fabric typically requires write access to a 
set of Avalon-MM-to-PCI Express mailbox registers and read-only access to a set of 
PCI Express-to-Avalon-MM mailbox registers. Eight mailbox registers are available. 

The Avalon-MM-to-PCI Express mailbox registers are writable at the addresses shown 
in Table 6–21. When the Avalon-MM processor writes to one of these registers the 
corresponding bit in the PCI Express interrupt status register is set to 1.

Table 6–19.  PCI Express to Avalon-MM Interrupt Status Register Address: 0x3060

Bits Name Access Description

[15:0] Reserved — —

[16] P2A_MAILBOX_INT0 RW1C 1 when the P2A_MAILBOX0 is written

[17] P2A_MAILBOX_INT1 RW1C 1 when the P2A_MAILBOX1 is written 

[18] P2A_MAILBOX_INT2 RW1C 1 when the P2A_MAILBOX2 is written 

[19] P2A_MAILBOX_INT3 RW1C 1 when the P2A_MAILBOX3 is written 

[20] P2A_MAILBOX_INT4 RW1C 1 when the P2A_MAILBOX4 is written 

[21] P2A_MAILBOX_INT5 RW1C 1 when the P2A_MAILBOX5 is written 

[22] P2A_MAILBOX_INT6 RW1C 1 when the P2A_MAILBOX6 is written 

[23] P2A_MAILBOX_INT7 RW1C 1 when the P2A_MAILBOX7 is written 

[31:24] Reserved — —

Table 6–20. PCI Express to Avalon-MM Interrupt Enable Register Address: 0x3070

Bits Name Access Description

[15:0] Reserved — —

[23:16] P2A_MB_IRQ RW Enables assertion of Avalon-MM interrupt CraIrq_o signal when 
the specified mailbox is written by the root complex.

[31:24] Reserved — —

Table 6–21. Avalon-MM-to-PCI Express Mailbox Registers, Read/Write (Part 1 of 2) Address Range: 0x3A00-0x3A1F

Address Name Access Description

0x3A00 A2P_MAILBOX0 RW Avalon-MM-to-PCI Express mailbox 0

0x3A04 A2P _MAILBOX1 RW Avalon-MM-to-PCI Express mailbox 1



6–12 Chapter 6: Register Descriptions
Comprehensive Correspondence between Config Space Registers and PCIe Spec Rev 2.0

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The PCI Express-to-Avalon-MM mailbox registers are read-only at the addresses 
shown in Table 6–22. The Avalon-MM processor reads these registers when the 
corresponding bit in the Avalon-MM interrupt status register is set to 1.

Comprehensive Correspondence between Config Space Registers and 
PCIe Spec Rev 2.0

Table 6–23 provides a comprehensive correspondence between the configuration 
space registers and their descriptions in the PCI Express Base Specification 2.0. 

0x3A08 A2P _MAILBOX2 RW Avalon-MM-to-PCI Express mailbox 2

0x3A0C A2P _MAILBOX3 RW Avalon-MM-to-PCI Express mailbox 3 

0x3A10 A2P _MAILBOX4 RW Avalon-MM-to-PCI Express mailbox 4

0x3A14 A2P _MAILBOX5 RW Avalon-MM-to-PCI Express mailbox 5

0x3A18 A2P _MAILBOX6 RW Avalon-MM-to-PCI Express mailbox 6

0x3A1C A2P_MAILBOX7 RW Avalon-MM-to-PCI Express mailbox 7

Table 6–21. Avalon-MM-to-PCI Express Mailbox Registers, Read/Write (Part 2 of 2) Address Range: 0x3A00-0x3A1F

Address Name Access Description

Table 6–22. PCI Express-to-Avalon-MM Mailbox Registers, Read-Only Address Range: 0x3800-0x3B1F

Address Name Access
Mode Description

0x3B00 P2A_MAILBOX0 RO PCI Express-to-Avalon-MM mailbox 0. 

0x3B04 P2A_MAILBOX1 RO PCI Express-to-Avalon-MM mailbox 1

0x3B08 P2A_MAILBOX2 RO PCI Express-to-Avalon-MM mailbox 2

0x3B0C P2A_MAILBOX3 RO PCI Express-to-Avalon-MM mailbox 3 

0x3B10 P2A_MAILBOX4 RO PCI Express-to-Avalon-MM mailbox 4

0x3B14 P2A_MAILBOX5 RO PCI Express-to-Avalon-MM mailbox 5

0x3B18 P2A_MAILBOX6 RO PCI Express-to-Avalon-MM mailbox 6

0x3B1C P2A_MAILBOX7 RO PCI Express-to-Avalon-MM mailbox 7

Table 6–23. Correspondence Configuration Space Registers and PCIe Base Specification Rev. 2.0 Description (Part 1 
of 5)

Byte Address Config Reg Offset 31:24 23:16 15:8 7:0 Corresponding Section in PCIe Specification

Table 6-1. Common Configuration Space Header

0x000:0x03C PCI Header Type 0 configuration registers Type 0 Configuration Space Header

0x000:0x03C PCI Header Type 1 configuration registers Type 1 Configuration Space Header

0x040:0x04C Reserved

0x050:0x05C MSI capability structure MSI and MSI-X Capability Structures

0x068:0x070 MSI capability structure MSI and MSI-X Capability Structures

0x070:0x074 Reserved

0x078:0x07C Power management capability structure PCI Power Management Capability Structure

0x080:0x0B8 PCI Express capability structure PCI Express Capability Structure

0x080:0x0B8 PCI Express capability structure PCI Express Capability Structure



Chapter 6: Register Descriptions 6–13
Comprehensive Correspondence between Config Space Registers and PCIe Spec Rev 2.0

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

0x0B8:0x0FC Reserved

0x094:0x0FF Root port

0x100:0x16C Virtual channel capability structure Virtual Channel Capability

0x170:0x17C Reserved

0x180:0x1FC Virtual channel arbitration table VC Arbitration Table

0x200:0x23C Port VC0 arbitration table (Reserved) Port Arbitration Table

0x240:0x27C Port VC1 arbitration table (Reserved) Port Arbitration Table

0x280:0x2BC Port VC2 arbitration table (Reserved) Port Arbitration Table

0x2C0:0x2FC Port VC3 arbitration table (Reserved) Port Arbitration Table

0x300:0x33C Port VC4 arbitration table (Reserved) Port Arbitration Table

0x340:0x37C Port VC5 arbitration table (Reserved) Port Arbitration Table

0x380:0x3BC Port VC6 arbitration table (Reserved) Port Arbitration Table

0x3C0:0x3FC Port VC7 arbitration table (Reserved) Port Arbitration Table

0x400:0x7FC Reserved PCIe spec corresponding section name

0x800:0x834 Advanced Error Reporting AER (optional) Advanced Error Reporting Capability

0x838:0xFFF Reserved

Table 6-2. PCI Type 0 Configuration Space Header (Endpoints), Rev2 Spec: Type 0 Configuration Space Header 

0x000 Device ID Vendor ID Type 0 Configuration Space Header

0x004 Status Command Type 0 Configuration Space Header

0x008 Class Code Revision ID Type 0 Configuration Space Header

0x00C 0x00 Header Type 0x00 Cache Line Size Type 0 Configuration Space Header

0x010 Base Address 0 Base Address Registers (Offset 10h - 24h)

0x014 Base Address 1 Base Address Registers (Offset 10h - 24h)

0x018 Base Address 2 Base Address Registers (Offset 10h - 24h)

0x01C Base Address 3 Base Address Registers (Offset 10h - 24h)

0x020 Base Address 4 Base Address Registers (Offset 10h - 24h)

0x024 Base Address 5 Base Address Registers (Offset 10h - 24h)

0x028 Reserved Type 0 Configuration Space Header

0x02C Subsystem Device ID Subsystem Vendor ID Type 0 Configuration Space Header

0x030 Expansion ROM base address Type 0 Configuration Space Header

0x034 Reserved Capabilities PTR Type 0 Configuration Space Header

0x038 Reserved Type 0 Configuration Space Header

0x03C 0x00 0x00 Interrupt Pin Interrupt Line Type 0 Configuration Space Header

Table 6-3. PCI Type 1 Configuration Space Header (Root Ports) , Rev2 Spec: Type 1 Configuration Space Header

0x000 Device ID Vendor ID Type 1 Configuration Space Header

0x004 Status Command Type 1 Configuration Space Header

0x008 Class Code Revision ID Type 1 Configuration Space Header

0x00C BIST Header Type Primary Latency Timer Cache 
Line Size Type 1 Configuration Space Header

Table 6–23. Correspondence Configuration Space Registers and PCIe Base Specification Rev. 2.0 Description (Part 2 
of 5)

Byte Address Config Reg Offset 31:24 23:16 15:8 7:0 Corresponding Section in PCIe Specification



6–14 Chapter 6: Register Descriptions
Comprehensive Correspondence between Config Space Registers and PCIe Spec Rev 2.0

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

0x010 Base Address 0 Base Address Registers (Offset 10h/14h)

0x014 Base Address 1 Base Address Registers (Offset 10h/14h)

0x018 
Secondary Latency Timer Subordinate Bus 
Number Secondary Bus Number Primary Bus 
Number

Secondary Latency Timer (Offset 1Bh)/Type 1 
Configuration Space Header/ /Primary Bus Number 
(Offset 18h)

0x01C Secondary Status I/O Limit I/O Base Secondary Status Register (Offset 1Eh) / Type 1 
Configuration Space Header

0x020 Memory Limit Memory Base Type 1 Configuration Space Header

0x024 Prefetchable Memory Limit Prefetchable Memory 
Base Prefetchable Memory Base/Limit (Offset 24h)

0x028 Prefetchable Base Upper 32 Bits Type 1 Configuration Space Header

0x02C Prefetchable Limit Upper 32 Bits Type 1 Configuration Space Header

0x030 I/O Limit Upper 16 Bits I/O Base Upper 16 Bits Type 1 Configuration Space Header

0x034 Reserved Capabilities PTR Type 1 Configuration Space Header

0x038 Expansion ROM Base Address Type 1 Configuration Space Header

0x03C Bridge Control Interrupt Pin Interrupt Line Bridge Control Register (Offset 3Eh)

Table 6-4. MSI Capability Structure, Rev2 Spec: MSI and MSI-X Capability Structures

0x050 Message Control Next Cap Ptr Capability ID MSI and MSI-X Capability Structures

0x054 Message Address MSI and MSI-X Capability Structures

0x058 Message Upper Address MSI and MSI-X Capability Structures

0x05C Reserved Message Data MSI and MSI-X Capability Structures

Table 6-5. MSI-X Capability Structure, Rev2 Spec: MSI and MSI-X Capability Structures

0x68 Message Control Next Cap Ptr Capability ID MSI and MSI-X Capability Structures

0x6C MSI-X Table Offset BIR MSI and MSI-X Capability Structures

0x70 Pending Bit Array (PBA) Offset BIR MSI and MSI-X Capability Structures

Table 6-6. Power Management Capability Structure, Rev2 Spec: Power Management Capability Structure

0x078 Capabilities Register Next Cap PTR Cap ID PCI Power Management Capability Structure

0x07C Data PM Control/Status Bridge Extensions Power 
Management Status & Control PCI Power Management Capability Structure

Table 6-7. PCI Express Capability Structure Version 1.0a and 1.1 (Note 1), Rev2 Spec: PCI Express Capabilities Register 
and PCI Express Capability List Register 

0x080 PCI Express Capabilities Register Next Cap PTR 
Capability ID

PCI Express Capabilities Register / PCI Express 
Capability List Register

0x084 Device capabilities Device Capabilities Register

0x088 Device Status Device Control Device Status Register/Device Control Register

0x08C Link capabilities Link Capabilities Register

0x090 Link Status Link Control Link Status Register/Link Control Register

0x094 Slot capabilities Slot Capabilities Register

0x098 Slot Status Slot Control Slot Status Register/ Slot Control Register

0x09C Reserved Root Control Root Control Register

Table 6–23. Correspondence Configuration Space Registers and PCIe Base Specification Rev. 2.0 Description (Part 3 
of 5)

Byte Address Config Reg Offset 31:24 23:16 15:8 7:0 Corresponding Section in PCIe Specification



Chapter 6: Register Descriptions 6–15
Comprehensive Correspondence between Config Space Registers and PCIe Spec Rev 2.0

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

0x0A0 Root Status Root Status Register

Table 6-8. PCI Express Capability Structure Version 2.0, Rev2 Spec: PCI Express Capabilities Register and PCI Express 
Capability List Register

0x080 PCI Express Capabilities Register Next Cap PTR 
PCI Express Cap ID

PCI Express Capabilities Register /PCI Express 
Capability List Register 

0x084 Device capabilities Device Capabilities Register 

0x088 Device Status Device Control Device Status Register / Device Control Register

0x08C Link capabilities Link Capabilities Register 

0x090 Link Status Link Control Link Status Register / Link Control Register 

0x094 Slot Capabilities Slot Capabilities Register 

0x098 Slot Status Slot Control Slot Status Register / Slot Control Register 

0x09C Root Capabilities Root Control Root Capabilities Register / Root Control Register

0x0A0 Root Status Root Status Register 

0x0A4 Device Capabilities 2 Device Capabilities 2 Register 

0x0A8 Device Status 2 Device Control 2 Device Status 2 Register / Device Control 2 
Register 

0x0AC Link Capabilities 2 Link Capabilities 2 Register 

0x0B0 Link Status 2 Link Control 2 Link Status 2 Register / Link Control 2 Register 

0x0B4 Slot Capabilities 2 Slot Capabilities 2 Register 

0x0B8 Slot Status 2 Slot Control 2 Slot Status 2 Register / Slot Control 2 Register 

Table 6-9. Virtual Channel Capability Structure, Rev2 Spec: Virtual Channel Capability

0x100 Next Cap PTR Vers. Extended Cap ID Virtual Channel Enhanced Capability Header

0x104 ReservedP Port VC Cap 1 Port VC Capability Register 1

0x108 VAT offset ReservedP VC arbit. cap Port VC Capability Register 2

0x10C Port VC Status Port VC control Port VC Status Register / Port VC Control Register

0x110 PAT offset 0 (31:24) VC Resource Capability 
Register (0) VC Resource Capability Register

0x114 VC Resource Control Register (0) VC Resource Control Register

0x118 VC Resource Status Register (0) ReservedP VC Resource Status Register

0x11C PAT offset 1 (31:24) VC Resource Capability 
Register (1) VC Resource Capability Register

0x120 VC Resource Control Register (1) VC Resource Control Register

0x124 VC Resource Status Register (1) ReservedP VC Resource Status Register

0x164 PAT offset 7 (31:24) VC Resource Capability 
Register (7) VC Resource Capability Register

0x168 VC Resource Control Register (7) VC Resource Control Register

0x16C VC Resource Status Register (7) ReservedP VC Resource Status Register

Table 6-10. PCI Express Advanced Error Reporting Extended Capability Structure, Rev2 Spec: Advanced Error Reporting 
Capability

0x800 PCI Express Enhanced Capability Header Advanced Error Reporting Enhanced Capability 
Header

Table 6–23. Correspondence Configuration Space Registers and PCIe Base Specification Rev. 2.0 Description (Part 4 
of 5)

Byte Address Config Reg Offset 31:24 23:16 15:8 7:0 Corresponding Section in PCIe Specification



6–16 Chapter 6: Register Descriptions
Comprehensive Correspondence between Config Space Registers and PCIe Spec Rev 2.0

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

0x804 Uncorrectable Error Status Register Uncorrectable Error Status Register

0x808 Uncorrectable Error Mask Register Uncorrectable Error Mask Register

0x80C Uncorrectable Error Severity Register Uncorrectable Error Severity Register

0x810 Correctable Error Status Register Correctable Error Status Register

0x814 Correctable Error Mask Register Correctable Error Mask Register

0x818 Advanced Error Capabilities and Control Register Advanced Error Capabilities and Control Register

0x81C Header Log Register Header Log Register

0x82C Root Error Command Root Error Command Register

0x830 Root Error Status Root Error Status Register

0x834 Error Source Identification Register Correctable 
Error Source ID Register Error Source Identification Register

Table 6–23. Correspondence Configuration Space Registers and PCIe Base Specification Rev. 2.0 Description (Part 5 
of 5)

Byte Address Config Reg Offset 31:24 23:16 15:8 7:0 Corresponding Section in PCIe Specification



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

7. Reset and Clocks

This chapter covers the functional aspects of the reset and clock circuitry for IP 
Compiler for PCI Express variations created using the IP Catalog and parameter 
editor. It includes the following sections:

■ Reset Hard IP Implementation

■ Reset Soft IP Implementation

■ Clocks

For descriptions of the available reset and clock signals refer to the following sections 
in the Chapter 5, IP Core Interfaces: “Reset and Link Training Signals” on page 5–24, 
“Clock Signals—Hard IP Implementation” on page 5–23, and “Clock Signals—Soft IP 
Implementation” on page 5–23. 

Reset Hard IP Implementation
Altera provides two options for reset circuitry in the parameter editor for PCI Express 
hard IP implementation. Both options are created automatically when you generate 
your IP core. These options are implemented by following files:

■ <variant>_plus.v or .vhd—The variant includes the logic for reset and transceiver 
calibration as part of the IP core, simplifying system development at the expense 
of some flexibility. This file is stored in the <install_dir>/chaining_dma/ directory.

■ <variant>.v or .vhd—This file does not include reset or calibration logic, giving 
you the flexibility to design circuits that meet your requirements. If you select this 
method, you can share the channels and reset logic in a single quad with other 
protocols, which is not possible with _plus option. However, you may find it 
challenging to design a reliable solution. This file is stored in the <working_dir> 
directory. 

The reset logic for both of these variants is illustrated by Figure 7–1.

1 When you use Qsys to generate the IP Compiler for PCI Express, the reset and 
calibration logic is included in the IP core variant.

<variant>_plus.v or .vhd
This option partitions the reset logic between the following two plain text files:

■ <working_dir>/ip_compiler_for_pci_express-library/altpcie_rs_serdes.v or 
.vhd—This file includes the logic to reset the transceiver. 

■ <working_dir>/<variation>_examples/chaining_dma/<variation>_rs_hip.v or 
.vhd—This file includes the logic to reset the IP Compiler for PCI Express. 

The _plus variant includes all of the logic necessary to initialize the IP Compiler for 
PCI Express, including the following logic: 

■ Reset circuitry

■ ALTGXB Reconfiguration IP core

August 2014
<edit Part Number variable in chapter>



7–2 Chapter 7: Reset and Clocks
Reset Hard IP Implementation

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

■ test_in settings

Figure 7–1 illustrates the reset logic for both the <variant>_plus.v or .vhd and 
<variant>.v or .vhd options. 

In Figure 7–1, a general purpose PLL receives a free running clock source which is 
independent of the transceiver reference clock refclk, and outputs a 125 MHz 
fixedclk and a reconfig_clk. The altgxb_reconfig block waits until the two PLL 
output clocks are stable before running offset cancellation. The pll_locked signal 
indicates whether the two clocks are stable. The fixedclk_serdes input to the 
transceiver must be a free running clock; the block diagram shows that the fixedclk is 
free running, because it is derived from a free running input clock by an independent 
PLL. The altgxb_reconfig block outputs a busy signal that connects to the 
busy_altgxb_reconfig input port of the IP Compiler for PCI Express transceiver reset 
controller. After offset cancellation completes, ALTGXB_Reconfig deasserts the busy 
signal. The reset controller waits for the first falling edge of this signal.

The inverse of the pll_locked signal is the offset_cancellation_reset signal. The 
signal is not labeled in Figure 7–1 because it is not visible outside the IP Compiler for 
PCI Express. However, you can make the offset_cancellation_reset signal visible 
using the following command:

Figure 7–1. Internal Reset Modules in the Hard IP Implementation

Note to Figure 7–1:

(1) Refer to Figure 7–2 for more detail on this variant.

IP Compiler for PCI Express Hard IP Implementation with Reset and Calibration Logic Included

crst 

dl_up, hotrst_exit,
l2_exit, ltssm 

app_rstn 

coreclk_out   125 MHz 

pld_clk  125 MHz 

srst 

busy_altgxb_reconfig 

<variant>_example_chaining_pipen1b.v or .vhd

Transceiver 
PHY IP Core

<variant>.v or .vhd 

<variant>_plus.v or .vhd 

<variant>_serdes.v
 or .vhd 

IP Compiler
for PCI Express 

Hard IP
Implementation 

<variant>_core.v 
or .vhd 

Hip_txclk 250 or 500 MHz

Transceiver Reset

altpcie_rs_serdes.v 
or .vhd

altpcie_reconfig_
<device>.v or .vhd

altgxb_reconfig

altpcierd_reconfig_pll_clk.v
free_running_clock   100 MHz

Refclk
100 MHz

cal_blk_clk
50 MHz

pll_locked

fixedclk

fixedclk_serdes

reconfig_clk

125 MHz

50 MHz

Transceiver Reset

<variant>_rs_hip.v 
or .vhd

PLL 

pcie_rstn 

Note (1)

local_rstn 



Chapter 7: Reset and Clocks 7–3
Reset Hard IP Implementation

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

qmegawiz -silent -wiz_override=”offset_cancellation_reset” <altgx_reconfig_filename.v>

After this signal is visible in your IP Compiler for PCI Express hard IP variation, you 
can configure the general purpose PLL to generate the fixedclk, reconfig_clk, and 
pll_locked signals to meet the requirements described here. Altera recommends that 
you use the _plus file and configure the PLL that supports the use of the internal reset 
logic.

f Refer to “PCI Express (PIPE) Reset Sequence” in the Reset Control and Power Down 
chapter in volume 2 of the Stratix IV Device Handbook for a timing diagram illustrating 
the reset sequence in Stratix IV devices. 

1 To understand the reset sequence in detail, you can also review the 
altpcie_rs_serdes.v file.

<variant>.v or .vhd
If you choose to implement your own reset circuitry, you must design logic to replace 
the Transceiver Reset module shown in Figure 7–1.

Figure 7–2 provides a somewhat more detailed view of the reset signals in the 
<variant>.v or .vhd reset logic.

Figure 7–2. Reset Signals Provided for External Reset and Calibration Logic of the Hard IP Implementation

busy_altgxb_reconfig 

Transceiver PHY IP Core

<variant>.v or .vhd 

Hip_txclk   125 or 250 MHz

Transceiver Reset

Refclk
100 MHz

cal_blk_clk
50 MHz

fixedclk
125 MHz

PCI Express 
Hard IP 

dl_ltssm[4:0]

npor 

pld_clk
125 or  250 MHz 

tx_digitalreset
rx_analogreset
rx_digitalreset

rx_freqlocked
pll_locked
rx_pll_locked

<variant>_serdes.v
 or .vhd <variant>_core.v 

or .vhd 

altpcie_rs_serdes.v 
or .vhd



7–4 Chapter 7: Reset and Clocks
Reset Soft IP Implementation

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Reset Soft IP Implementation
Figure 7–3 shows the global reset signals for ×1 and ×4 endpoints in the soft IP 
implementation. To use this variant, you must design the logic to implement reset and 
calibration. For designs that use the internal ALTGX transceiver, the PIPE interface is 
transparent. You can use the reset sequence provided for the hard IP implementation 
in the <variant>_rs_hip.v or .vhd IP core as a reference in designing your own circuit. 
In addition, to understand the domain of each reset signal, refer to “Reset Details” on 
page 5–25. 

Figure 7–3. Global Reset Signals for ×1 and ×4 Endpoints in the Soft IP Implementation

Notes to Figure 7–3:

(1) The Gen1 ×8 does not include the crst signal and rstn replaces srst in the soft IP implementation.
(2) The dlup_exit signal should cause the application to assert srst, but not crst.
(3) gxb_powerdown stops the generation of core_clk_out for hard IP implementations and clk125_out for soft IP implementations.
(4) The rx_freqlocked signal is only used in Gen2 ×4 and Gen2 ×8 IP Compiler for PCI Express variations.

<variant>.v or .vhd 

<variant>_core.v or .vhd 

<variant>_serdes.v or .vhd

SERDES Reset Controller

srst

crst

altpcie_hip_pipen1b.v or .vhd 

Other Power
On Reset

perst#

l2_exit

tx_digitalreset
rx_analogreset
rx_digitalreset

tx_digitalreset
rx_analogreset
rx_digitalreset

npor

pll_locked
rx_pll_locked

pll_powerdown
gxb_powerdown

rx_freqlocked

Note (1)

Note (4)

Note (1)

Note (2)

Note (3)
rx_freqlocked

pll_locked
rx_pll_locked

hotrst_exit
dlup_exit

dl_ltssm[4:0]

Reset Synchronization
Circuitry from Design

Example



Chapter 7: Reset and Clocks 7–5
Clocks

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Clocks
This section describes clocking for the IP Compiler for PCI Express. It includes the 
following sections: 

■ Avalon-ST Interface—Hard IP Implementation

■ Avalon-ST Interface—Soft IP Implementation

■ Clocking for a Generic PIPE PHY and the Simulation Testbench

■ Avalon-MM Interface–Hard IP and Soft IP Implementations

Avalon-ST Interface—Hard IP Implementation
When implementing the Arria II GX, Cyclone IV GX, HardCopy IV GX, or 
Stratix IV GX PHY in a ×1 or ×4 configuration, the 100 MHz reference clock is 
connected directly to the transceiver. core_clk_out is driven by the output of the 
transceiver. core_clk_out must be connected back to the pld_clk input clock, 
possibly through a clock distribution circuit required by the specific application. The 
user application interface is synchronous to the pld_clk input.

Figure 7–4 illustrates this clocking configuration.

Figure 7–4. Arria II GX, Arria II GZ, Cyclone IV GX, HardCopy IV GX, Stratix IV GX ×1, ×4, or ×8 100 MHz Reference Clock

Notes to Figure 7–4: 

(1) Different device families require different frequency ranges for the calibration and reconfiguration clocks. To determine the frequency range for 
your device, refer to one of the following device handbooks: Transceiver Architecture in Volume II of the Arria II Device Handbook, Transceivers 
in Volume 2 of the Cyclone IV Device Handbook, or Transceiver Architecture in Volume 2 of the Stratix IV Device Handbook.

(2) Refer to Table 4–1 on page 4–5 for information about the core_clk_out frequencies for different device families and variations.

100-MHz 
Clock Source

Calibration 
Clock Source

 Reconfig
Clock Source

Fixed 
Clock Source

refclk

Application Clock

pld_clk

Note (1)

tx_clk_out

<variant>_serdes.v or .vhd
(ALTGX or ALT2GX 

Megafunction)

<variant>.v or .vhd

<variant>_core.v or .vhd
(PCIe MegaCore Function)

rx_cruclk
pll_inclk
cal_blk_clk
reconfig_clk
fixedclk

core_clk_out (2)

125 MHz - x1,x4,x8
62.5 MHz - x1

250 MHz - x8



7–6 Chapter 7: Reset and Clocks
Clocks

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The IP core contains a clock domain crossing (CDC) synchronizer at the interface 
between the PHY/MAC and the DLL layers which allows the data link and 
transaction layers to run at frequencies independent of the PHY/MAC and provides 
more flexibility for the user clock interface to the IP core. Depending on system 
requirements, this additional flexibility can be used to enhance performance by 
running at a higher frequency for latency optimization or at a lower frequency to save 
power.

Figure 7–5 illustrates the clock domains. 

As Figure 7–5 indicates, there are three clock domains:

■ p_clk

■ core_clk, core_clk_out

■ pld_clk

p_clk 
The transceiver derives p_clk from the 100 MHz refclk signal that you must provide 
to the device. The p_clk frequency is 250 MHz for Gen1 systems and 500 MHz for 
Gen2. The PCI Express specification allows a +/- 300 ppm variation on the clock 
frequency. 

The CDC module implements the asynchronous clock domain crossing between the 
PHY/MAC p_clk domain and the data link layer core_clk domain. 

Figure 7–5. IP Compiler for PCI Express Clock Domains 

Notes to Figure 7–5:

(1) The 100 MHz refclk can only drive the transceiver.
(2) If the core_clk_out frequency is 125 MHz, you can use this clock signal to drive the cal_blk_clk signal.

IP Compiler for PCI Express Hard IP Implementation - Clock Domains

Stratix IV GX Device

Data 
Link

Layer
(DLL)

Trans-
action
Layer
(TL)

core_clk

pld_clk

core_clk_out

p_clk
100 MHz

refclk

PHY
MAC

User Application

Adapter Trans-
ceiver

(1)

PLLPLL
/2

Clock
Domain
Crossing

(CDC)

User Clock
Domain

(128-bit 
mode only)



Chapter 7: Reset and Clocks 7–7
Clocks

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

core_clk, core_clk_out
The core_clk signal is derived from p_clk. The core_clk_out signal is derived from 
core_clk. An asynchronous FIFO in the adapter decouples the core_clk and 
pld_clk clock domains. 

Table 7–1 outlines the frequency requirements for core_clk and core_clk_out to meet 
PCI Express link bandwidth constraints. These requirements apply to IP Compiler for 
PCI Express variations generated with all three design flows.

The frequencies and widths specified in Table 7–1 are maintained throughout 
operation. If, after the mode is configured, auto negotiation results in a lesser link 
width, the IP Compiler for PCI Express maintains the core_clk_out frequency of the 
original setting. If auto negotiation results in a change from Gen2 to Gen1, the IP 
Compiler for PCI Express maintains the core_clk_out frequency of the original 
setting. In all cases the IP Compiler for PCI Express also maintains the original 
datapath width.

pld_clk
The application layer and part of the adapter use this clock. Ideally, the pld_clk drives 
all user logic within the application layer, including other instances of the IP Compiler 
for PCI Express and memory interfaces. The pld_clk input clock pin is typically 
connected to the core_clk_out output clock pin. 

Avalon-ST Interface—Soft IP Implementation
The soft IP implementation of the IP Compiler for PCI Express uses one of several 
possible clocking configurations, depending on the PHY (external PHY, Arria GX, 
Arria II GX, Cyclone IV GX, HardCopy IV GX, Stratix II GX, or Stratix IV GX) and the 
reference clock frequency. There are two clock input signals: refclk and either 
clk125_in for x1 or ×4 variations or clk250_in for ×8 variations.

The ×1 and ×4 IP cores also have an output clock, clk125_out, that is a 125 MHz 
transceiver clock. For external PHY variations clk125_out is driven from the refclk 
input. The ×8 IP core has an output clock, clk250_out, that is the 250 MHz transceiver 
clock output. 

Table 7–1.  core_clk_out Values for All Parameterizations

Link Width Max Link Rate Avalon-ST Width core_clk core_clk_out

×1 Gen1 64 125 MHz 125 MHz

×1 Gen1 64 62.5 MHz 62.5 MHz (1)

×4 Gen1 64 125 MHz 125 MHz

×8 Gen1 64 250 MHz 250 MHz

×8 Gen1 128 250 MHz 125 MHz

×1 Gen2 64 125 MHz 125 MHz

×4 Gen2 64 250 MHz 250 MHz

×4 Gen2 128 250 MHz 125 MHz

×8 Gen2 128 500 MHz 250 MHz

Note to Table 7–1:

(1) This mode saves power.



7–8 Chapter 7: Reset and Clocks
Clocks

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The input clocks are used for the following functions:

■ refclk— For generic PIPE PHY implementations, refclk is driven directly to 
clk125_out. 

■ clk125_in—This signal is the clock for all of the ×1 and ×4 IP core registers, except 
for a small portion of the receive PCS layer that is clocked by a recovered clock in 
internal PHY implementations. All synchronous application layer interface signals 
are synchronous to this 125 MHz clock. In generic PIPE PHY implementations, 
clk125_in must be connected to the pclk signal from the PHY.

■ clk250_in – This signal is the clock for all of the ×8 IP core registers. All 
synchronous application layer interface signals are synchronous to this clock. 
clk250_in must be 250 MHz and it must be the exact same frequency as 
clk250_out.

100 MHz Reference Clock and 125 MHz Application Clock
When you configure an Arria GX, Arria II GX, Cyclone IV GX, HardCopy IV GX, 
Stratix II GX, or Stratix IV GX device with a ×1 or ×4 variation, the 100 MHz clock is 
connected directly to the transceiver. The clk125_out is driven by the output of the 
transceiver.

The clk125_out must be connected back to the clk125_in input, possibly through a 
clock distribution circuit required by the specific application. The user application 
interface is synchronous to the clk125_in input. 



Chapter 7: Reset and Clocks 7–9
Clocks

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Refer to Figure 7–6 for this clocking configuration.

100 MHz Reference Clock and 250 MHz Application Clock
When a ×8 variation is configured on a HardCopy IV GX, Stratix II GX PHY, or 
Stratix IV GX device, the 100 MHz clock is connected directly to the transceiver. The 
clk250_out is driven by the output of the transceiver. 

The clk250_out must be connected to the clk250_in input, possibly through a clock 
distribution circuit needed in the specific application. The user application interface is 
synchronous to the clk250_in input. 

Figure 7–6. Arria GX, Arria II GX, Stratix II GX, or Stratix IV GX PHY ×1 or ×4 and Cyclone IV GX ×1 with 100 MHz 
Reference Clock

Note to Figure 7–6:

(1) Different device families require different frequency ranges for the calibration and reconfiguration clocks. To determine the frequency range for 
your device, refer to one of the following device handbooks: Transceiver Architecture in Volume II of the Arria II Device Handbook, Transceivers 
in Volume 2 of the Cyclone IV Device Handbook, or Transceiver Architecture in Volume 2 of the Stratix IV Device Handbook.

(2) Refer to Table 4–1 on page 4–5 for information about the core_clk_out frequencies for different device families and variations.

refclk clk62.5_out
or

clk125_out

Application Clock

pld_clk

tx_clk_out

<variant>_serdes.v or .vhd
(ALTGX or ALT2GX 

Megafunction)

<variant>.v or .vhd

<variant>_core.v or .vhd
(PCIe MegaCore Function)

rx_cruclk
pll_inclk
cal_blk_clk
reconfig_clk
fixedclk

100-MHz 
Clock Source

Calibration 
Clock Source

Reconfig
Clock Source

Note (1)
(2)



7–10 Chapter 7: Reset and Clocks
Clocks

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Refer to Figure 7–7 for this clocking configuration.

Figure 7–7. HardCopy IV GX, Stratix II GX, or Stratix IV GX ×8 with 100 MHz Reference Clock 

Notes to Figure 7–7:

(1) Different device families require different frequency ranges for the calibration and reconfiguration clocks. To 
determine the frequency range for your device, refer to one of the following device handbooks: Transceiver 
Architecture in Volume II of the Arria II Device Handbook, Transceivers in Volume 2 of the Cyclone IV Device 
Handbook, or Transceiver Architecture in Volume 2 of the Stratix IV Device Handbook.

(2) You must provide divide-by-two logic to create a 125 MHz clock source for fixedclk.

refclk clk250_out

Application Clock

clk250_in pld_clk

core_clk_out

<variant>_serdes.v or .vhd
(ALTGX or ALT2GX 

Megafunction)

<variant>.v or .vhd

<variant>_core.v or .vhd
(PCIe MegaCore Function)

rx_cruclk
pll_inclk
cal_blk_clk
reconfig_clk
fixed_clk

refclk100-MHz 
Clock Source

Calibration
Clock Source

Reconfig 
Clock Source

1/2
Note (2)

Note (1)



Chapter 7: Reset and Clocks 7–11
Clocks

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Clocking for a Generic PIPE PHY and the Simulation Testbench
Figure 7–8 illustrates the clocking when the PIPE interface is used. The same 
configuration is also used for simulation. As this figure illustrates the 100 MHz 
reference clock drives the input to a PLL which creates a 125 MHz clock for both the 
IP Compiler for PCI Express and the application logic. 

Avalon-MM Interface–Hard IP and Soft IP Implementations
When using the IP Compiler for PCI Express with an Avalon-MM application 
interface in the Qsys design flow, the clocking is the same for both the soft IP and hard 
IP implementations. The clocking requirements explained in the previous sections 
remain valid. The IP Compiler for PCI Express with Avalon-MM interface supports 
two clocking modes: 

■ Separate PCI Express and Avalon clock domains

■ Single PCI Express core clock as the system clock for the Avalon-MM clock domain

The IP Compiler for PCI Express exports a 125 MHz clock, clk125_out, which can be 
used for logic outside the IP core. This clock is not visible to Qsys and therefore cannot 
drive other Avalon-MM components in the system.

The Qsys design flow does not allow you to select the clocking mode. A 
Qsys-generated IP Compiler for PCI Express implements the single clock domain 
mode.

I

Figure 7–8. Clocking for the Generic PIPE Interface and the Simulation Testbench, All Device 
Families

100-MHz 
Clock Source

refclk clk125_out

Application Clock

core_clk_out

PLL

<variant>.v or .vhd - For Simulation

<variant>_core.v or .vhd
(IP Compiler for PCI Express)

pll_inclk

pld_clk 



7–12 Chapter 7: Reset and Clocks
Clocks

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

8. Transaction Layer Protocol (TLP)
Details

This chapter provides detailed information about the IP Compiler for PCI Express 
TLP handling. It includes the following sections:

■ Supported Message Types

■ Transaction Layer Routing Rules

■ Receive Buffer Reordering

Supported Message Types
Table 8–1 describes the message types supported by the IP core.

Table 8–1. Supported Message Types (Part 1 of 3) (Note 1) 

Message Root
Port Endpoint

Generated by 

CommentsApp 
Layer Core

Core 
(with AL 
input)

INTX Mechanism Messages
For endpoints, only INTA messages are 
generated.

Assert_INTA Receive Transmit No Yes No
For root port, legacy interrupts are translated 
into TLPs of type Message Interrupt which 
triggers the int_status[3:0] signals to the 
application layer.:

■ int_status[0]: Interrupt signal A 

■ int_status[1]: Interrupt signal B 

■ int_status[2]: Interrupt signal C 

■ int_status[3]: Interrupt signal D 

Assert_INTB Receive Transmit No No No

Assert_INTC Receive Transmit No No No

Assert_INTD Receive Transmit No No No

Deassert_INTA Receive Transmit No Yes No

Deassert_INTB Receive Transmit No No No

Deassert_INTC Receive Transmit No No No

Deassert_INTD Receive Transmit No No No

Power Management Messages

PM_Active_State_Nak Transmit Receive No Yes No

PM_PME Receive Transmit No No Yes

PME_Turn_Off Transmit Receive No No Yes

The pme_to_cr signal sends and acknowledges 
this message: 

■ Root Port: When pme_to_cr is asserted, the 
Root Port sends the PME_turn_off message.

■ Endpoint: When pme_to_cr is asserted to 
acknowledge the PME_turn_off message by 
sending pme_to_ack to the root port. 

PME_TO_Ack Receive Transmit No No Yes

August 2014
<edit Part Number variable in chapter>



8–2 Chapter 8: Transaction Layer Protocol (TLP) Details
Supported Message Types

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Error Signaling Messages

ERR_COR Receive Transmit No Yes No

In addition to detecting errors, a root port also 
gathers and manages errors sent by 
downstream components through the 
ERR_COR, ERR_NONFATAL, AND ERR_FATAL 
Error Messages. In root port mode, there are two 
mechanisms to report an error event to the 
application layer: 

■ serr_out output signal. When set, indicates 
to the application layer that an error has been 
logged in the AER capability structure

■ aer_msi_num input signal. When the 
Implement advanced error reporting option 
is turned on, you can set aer_msi_num to 
indicate which MSI is being sent to the root 
complex when an error is logged in the AER 
capability structure. 

ERR_NONFATAL Receive Transmit No Yes No

ERR_FATAL Receive Transmit No Yes No

Locked Transaction Message

Unlock Message Transmit Receive Yes No No

Slot Power Limit Message

Set Slot Power 
Limit (1)

Transmit
Receive No Yes No In root port mode, through software. (1)

Vendor-defined Messages

Vendor Defined Type 0 Transmit 
Receive

Transmit 
Receive Yes No No

Vendor Defined Type 1 Transmit 
Receive

Transmit 
Receive Yes No No

Hot Plug Messages

Attention_indicator On Transmit Receive No Yes No
As per the recommendations in the PCI Express 
Base Specification Revision 1.1 or 2.0, these 
messages are not transmitted to the application 
layer in the hard IP implementation.

For soft IP implementation, following the PCI 
Express Specification 1.0a, these messages are 
transmitted to the application layer. 

Attention_Indicator 
Blink Transmit Receive No Yes No

Attention_indicator_
Off Transmit Receive No Yes No

Power_Indicator On Transmit Receive No Yes No

Power_Indicator Blink Transmit Receive No Yes No

Power_Indicator Off Transmit Receive No Yes No

Table 8–1. Supported Message Types (Part 2 of 3) (Note 1) 

Message Root
Port Endpoint

Generated by 

CommentsApp 
Layer Core

Core 
(with AL 
input)



Chapter 8: Transaction Layer Protocol (TLP) Details 8–3
Transaction Layer Routing Rules

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Transaction Layer Routing Rules
Transactions adhere to the following routing rules:

■ In the receive direction (from the PCI Express link), memory and I/O requests that 
match the defined base address register (BAR) contents and vendor-defined 
messages with or without data route to the receive interface. The application layer 
logic processes the requests and generates the read completions, if needed. 

■ In endpoint mode, received type 0 configuration requests from the PCI Express 
upstream port route to the internal configuration space and the IP core generates 
and transmits the completion. 

■ In root port mode, the application can issue type 0 or type 1 configuration TLPs on 
the Avalon-ST TX bus. 

■ The type 1 configuration TLPs are sent downstream on the PCI Express link 
toward the endpoint that matches the completer ID set in the transmit packet. 
If the bus number of the type 1 configuration TLP matches the Subordinate Bus 
Number register value in the root port configuration space, the TLP is 
converted to a type 0 TLP.

■ The type 0 configuration TLPs are only routed to the configuration space of the 
IP core configured as a root port and are not sent downstream on the PCI 
Express link.

■ The IP core handles supported received message transactions (power management 
and slot power limit) internally. 

■ Vendor defined message TLPs are passed to the application layer.

■ The transaction layer treats all other received transactions (including memory or 
I/O requests that do not match a defined BAR) as unsupported requests. The 
transaction layer sets the appropriate error bits and transmits a completion, if 
needed. These unsupported requests are not made visible to the application layer, 
the header and data is dropped.

■ For memory read and write request with addresses below 4 GBytes, requestors 
must use the 32-bit format. The transaction layer interprets requests using the 
64-bit format for addresses below 4 GBytes as malformed packets and does not 
send them to the application layer. If the AER option is on, an error message TLP is 
sent to the root port.

Attention 
Button_Pressed (2) Receive Transmit No No Yes

Notes to Table 8–1:

(1) In the PCI Express Base Specification Revision 1.1 or 2.0, this message is no longer mandatory after link training.
(2) In endpoint mode.

Table 8–1. Supported Message Types (Part 3 of 3) (Note 1) 

Message Root
Port Endpoint

Generated by 

CommentsApp 
Layer Core

Core 
(with AL 
input)



8–4 Chapter 8: Transaction Layer Protocol (TLP) Details
Receive Buffer Reordering

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

■ The transaction layer sends all memory and I/O requests, as well as completions 
generated by the application layer and passed to the transmit interface, to the PCI 
Express link. 

■ The IP core can generate and transmit power management, interrupt, and error 
signaling messages automatically under the control of dedicated signals. 
Additionally, the IP core can generate MSI requests under the control of the 
dedicated signals.

Receive Buffer Reordering
The receive datapath implements a receive buffer reordering function that allows 
posted and completion transactions to pass non-posted transactions (as allowed by 
PCI Express ordering rules) when the application layer is unable to accept additional 
non-posted transactions. 

The application layer dynamically enables the RX buffer reordering by asserting the 
rx_mask signal. The rx_mask signal masks non-posted request transactions made to 
the application interface so that only posted and completion transactions are 
presented to the application. Table 8–2 lists the transaction ordering rules.

Table 8–2. Transaction Ordering Rules (Part 1 of 2) (Note 1)– (12)

Row Pass Column Posted Request Non Posted Request Completion

Memory Write or 
Message 
Request

Read Request I/O or Cfg Write 
Request Read Completion I/O or Cfg Write 

Completion

Spec Core Spec Core Spec Core Spec Core Spec Core

Po
st

ed Memory Write or 
Message 
Request

 N (1)

Y/N (2)

N (1)

N (2)
yes yes yes yes

Y/N (1)

Y (2)

N (1)

N (2)

Y/N (1)

Y (2)

No (1)

No (2)

No
nP

os
te

d Read Request No No Y/N Yes (1) Y/N Yes (2) Y/N No Y/N No

I/O or 
Configuration 
Write Request

No No Y/N Yes (3) Y/N Yes (4) Y/N No Y/N No



Chapter 8: Transaction Layer Protocol (TLP) Details 8–5
Receive Buffer Reordering

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

1 MSI requests are conveyed in exactly the same manner as PCI Express memory write 
requests and are indistinguishable from them in terms of flow control, ordering, and 
data integrity.

Co
m

pl
et

io
n Read Completion

No (1)

Y/N (2)

No (1)

No (2)
Yes Yes Yes Yes

Y/N (1)

No (2)

No (1)

No (2)
Y/N No

I/O or 
Configuration 
Write 
Completion

Y/N No Yes Yes Yes Yes Y/N No Y/N No

Notes to Table 8–2:

(1) CfgRd0 can pass IORd or MRd.
(2) CfgWr0 can IORd or MRd.
(3) CfgRd0 can pass IORd or MRd.
(4) CfrWr0 can pass IOWr.
(5) A Memory Write or Message Request with the Relaxed Ordering Attribute bit clear (b’0) must not pass any other Memory Write or Message 

Request. 
(6) A Memory Write or Message Request with the Relaxed Ordering Attribute bit set (b’1) is permitted to pass any other Memory Write or Message 

Request.
(7) Endpoints, Switches, and Root Complex may allow Memory Write and Message Requests to pass Completions or be blocked by Completions.
(8) Memory Write and Message Requests can pass Completions traveling in the PCI Express to PCI directions to avoid deadlock.
(9) If the Relaxed Ordering attribute is not set, then a Read Completion cannot pass a previously enqueued Memory Write or Message Request.
(10) If the Relaxed Ordering attribute is set, then a Read Completion is permitted to pass a previously enqueued Memory Write or Message Request.
(11) Read Completion associated with different Read Requests are allowed to be blocked by or to pass each other.
(12) Read Completions for Request (same Transaction ID) must return in address order.

Table 8–2. Transaction Ordering Rules (Part 2 of 2) (Note 1)– (12)



8–6 Chapter 8: Transaction Layer Protocol (TLP) Details
Receive Buffer Reordering

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

9. Optional Features

This chapter provides information on several addition topics. It includes the 
following sections:

■ ECRC

■ Active State Power Management (ASPM)

■ Lane Initialization and Reversal

■ Instantiating Multiple IP Compiler for PCI Express Instances

ECRC
ECRC ensures end-to-end data integrity for systems that require high reliability. You 
can specify this option on the Capabilities page of the parameter editor. The ECRC 
function includes the ability to check and generate ECRC for all IP Compiler for PCI 
Express variations. The hard IP implementation can also forward the TLP with ECRC 
to the receive port of the application layer. The hard IP implementation transmits a 
TLP with ECRC from the transmit port of the application layer. When using ECRC 
forwarding mode, the ECRC check and generate are done in the application layer. 

You must select Implement advanced error reporting on the Capabilities page using 
the parameter editor to enable ECRC forwarding, ECRC checking and ECRC 
generation. When the application detects an ECRC error, it should send the 
ERR_NONFATAL message TLP to the IP Compiler for PCI Express to report the error. 

f For more information about error handling, refer to the Error Signaling and Logging 
which is Section 6.2 of the PCI Express Base Specification, Rev. 2.0.

ECRC on the RX Path
When the ECRC option is turned on, errors are detected when receiving TLPs with a 
bad ECRC. If the ECRC option is turned off, no error detection takes place. If the 
ECRC forwarding option is turned on, the ECRC value is forwarded to the application 
layer with the TLP. If ECRC forwarding option is turned off, the ECRC value is not 
forwarded. 

August 2014
<edit Part Number variable in chapter>



9–2 Chapter 9: Optional Features
ECRC

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 9–1 summarizes the RX ECRC functionality for all possible conditions.

ECRC on the TX Path
You can turn on the Implement ECRC generation option in the parameter editor, as 
described in “Error Reporting Capabilities Parameters” on page 3–4 and “Capabilities 
Parameters” on page 3–13. When this option is on, the TX path generates ECRC. If 
you turn on Implement ECRC forwarding, the ECRC value is forwarded with the 
transaction layer packet.  Table 9–2 summarizes the TX ECRC generation and 
forwarding. In this table, if TD is 1, the TLP includes an ECRC. TD is the TL digest bit of 
the TL packet described in Appendix A, Transaction Layer Packet (TLP) Header 
Formats.

Table 9–1. ECRC Operation on RX Path

ECRC 
Forwarding

ECRC 
Check 

Enable (1)

ECRC 
Status Error TLP Forward to Application

No

No

none No Forwarded

good No Forwarded without its ECRC

bad No Forwarded without its ECRC

Yes

none No Forwarded

good No Forwarded without its ECRC

bad Yes Not forwarded

Yes

No

none No Forwarded

good No Forwarded with its ECRC

bad No Forwarded with its ECRC

Yes

none No Forwarded

good No Forwarded with its ECRC

bad Yes Not forwarded

Note to Table 9–1:

(1) The ECRC Check Enable is in the configuration space advanced error capabilities and control register.

Table 9–2. ECRC Generation and Forwarding on TX Path (Note 1)

ECRC 
Forwarding

ECRC 
Generation 
Enable (2)

TLP on Application TLP on Link Comments

No

No

TD=0, without ECRC TD=0, without ECRC

TD=1, without ECRC TD=0, without ECRC

Yes

TD=0, without ECRC TD=1, with ECRC

ECRC is generatedTD=1, without ECRC TD=1, with ECRC



Chapter 9: Optional Features 9–3
Active State Power Management (ASPM)

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Active State Power Management (ASPM)
The PCI Express protocol mandates link power conservation, even if a device has not 
been placed in a low power state by software. ASPM is initiated by software but is 
subsequently handled by hardware. The IP core automatically shifts to one of two low 
power states to conserve power:

■ L0s ASPM—The PCI Express protocol specifies the automatic transition to L0s. In 
this state, the IP core transmits electrical idle but can maintain an active reception 
interface because only one component across a link moves to a lower power state. 
Main power and reference clocks are maintained.

1 L0s ASPM can be optionally enabled when using the Arria GX, 
Cyclone IV GX, HardCopy IV GX, Stratix II GX, or Stratix IV GX internal 
PHY. It is supported for other device families to the extent allowed by the 
attached external PHY device.

■ L1 ASPM—Transition to L1 is optional and conserves even more power than L0s. 
In this state, both sides of a link power down together, so that neither side can 
send or receive without first transitioning back to L0.

1 L1 ASPM is not supported when using the Arria GX, Cyclone IV GX, 
HardCopy IV GX, Stratix II GX, or Stratix IV GX internal PHY. It is 
supported for other device families to the extent allowed by the attached 
external PHY device.

An endpoint can assert the pm_pme signal to initiate a power_management_event 
message which is sent to the root complex. If the IP core is in the L0s or L1 state, the 
link exits the low-power state to send this message. The pm_pme signal is edge-
senstive. If the link is in the L2 state, a Beacon (or Wake#) is generated to reinitialize the 
link before the core can generate the power_management_event message. Wake# is 
hardwired to 0 for root ports. 

How quickly a component powers up from a low-power state, and even whether a 
component has the right to transition to a low power state in the first place, depends 
on L1 Exit Latency, recorded in the Link Capabilities register, Endpoint L0s acceptable 
latency, recorded in the Device Capabilities register, and ASPM Control in the Link 
Control register.

Yes

No

TD=0, without ECRC TD=0, without ECRC

Core forwards the 
ECRC 

TD=1, with ECRC TD=1, with ECRC

Yes

TD=0, without ECRC TD=0, without ECRC

TD=1, with ECRC TD=1, with ECRC

Notes to Table 9–2:

(1) All unspecified cases are unsupported and the behavior of the IP core is unknown.
(2) The ECRC Generation Enable is in the configuration space advanced error capabilities and control register.

Table 9–2. ECRC Generation and Forwarding on TX Path (Note 1)

ECRC 
Forwarding

ECRC 
Generation 
Enable (2)

TLP on Application TLP on Link Comments



9–4 Chapter 9: Optional Features
Active State Power Management (ASPM)

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Exit Latency
A component’s exit latency is defined as the time it takes for the component to awake 
from a low-power state to L0, and depends on the SERDES PLL synchronization time 
and the common clock configuration programmed by software. A SERDES generally 
has one transmit PLL for all lanes and one receive PLL per lane. 

■ Transmit PLL—When transmitting, the transmit PLL must be locked. 

■ Receive PLL—Receive PLLs train on the reference clock. When a lane exits electrical 
idle, each receive PLL synchronizes on the receive data (clock data recovery 
operation). If receive data has been generated on the reference clock of the slot, 
and if each receive PLL trains on the same reference clock, the synchronization 
time of the receive PLL is lower than if the reference clock is not the same for all 
slots. 

Each component must report in the configuration space if they use the slot’s reference 
clock. Software then programs the common clock register, depending on the reference 
clock of each component. Software also retrains the link after changing the common 
clock register value to update each exit latency. Table 9–3 describes the L0s and L1 exit 
latency. Each component maintains two values for L0s and L1 exit latencies; one for 
the common clock configuration and the other for the separate clock configuration.

Acceptable Latency
The acceptable latency is defined as the maximum latency permitted for a component 
to transition from a low power state to L0 without compromising system 
performance. Acceptable latency values depend on a component’s internal buffering 
and are maintained in a configuration space registry. Software compares the link exit 
latency with the endpoint’s acceptable latency to determine whether the component is 
permitted to use a particular power state. 

Table 9–3. L0s and L1 Exit Latency

Power 
State Description

L0s

L0s exit latency is calculated by the IP core based on the number of fast training sequences specified on the 
Power Management page of the parameter editor. It is maintained in a configuration space registry. Main 
power and the reference clock remain present and the PHY should resynchronize quickly for receive data. 

Resynchronization is performed through fast training order sets, which are sent by the connected component. 
A component knows how many sets to send because of the initialization process, at which time the required 
number of sets is determined through training sequence ordered sets (TS1 and TS2).

L1

L1 exit latency is specified on the Power Management page of the parameter editor. It is maintained in a 
configuration space registry. Both components across a link must transition to L1 low-power state together. 
When in L1, a component’s PHY is also in P1 low-power state for additional power savings. Main power and 
the reference clock are still present, but the PHY can shut down all PLLs to save additional power. However, 
shutting down PLLs causes a longer transition time to L0.

L1 exit latency is higher than L0s exit latency. When the transmit PLL is locked, the LTSSM moves to recovery, 
and back to L0 after both components have correctly negotiated the recovery state. Thus, the exact L1 exit 
latency depends on the exit latency of each component (the higher value of the two components). All 
calculations are performed by software; however, each component reports its own L1 exit latency.



Chapter 9: Optional Features 9–5
Lane Initialization and Reversal

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ For L0s, the connected component and the exit latency of each component 
between the root port and endpoint is compared with the endpoint’s acceptable 
latency. For example, for an endpoint connected to a root port, if the root port’s L0s 
exit latency is 1 µs and the endpoint’s L0s acceptable latency is 512 ns, software 
will probably not enable the entry to L0s for the endpoint. 

■ For L1, software calculates the L1 exit latency of each link between the endpoint 
and the root port, and compares the maximum value with the endpoint’s 
acceptable latency. For example, for an endpoint connected to a root port, if the 
root port’s L1 exit latency is 1.5 µs and the endpoint’s L1 exit latency is 4 µs, and 
the endpoint acceptable latency is 2 µs, the exact L1 exit latency of the link is 4 µs 
and software will probably not enable the entry to L1.

Some time adjustment may be necessary if one or more switches are located between 
the endpoint and the root port. 

1 To maximize performance, Altera recommends that you set L0s and L1 acceptable 
latency values to their minimum values.

Lane Initialization and Reversal
Connected PCI Express components need not support the same number of lanes. The 
×4 and ×8 IP core in both soft and hard variations support initialization and operation 
with components that have 1, 2, or 4 lanes. The ×8 IP core in both soft and hard 
variations supports initialization and operation with components that have 1, 2, 4, or 
8 lanes. 

The hard IP implementation includes lane reversal, which permits the logical reversal 
of lane numbers for the ×1, ×2, ×4, and ×8 configurations. The Soft IP implementation 
does not support lane reversal but interoperates with other PCI Express endpoints or 
root ports that have implemented lane reversal. Lane reversal allows more flexibility 
in board layout, reducing the number of signals that must cross over each other when 
routing the PCB. 

Table 9–4 summarizes the lane assignments for normal configuration. 

Table 9–5 summarizes the lane assignments with lane reversal.

Table 9–4. Lane Assignments without Reversal

Lane Number 7 6 5 4 3 2 1 0

×8 IP core 7 6 5 4 3 2 1 0

×4 IP core — — — — 3 2 1 0

×1 IP core — — — — — — — 0

Table 9–5. Lane Assignments with Reversal

Core Config 8 4 1

Slot Size 8 4 2 1 8 4 2 1 8 4 2 1

Lane 
assignments

7:0,6:1,5:2,4:3,3:4,
2:5,1:6,0:7

3:4,2:5,

1:6,0:7

1:6,

0:7
0:7

7:0,6:1,

5:2,4:3

3:0,2:1,

1:2,0:3

3:0,

2:1
3:0 7:0 3:0 1:0 0:0



9–6 Chapter 9: Optional Features
Instantiating Multiple IP Compiler for PCI Express Instances

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 9–1 illustrates a PCI Express card with two, ×4 IP cores, a root port and an 
endpoint on the top side of the PCB. Connecting the lanes without lane reversal 
creates routing problems. Using lane reversal, solves the problem. 

Instantiating Multiple IP Compiler for PCI Express Instances
If you want to instantiate multiple IP Compiler for PCI Express instances in your 
design, a few additional steps are required. The following sections outline these steps. 

Clock and Signal Requirements for Devices with Transceivers
When your design contains multiple IP cores that use the Arria GX or Stratix II GX 
transceiver (ALTGX or ALT2GXB) megafunction or the Arria II GX, Cyclone IV GX, or 
Stratix IV GX transceiver (ALTGX) megafunction, you must ensure that the 
cal_blk_clk input and gxb_powerdown signals are connected properly. 

You must ensure that the cal_blk_clk input to each IP Compiler for PCI Express (or 
any other megafunction or user logic that uses the ALTGX or ALT2GXB 
megafunction) is driven by the same calibration clock source. 

When you use Qsys to create a system with multiple PCI Express IP core variations, 
you must filter the signals in the System Contents tab to display the clock 
connections. After you display the clock connections, ensure that cal_blk_clk and 
any other IP core variations in the system that use transceivers are connected to the 
cal_blk_clk port on the IP Compiler for PCI Express variation.

When you merge multiple IP Compiler for PCI Express instances in a single 
transceiver block, the same signal must drive gxb_powerdown to each of the IP 
Compiler for PCI Express instances and other IP cores and user logic that use the 
ALTGX or ALT2GXB IP cores.

To successfully combine multiple high-speed transceiver channels in the same quad, 
they must have the same dynamic reconfiguration setting. To use the dynamic 
reconfiguration capability for one transceiver instantiation but not another, in 
Arria II GX, Stratix II GX, and Stratix IV GX devices, you must set reconfig_clk to 0 
and reconfig_togxb to 3’b010 (in Stratix II GX devices) or 4’b0010 (in Arria II GX or 
Stratix IV GX devices) for all transceiver channels that do not use the dynamic 
reconfiguration capability. 

Figure 9–1. Using Lane Reversal to Solve PCB Routing Problems

0
1
2
3

PCI Express
Root Port

3
2
1
0

PCI Express
Endpoint

0
1
2
3

PCI Express
Root Port

0
1
2
3

PCI Express
Endpoint

No Lane Reversal 
Results in PCB Routing Challenge

With Lane Reversal 
Signals Route Easily

lane 
reversal

no lane 
reversal



Chapter 9: Optional Features 9–7
Instantiating Multiple IP Compiler for PCI Express Instances

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

If both IP cores implement dynamic reconfiguration, for Stratix II GX devices, the 
ALT2GXB_RECONFIG megafunction instances must be identical.

To support the dynamic reconfiguration block, turn on Analog controls on the 
Reconfig tab in the ALTGX or ALT2GXB parameter editor.

Arria GX devices do not support dynamic reconfiguration However, the 
reconfig_clk and reconfig_togxb ports appear in variations targeted to Arria GX 
devices, so you must set reconfig_clk to 0 and reconfig_togxb to 3’b010.

Source Multiple Tcl Scripts
If you use Altera-provided Tcl scripts to specify constraints for IP cores, you must run 
the Tcl script associated with each generated IP Compiler for PCI Express. For 
example, if a system has pcie1 and pcie2 IP core variations, and uses the 
pcie_compiler.tcl constraints file, then you must source the constraints for both IP 
cores sequentially from the Tcl console after generation. 

1 After you compile the design once, you can run the your pcie_constraints.tcl 
command with the -no_compile option to suppress analysis and synthesis, and 
decrease turnaround time during development. 

1 In the parameter editor, the script contains virtual pins for most I/O ports on the IP 
Compiler for PCI Express to ensure that the I/O pin count for a device is not 
exceeded. These virtual pin assignments must reflect the names used to connect to 
each IP Compiler for PCI Express instance. 



9–8 Chapter 9: Optional Features
Instantiating Multiple IP Compiler for PCI Express Instances

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

10. Interrupts

This chapter covers interrupts for endpoints and root ports. 

PCI Express Interrupts for Endpoints
The IP Compiler for PCI Express provides support for PCI Express legacy interrupts, 
MSI interrupts, and MSI-X interrupts when configured in endpoint mode. MSI-X 
interrupts are only available in the hard IP implementation endpoint variations. The 
MSI, MSI-X, and legacy interrupts are mutually exclusive. After power up, the IP core 
starts in INTX mode, after which time software decides whether to switch to MSI 
mode by programming the MSI Enable bit of the MSI message control register 
(bit [16] of 0x050) to 1 or to MSI-X mode if you turn on Implement MSI-X on the 
Capabilities page using the parameter editor. If you turn on the Implement MSI-X 
option, you should implement the MSI-X table structures at the memory space 
pointed to by the BARs. 

To switch interrupt mode during operation, software must first enable the new mode 
and then disable the previous mode, if applicable. To enable legacy interrupts when 
the current interrupt mode is MSI, software must first turn off the Disable Interrupt 
bit (bit [10] of the Command register at configuration space offset 0x4) and then turn off 
the MSI Enable bit. To enable MSI interrupts, software must first set the MSI enable 
bit and then set the Interrupt Disable bit.

f Refer to section 6.1 of PCI Express 2.0 Base Specification for a general description of PCI 
Express interrupt support for endpoints.

MSI Interrupts
MSI interrupts are signaled on the PCI Express link using a single dword memory 
write TLPs generated internally by the IP Compiler for PCI Express. The app_msi_req 
input port controls MSI interrupt generation. When the input port asserts 
app_msi_req, it causes a MSI posted write TLP to be generated based on the MSI 
configuration register values and the app_msi_tc and app_msi_num input ports. 

Figure 10–1 illustrates the architecture of the MSI handler block.

Figure 10–1. MSI Handler Block

MSI Handler
Block

app_msi_req
app_msi_ack
app_msi_tc
app_msi_num
pex_msi_num
app_int_sts

cfg_msicsr[15:0]

August 2014
<edit Part Number variable in chapter>



10–2 Chapter 10: Interrupts
MSI Interrupts

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 10–2 illustrates a possible implementation of the MSI handler block with a per 
vector enable bit. A global application interrupt enable can also be implemented 
instead of this per vector MSI.

There are 32 possible MSI messages. The number of messages requested by a 
particular component does not necessarily correspond to the number of messages 
allocated. For example, in Figure 10–3, the endpoint requests eight MSIs but is only 
allocated two. In this case, you must design the application layer to use only two 
allocated messages.

Figure 10–2. Example Implementation of the MSI Handler Block

Figure 10–3. MSI Request Example

app_int_en0

app_int_sts0

app_msi_req0

app_int_en1

app_int_sts1

app_msi_req1

app_int_sts

MSI
Arbitration

msi_enable & Master Enable

app_msi_req
app_msi_ack

Vector 1

Vector 0

R/W

R/W

Endpoint

8 Requested
2 Allocated

Root Complex

CPU

Interrupt Register

Root
Port

Interrupt
Block



Chapter 10: Interrupts 10–3
MSI-X

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 10–4 illustrates the interactions among MSI interrupt signals for the root port 
in Figure 10–3. The minimum latency possible between app_msi_req and app_msi_ack 
is one clock cycle.

MSI-X
You can enable MSI-X interrupts by turning on Implement MSI-X on the Capabilities 
page using the parameter editor. If you turn on the Implement MSI-X option, you 
should implement the MSI-X table structures at the memory space pointed to by the 
BARs as part of your application. 

MSI-X TLPs are generated by the application and sent through the transmit interface. 
They are single dword memory writes so that Last DW Byte Enable in the TLP header 
must be set to 4b’0000. MSI-X TLPs should be sent only when enabled by the MSI-X 
enable and the function mask bits in the message control for MSI-X configuration 
register. In the hard IP implementation, these bits are available on the tl_cfg_ctl 
output bus. 

f For more information about implementing the MSI-X capability structure, refer 
Section 6.8.2. of the PCI Local Bus Specification, Revision 3.0.

Legacy Interrupts
Legacy interrupts are signaled on the PCI Express link using message TLPs that are 
generated internally by the IP Compiler for PCI Express. The app_int_sts input port 
controls interrupt generation. When the input port asserts app_int_sts, it causes an 
Assert_INTA message TLP to be generated and sent upstream. Deassertion of the 
app_int_sts input port causes a Deassert_INTA message TLP to be generated and 
sent upstream. Refer to Figure 10–5 and Figure 10–6. 

Figure 10–4. MSI Interrupt Signals Waveform 

Note to Figure 10–4:

(1) For variants using the Avalon-ST interface, app_msi_req can extend beyond app_msi_ack before deasserting. For 
descriptor/data variants, app_msi_req must deassert on the cycle following app_msi_ack 

clk

app_msi_req

app_msi_tc[2:0]

app_msi_num[4:0]

app_msi_ack

1 2 3 5 64

valid

valid



10–4 Chapter 10: Interrupts
PCI Express Interrupts for Root Ports

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 10–5 illustrates interrupt timing for the legacy interface. In this figure the 
assertion of app_int_ack indicates that the Assert_INTA message TLP has been sent. 

Figure 10–6 illustrates the timing for deassertion of legacy interrupts. The assertion of 
app_int_ack indicates that the Deassert_INTA message TLP has been sent.

Table 10–1 describes 3 example implementations; 1 in which all 32 MSI messages are 
allocated and 2 in which only 4 are allocated.

MSI interrupts generated for hot plug, power management events, and system errors 
always use TC0. MSI interrupts generated by the application layer can use any traffic 
class. For example, a DMA that generates an MSI at the end of a transmission can use 
the same traffic control as was used to transfer data. 

PCI Express Interrupts for Root Ports
In root port mode, the PCI Express IP core receives interrupts through two different 
mechanisms:

■ MSI—Root ports receive MSI interrupts through the Avalon-ST RX TLP of type 
MWr. This is a memory mapped mechanism. 

■ Legacy—Legacy interrupts are translated into TLPs of type Message Interrupt 
which is sent to the application layer using the int_status[3:0] pins.

Normally, the root port services rather than sends interrupts; however, in two 
circumstances the root port can send an interrupt to itself to record error conditions:

Figure 10–5. Legacy Interrupt Assertion 

Figure 10–6. Legacy Interrupt Deassertion

Table 10–1. MSI Messages Requested, Allocated, and Mapped

MSI
Allocated

32 4 4

System error 31 3 3

Hot plug and power management event 30 2 3

Application 29:0 1:0 2:0

clk

app_int_sts

app_int_ack

clk

app_int_sts

app_int_ack



Chapter 10: Interrupts 10–5
PCI Express Interrupts for Root Ports

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ When the AER option is enabled, the aer_msi_num[4:0] signal indicates which 
MSI is being sent to the root complex when an error is logged in the AER 
capability structure. This mechanism is an alternative to using the serr_out signal. 
The aer_msi_num[4:0] is only used for root ports and you must set it to a constant 
value. It cannot toggle during operation. 

■ If the root port detects a power management event. The pex_msi_num[4:0] signal 
is used by power management or hot plug to determine the offset between the 
base message interrupt number and the message interrupt number to send 
through MSI. The user must set pex_msi_num[4:0]to a fixed value. 

The Root Error Status register reports the status of error messages. The root error 
status register is part of the PCI Express AER extended capability structure. It is 
located at offset 0x830 of the configuration space registers. 



10–6 Chapter 10: Interrupts
PCI Express Interrupts for Root Ports

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

11. Flow Control

Throughput analysis requires that you understand the Flow Control Loop, shown in 
“Flow Control Update Loop” on page 11–2. This section discusses the Flow Control 
Loop and strategies to improve throughput. It covers the following topics:

■ Throughput of Posted Writes

■ Throughput of Non-Posted Reads

Throughput of Posted Writes
The throughput of posted writes is limited primarily by the Flow Control Update loop 
shown in Figure 11–1. If the requester of the writes sources the data as quickly as 
possible, and the completer of the writes consumes the data as quickly as possible, 
then the Flow Control Update loop may be the biggest determining factor in write 
throughput, after the actual bandwidth of the link. 

Figure 11–1 shows the main components of the Flow Control Update loop with two 
communicating PCI Express ports:

■ Write Requester

■ Write Completer

As the PCI Express specification describes, each transmitter, the write requester in this 
case, maintains a credit limit register and a credits consumed register. The credit 
limit register is the sum of all credits issued by the receiver, the write completer in 
this case. The credit limit register is initialized during the flow control initialization 
phase of link initialization and then updated during operation by Flow Control (FC) 
Update DLLPs. The credits consumed register is the sum of all credits consumed by 
packets transmitted. Separate credit limit and credits consumed registers exist for 
each of the six types of Flow Control:

■ Posted Headers

■ Posted Data

■ Non-Posted Headers

■ Non-Posted Data

■ Completion Headers 

■ Completion Data

August 2014
<edit Part Number variable in chapter>



11–2 Chapter 11: Flow Control
Throughput of Posted Writes

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Each receiver also maintains a credit allocated counter which is initialized to the 
total available space in the RX buffer (for the specific Flow Control class) and then 
incremented as packets are pulled out of the RX buffer by the application layer. The 
value of this register is sent as the FC Update DLLP value. 

The following numbered steps describe each step in the Flow Control Update loop. 
The corresponding numbers on Figure 11–1 show the general area to which they 
correspond. 

1. When the application layer has a packet to transmit, the number of credits 
required is calculated. If the current value of the credit limit minus credits 
consumed is greater than or equal to the required credits, then the packet can be 
transmitted immediately. However, if the credit limit minus credits consumed is 
less than the required credits, then the packet must be held until the credit limit is 
increased to a sufficient value by an FC Update DLLP. This check is performed 
separately for the header and data credits; a single packet consumes only a single 
header credit.

2. After the packet is selected for transmission the credits consumed register is 
incremented by the number of credits consumed by this packet. This increment 
happens for both the header and data credit consumed registers. 

3. The packet is received at the other end of the link and placed in the RX buffer. 

4. At some point the packet is read out of the RX buffer by the application layer. After 
the entire packet is read out of the RX buffer, the credit allocated register can be 
incremented by the number of credits the packet has used. There are separate 
credit allocated registers for the header and data credits.

5. The value in the credit allocated register is used to create an FC Update DLLP. 

Figure 11–1. Flow Control Update Loop 

Credits

Consumed
Counter

Credit

Limit

Data Packet

Flow

Control
Gating

Logic

(Credit

Check)

Allow

Incr

Rx

Buffer
Data Packet

Credit

Allocated

FC
Update

DLLP

Generate

FC
Update

DLLP
Decode

FC Update DLLP

App

Layer

Transaction

Layer

Data Link

Layer

Physical

Layer

Incr

Physical

Layer

Data Link

Layer

Transaction

Layer

App

Layer

Data Source

PCI

Express

Link

Data Sink

1 2

7

6

5

3

4



Chapter 11: Flow Control 11–3
Throughput of Posted Writes

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

6. After an FC Update DLLP is created, it arbitrates for access to the PCI Express link. 
The FC Update DLLPs are typically scheduled with a low priority; consequently, a 
continuous stream of application layer TLPs or other DLLPs (such as ACKs) can 
delay the FC Update DLLP for a long time. To prevent starving the attached 
transmitter, FC Update DLLPs are raised to a high priority under the following 
three circumstances:

a. When the last sent credit allocated counter minus the amount of received 
data is less than MAX_PAYLOAD and the current credit allocated counter is 
greater than the last sent credit counter. Essentially, this means the data sink 
knows the data source has less than a full MAX_PAYLOAD worth of credits, 
and therefore is starving. 

b. When an internal timer expires from the time the last FC Update DLLP was 
sent, which is configured to 30 µs to meet the PCI Express Base Specification for 
resending FC Update DLLPs.

c. When the credit allocated counter minus the last sent credit allocated 
counter is greater than or equal to 25% of the total credits available in the RX 
buffer, then the FC Update DLLP request is raised to high priority. 

After arbitrating, the FC Update DLLP that won the arbitration to be the next item 
is transmitted. In the worst case, the FC Update DLLP may need to wait for a 
maximum sized TLP that is currently being transmitted to complete before it can 
be sent. 

7. The FC Update DLLP is received back at the original write requester and the 
credit limit value is updated. If packets are stalled waiting for credits, they can 
now be transmitted. 

To allow the write requester to transmit packets continuously, the credit allocated 
and the credit limit counters must be initialized with sufficient credits to allow 
multiple TLPs to be transmitted while waiting for the FC Update DLLP that 
corresponds to the freeing of credits from the very first TLP transmitted. 

Table 11–1 shows the delay components for the FC Update Loop when the IP 
Compiler for PCI Express is implemented in a Stratix II GX device. The delay 
components are independent of the packet length. The total delays in the loop 
increase with packet length.

Table 11–1. FC Update Loop Delay in Nanoseconds Components For Stratix II GX (Part 1 of 2) (Note 1), (Note 2)

Delay Path
 ×8 Function  ×4 Function  ×1 Function

Min Max Min Max Min Max

From decrement transmit credit consumed counter 
to PCI Express Link. 60 68 104 120 272 288

From PCI Express Link until packet is available at 
Application Layer interface. 124 168 200 248 488 536

From Application Layer draining packet to 
generation and transmission of Flow Control (FC) 
Update DLLP on PCI Express Link (assuming no 
arbitration delay).

60 68 120 136 216 232



11–4 Chapter 11: Flow Control
Throughput of Non-Posted Reads

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Based on the above FC Update Loop delays and additional arbitration and packet 
length delays, Table 11–2 shows the number of flow control credits that must be 
advertised to cover the delay. The RX buffer size must support this number of credits 
to maintain full bandwidth.

These numbers take into account the device delays at both ends of the PCI Express 
link. Different devices at the other end of the link could have smaller or larger delays, 
which affects the minimum number of credits required. In addition, if the application 
layer cannot drain received packets immediately in all cases, it may be necessary to 
offer additional credits to cover this delay. 

Setting the Desired performance for received requests to High on the Buffer Setup 
page on the Parameter Settings tab using the parameter editor configures the RX 
buffer with enough space to meet the above required credits. You can adjust the 
Desired performance for received request up or down from the High setting to tailor 
the RX buffer size to your delays and required performance. 

Throughput of Non-Posted Reads
To support a high throughput for read data, you must analyze the overall delay from 
the time the application layer issues the read request until all of the completion data is 
returned. The application must be able to issue enough read requests, and the read 
completer must be capable of processing these read requests quickly enough (or at 
least offering enough non-posted header credits) to cover this delay. 

However, much of the delay encountered in this loop is well outside the IP Compiler 
for PCI Express and is very difficult to estimate. PCI Express switches can be inserted 
in this loop, which makes determining a bound on the delay more difficult.

From receipt of FC Update DLLP on the PCI 
Express Link to updating of transmitter's Credit 
Limit register.

116 160 184 232 424 472

Notes to Table 11–1:

(1) The numbers for other Gen1 PHYs are similar.
(2) Gen2 numbers are to be determined.

Table 11–1. FC Update Loop Delay in Nanoseconds Components For Stratix II GX (Part 2 of 2) (Note 1), (Note 2)

Delay Path
 ×8 Function  ×4 Function  ×1 Function

Min Max Min Max Min Max

Table 11–2. Data Credits Required By Packet Size

Max Packet Size
 ×8 Function  ×4 Function  ×1 Function

Min Max Min Max Min Max

128 64 96 56 80 40 48

256 80 112 80 96 64 64

512 128 160 128 128 96 96

1024 192 256 192 192 192 192

2048 384 384 384 384 384 384



Chapter 11: Flow Control 11–5
Throughput of Non-Posted Reads

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Nevertheless, maintaining maximum throughput of completion data packets is 
important. PCI Express endpoints must offer an infinite number of completion 
credits. The IP Compiler for PCI Express must buffer this data in the RX buffer until 
the application can process it. Because the IP Compiler for PCI Express is no longer 
managing the RX buffer through the flow control mechanism, the application must 
manage the RX buffer by the rate at which it issues read requests. 

To determine the appropriate settings for the amount of space to reserve for 
completions in the RX buffer, you must make an assumption about the length of time 
until read completions are returned. This assumption can be estimated in terms of an 
additional delay, beyond the FC Update Loop Delay, as discussed in the section 
“Throughput of Posted Writes” on page 11–1. The paths for the read requests and the 
completions are not exactly the same as those for the posted writes and FC Updates in 
the IP Compiler for PCI Express logic. However, the delay differences are probably 
small compared with the inaccuracy in the estimate of the external read to completion 
delays. 

Assuming there is a PCI Express switch in the path between the read requester and 
the read completer and assuming typical read completion times for root ports, 
Table 11–3 shows the estimated completion space required to cover the read 
transaction’s round trip delay. 

1 Note also that the completions can be broken up into multiple completions of smaller 
packet size. 

With multiple completions, the number of available credits for completion headers 
must be larger than the completion data space divided by the maximum packet size. 
Instead, the credit space for headers must be the completion data space (in bytes) 
divided by 64, because this is the smallest possible read completion boundary. Setting 
the Desired performance for received completions to High on the Buffer Setup page 
when specifying parameter settings in your IP core configures the RX buffer with 
enough space to meet the above requirements. You can adjust the Desired 
performance for received completions up or down from the High setting to tailor the 
RX buffer size to your delays and required performance. 

Table 11–3. Completion Data Space (in Credit units) to Cover Read Round Trip Delay

Max Packet Size  ×8 Function
Typical

 ×4 Function
Typical

 ×1 Function
Typical

128 120 96 56

256 144 112 80

512 192 160 128

1024 256 256 192

2048 384 384 384

4096 768 768 768



11–6 Chapter 11: Flow Control
Throughput of Non-Posted Reads

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

You can also control the maximum amount of outstanding read request data. This 
amount is limited by the number of header tag values that can be issued by the 
application and by the maximum read request size that can be issued. The number of 
header tag values that can be in use is also limited by the IP Compiler for PCI Express. 
For the ×8 function, you can specify 32 tags. For the ×1 and ×4 functions, you can 
specify up to 256 tags, though configuration software can restrict the application to 
use only 32 tags. In commercial PC systems, 32 tags are typically sufficient to maintain 
optimal read throughput. 



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

12. Error Handling

Each PCI Express compliant device must implement a basic level of error 
management and can optionally implement advanced error management. The Altera 
IP Compiler for PCI Express implements both basic and advanced error reporting. 
Given its position and role within the fabric, error handling for a root port is more 
complex than that of an endpoint.

The PCI Express specifications defines three types of errors, outlined in Table 12–1.

The following sections describe the errors detected by the three layers of the PCI 
Express protocol and describes error logging. It includes the following sections:

■ Physical Layer Errors

■ Data Link Layer Errors

■ Transaction Layer Errors

■ Error Reporting and Data Poisoning

■ Uncorrectable and Correctable Error Status Bits

Table 12–1. Error Classification

Type Responsible 
Agent Description

Correctable Hardware While correctable errors may affect system performance, data integrity is 
maintained.

Uncorrectable, non-fatal Device software
Uncorrectable, non-fatal errors are defined as errors in which data is lost, 
but system integrity is maintained. For example, the fabric may lose a 
particular TLP, but it still works without problems.

Uncorrectable, fatal System software

Errors generated by a loss of data and system failure are considered 
uncorrectable and fatal. Software must determine how to handle such 
errors: whether to reset the link or implement other means to minimize 
the problem.

August 2014
<edit Part Number variable in chapter>



12–2 Chapter 12: Error Handling
Physical Layer Errors

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Physical Layer Errors
Table 12–2 describes errors detected by the physical layer. 

Data Link Layer Errors
Table 12–3 describes errors detected by the data link layer.

Table 12–2. Errors Detected by the Physical Layer (Note 1)

Error Type Description

Receive port error Correctable

This error has the following 3 potential causes:

■ Physical coding sublayer error when a lane is in L0 state. These errors 
are reported to the core via the per lane PIPE interface input receive 
status signals, rxstatus<lane_number>_ext[2:0] using the 
following encodings:
100: 8B/10B Decode Error
101: Elastic Buffer Overflow
110: Elastic Buffer Underflow
111: Disparity Error

■ Deskew error caused by overflow of the multilane deskew FIFO.

■ Control symbol received in wrong lane.

Note to Table 12–2:

(1) Considered optional by the PCI Express specification.

Table 12–3. Errors Detected by the Data Link Layer

Error Type Description

Bad TLP Correctable This error occurs when a LCRC verification fails or when a sequence 
number error occurs.

Bad DLLP Correctable This error occurs when a CRC verification fails.

Replay timer Correctable This error occurs when the replay timer times out.

Replay num rollover Correctable This error occurs when the replay number rolls over.

Data link layer protocol Uncorrectable
(fatal)

This error occurs when a sequence number specified by the 
AckNak_Seq_Num does not correspond to an unacknowledged TLP.



Chapter 12: Error Handling 12–3
Transaction Layer Errors

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Transaction Layer Errors
Table 12–4 describes errors detected by the transaction layer. Poisoned TLPs are 
detected 

Table 12–4. Errors Detected by the Transaction Layer (Part 1 of 3)

Error Type Description

Poisoned TLP received Uncorrectable 
(non-fatal)

This error occurs if a received transaction layer packet has the EP poison 
bit set.

The received TLP is passed to the application and the application layer 
logic must take appropriate action in response to the poisoned TLP. In 
PCI Express 1.1, this error is treated as an advisory error. Refer to 
“2.7.2.2 Rules for Use of Data Poisoning” in the PCI Express Base 
Specification 2.0 for more information about poisoned TLPs.

ECRC check failed (1) Uncorrectable 
(non-fatal)

This error is caused by an ECRC check failing despite the fact that the 
transaction layer packet is not malformed and the LCRC check is valid.

The IP core handles this transaction layer packet automatically. If the 
TLP is a non-posted request, the IP core generates a completion with 
completer abort status. In all cases the TLP is deleted in the IP core and 
not presented to the application layer. 

Unsupported request for 
endpoints

Uncorrectable 
(non-fatal)

This error occurs whenever a component receives any of the following 
unsupported requests:

■ Type 0 configuration requests for a non-existing function.

■ Completion transaction for which the requester ID does not match the 
bus/device.

■ Unsupported message.

■ A type 1 configuration request transaction layer packet for the TLP 
from the PCIe link.

■ A locked memory read (MEMRDLK) on native endpoint.

■ A locked completion transaction.

■ A 64-bit memory transaction in which the 32 MSBs of an address are 
set to 0.

■ A memory or I/O transaction for which there is no BAR match.

■ A memory transaction when the Memory Space Enable bit (bit [1] of 
the PCI Command register at configuration space offset 0x4) is set to 
0.

■ A poisoned configuration write request (CfgWr0)

If the TLP is a non-posted request, the IP core generates a completion 
with unsupported request status. In all cases the TLP is deleted in the IP 
core and not presented to the application layer.



12–4 Chapter 12: Error Handling
Transaction Layer Errors

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Unsupported requests for 
root port Uncorrectable fatal

This error occurs whenever a component receives an unsupported 
request including:

■ Unsupported message

■ A type 0 configuration request TLP

■ A 64-bit memory transaction which the 32 MSBs of an address are 
set to 0.

■ A memory transaction when the Memory Space Enable bit (bit [1] of 
the PCI Command register at configuration space offset 0x4) is set to 
0.

■ A memory transaction that does not match a Windows address

Completion timeout Uncorrectable 
(non-fatal)

This error occurs when a request originating from the application layer 
does not generate a corresponding completion transaction layer packet 
within the established time. It is the responsibility of the application layer 
logic to provide the completion timeout mechanism. The completion 
timeout should be reported from the transaction layer using the 
cpl_err[0] signal. 

Completer abort (1) Uncorrectable 
(non-fatal)

The application layer reports this error using the cpl_err[2]signal 
when it aborts receipt of a transaction layer packet.

Unexpected completion Uncorrectable 
(non-fatal)

This error is caused by an unexpected completion transaction. The IP 
core handles the following conditions:

■ The requester ID in the completion packet does not match the 
configured ID of the endpoint.

■ The completion packet has an invalid tag number. (Typically, the tag 
used in the completion packet exceeds the number of tags specified.)

■ The completion packet has a tag that does not match an outstanding 
request.

■ The completion packet for a request that was to I/O or configuration 
space has a length greater than 1 dword.

■ The completion status is Configuration Retry Status (CRS) in 
response to a request that was not to configuration space. 

In all of the above cases, the TLP is not presented to the application 
layer; the IP core deletes it. 

Other unexpected completion conditions can be detected by the 
application layer and reported through the use of the cpl_err[2] 
signal. For example, the application layer can report cases where the 
total length of the received successful completions do not match the 
original read request length.

Receiver overflow (1) Uncorrectable 
(fatal)

This error occurs when a component receives a transaction layer packet 
that violates the FC credits allocated for this type of transaction layer 
packet. In all cases the IP core deletes the TLP and it is not presented to 
the application layer.

Flow control protocol error 
(FCPE) (1)

Uncorrectable 
(fatal)

A receiver must never cumulatively issue more than 2047 outstanding 
unused data credits or 127 header credits to the transmitter. 

If Infinite credits are advertised for a particular TLP type (posted, 
non-posted, completions) during initialization, update FC DLLPs must 
continue to transmit infinite credits for that TLP type.

Table 12–4. Errors Detected by the Transaction Layer (Part 2 of 3)

Error Type Description



Chapter 12: Error Handling 12–5
Error Reporting and Data Poisoning

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Error Reporting and Data Poisoning
How the endpoint handles a particular error depends on the configuration registers of 
the device. 

f Refer to the PCI Express Base Specification 1.0a, 1.1 or 2.0 for a description of the device 
signaling and logging for an endpoint.

The IP core implements data poisoning, a mechanism for indicating that the data 
associated with a transaction is corrupted. Poisoned transaction layer packets have 
the error/poisoned bit of the header set to 1 and observe the following rules:

■ Received poisoned transaction layer packets are sent to the application layer and 
status bits are automatically updated in the configuration space. In PCI Express 
1.1, this is treated as an advisory error.

■ Received poisoned configuration write transaction layer packets are not written in 
the configuration space. 

■ The configuration space never generates a poisoned transaction layer packet; the 
error/poisoned bit of the header is always set to 0.

Malformed TLP Uncorrectable 
(fatal)

This error is caused by any of the following conditions:

■ The data payload of a received transaction layer packet exceeds the 
maximum payload size.

■ The TD field is asserted but no transaction layer packet digest exists, 
or a transaction layer packet digest exists but the TD bit of the PCI 
Express request header packet is not asserted.

■ A transaction layer packet violates a byte enable rule. The IP core 
checks for this violation, which is considered optional by the PCI 
Express specifications.

■ A transaction layer packet in which the type and length fields do not 
correspond with the total length of the transaction layer packet.

■ A transaction layer packet in which the combination of format and 
type is not specified by the PCI Express specification.

Malformed TLP 
(continued)

Uncorrectable 
(fatal)

■ A request specifies an address/length combination that causes a 
memory space access to exceed a 4  KByte boundary. The IP core 
checks for this violation, which is considered optional by the PCI 
Express specification.

■ Messages, such as Assert_INTX, power management, error 
signaling, unlock, and Set_Slot_power_limit, must be transmitted 
across the default traffic class.

■ A transaction layer packet that uses an uninitialized virtual channel.

The IP core deletes the malformed TLP; it is not presented to the 
application layer.

Note to Table 12–4:

(1) Considered optional by the PCI Express Base Specification Revision 1.0a, 1.1 or 2.0.

Table 12–4. Errors Detected by the Transaction Layer (Part 3 of 3)

Error Type Description



12–6 Chapter 12: Error Handling
Uncorrectable and Correctable Error Status Bits

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Poisoned transaction layer packets can also set the parity error bits in the PCI 
configuration space status register. Table 12–5 lists the conditions that cause parity 
errors.

Poisoned packets received by the IP core are passed to the application layer. Poisoned 
transmit transaction layer packets are similarly sent to the link.

Uncorrectable and Correctable Error Status Bits
The following section is reprinted with the permission of PCI-SIG. Copyright 2010 
PCI-SIGR. 

Figure 12–1 illustrates the Uncorrectable Error Status register. The default value of all 
the bits of this register is 0. An error status bit that is set indicates that the error 
condition it represents has been detected. Software may clear the error status by 
writing a 1 to the appropriate bit.

Table 12–5. Parity Error Conditions

Status Bit Conditions

Detected parity error (status register bit 15) Set when any received transaction layer packet is poisoned.

Master data parity error (status register bit 8)

This bit is set when the command register parity enable bit is set and one of 
the following conditions is true:

■ The poisoned bit is set during the transmission of a write request 
transaction layer packet.

■ The poisoned bit is set on a received completion transaction layer packet.

Figure 12–1. Uncorrectable Error Status Register

Rsvd Rsvd Rsvd

TLP Prefix Blocked Error Status
AtomicOp Egress Blocked Status

MC Blocked TLP Status
Uncorrectable Internal Error Status

ACS Violation Status
Unsupported Request Error Status

ECRC Error Status
Malformed TLP Status

Receiver Overflow Status
Unexpected Completion Status

Completer Abort Status
Completion Timeout Status

Flow Control Protocol Status
Poisoned TLP Status

Surprise Down Error Status
Data Link Protocol Error Status

Undefined

22 21 20 1926 25 24 23 18 17 16 15 14 13 12 11 6 5 4 3 1 031



Chapter 12: Error Handling 12–7
Uncorrectable and Correctable Error Status Bits

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 12–2 illustrates the Correctable Error Status register. The default value of all the 
bits of this register is 0. An error status bit that is set indicates that the error condition 
it represents has been detected. Software may clear the error status by writing a 1 to 
the appropriate bit.

Figure 12–2. Correctable Error Status Register

Rsvd Rsvd Rsvd

Header Log Overflow Status
Corrected Internal Error Status

Advisory Non-Fatal Error Status
Replay Timer Timeout Status

REPLAY_NUM Rollover Status
Bad DLLP Status

Bad TLP Status
Receiver Error Status

16 15 14 13 12 11 9 8 7 6 5 1 031



12–8 Chapter 12: Error Handling
Uncorrectable and Correctable Error Status Bits

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

13. Reconfiguration and Offset
Cancellation

This chapter describes features of the IP Compiler for PCI Express that you can use to 
reconfigure the core after power-up. It includes the following sections:

■ Dynamic Reconfiguration

■ Transceiver Offset Cancellation

Dynamic Reconfiguration 
The IP Compiler for PCI Express reconfiguration block allows you to dynamically 
change the value of configuration registers that are read-only at run time.The IP 
Compiler for PCI Express reconfiguration block is only available in the hard IP 
implementation for the Arria II GX, Arria II GZ, Cyclone IV GX, HardCopy IV GX 
and Stratix IV GX devices. Access to the IP Compiler for PCI Express reconfiguration 
block is available when you select Enable for the PCIe Reconfig option on the System 
Settings page using the parameter editor. You access this block using its Avalon-MM 
slave interface. For a complete description of the signals in this interface, refer to “IP 
Core Reconfiguration Block Signals—Hard IP Implementation” on page 5–38.

The IP Compiler for PCI Express reconfiguration block provides access to read-only 
configuration registers, including configuration space, link configuration, MSI and 
MSI-X capabilities, power management, and advanced error reporting. 

The procedure to dynamically reprogram these registers includes the following three 
steps:

1. Bring down the PCI Express link by asserting the pcie_reconfig_rstn reset signal, 
if the link is already up. (Reconfiguration can occur before the link has been 
established.)

2. Reprogram configuration registers using the Avalon-MM slave PCIe Reconfig 
interface.

3. Release the npor reset signal.

1 You can use the LMI interface to change the values of configuration registers that are 
read/write at run time. For more information about the LMI interface, refer to “LMI 
Signals—Hard IP Implementation” on page 5–37. 

August 2014
<edit Part Number variable in chapter>



13–2 Chapter 13: Reconfiguration and Offset Cancellation
Dynamic Reconfiguration

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 13–1 lists all of the registers that you can update using the IP Compiler for PCI 
Express reconfiguration block interface.

 

Table 13–1.  Dynamically Reconfigurable Registers in the Hard IP Implementation (Part 1 of 7)

Address Bits Description Default
Value  Additional Information 

0x00 0

When 0, PCIe reconfig mode is enabled. When 1, PCIe 
reconfig mode is disabled and the original read only 
register values set in the programming file used to 
configure the device are restored. 

b’1
—

0x01-0x88 Reserved. —

0x89 15:0 Vendor ID. 0x1172 Table 6–2 on page 6–2, 
Table 6–3 on page 6–3

0x8A 15:0 Device ID. 0x0001 Table 6–2 on page 6–2, 
Table 6–3 on page 6–3

0x8B
7:0

15:8

Revision ID. 0x01 Table 6–2 on page 6–2, 
Table 6–3 on page 6–3

Class code[7:0]. — Table 6–2 on page 6–2, 
Table 6–3 on page 6–3

0x8C 15:0 Class code[23:8]. — Table 6–2 on page 6–2

0x8D 15:0 Subsystem vendor ID. 0x1172 Table 6–2 on page 6–2

0x8E 15:0 Subsystem device ID. 0x0001 Table 6–2 on page 6–2

0x8F Reserved. —

0x90

0 Advanced Error Reporting. b’0
Table 6–9 on page 6–5
Port VC Cap 13:1 Low Priority VC (LPVC). b’000

7:4  VC arbitration capabilities. b’00001

15:8  Reject Snoop Transaction.d b’00000000
Table 6–9 on page 6–5 
VC Resource Capability 
register

2:0

Max payload size supported. The following are the defined 
encodings:

b’010

Table 6–8 on page 6–5, 
Device Capability 
register

000: 128 bytes max payload size.
001: 256 bytes max payload size.
010: 512 bytes max payload size.
011: 1024 bytes max payload size.
100: 2048 bytes max payload size.
101: 4096 bytes max payload size.
110: Reserved.
111: Reserved.



Chapter 13: Reconfiguration and Offset Cancellation 13–3
Dynamic Reconfiguration

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

3

Surprise Down error reporting capabilities.

b’0 Table 6–8 on page 6–5, 
Link Capability register

(Available in PCI Express Base Specification Revision 1.1 
compliant Cores, only.)

Downstream Port. This bit must be set to 1 if the 
component supports the optional capability of detecting 
and reporting a Surprise Down error condition.

Upstream Port. For upstream ports and components 
that do not support this optional capability, this bit must 
be hardwired to 0.

4

Data Link Layer active reporting capabilities.

b’0 Table 6–8 on page 6–5, 
Link Capability register

(Available in PCI Express Base Specification Revision 1.1 
compliant Cores, only.)

Downstream Port: This bit must be set to 1 if the 
component supports the optional capability of reporting 
the DL_Active state of the Data Link Control and 
Management state machine.

Upstream Port: For upstream ports and components that 
do not support this optional capability, this bit must be 
hardwired to 0.

5 Extended TAG field supported. b’0
Table 6–8 on page 6–5, 
Device Capability 
register

8:6

Endpoint L0s acceptable latency. The following encodings 
are defined:

b’000 – Maximum of 64 ns.
b’001 – Maximum of 128 ns.
b’010 – Maximum of 256 ns.
b’011 – Maximum of 512 ns.
b’100 – Maximum of 1 µs.
b’101 – Maximum of 2 µs.
b’110 – Maximum of 4 µs.
b’111– No limit.

b’000
Table 6–8 on page 6–5, 
Device Capability 
register

11:9

Endpoint L1 acceptable latency. The following encodings 
are defined:

b’000 – Maximum of 1 µs.
b’001 – Maximum of 2 µs.
b’010 – Maximum of 4 µs.
b’011 – Maximum of 8 µs.
b’100 – Maximum of 16 µs.
b’101 – Maximum of 32 µs.
b’110 – Maximum of 64 µs.
b’111 – No limit.

b’000
Table 6–8 on page 6–5, 
Device Capability 
register

14:12

These bits record the presence or absence of the attention 
and power indicators. 

b’000 Table 6–8 on page 6–5, 
Slot Capability register[0]: Attention button present on the device.

[1]: Attention indicator present for an endpoint.
[2]: Power indicator present for an endpoint.

Table 13–1.  Dynamically Reconfigurable Registers in the Hard IP Implementation (Part 2 of 7)

Address Bits Description Default
Value  Additional Information 



13–4 Chapter 13: Reconfiguration and Offset Cancellation
Dynamic Reconfiguration

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

0x91 15
Role-Based error reporting. (Available in PCI Express Base 
Specification Revision 1.1 compliant Cores only.)In 1.1 
compliant cores, this bit should be set to 1.

b’1
Table 6–10 on page 6–6, 
Correctable Error Mask 
register

1:0  Slot Power Limit Scale. b’00 Table 6–8 on page 6–5, 
Slot Capability register

0x92

7:2 Max Link width. b’000100 Table 6–8 on page 6–5, 
Link Capability register

9:8 L0s Active State power management support.
L1 Active State power management support. b’01 Table 6–8 on page 6–5, 

Link Capability register

15:10

L1 exit latency common clock.

b’000000 Table 6–8 on page 6–5, 
Link Capability register

L1 exit latency separated clock. The following encodings 
are defined:

b’000 – Less than 1 µs.
b’001 – 1 µs to less than 2 µs.
b’010 – 2 µs to less than 4 µs.
b’011 – 4 µs to less than 8 µs.
b’100 – 8 µs to less than 16 µs.
b’101 – 16 µs to less than 32 µs.
b’110 – 32 µs to 64 µs.
b’111 – More than 64 µs.

0x93

[0]: Attention button implemented on the chassis.

b’0000000
Table 6–8 on page 6–5, 
Slot Capability register

[1]: Power controller present.

[2]: Manually Operated Retention Latch (MRL) sensor 
present.

[3]: Attention indicator present for a root port, switch, or 
bridge.

[4]: Power indicator present for a root port, switch, or 
bridge.

[5]: Hot-plug surprise: When this bit set to1, a device can 
be removed from this slot without prior notification.

6:0 [6]: Hot-plug capable.

9:7 Reserved. b’000

15:10 Slot Power Limit Value. b’00000000

0x94

1:0 Reserved. —

Table 6–8 on page 6–5, 
Slot Capability register

2
Electromechanical Interlock present (Available in PCI 
Express Base Specification Revision 1.1 compliant IP 
cores only.)

b’0

15:3
Physical Slot Number (if slot implemented). This signal 
indicates the physical slot number associated with this 
port. It must be unique within the fabric.

b’0

0x95
7:0 NFTS_SEPCLK. The number of fast training sequences for 

the separate clock. b’10000000
—

15:8 NFTS_COMCLK. The number of fast training sequences 
for the common clock. b’10000000

Table 13–1.  Dynamically Reconfigurable Registers in the Hard IP Implementation (Part 3 of 7)

Address Bits Description Default
Value  Additional Information 



Chapter 13: Reconfiguration and Offset Cancellation 13–5
Dynamic Reconfiguration

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

3:0

Completion timeout ranges. The following encodings are 
defined:

b’0000
Table 6–8 on page 6–5, 
Device Capability 
register 2

b’0001: range A.
b’0010: range B.
b’0011: range A&B.
b’0110: range B&C.
b’0111: range A,B&C.
b’1110: range B,C&D.
b’1111: range A,B,C&D.
All other values are reserved.

4
Completion Timeout supported

b’0
Table 6–8 on page 6–5, 
Device Capability 
register 2

0: completion timeout disable not supported
1: completion timeout disable supported

7:5 Reserved. b’0 —

8 ECRC generate. b’0

Table 6–10 on page 6–6, 
Advanced Error 
Capability and Control 
register

9 ECRC check. b’0

Table 6–10 on page 6–6, 
Advanced Error 
Capability and Control 
register

10 No command completed support. (available only in PCI 
Express Base Specification Revision 1.1 compliant Cores) b’0 Table 6–8 on page 6–5, 

Slot Capability register

13:11

Number of functions MSI capable. b’010

Table 6–4 on page 6–3, 
Message Control 
register

b’000: 1 MSI capable.
b’001: 2 MSI capable.
b’010: 4 MSI capable.
b’011: 8 MSI capable.
b’100: 16 MSI capable.
b’101: 32 MSI capable.

14
MSI 32/64-bit addressing mode.

b’1b’0: 32 bits only.
b’1: 32 or 64 bits

0x96 15 MSI per-bit vector masking (read-only field). b’0

0 Function supports MSI. b’1
Table 6–4 on page 6–3, 
Message Control 
register for MSI

3:1 Interrupt pin. b’001 —

5:4 Reserved. b’00

6 Function supports MSI-X. b’0
Table 6–4 on page 6–3, 
Message Control 
register for MSI

Table 13–1.  Dynamically Reconfigurable Registers in the Hard IP Implementation (Part 4 of 7)

Address Bits Description Default
Value  Additional Information 



13–6 Chapter 13: Reconfiguration and Offset Cancellation
Dynamic Reconfiguration

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

0x97 15:7 MSI-X table size b’0 Table 6–5 on page 6–4, 
MSI-X Capability 
Structure

0x98

1:0 Reserved. —

4:2 MSI-X Table BIR. b’0

15:5 MIS-X Table Offset. b’0
Table 6–5 on page 6–4, 
MSI-X Capability 
Structure

0x99 15:10 MSI-X PBA Offset. b’0

—

0x9A 15:0 Reserved. b’0

0x9B 15:0 Reserved. b’0

0x9C 15:0 Reserved. b’0

0x9D 15:0 Reserved. b’0

0x9E 3:0 Reserved.

7:4 Number of EIE symbols before NFTS. b’0100

15:8 Number of NFTS for separate clock in Gen2 rate. b’11111111

0x9F

7:0 Number of NFTS for common clock in Gen2 rate. b’11111111 Table 6–8 on page 6–5, 
Link Control register 28 Selectable de-emphasis. b’0

12:9

PCIe Capability Version.

b’0010
Table 6–8 on page 6–5, 
PCI Express capability 
register

b’0000: Core is compliant to PCIe Specification 1.0a or 
1.1.
b’0001: Core is compliant to PCIe Specification 1.0a or 
1.1.
b’0010: Core is compliant to PCIe Specification 2.0.

15:13

L0s exit latency for common clock.

Gen1: ( N_FTS (of separate clock) + 1 (for the SKIPOS) 
) * 4 * 10 * UI (UI = 0.4 ns).

Gen2: [ ( N_FTS2 (of  separate clock) + 1 (for the 
SKIPOS) ) * 4 + 8 (max number of received EIE) ] * 10 
* UI (UI = 0.2 ns).

b’110 Table 6–8 on page 6–5, 
Link Capability register

0xA0
2:0

 L0s exit latency for separate clock. 

Gen1: ( N_FTS (of separate clock) + 1 (for the SKIPOS) 
) * 4 * 10 * UI (UI = 0.4 ns).

Gen2: [ ( N_FTS2 (of  separate clock) + 1 (for the 
SKIPOS) ) * 4 + 8 (max number of received EIE) ] * 10 
* UI (UI = 0.2 ns).

b’000 – Less than 64 ns.
b’001 – 64 ns to less than 128 ns.
b’010 – 128 ns to less than 256 ns.
b’011 – 256 ns to less than 512 ns.
b’100 – 512 ns to less than 1 µs.
b’101 – 1 µs to less than 2 µs.
b’110 – 2 µs to 4 µs.
b’111 – More than 4 µs.

b’110 Table 6–8 on page 6–5, 
Link Capability register

15:3 Reserved. 0x0000

Table 13–1.  Dynamically Reconfigurable Registers in the Hard IP Implementation (Part 5 of 7)

Address Bits Description Default
Value  Additional Information 



Chapter 13: Reconfiguration and Offset Cancellation 13–7
Dynamic Reconfiguration

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

0xA1

BAR0[31:0].

Table 6–2 on page 6–2, 
Table 6–3 on page 6–3, 

0 BAR0[0]: I/O Space. b’0

2:1 BAR0[2:1]: Memory Space. b’10

10: 64-bit address.
00: 32-bit address.

3 BAR0[3]: Prefetchable. b’1

BAR0[31:4]: Bar size mask. 0xFFFFFFF

15:4 BAR0[15:4]. b’0

0xA2 15:0 BAR0[31:16]. b’0

0xA3

BAR1[63:32]. b’0

0 BAR1[32]: I/O Space. b’0

2:1 BAR1[34:33]: Memory Space (see bit settings for 
BAR0). b’0

3 BAR1[35]: Prefetchable. b’0

BAR1[63:36]: Bar size mask. b’0

15:4 BAR1[47:36]. b’0

0xA4 15:0 BAR1[63:48]. b’0

0xA5

BAR2[95:64]: b’0

Table 6–2 on page 6–2

0 BAR2[64]: I/O Space. b’0

2:1 BAR2[66:65]: Memory Space (see bit settings for 
BAR0). b’0

3 BAR2[67]: Prefetchable. b’0

BAR2[95:68]: Bar size mask. b’0

15:4 BAR2[79:68]. b’0

0xA6 15:0 BAR2[95:80]. b’0

BAR3[127:96]. b’0 Table 6–2 on page 6–2

0 BAR3[96]: I/O Space. b’0

2:1 BAR3[98:97]: Memory Space (see bit settings for 
BAR0). b’0

3 BAR3[99]: Prefetchable. b’0

BAR3[127:100]: Bar size mask. b’0

0xA7 15:4 BAR3[111:100]. b’0

0xA8 15:0 BAR3[127:112]. b’0

0xA9

BAR4[159:128]. b’0

0 BAR4[128]: I/O Space. b’0

2:1 BAR4[130:129]: Memory Space (see bit settings for 
BAR0). b’0

3 BAR4[131]: Prefetchable. b’0

BAR4[159:132]: Bar size mask. b’0

15:4 BAR4[143:132]. b’0

Table 13–1.  Dynamically Reconfigurable Registers in the Hard IP Implementation (Part 6 of 7)

Address Bits Description Default
Value  Additional Information 



13–8 Chapter 13: Reconfiguration and Offset Cancellation
Dynamic Reconfiguration

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

0xAA 15:0 BAR4[159:144]. b’0

0xAB

BAR5[191:160]. b’0

0  BAR5[160]: I/O Space. b’0

2:1 BAR5[162:161]: Memory Space (see bit settings for 
BAR0). b’0

3 BAR5[163]: Prefetchable. b’0

BAR5[191:164]: Bar size mask. b’0

15:4 BAR5[175:164]. b’0

0xAC 15:0 BAR5[191:176]. b’0

0xAD 15:0

Expansion BAR[223:192]: Bar size mask. b’0

Expansion BAR[207:192]. b’0

0xAE 15:0 Expansion BAR[223:208]. b’0

0xAF

1:0

 IO.

b’0

Table 6–3 on page 6–3

00: no IO windows.
01: IO 16 bit.
11: IO 32-bit.

3:2

 Prefetchable.

b’000: not implemented.
01: prefetchable 32.
11: prefetchable 64.

15:4 Reserved. —

B0

5:0 Reserved — —

6

Selectable de-emphasis, operates as specified in the PCI 
Express Base Specification when operating at the 5.0GT/s 
rate:

1: 3.5 dB 
0: -6 dB. 

This setting has no effect when operating at the 2.5GT/s 
rate.

9:7

Transmit Margin. Directly drives the transceiver 
tx_pipemargin bits. Refer to the transceiver 
documentation for the appropriate device handbook to 
determine what VOD settings are available as follows:

Arria II Device Data Sheet and Addendum in volume 3 of 
the Arria II Device Handbook, Cyclone IV Device 
Datasheet in volume 3 of the Cyclone IV Device 
Handbook, or Stratix IV Dynamic Reconfiguration in 
volume 3 of the Stratix IV Handbook.

0xB1-FF Reserved.

Table 13–1.  Dynamically Reconfigurable Registers in the Hard IP Implementation (Part 7 of 7)

Address Bits Description Default
Value  Additional Information 



Chapter 13: Reconfiguration and Offset Cancellation 13–9
Transceiver Offset Cancellation

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Transceiver Offset Cancellation
As silicon progresses towards smaller process nodes, circuit performance is affected 
more by variations due to process, voltage, and temperature (PVT). These process 
variations result in analog voltages that can be offset from required ranges. When you 
implement the IP Compiler for PCI Express in an Arria II GX, Arria II GZ, 
HardCopy IV GX, Cyclone IV GX, or Stratix IV GX device using the internal PHY, you 
must compensate for this variation by including the ALTGX_RECONFIG 
megafunction in your design. When you generate your ALTGX_RECONFIG module 
the Offset cancellation for receiver channels option is On by default. This feature is 
all that is required to ensure that the transceivers operate within the required ranges, 
but you can choose to enable other features such as the Analog controls option if your 
system requires this. You must connect the reconfig_fromgxb and reconfig_togxb 
busses and the necessary clocks between the ALTGX instance and the 
ALTGX_RECONFIG instance, as Figure 13–1 illustrates.

The offset cancellation circuitry requires the following two clocks. 

■ fixedclk_serdes —This is a free running clock whose frequency must be 125 
MHz. It cannot be generated from refclk. 

■ reconfig_clk— The correct frequency for this clock is device dependent 

f Refer to the appropriate device handbook to determine the frequency range for your 
device as follows: Transceiver Architecture in Volume II of the Arria II Device Handbook, 
Transceivers in Volume 2 of the Cyclone IV Device Handbook, or Transceiver Architecture 
in Volume 2 of the Stratix IV Device Handbook.

1 The <variant>_plus IP Compiler for PCI Express endpoint hard IP implementation 
automatically includes the circuitry for offset cancellation; you do not have to add this 
circuitry manually.



13–10 Chapter 13: Reconfiguration and Offset Cancellation
Transceiver Offset Cancellation

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The chaining DMA design example instantiates the offset cancellation circuitry in the 
file <variation name_example_pipen1b>.<v or .vhd>. Figure 13–1 shows the 
connections between the ALTGX_RECONFIG instance and the ALTGX instance. The 
names of the Verilog HDL files in this figure match the names in the chaining DMA 
design example described in Chapter 15, Testbench and Design Example. 

f For more information about the ALTGX_RECONFIG megafunction refer to AN 558: 
Implementing Dynamic Reconfiguration in Arria II GX Devices. For more information 
about the ALTGX megafunction refer to volume 2 of the Arria II GX Device Handbook 
or volume 2 of the Stratix IV Device Handbook. 

Figure 13–1. ALTGX_RECONFIG Connectivity (Note 1)

Note to Figure 13–1:

(1) The size of reconfig_togxb and reconfig_fromgxb buses varies with the number of lanes. Refer to “Transceiver Control Signals” on 
page 5–53 for details.

pld_clk

tx_clk_out

<variant>_serdes.v or .vhd
(ALTGX or ALT2GX 

Megafunction )

<variant>.v or .vhd

<variant>_core.v or .vhd
(IP Compiler for
PCI Express)

reconfig_clk
cal_blk_clk
fixedclk

ALTGX_RECONFIG  Megafunction

busy
reconfig_fromgxb[16:0]
reconfig_togxb[3:0]

busy
reconfig_fromgxb[16:0]

reconfig_togxb[3:0]

reconfig_clk
reconfig_clkReconfig

Clock Source

altpcie_reconfig_4sgx.v or .vhd

Reconfig
Clock Source

 Fixed
Clock Source



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

14. External PHYs

External PHY Support
This chapter discusses external PHY support, which includes the external PHYs and 
interface modes shown in Table 14–1. The external PHY is not applicable to the hard 
IP implementation.

When an external PHY is selected, additional logic required to connect directly to the 
external PHY is included in the <variation name> module or entity. 

The user logic must instantiate this module or entity in the design. The 
implementation details for each of these modes are discussed in the following 
sections.

16-bit SDR Mode
The implementation of this 16-bit SDR mode PHY support is shown in Figure 14–1 
and is included in the file <variation name>.v or <variation name>.vhd and includes a 
PLL. The PLL inclock is driven by refclk and has the following outputs:

Table 14–1. External PHY Interface Modes

PHY Interface Mode Clock Frequency Notes

16-bit SDR 125 MHz
In this the generic 16-bit PIPE interface, both the TX and 
RX data are clocked by the refclk input which is the pclk 
from the PHY.

16-bit SDR mode (with source 
synchronous transmit clock) 125 MHz

This enhancement to the generic PIPE interface adds a 
TXClk to clock the TXData source synchronously to the 
external PHY. The TIXIO1100 PHY uses this mode. 

8-bit DDR 125 MHz

This double data rate version saves I/O pins without 
increasing the clock frequency. It uses a single refclk input 
(which is the pclk from the PHY) for clocking data in both 
directions.

8-bit DDR mode (with 8-bit DDR source 
synchronous transmit clock) 125 MHz

This double data rate version saves I/O pins without 
increasing the clock frequency. A TXClk clocks the data 
source synchronously in the transmit direction.

8-bit DDR/SDR mode (with 8-bit DDR 
source synchronous transmit clock) 125 MHz

This is the same mode as 8-bit DDR mode except the 
control signals rxelecidle, rxstatus, phystatus, and 
rxvalid are latched using the SDR I/O register rather 
than the DDR I/O register. The TIXIO1100 PHY uses this 
mode.

8-bit SDR 250 MHz
This is the generic 8-bit PIPE interface. Both the TX and RX 
data are clocked by the refclk input which is the pclk from 
the PHY. The NXP PX1011A PHY uses this mode.

8-bit SDR mode (with Source 
Synchronous Transmit Clock) 250 MHz

This enhancement to the generic PIPE interface adds a 
TXClk to clock the TXData source synchronously to the 
external PHY.

August 2014
<edit Part Number variable in chapter>



14–2 Chapter 14: External PHYs
External PHY Support

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

1 The refclk is the same as pclk, the parallel clock provided by the external PHY. This 
document uses the terms refclk and pclk interchangeably.

■ clk125_out is a 125 MHz output that has the same phase-offset as refclk. The 
clk125_out must drive the clk125_in input in the user logic as shown in the 
Figure 14–1. The clk125_in is used to capture the incoming receive data and also 
is used to drive the clk125_in input of the IP core.

■ clk125_early is a 125 MHz output that is phase shifted. This phase-shifted output 
clocks the output registers of the transmit data. Based on your board delays, you 
may need to adjust the phase-shift of this output. To alter the phase shift, copy the 
PLL source file referenced in your variation file from the 
<path>/ip/ip_compiler_for_pci_express/lib directory, where <path> is the 
directory in which you installed the IP Compiler for PCI Express, to your project 
directory. Then use the parameter editor to edit the PLL source file to set the 
required phase shift. Then add the modified PLL source file to your Quartus II 
project.

■ tlp_clk62p5 is a 62.5 MHz output that drives the tlp_clk input of the IP core 
when the IP Compiler for PCI Express internal clock frequency is 62.5 MHz.

16-bit SDR Mode with a Source Synchronous TXClk
The implementation of the 16-bit SDR mode with a source synchronous TXClk is 
shown in Figure 14–2 and is included in the file <variation name>.v or <variation 
name>.vhd. In this mode the following clocking scheme is used: 

■ refclk is used as the clk125_in for the core

Figure 14–1. 16-bit SDR Mode - 125 MHz without Transmit Clock

IP Compiler
for PCI Express

clk125_in

tlp_clk

refclk clk125_out

ENB

A

D

Q1

Q4

ENB

Q

Q

A1

D4

Mode 1
PLL clk125_early tlp_clk_62p5

refclk (pclk)

rxdata

txdata

clk125_out

External connection
 in user logic

ENB

A

D

Q1

Q4
clk125_in



Chapter 14: External PHYs 14–3
External PHY Support

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ refclk clocks a single data rate register for the incoming receive data

■ refclk clocks the transmit data register (txdata) directly

■ refclk also clocks a DDR register that is used to create a center aligned TXClk

This is the only external PHY mode that does not require a PLL. However, if the slow 
tlp_clk feature is used with this PIPE interface mode, then a PLL is required to create 
the slow tlp_clk. In the case of the slow tlp_clk, the circuit is similar to the one 
shown previously in Figure 14–1, the 16-bit SDR, but with TXClk output added.

8-bit DDR Mode
The implementation of the 8-bit DDR mode shown in Figure 14–3 is included in the 
file <variation name>.v or <variation name>.vhd and includes a PLL. The PLL inclock is 
driven by refclk (pclk from the external PHY) and has the following outputs:

■ A zero delay copy of the 125 MHz refclk. The zero delay PLL output is used as 
the clk125_in for the core and clocks a double data rate register for the incoming 
receive data. 

■ A 250 MHz early output. This is multiplied from the 125 MHz refclk is early in 
relation to the refclk. Use the 250 MHz early clock PLL output to clock an 8-bit 
SDR transmit data output register. A 250 MHz single data rate register is used for 
the 125 MHz DDR output because this allows the use of the SDR output registers 
in the Cyclone II I/O block. The early clock is required to meet the required clock 
to out times for the common refclk for the PHY. You may need to adjust the phase 
shift for your specific PHY and board delays. To alter the phase shift, copy the PLL 

Figure 14–2. 16-bit SDR Mode with a 125 MHz Source Synchronous Transmit Clock

IP Compiler
for PCI Express

clk125_in

tlp_clk

refclk clk125_out

ENB

A

D

Q1

Q4

refclk (pclk)

rxdata

txdata

clk125_out

External connection in user logic

clk125_in

ENB

Q

Q

A1

D4

ENB

Q

Q

A1

D4

txclk (~refclk)

DDIO



14–4 Chapter 14: External PHYs
External PHY Support

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

source file referenced in your variation file from the 
<path>/ip/ip_compiler_for_pci_express/lib directory, where <path> is the 
directory in which you installed the IP Compiler for PCI Express, to your project 
directory. Then use the parameter editor to edit the PLL source file to set the 
required phase shift. Then add the modified PLL source file to your Quartus II 
project.

■ An optional 62.5 MHz TLP Slow clock is provided for ×1 implementations. 

An edge detect circuit detects the relationships between the 125 MHz clock and the 
250 MHz rising edge to properly sequence the 16-bit data into the 8-bit output 
register. 

8-bit DDR with a Source Synchronous TXClk
Figure 14–4 shows the implementation of the 8-bit DDR mode with a source 
synchronous transmit clock (TXClk). It is included in the file <variation name>.v or 
<variation name>.vhd and includes a PLL. refclk (pclk from the external PHY) drives 
the PLL inclock. The PLL inclock has the following outputs:

■ A zero delay copy of the 125 MHz refclk used as the clk125_in for the IP core 
and also to clock DDR input registers for the RX data and status signals.

■ A 250 MHz early clock. This PLL output clocks an 8-bit SDR transmit data output 
register. It is multiplied from the 125 MHz refclk and is early in relation to the 
refclk. A 250 MHz single data rate register for the 125 MHz DDR output allows 
you to use the SDR output registers in the Cyclone II I/O block. 

■ An optional 62.5 MHz TLP Slow clock is provided for ×1 implementations.

Figure 14–3. 8-Bit DDR Mode without Transmit Clock

IP Compiler
for PCI Express

clk125_in

tlp_clk

refclk clk125_out

ENB

A

D

Q1

Q4

refclk (pclk)

rxdata

clk125_out

clk125_in

ENB

Q

Q

A1

D4

txdata

DDIO

out txclk

Mode 3
PLL

ENB

Q

Q

A1

D4

txdata_h

txdata_l

Edge
Detect
& Sync

clk250_early
tlp_clk

External connection
 in user logic



Chapter 14: External PHYs 14–5
External PHY Support

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

An edge detect circuit detects the relationships between the 125 MHz clock and the 
250 MHz rising edge to properly sequence the 16-bit data into the 8-bit output 
register.

8-bit SDR Mode
Figure 14–5 illustrates the implementation of the 8-bit SDR mode. This mode is 
included in the file <variation name>.v or <variation name>.vhd and includes a PLL. 
refclk (pclk from the external PHY) drives the PLL inclock. The PLL has the 
following outputs:

■ A 125 MHz output derived from the 250 MHz refclk used as the clk125_in for 
the core and also to transition the incoming 8-bit data into a 16-bit register for the 
rest of the logic.

■ A 250 MHz early output that is skewed early in relation to the refclk that is used to 
clock an 8-bit SDR transmit data output register. The early clock PLL output clocks 
the transmit data output register. The early clock is required to meet the specified 
clock-to-out times for the common clock. You may need to adjust the phase shift 
for your specific PHY and board delays. To alter the phase shift, copy the PLL 
source file referenced in your variation file from the 

Figure 14–4. 8-bit DDR Mode with a Source Synchronous Transmit Clock 

IP Compiler
for PCI Express

clk125_in

tlp_clk

refclk clk125_out

ENB

A

D

Q1

Q4

refclk (pclk)

rxdata

clk125_out

clk125_in

ENB

Q

Q

A1

D4

txdata

DDIO

Mode 3
PLL

ENB

Q

Q

A1

D4

txdata_h

txdata_l

Edge
Detect
& Sync

clk250_early
tlp_clk

External connection
 in user logic

ENB

Q

Q

A1

D4

txclk



14–6 Chapter 14: External PHYs
External PHY Support

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

<path>/ip/ip_compiler_for_pci_express/lib directory, where <path> is the 
directory in which you installed the IP Compiler for PCI Express, to your project 
directory. Then use the parameter editor to edit the PLL source file to set the 
required phase shift. Then add the modified PLL source file to your Quartus II 
project.

■ An optional 62.5 MHz TLP Slow clock is provided for ×1 implementations.

An edge detect circuit detects the relationships between the 125 MHz clock and the 
250 MHz rising edge to properly sequence the 16-bit data into the 8-bit output 
register. 

8-bit SDR with a Source Synchronous TXClk
Figure 14–6 illustrates the implementation of the 16-bit SDR mode with a source 
synchronous TXClk. It is included in the file <variation name>.v or 
<variation name>.vhd and includes a PLL. refclk (pclk from the external PHY) drives 
the PLL inclock. The PLL has the following outputs:

■ A 125 MHz output derived from the 250 MHz refclk. This 125 MHz PLL output is 
used as the clk125_in for the IP core. 

■ A 250 MHz early output that is skewed early in relation to the refclk the 250 MHz 
early clock PLL output clocks an 8-bit SDR transmit data output register. 

■ An optional 62.5 MHz TLP Slow clock is provided for ×1 implementations.

Figure 14–5. 8-bit SDR Mode - 250 MHz

IP Compiler
for PCI Express

clk125_in

tlp_clk

refclk

rxdata

clk125_out

clk125_in

ENB

Q

Q

A1

D4

 
txdata

ENB

A

D

Q1

Q4

Mode 4
PLL

ENB

Q

Q

A1

D4

txdata_h

txdata_l

Edge
Detect
& Sync

clk250_early

External connection
 in user logic

ENB

A

D

Q1

Q4

ENB

A

D

Q1

Q4

ENB

A

D

Q1

Q4

ENB

A

D

Q1

Q4

rxdata_h

rxdata_l

refclk (pclk)  250 MHz



Chapter 14: External PHYs 14–7
External PHY Support

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

An edge detect circuit detects the relationships between the 125 MHz clock and the 
250 MHz rising edge to properly sequence the 16-bit data into the 8-bit output 
register. 

16-bit PHY Interface Signals
Table 14–2 summarizes the external I/O signals for the 16-bit PIPE interface modes. 
Depending on the number of lanes selected and whether the PHY mode has a TXClk, 
some of the signals may not be available as noted.

Figure 14–6. 8-bit SDR Mode with 250 MHz Source Synchronous Transmit Clock 

IP Compiler
for PCI Express

clk125_zero

tlp_clk

refclk

rxdata

clk125_out

clk125_in

ENB

Q

Q

A1

D4

ENB

Q

Q

A1

D4

txdata

ENB

A

D

Q1

Q4

Mode 4
PLL

ENB

Q

Q

A1

D4

txdata_h

txdata_l

Edge
Detect
& Sync

clk250_early

External connection
 in user logic

ENB

A

D

Q1

Q4

ENB

A

D

Q1

Q4

ENB

A

D

Q1

Q4

ENB

A

D

Q1

Q4

rxdata_h

rxdata_l

refclk (pclk)  250 MHz

clk250_early

txclk  (~refclk)

Table 14–2.  16-bit PHY Interface Signals (Part 1 of 3)

Signal Name Direction Description Availability

pcie_rstn I IP Compiler for PCI Express reset signal, active low. Always

phystatus_ext I PIPE interface phystatus signal.Signals the completion 
of the requested operation Always

powerdown_ext[1:0] O PIPE interface powerdown signal. Used to request that 
the PHY enter the specified power state. Always

refclk I
Input clock connected to the PIPE interface pclk signal 
from the PHY. 125 MHz clock that clocks all of the 
status and data signals.

Always



14–8 Chapter 14: External PHYs
External PHY Support

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

pipe_txclk O Source synchronous transmit clock signal for clocking 
TX Data and Control signals going to the PHY.

Only in modes that 
have the TXClk

rxdata0_ext[15:0] I Pipe interface lane 0 RX data signals, carries the 
parallel received data. Always 

rxdatak0_ext[1:0] I Pipe interface lane 0 RX data K-character flags. Always

rxelecidle0_ext I Pipe interface lane 0 RX electrical idle indication. Always

rxpolarity0_ext O Pipe interface lane 0 RX polarity inversion control. Always

rxstatus0_ext[1:0] I Pipe interface lane 0 RX status flags. Always

rxvalid0_ext I Pipe interface lane 0 RX valid indication. Always

txcompl0_ext O Pipe interface lane 0 TX compliance control. Always

txdata0_ext[15:0] O Pipe interface lane 0 TX data signals, carries the 
parallel transmit data. Always 

txdatak0_ext[1:0] O Pipe interface lane 0 TX data K-character flags. Always

txelecidle0_ext O Pipe interface lane 0 TX electrical Idle Control. Always

rxdata1_ext[15:0] I Pipe interface lane 1 RX data signals, carries the 
parallel received data. Only in ×4 

rxdatak1_ext[1:0] I Pipe interface lane 1 RX data K-character flags. Only in ×4 

rxelecidle1_ext I Pipe interface lane 1 RX electrical idle indication. Only in ×4 

rxpolarity1_ext O Pipe interface lane 1 RX polarity inversion control. Only in ×4 

rxstatus1_ext[1:0] I Pipe interface lane 1 RX status flags. Only in ×4 

rxvalid1_ext I Pipe interface lane 1 RX valid indication. Only in ×4 

txcompl1_ext O Pipe interface lane 1 TX compliance control. Only in ×4 

txdata1_ext[15:0] O Pipe interface lane 1 TX data signals, carries the 
parallel transmit data. Only in ×4 

txdatak1_ext[1:0] O Pipe interface lane 1 TX data K-character flags. Only in ×4 

txelecidle1_ext O Pipe interface lane 1 TX electrical idle control. Only in ×4 

rxdata2_ext[15:0] I Pipe interface lane 2 RX data signals, carries the 
parallel received data. Only in ×4 

rxdatak2_ext[1:0] I Pipe interface lane 2 RX data K-character flags. Only in ×4 

rxelecidle2_ext I Pipe interface lane 2 RX electrical idle indication. Only in ×4 

rxpolarity2_ext O Pipe interface lane 2 RX polarity inversion control. Only in ×4 

rxstatus2_ext[1:0] I Pipe interface lane 2 RX status flags. Only in ×4 

rxvalid2_ext I Pipe interface lane 2 RX valid indication. Only in ×4 

txcompl2_ext O Pipe interface lane 2 TX compliance control. Only in ×4 

txdata2_ext[15:0] O Pipe interface lane 2 TX data signals, carries the 
parallel transmit data. Only in ×4 

txdatak2_ext[1:0] O Pipe interface lane 2 TX data K-character flags. Only in ×4 

txelecidle2_ext O Pipe interface lane 2 TX electrical idle control. Only in ×4 

rxdata3_ext[15:0] I Pipe interface lane 3 RX data signals, carries the 
parallel received data. Only in ×4 

rxdatak3_ext[1:0] I Pipe interface lane 3 RX data K-character flags. Only in ×4 

Table 14–2.  16-bit PHY Interface Signals (Part 2 of 3)

Signal Name Direction Description Availability



Chapter 14: External PHYs 14–9
External PHY Support

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

8-bit PHY Interface Signals
Table 14–3 summarizes the external I/O signals for the 8-bit PIPE interface modes. 
Depending on the number of lanes selected and whether the PHY mode has a TXClk, 
some of the signals may not be available as noted.

rxelecidle3_ext I Pipe interface lane 3 RX electrical idle indication. Only in ×4 

rxpolarity3_ext O Pipe interface lane 3 RX polarity inversion control. Only in ×4 

rxstatus3_ext[1:0] I Pipe interface lane 3 RX status flags. Only in ×4 

rxvalid3_ext I Pipe interface lane 3 RX valid indication. Only in ×4 

txcompl3_ext O Pipe interface lane 3 TX compliance control. Only in ×4 

txdata3_ext[15:0] O Pipe interface lane 3 TX data signals, carries the 
parallel transmit data. Only in ×4 

txdatak3_ext[1:0] O Pipe interface lane 3 TX data K-character flags. Only in ×4 

txelecidle3_ext O Pipe interface lane 3 TX electrical Idle Control. Only in ×4 

Table 14–2.  16-bit PHY Interface Signals (Part 3 of 3)

Signal Name Direction Description Availability

Table 14–3. 8-bit PHY Interface Signals (Part 1 of 2)

Signal Name Direction Description Availability

pcie_rstn I IP Compiler for PCI Express reset signal, active low. Always

phystatus_ext I PIPE interface phystatus signal. Signals the completion 
of the requested operation. Always

powerdown_ext[1:0] O PIPE interface powerdown signal, Used to request that 
the PHY enter the specified power state. Always

refclk I

Input clock connected to the PIPE interface pclk signal 
from the PHY. Clocks all of the status and data signals. 
Depending on whether this is an SDR or DDR interface 
this clock will be either 250 MHz or 125 MHz. 

Always

pipe_txclk O Source synchronous transmit clock signal for clocking 
TX data and control signals going to the PHY.

Only in modes that 
have the TXClk

rxdata0_ext[7:0] I Pipe interface lane 0 RX data signals, carries the parallel 
received data. Always 

rxdatak0_ext I Pipe interface lane 0 RX data K-character flag. Always

rxelecidle0_ext I Pipe interface lane 0 RX electrical idle indication. Always

rxpolarity0_ext O Pipe interface lane 0 RX polarity inversion control. Always

rxstatus0_ext[1:0] I Pipe interface lane 0 RX status flags. Always

rxvalid0_ext I Pipe interface lane 0 RX valid indication. Always

txcompl0_ext O Pipe interface lane 0 TX compliance control. Always

txdata0_ext[7:0] O Pipe interface lane 0 TX data signals, carries the parallel 
transmit data. Always 

txdatak0_ext O Pipe interface lane 0 TX data K-character flag. Always

txelecidle0_ext O Pipe interface lane 0 TX electrical idle control. Always

rxdata1_ext[7:0] I Pipe interface lane 1 RX data signals, carries the parallel 
received data. Only in ×4 



14–10 Chapter 14: External PHYs
Selecting an External PHY

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Selecting an External PHY 
You can select an external PHY and set the appropriate options in the parameter 
editor.

■ Select the specific PHY.

rxdatak1_ext I Pipe interface lane 1 RX data K-character flag. Only in ×4 

rxelecidle1_ext I Pipe interface lane 1 RX electrical idle indication. Only in ×4 

rxpolarity1_ext O Pipe interface lane 1 RX polarity inversion control. Only in ×4 

rxstatus1_ext[1:0] I Pipe interface lane 1 RX status flags. Only in ×4 

rxvalid1_ext I Pipe interface lane 1 RX valid indication. Only in ×4 

txcompl1_ext O Pipe interface lane 1 TX compliance control. Only in ×4 

txdata1_ext[7:0] O Pipe interface lane 1 TX data signals, carries the parallel 
transmit data. Only in ×4 

txdatak1_ext O Pipe interface lane 1 TX data K-character flag. Only in ×4 

txelecidle1_ext O Pipe interface lane 1 TX electrical idle control. Only in ×4 

rxdata2_ext[7:0] I Pipe interface lane 2 RX data signals, carries the parallel 
received data. Only in ×4 

rxdatak2_ext I Pipe interface lane 2 RX data K-character flag. Only in ×4 

rxelecidle2_ext I Pipe interface lane 2 RX electrical idle indication. Only in ×4 

rxpolarity2_ext O Pipe interface lane 2 RX polarity inversion control. Only in ×4 

rxstatus2_ext[1:0] I Pipe interface lane 2 RX status flags. Only in ×4 

rxvalid2_ext I Pipe interface lane 2 RX valid indication. Only in ×4 

txcompl2_ext O Pipe interface lane 2 TX compliance control. Only in ×4 

txdata2_ext[7:0] O Pipe interface lane 2 TX data signals, carries the parallel 
transmit data. Only in ×4 

txdatak2_ext O Pipe interface lane 2 TX data K-character flag. Only in ×4 

txelecidle2_ext O Pipe interface lane 2 TX electrical idle control. Only in ×4 

rxdata3_ext[7:0] I Pipe interface lane 3 RX data signals, carries the parallel 
received data. Only in ×4 

rxdatak3_ext I Pipe interface lane 3 RX data K-character flag. Only in ×4 

rxelecidle3_ext I Pipe interface lane 3 RX electrical idle indication. Only in ×4 

rxpolarity3_ext O Pipe interface lane 3 RX polarity inversion control. Only in ×4 

rxstatus3_ext[1:0] I Pipe interface lane 3 RX status flags. Only in ×4 

rxvalid3_ext I Pipe interface lane 3 RX valid indication. Only in ×4 

txcompl3_ext O Pipe interface lane 3 TX compliance control. Only in ×4 

txdata3_ext[7:0] O Pipe interface lane 3 TX data signals, carries the parallel 
transmit data. Only in ×4 

txdatak3_ext O Pipe interface lane 3 TX data K-character flag. Only in ×4 

txelecidle3_ext O Pipe interface lane 3 TX electrical idle control. Only in ×4 

Table 14–3. 8-bit PHY Interface Signals (Part 2 of 2)

Signal Name Direction Description Availability



Chapter 14: External PHYs 14–11
External PHY Constraint Support

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ Select the type of interface to the PHY by selecting Custom in the PHY type list. 
Several PHYs have multiple interface modes.

Table 14–4 summarizes the PHY support matrix. For every supported PHY type and 
interface, the table lists the allowed lane widths. 

The TI XIO1100 device has some additional control signals that need to be driven by 
your design. These can be statically pulled high or low in the board design, unless 
additional flexibility is needed by your design and you want to drive them from the 
Altera device. These signals are shown in the following list:

■ P1_SLEEP must be pulled low. The IP Compiler for PCI Express requires the refclk 
(RX_CLK from the XIO1100) to remain active while in the P1 powerdown state.

■ DDR_EN must be pulled high if your variation of the IP Compiler for PCI Express 
uses the 8-bit DDR (w/TXClk) mode. It must be pulled low if the 16-bit SDR 
(w/TXClk) mode is used.

■ CLK_SEL must be set correctly based on the reference clock provided to the 
XIO1100. Consult the XIO1100 data sheet for specific recommendations. 

External PHY Constraint Support
The IP Compiler for PCI Express supports various location and timing constraints. 
When you parameterize and generate your IP core, the Quartus II software creates a 
Tcl file that runs when you compile your design. The Tcl file incorporates the 
following constraints that you specify when you parameterize and generate during 
parameterization. 

■ refclk (pclk from the PHY) frequency constraint (125 MHz or 250 MHz)

■ Setup and hold constraints for the input signals

■ Clock-to-out constraints for the output signals

■ I/O interface standard 

Altera also provides an SDC file with the same constraints. The TimeQuest timing 
analyzer uses the SDC file.

1 You may need to modify the timing constraints to take into account the specific 
constraints of your external PHY and your board design. 

Table 14–4. External PHY Support Matrix

PHY Type Allowed Interfaces and Lanes

16-bit
SDR

(pclk only)

16-bit
SDR

(w/TXClk)

8-bit
DDR

(pclk only)

8-bit
DDR

(w/TXClk)

8-bit
DDR/SDR
(w/TXClk)

8-bit
SDR

(pclk only)

8-bit
SDR

(w/TXClk)

Serial

Interface

Arria GX - - - - - - -  ×1, ×4

Stratix II GX - - - - - - -  ×1, ×4, ×8

Stratix IV GX - - - - - - -  ×1, ×4, ×8

TI XIO1100 -  ×1 - -  ×1 - - -

NXP PX1011A - - - - - -  ×1 -

Custom  ×1, ×4  ×1, ×4  ×1, ×4  ×1, ×4 -  ×1, ×4  ×1, ×4 -



14–12 Chapter 14: External PHYs
External PHY Constraint Support

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

1 To meet timing for the external PHY in the Cyclone III family, you must avoid using 
dual-purpose VREF pins.

If you are using an external PHY with a design that does not target a Cyclone II 
device, you might need to modify the PLL instance required by some external PHYs 
to function correctly. 

To modify the PLL instance, follow these steps: 

1. Copy the PLL source file referenced in your variation file from the 
<path>/ip/ip_compiler_for_pci_express/lib directory, where <path> is the 
directory in which you installed the IP Compiler for PCI Express, to your project 
directory.

2. Use the parameter editor to edit the PLL to specify the device that the PLL uses. 

3. Add the modified PLL source file to your Quartus II project.



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

15. Testbench and Design Example

This chapter introduces the root port or endpoint design example including a 
testbench, BFM, and a test driver module. When you create an IP Compiler for PCI 
Express variation using the IP Catalog and parameter editor, as described in 
Chapter 2, Getting Started, the IP Compiler for PCI Express generates a design 
example and testbench customized to your variation. This design example is not 
generated when using the Qsys design flow.

When configured as an endpoint variation, the testbench instantiates a design 
example and a root port BFM, which provides the following functions:

■ A configuration routine that sets up all the basic configuration registers in the 
endpoint. This configuration allows the endpoint application to be the target and 
initiator of PCI Express transactions.

■ A VHDL/Verilog HDL procedure interface to initiate PCI Express transactions to 
the endpoint. 

The testbench uses a test driver module, altpcietb_bfm_driver_chaining, to exercise 
the chaining DMA of the design example. The test driver module displays 
information from the endpoint configuration space registers, so that you can correlate 
to the parameters you specified using the parameter editor.

When configured as a root port, the testbench instantiates a root port design example 
and an endpoint model, which provides the following functions:

■ A configuration routine that sets up all the basic configuration registers in the root 
port and the endpoint BFM. This configuration allows the endpoint application to 
be the target and initiator of PCI Express transactions.

■ A Verilog HDL procedure interface to initiate PCI Express transactions to the 
endpoint BFM. 

The testbench uses a test driver module, altpcietb_bfm_driver_rp, to exercise the 
target memory and DMA channel in the endpoint BFM. The test driver module 
displays information from the root port configuration space registers, so that you can 
correlate to the parameters you specified using the parameter editor. The endpoint 
model consists of an endpoint variation combined with the chaining DMA 
application described above.

PCI Express link monitoring and error injection capabilities are limited to those 
provided by the IP core’s test_in and test_out signals. The following sections 
describe the testbench, the design example, root port and endpoint BFMs in detail.

1 The Altera testbench and root port or endpoint BFM provide a simple method to do 
basic testing of the application layer logic that interfaces to the variation. However, 
the testbench and root port BFM are not intended to be a substitute for a full 
verification environment. To thoroughly test your application, Altera suggests that 
you obtain commercially available PCI Express verification IP and tools, or do your 
own extensive hardware testing or both. 

August 2014
<edit Part Number variable in chapter>



15–2 Chapter 15: Testbench and Design Example
Endpoint Testbench

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Your application layer design may need to handle at least the following scenarios that 
are not possible to create with the Altera testbench and the root port BFM:

■ It is unable to generate or receive vendor defined messages. Some systems 
generate vendor defined messages and the application layer must be designed to 
process them. The IP core passes these messages on to the application layer which 
in most cases should ignore them, but in all cases using the descriptor/data 
interface must issue an rx_ack to clear the message from the RX buffer.

■ It can only handle received read requests that are less than or equal to the 
currently set Maximum payload size option specified on Buffer Setup page using 
the parameter editor. Many systems are capable of handling larger read requests 
that are then returned in multiple completions. 

■ It always returns a single completion for every read request. Some systems split 
completions on every 64-byte address boundary.

■ It always returns completions in the same order the read requests were issued. 
Some systems generate the completions out-of-order. 

■ It is unable to generate zero-length read requests that some systems generate as 
flush requests following some write transactions. The application layer must be 
capable of generating the completions to the zero length read requests.

■ It uses fixed credit allocation.

The chaining DMA design example provided with the IP core handles all of the above 
behaviors, even though the provided testbench cannot test them.

1 To run the testbench at the Gen1 data rate, you must have the Stratix II GX device 
family installed. To run the testbench at the Gen2 data rate, you must have the 
Stratix IV GX device family installed. 

Additionally PCI Express link monitoring and error injection capabilities are limited 
to those provided by the IP core’s test_in and test_out signals. The testbench and 
root port BFM do not NAK any transactions. 

Endpoint Testbench
The testbench is provided in the subdirectory <variation_name>_examples
/chaining_dma/testbench in your project directory. The testbench top level is named 
<variation_name>_chaining_testbench.



Chapter 15: Testbench and Design Example 15–3
Endpoint Testbench

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

This testbench simulates up to an ×8 PCI Express link using either the PIPE interfaces 
of the root port and endpoints or the serial interface. The testbench design does not 
allow more than one PCI Express link to be simulated at a time. Figure 15–1 presents a 
high level view of the testbench. 

The top-level of the testbench instantiates four main modules:

■ <variation name>_example_chaining_pipen1b—This is the example endpoint 
design that includes your variation of the IP core variation. For more information 
about this module, refer to “Chaining DMA Design Example” on page 15–6.

■ altpcietb_bfm_rp_top_x8_pipen1b—This is the root port PCI Express BFM. For 
detailed information about this module, refer to“Root Port BFM” on page 15–26.

■ altpcietb_pipe_phy—There are eight instances of this module, one per lane. These 
modules interconnect the PIPE MAC layer interfaces of the root port and the 
endpoint. The module mimics the behavior of the PIPE PHY layer to both MAC 
interfaces.

■ altpcietb_bfm_driver_chaining—This module drives transactions to the root port 
BFM. This is the module that you modify to vary the transactions sent to the 
example endpoint design or your own design. For more information about this 
module, refer to “Root Port Design Example” on page 15–22.

In addition, the testbench has routines that perform the following tasks:

■ Generates the reference clock for the endpoint at the required frequency. 

■ Provides a reset at start up. 

Figure 15–1. Testbench Top-Level Module for Endpoint Designs 

Testbench Top Level (<variation name>_testbench)

Endpoint Example Design PIPE Interconnection
Module (x8)

(altpcierd_pipe_phy)

Root Port BFM
(altpcietb_bfm_rp_top_x8_pipen1b)

Test Driver Module
(altpcietb_bfm_driver_chaining)

 

Chaining DMA

<variation name>_example_
chaining_pipen1b.v



15–4 Chapter 15: Testbench and Design Example
Root Port Testbench

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The testbench has several VHDL generics/Verilog HDL parameters that control the 
overall operation of the testbench. These generics are described in Table 15–1.

Root Port Testbench
The root port testbench is provided in the subdirectory <variation_name>_examples/
root_port/testbench in your project directory. The top-level testbench is named 
<variation_name>_rp_testbench. Figure 15–2 presents a high level view of the 
testbench.

This testbench simulates up to an ×8 PCI Express link using either the PIPE interfaces 
of the root port and endpoints or the serial interface. The testbench design does not 
allow more than one PCI Express link to be simulated at a time. The top-level of the 
testbench instantiates four main modules:

Table 15–1. Testbench VHDL Generics /Verilog HDL Parameters

Generic/Parameter Allowed 
Values

Default 
Value Description

PIPE_MODE_SIM 0 or 1 1

Selects the PIPE interface (PIPE_MODE_SIM=1) or the serial 
interface (PIPE_MODE_SIM= 0) for the simulation. The PIPE 
interface typically simulates much faster than the serial 
interface. If the variation name file only implements the PIPE 
interface, then setting PIPE_MODE_SIM to 0 has no effect and 
the PIPE interface is always used. 

NUM_CONNECTED_LANES 1,2,4,8 8

Controls how many lanes are interconnected by the testbench. 
Setting this generic value to a lower number simulates the 
endpoint operating on a narrower PCI Express interface than 
the maximum. 

If your variation only implements the ×1 IP core, then this 
setting has no effect and only one lane is used.

FAST_COUNTERS 0 or 1 1

Setting this parameter to a 1 speeds up simulation by making 
many of the timing counters in the IP Compiler for PCI Express 
operate faster than specified in the PCI Express 
specification.This parameter should usually be set to 1, but can 
be set to 0 if there is a need to simulate the true time-out 
values.

Figure 15–2. Testbench Top-Level Module for Root Port Designs

Root Port DUT

(altpcierd_pipe_phy) 

PIPE Interconnection
Module x8

EP Model
(altpcietb_bfm_ep_example_chaining_pipen1b)(<variation_name>_example_rp_pipen1b)

Testbench Top-Level (<variation_name>_testbench)

Root Port BFM
(altpcietb_bfm_driver_rp)



Chapter 15: Testbench and Design Example 15–5
Root Port Testbench

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ <variation name>_example_rp_pipen1b—This is the example root port design that 
includes your variation of the IP core. For more information about this module, 
refer to “Root Port Design Example” on page 15–22.

■ altpcietb_bfm_ep_example_chaining_pipen1b—This is the endpoint PCI 
Express model. The EP BFM consists of a Gen2 ×8 IP core endpoint connected to 
the chaining DMA design example described in the section “Chaining DMA 
Design Example” on page 15–6. Table 15–2 shows the parameterization of the 
Gen2 ×8 IP core endpoint. 

■ altpcietb_pipe_phy—There are eight instances of this module, one per lane. These 
modules connect the PIPE MAC layer interfaces of the root port and the endpoint. 
The module mimics the behavior of the PIPE PHY layer to both MAC interfaces.

■ altpcietb_bfm_driver_rp—This module drives transactions to the root port BFM. 
This is the module that you modify to vary the transactions sent to the example 
endpoint design or your own design. For more information about this module, see 
“Test Driver Module” on page 15–18.

The testbench has routines that perform the following tasks:

■ Generates the reference clock for the endpoint at the required frequency.

■ Provides a reset at start up.

Table 15–2. Gen2 ×8 IP core Endpoint Parameterization

Parameter Value

Lanes 8

Port Type Native Endpoint

Max rate Gen2

BAR Type BAR1:0—64–bit Prefetchable Memory, 256 MBytes–28 bits
Bar 2:—32–Bit Non-Prefetchable, 256 KBytes–18 bits

Device ID 0xABCD

Vendor ID 0x1172

Tags supported 32 

MSI messages requested 4

Error Reporting
Implement ECRC check, 
Implement ECRC generations
Implement ECRC generate and forward

Maximum payload size 128 bytes

Number of virtual channels 1



15–6 Chapter 15: Testbench and Design Example
Chaining DMA Design Example

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The testbench has several Verilog HDL parameters that control the overall operation 
of the testbench. These parameters are described in Table 15–3. 

Chaining DMA Design Example 
This design example shows how to create a chaining DMA native endpoint which 
supports simultaneous DMA read and write transactions. The write DMA module 
implements write operations from the endpoint memory to the root complex (RC) 
memory. The read DMA implements read operations from the RC memory to the 
endpoint memory.

When operating on a hardware platform, the DMA is typically controlled by a 
software application running on the root complex processor. In simulation, the 
testbench generated by the IP Compiler for PCI Express, along with this design 
example, provides a BFM driver module in Verilog HDL or VHDL that controls the 
DMA operations. Because the example relies on no other hardware interface than the 
PCI Express link, you can use the design example for the initial hardware validation 
of your system.

The design example includes the following two main components:

■ The IP core variation

■ An application layer design example 

Both components are automatically generated along with a testbench. All of the 
components are generated in the language (Verilog HDL or VHDL) that you selected 
for the variation file.

Table 15–3. Testbench Verilog HDL Parameters for the Root Port Testbench

Parameter Allowed 
Values

Default 
Value Description

PIPE_MODE_SIM 0 or 1 1

Selects the PIPE interface (PIPE_MODE_SIM=1) or the serial 
interface (PIPE_MODE_SIM= 0) for the simulation. The PIPE 
interface typically simulates much faster than the serial 
interface. If the variation name file only implements the PIPE 
interface, then setting PIPE_MODE_SIM to 0 has no effect and 
the PIPE interface is always used. 

NUM_CONNECTED_LANES 1,2,4,8 8

Controls how many lanes are interconnected by the testbench. 
Setting this generic value to a lower number simulates the 
endpoint operating on a narrower PCI Express interface than 
the maximum. 

If your variation only implements the ×1 IP core, then this 
setting has no effect and only one lane is used.

FAST_COUNTERS 0 or 1 1

Setting this parameter to a 1 speeds up simulation by making 
many of the timing counters in the IP Compiler for PCI Express 
operate faster than specified in the PCI Express 
specification.This parameter should usually be set to 1, but can 
be set to 0 if there is a need to simulate the true time-out 
values.



Chapter 15: Testbench and Design Example 15–7
Chaining DMA Design Example

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

1 The chaining DMA design example requires setting BAR 2 or BAR 3 to a minimum of 
256 bytes. To run the DMA tests using MSI, you must set the MSI messages requested 
parameter on the Capabilities page to at least 2. 

The chaining DMA design example uses an architecture capable of transferring a 
large amount of fragmented memory without accessing the DMA registers for every 
memory block. For each block of memory to be transferred, the chaining DMA design 
example uses a descriptor table containing the following information:

■ Length of the transfer

■ Address of the source

■ Address of the destination

■ Control bits to set the handshaking behavior between the software application or 
BFM driver and the chaining DMA module.

The BFM driver writes the descriptor tables into BFM shared memory, from which the 
chaining DMA design engine continuously collects the descriptor tables for DMA 
read, DMA write, or both. At the beginning of the transfer, the BFM programs the 
endpoint chaining DMA control register. The chaining DMA control register indicates 
the total number of descriptor tables and the BFM shared memory address of the first 
descriptor table. After programming the chaining DMA control register, the chaining 
DMA engine continuously fetches descriptors from the BFM shared memory for both 
DMA reads and DMA writes, and then performs the data transfer for each descriptor. 



15–8 Chapter 15: Testbench and Design Example
Chaining DMA Design Example

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 15–3 shows a block diagram of the design example connected to an external 
RC CPU. 

The block diagram contains the following elements:

■ Endpoint DMA write and read requester modules.

■ The chaining DMA design example connects to the Avalon-ST interface of the IP 
Compiler for PCI Express when in Avalon-ST mode, or to the ICM when in 
descriptor/data mode. (Refer to Appendix C, Incremental Compile Module for 
Descriptor/Data Examples). The connections consist of the following interfaces: 

■ The Avalon-ST RX receives TLP header and data information from the IP 
Compiler for PCI Express

■ The Avalon-ST TX transmits TLP header and data information to the IP 
Compiler for PCI Express

■ The Avalon-ST MSI port requests MSI interrupts from the IP Compiler for PCI 
Express

■ The sideband signal bus carries static information such as configuration 
information

■ The descriptor tables of the DMA read and the DMA write are located in the BFM 
shared memory.

■ A RC CPU and associated PCI Express PHY link to the endpoint design example, 
using a root port and a north/south bridge.

Figure 15–3. Top-Level Chaining DMA Example for Simulation (Note 1)

Note to Figure 15–3:

(1) For a description of the DMA write and read registers, refer to Table 15–5 on page 15–14.

Root Complex 

 CPU

Root Port

 Memory

Write
Descriptor

Table

Data

Chaining DMA

Endpoint Memory

Avalon-MM 
interfaces

IP Compiler
for PCI Express

DMA Control/Status Register

DMA Read

Avalon-ST 

Configuration 

PCI Express 
DMA Write

DMA Wr Cntl (0x0-4)

DMA Rd Cntl (0x10-1C)

RC Slave

Read
Descriptor

Table



Chapter 15: Testbench and Design Example 15–9
Chaining DMA Design Example

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ The design example exercises the optional ECRC module when targeting the hard 
IP implementation using a variation with both Implement advanced error 
reporting and ECRC forwarding set to On in the “Capabilities Parameters” on 
page 3–13. 

■ The design example exercises the optional IP Compiler for PCI Express 
reconfiguration block when targeting the hard IP implementation if you selected 
PCIe Reconfig on the System Settings page. Figure 15–4 illustrates this test 
environment. 

The example endpoint design application layer accomplishes the following objectives:

■ Shows you how to interface to the IP Compiler for PCI Express in Avalon-ST 
mode, or in descriptor/data mode through the ICM. Refer to Appendix B, IP 
Compiler for PCI Express Core with the Descriptor/Data Interface.

■ Provides a chaining DMA channel that initiates memory read and write 
transactions on the PCI Express link.

■ If the ECRC forwarding functionality is enabled, provides a CRC Compiler IP core 
to check the ECRC dword from the Avalon-ST RX path and to generate the ECRC 
for the Avalon-ST TX path.

■ If the IP Compiler for PCI Express reconfiguration block functionality is enabled, 
provides a test that increments the Vendor ID register to demonstrate this 
functionality.

You can use the example endpoint design in the testbench simulation and compile a 
complete design for an Altera device. All of the modules necessary to implement the 
design example with the variation file are contained in one of the following files, 
based on the language you use:

<variation name>_examples/chaining_dma/example_chaining.vhd 
or
<variation name>_examples/chaining_dma/example_chaining.v 

These files are created in the project directory when files are generated. 

Figure 15–4. Top-Level Chaining DMA Example for Simulation—Hard IP Implementation with PCIE Reconfig Block

Root Complex 

<variant>_plus 

 CPU

Root Port

 Memory

Read
Descriptor

Table

Write
Descriptor

Table

Data

Chaining DMA

Endpoint Memory

Avalon-MM 
interfaces

IP Compiler
for PCI Express 

(Hard IP
Implementation)

Reset

Calibration

Control Register

DMA Read

Avalon-ST 

Avalon-MM 

Configuration

PCI Express 
DMA Write

RC Slave

PCIE Reconfig
Driver

CBB Test
Driver

to test_in[5,32]  altpcierd_compliance_test.v



15–10 Chapter 15: Testbench and Design Example
Chaining DMA Design Example

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The following modules are included in the design example and located in the 
subdirectory <variation name>_example/chaining_dma:

■ <variation name>_example_pipen1b—This module is the top level of the example 
endpoint design that you use for simulation. This module is contained in the 
following files produced by the parameter editor: 

<variation name>_example_chaining_top.vhd, and 
<variation name>_example_chaining_top.v

This module provides both PIPE and serial interfaces for the simulation 
environment. This module has two debug ports named test_out_icm (which is 
either the test_out_icm signal from the Incremental Compile Module in 
descriptor/data example designs or the test_out signal from the IP core in 
Avalon-ST example designs) and test_in. Refer to “Test Interface Signals—
Hard IP Implementation” on page 5–59 which allow you to monitor and control 
internal states of the IP core.

For synthesis, the top level module is <variation_name>_example_chaining_top. 
This module instantiates the module <variation name>_example_pipen1b and 
propagates only a small sub-set of the test ports to the external I/Os. These test 
ports can be used in your design. 

■ <variation name>.v or <variation name>.vhd—The parameter editor creates this 
variation name module when it generates files based on the parameters that you 
set. For simulation purposes, the IP functional simulation model produced by the 
parameter editor. The IP functional simulation model is either the <variation 
name>.vho or <variation name>.vo file. The Quartus II software uses the associated 
<variation name>.vhd or <variation name>.v file during compilation. For 
information on producing a functional simulation model, see the Chapter 2, 
Getting Started.

The chaining DMA design example hierarchy consists of these components:

■ A DMA read and a DMA write module

■ An on-chip endpoint memory (Avalon-MM slave) which uses two Avalon-MM 
interfaces for each engine

■ The RC slave module is used primarily for downstream transactions which target 
the endpoint on-chip buffer memory. These target memory transactions bypass the 
DMA engines. In addition, the RC slave module monitors performance and 
acknowledges incoming message TLPs. 

Each DMA module consists of these components:

■ Control register module—The RC programs the control register (four dwords) 
to start the DMA.

■ Descriptor module—The DMA engine fetches four dword descriptors from 
BFM shared memory which hosts the chaining DMA descriptor table.

■ Requester module—For a given descriptor, the DMA engine performs the 
memory transfer between endpoint memory and the BFM shared memory.



Chapter 15: Testbench and Design Example 15–11
Chaining DMA Design Example

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

The following modules are provided in both Verilog HDL and VHDL, and reflect each 
hierarchical level:

■ altpcierd_example_app_chaining—This top level module contains the logic 
related to the Avalon-ST interfaces as well as the logic related to the sideband 
bus. This module is fully register bounded and can be used as an incremental 
re-compile partition in the Quartus II compilation flow.

■ altpcierd_cdma_ast_rx, altpcierd_cdma_ast_rx_64, 
altpcierd_cdma_ast_rx_128—These modules implement the Avalon-ST receive 
port for the chaining DMA. The Avalon-ST receive port converts the Avalon-ST 
interface of the IP core to the descriptor/data interface used by the chaining 
DMA submodules. altpcierd_cdma_ast_rx is used with the descriptor/data IP 
core (through the ICM). altpcierd_cdma_ast_rx_64 is used with the 64-bit 
Avalon-ST IP core. altpcierd_cdma_ast_rx_128 is used with the 128-bit Avalon-
ST IP core. 

■ altpcierd_cdma_ast_tx, altpcierd_cdma_ast_tx_64, 
altpcierd_cdma_ast_tx_128—These modules implement the Avalon-ST 
transmit port for the chaining DMA. The Avalon-ST transmit port converts the 
descriptor/data interface of the chaining DMA submodules to the Avalon-ST 
interface of the IP core. altpcierd_cdma_ast_tx is used with the descriptor/data 
IP core (through the ICM). altpcierd_cdma_ast_tx_64 is used with the 64-bit 
Avalon-ST IP core. altpcierd_cdma_ast_tx_128 is used with the 128-bit Avalon-
ST IP core. 

■ altpcierd_cdma_ast_msi—This module converts MSI requests from the 
chaining DMA submodules into Avalon-ST streaming data. This module is 
only used with the descriptor/data IP core (through the ICM).

■ alpcierd_cdma_app_icm—This module arbitrates PCI Express packets for the 
modules altpcierd_dma_dt (read or write) and altpcierd_rc_slave. 
alpcierd_cdma_app_icm instantiates the endpoint memory used for the DMA 
read and write transfer.

■ altpcierd_compliance_test.v—This module provides the logic to perform CBB 
via a push button. 

■ altpcierd_rc_slave—This module provides the completer function for all 
downstream accesses. It instantiates the altpcierd_rxtx_downstream_intf and 
altpcierd_reg_access modules. Downstream requests include programming of 
chaining DMA control registers, reading of DMA status registers, and direct 
read and write access to the endpoint target memory, bypassing the DMA.

■ altpcierd_rx_tx_downstream_intf—This module processes all downstream 
read and write requests and handles transmission of completions. Requests 
addressed to BARs 0, 1, 4, and 5 access the chaining DMA target memory 
space. Requests addressed to BARs 2 and 3 access the chaining DMA control 
and status register space using the altpcierd_reg_access module.

■ altpcierd_reg_access—This module provides access to all of the chaining DMA 
control and status registers (BAR 2 and 3 address space). It provides address 
decoding for all requests and multiplexing for completion data. All registers 
are 32-bits wide. Control and status registers include the control registers in the 
altpcierd_dma_prog_reg module, status registers in the 
altpcierd_read_dma_requester and altpcierd_write_dma_requester modules, 



15–12 Chapter 15: Testbench and Design Example
Chaining DMA Design Example

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

as well as other miscellaneous status registers.

■ altpcierd_dma_dt—This module arbitrates PCI Express packets issued by the 
submodules altpcierd_dma_prg_reg, altpcierd_read_dma_requester, 
altpcierd_write_dma_requester and altpcierd_dma_descriptor.

■ altpcierd_dma_prg_reg—This module contains the chaining DMA control 
registers which get programmed by the software application or BFM driver. 

■ altpcierd_dma_descriptor—This module retrieves the DMA read or write 
descriptor from the BFM shared memory, and stores it in a descriptor FIFO. 
This module issues upstream PCI Express TLPs of type Mrd. 

■ altpcierd_read_dma_requester, altpcierd_read_dma_requester_128—For each 
descriptor located in the altpcierd_descriptor FIFO, this module transfers data 
from the BFM shared memory to the endpoint memory by issuing MRd PCI 
Express transaction layer packets. altpcierd_read_dma_requester is used with 
the 64-bit Avalon-ST IP core. altpcierd_read_dma_requester_128 is used with 
the 128-bit Avalon-ST IP core.

■ altpcierd_write_dma_requester, altpcierd_write_dma_requester_128—For 
each descriptor located in the altpcierd_descriptor FIFO, this module transfers 
data from the endpoint memory to the BFM shared memory by issuing MWr 
PCI Express transaction layer packets. altpcierd_write_dma_requester is used 
with the 64-bit Avalon-ST IP core. altpcierd_write_dma_requester_128 is used 
with the 128-bit Avalon-ST IP core.

■ altpcierd_cpld_rx_buffer—This modules monitors the available space of the 
RX Buffer; It prevents RX Buffer overflow by arbitrating memory read request 
issued by the application. 

■ altpcierd_cdma_ecrc_check_64,   altpcierd_cdma_ecrc_check_128—This 
module checks for and flags PCI Express ECRC errors on TLPs as they are 
received on the Avalon-ST interface of the chaining DMA.   
altpcierd_cdma_ecrc_check_64 is used with the 64-bit Avalon-ST IP core. 
altpcierd_cdma_ecrc_check_128 is used with the 128-bit Avalon-ST IP core.

■ altpcierd_cdma_rx_ecrc_64.v, altpcierd_cdma_rx_ecrc_64_altcrc.v, 
altpcierd_cdma_rx_ecrc_64.vo—These modules contain the CRC32 checking 
Megafunction used in the altpcierd_ecrc_check_64 module. The .v files are 
used for synthesis. The .vo file is used for simulation.

■ altpcierd_cdma_ecrc_gen—This module generates PCI Express ECRC and 
appends it to the end of the TLPs transmitted on the Avalon-ST TX interface of 
the chaining DMA. This module instantiates the altpcierd_cdma_gen_ctl_64, 
altpcierd_cdma_gen_ctl_128, and altpcierd_cdma_gen_datapath modules.

■ altpcierd_cdma_ecrc_gen_ctl_64, altpcierd_cdma_ecrc_gen_ctl_128—This 
module controls the data stream going to the altpcierd_cdma_tx_ecrc module 
for ECRC calculation, and generates controls for the main datapath 
(altpcierd_cdma_ecrc_gen_datapath).

■ altpcierd_cdma_ecrc gen_datapath—This module routes the Avalon-ST data 
through a delay pipe before sending it across the Avalon-ST interface to the IP 
core to ensure the ECRC is available when the end of the TLP is transmitted 
across the Avalon-ST interface.

■ altpcierd_cdma_ecrc_gen_calc—This module instantiates the TX ECRC core.



Chapter 15: Testbench and Design Example 15–13
Chaining DMA Design Example

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ altpcierd_cdma_tx_ecrc_64.v, altpcierd_cdma_tx_ecrc_64_altcrc.v, 
altpcierd_cdma_tx_ecrc_64.vo—These modules contain the CRC32 generation 
megafunction used in the altpcierd_ecrc_gen module. The .v files are used for 
synthesis. The .vo file is used for simulation.

■ altpcierd_tx_ecrc_data_fifo, altpcierd_tx_ecrc_ctl_fifo, 
altpcierd_tx_ecrc_fifo—These are FIFOs that are used in the ECRC generator 
modules in altpcierd_cdma_ecrc_gen.

■ altpcierd_pcie_reconfig—This module is instantiated when the PCIE reconfig 
option on the System Settings page is turned on. It consists of a Avalon-MM 
master which drives the PCIE reconfig Avalon-MM slave of the device under 
test. The module performs the following sequence using the Avalon-MM 
interface prior to any IP Compiler for PCI Express configuration sequence:

a. Turns on PCIE reconfig mode and resets the reconfiguration circuitry in the 
hard IP implementation by writing 0x2 to PCIE reconfig address 0x0 and 
asserting the reset signal, npor.

b. Reads the PCIE vendor ID register at PCIE reconfig address 0x89.

c. Increments the vendor ID register by one and writes it back to PCIE reconfig 
address 0x89.

d. Removes the hard IP reconfiguration circuitry and SERDES from the reset state 
by deasserting npor.

■ altpcierd_cplerr_lmi—This module transfers the err_desc_func0 from the 
application to the PCE Express hard IP using the LMI interface.   It also retimes 
the cpl_err bits from the application to the hard IP. This module is only used 
with the hard IP implementation of the IP core.

■ altpcierd_tl_cfg_sample—This module demultiplexes the configuration space 
signals from the tl_cfg_ctl bus from the hard IP and synchronizes this 
information, along with the tl_cfg_sts bus to the user clock (pld_clk) 
domain. This module is only used with the hard IP implementation.

Design Example BAR/Address Map
The design example maps received memory transactions to either the target memory 
block or the control register block based on which BAR the transaction matches. There 
are multiple BARs that map to each of these blocks to maximize interoperability with 
different variation files. Table 15–4 shows the mapping. 

Table 15–4. Design Example BAR Map 

Memory BAR Mapping

32-bit BAR0

32-bit BAR1

64-bit BAR1:0

Maps to 32 KByte target memory block. Use the rc_slave module to bypass the chaining DMA. 

32-bit BAR2

32-bit BAR3

64-bit BAR3:2

Maps to DMA Read and DMA write control and status registers, a minimum of 256 bytes. 



15–14 Chapter 15: Testbench and Design Example
Chaining DMA Design Example

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Chaining DMA Control and Status Registers
The software application programs the chaining DMA control register located in the 
endpoint application. Table 15–5 describes the control registers which consists of four 
dwords for the DMA write and four dwords for the DMA read. The DMA control 
registers are read/write. 

Table 15–6 describes the control fields of the of the DMA read and DMA write control 
registers.

32-bit BAR4

32-bit BAR5
64-bit BAR5:4

Maps to 32  KByte target memory block. Use the rc_slave module to bypass the chaining DMA.

Expansion ROM BAR Not implemented by design example; behavior is unpredictable.

I/O Space BAR (any) Not implemented by design example; behavior is unpredictable.

Table 15–4. Design Example BAR Map 

Table 15–5. Chaining DMA Control Register Definitions (Note 1)

Addr 
(2) Register Name 3124 2316 150

0x0 DMA Wr Cntl DW0 Control Field (refer to Table 15–6) Number of descriptors in descriptor table

0x4 DMA Wr Cntl DW1 Base Address of the Write Descriptor Table (BDT) in the RC Memory–Upper DWORD

0x8 DMA Wr Cntl DW2 Base Address of the Write Descriptor Table (BDT) in the RC Memory–Lower DWORD

0xC DMA Wr Cntl DW3 Reserved RCLAST–Idx of last descriptor to process

0x10 DMA Rd Cntl DW0 Control Field (refer to Table 15–6) Number of descriptors in descriptor table

0x14 DMA Rd Cntl DW1 Base Address of the Read Descriptor Table (BDT) in the RC Memory–Upper DWORD

0x18 DMA Rd Cntl DW2 Base Address of the Read Descriptor Table (BDT) in the RC Memory–Lower DWORD

0x1C DMA Rd Cntl DW3 Reserved RCLAST–Idx of the last descriptor to process

Note to Table 15–5:

(1) Refer to Figure 15–3 on page 15–8 for a block diagram of the chaining DMA design example that shows these registers.
(2) This is the endpoint byte address offset from BAR2 or BAR3.

Table 15–6. Bit Definitions for the Control Field in the DMA Write Control Register and DMA Read Control Register 

Bit Field Description

16 Reserved —

17 MSI_ENA
Enables interrupts of all descriptors. When 1, the endpoint DMA module issues an 
interrupt using MSI to the RC when each descriptor is completed. Your software 
application or BFM driver can use this interrupt to monitor the DMA transfer status.

18 EPLAST_ENA
Enables the endpoint DMA module to write the number of each descriptor back to 
the EPLAST field in the descriptor table. Table 15–10 describes the descriptor 
table.

[24:20] MSI Number

When your RC reads the MSI capabilities of the endpoint, these register bits map to 
the IP Compiler for PCI Express back-end MSI signals app_msi_num [4:0]. If there 
is more than one MSI, the default mapping if all the MSIs are available, is:

■ MSI 0 = Read

■ MSI 1 = Write



Chapter 15: Testbench and Design Example 15–15
Chaining DMA Design Example

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 15–7 defines the DMA status registers. These registers are read only.

Table 15–8 describes the fields of the DMA write status register. All of these fields are 
read only.

[30:28] MSI Traffic Class
When the RC application software reads the MSI capabilities of the endpoint, this 
value is assigned by default to MSI traffic class 0. These register bits map to the IP 
Compiler for PCI Express back-end signal app_msi_tc[2:0].

31 DT RC Last Sync

When 0, the DMA engine stops transfers when the last descriptor has been 
executed. When 1, the DMA engine loops infinitely restarting with the first 
descriptor when the last descriptor is completed. To stop the infinite loop, set this 
bit to 0.

Table 15–6. Bit Definitions for the Control Field in the DMA Write Control Register and DMA Read Control Register 

Bit Field Description

Table 15–7. Chaining DMA Status Register Definitions

Addr (2) Register Name 3124 2316 150

0x20 DMA Wr Status Hi For field definitions refer to Table 15–8

0x24 DMA Wr Status Lo
Target Mem Address 

Width

Write DMA Performance Counter. (Clock cycles from 
time DMA header programmed until last descriptor 
completes, including time to fetch descriptors.)

0x28 DMA Rd Status Hi
For field definitions refer to Table 15–9

0x2C DMA Rd Status Lo Max No. of Tags

Read DMA Performance Counter. The number of clocks 
from the time the DMA header is programmed until the 
last descriptor completes, including the time to fetch 
descriptors.

0x30 Error Status Reserved

Error Counter. Number of bad 
ECRCs detected by the 
application layer. Valid only 
when ECRC forwarding is 
enabled.

Note to Table 15–7:

(1) This is the endpoint byte address offset from BAR2 or BAR3.

Table 15–8. Fields in the DMA Write Status High Register

Bit Field Description

[31:28] CDMA version Identifies the version of the chaining DMA example design.

[27:26] Core type

Identifies the core interface. The following encodings are defined:

■ 01 Descriptor/Data Interface

■ 10 Avalon-ST soft IP implementation

■ 00 Other

[25:24] Reserved —



15–16 Chapter 15: Testbench and Design Example
Chaining DMA Design Example

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 15–9 describes the fields in the DMA read status high register. All of these fields 
are read only.

[23:21] Max payload size

The following encodings are defined:

■ 001 128 bytes

■ 001 256 bytes

■ 010 512 bytes

■ 011 1024 bytes

■ 100 2048 bytes

[20:17] Reserved —

16 Write DMA descriptor FIFO empty Indicates that there are no more descriptors pending in the write DMA.

[15:0] Write DMA EPLAST Indicates the number of the last descriptor completed by the write DMA.

Table 15–8. Fields in the DMA Write Status High Register

Bit Field Description

Table 15–9. Fields in the DMA Read Status High Register

Bit Field Description

[31:25] Board number

Indicates to the software application which board is being used. The 
following encodings are defined:

■ 0 Altera Stratix II GX ×1

■ 1 Altera Stratix II GX ×4

■ 2 Altera Stratix II GX ×8

■ 3 Cyclone II ×1

■ 4 Arria GX ×1

■ 5 Arria GX ×4

■ 6 Custom PHY ×1

■ 7 Custom PHY ×4

24 Reserved —

[23:21] Max Read Request Size

The following encodings are defined:

■ 001 128 bytes

■ 001 256 bytes

■ 010 512 bytes

■ 011 1024 bytes

■ 100 2048 bytes

[20:17] Negotiated Link Width

The following encodings are defined:

■ 0001 ×1

■ 0010 ×2

■ 0100 ×4

■ 1000 ×8

16 Read DMA Descriptor FIFO Empty Indicates that there are no more descriptors pending in the read DMA.

[15:0] Read DMA EPLAST Indicates the number of the last descriptor completed by the read DMA.



Chapter 15: Testbench and Design Example 15–17
Chaining DMA Design Example

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Chaining DMA Descriptor Tables
Table 15–10 describes the Chaining DMA descriptor table which is stored in the BFM 
shared memory. It consists of a four-dword descriptor header and a contiguous list of 
<n> four-dword descriptors. The endpoint chaining DMA application accesses the 
Chaining DMA descriptor table for two reasons:

■ To iteratively retrieve four-dword descriptors to start a DMA

■ To send update status to the RP, for example to record the number of descriptors 
completed to the descriptor header 

Each subsequent descriptor consists of a minimum of four dwords of data and 
corresponds to one DMA transfer. (A dword equals 32 bits.)

1 Note that the chaining DMA descriptor table should not cross a 4 KByte boundary.

Table 15–10. Chaining DMA Descriptor Table 

Byte Address Offset to 
Base Source Descriptor Type Description

0x0

Descriptor Header

Reserved

0x4 Reserved

0x8 Reserved

0xC

EPLAST - when enabled by the EPLAST_ENA bit 
in the control register or descriptor, this location 
records the number of the last descriptor 
completed by the chaining DMA module.

0x10

Descriptor 0

Control fields, DMA length

0x14 Endpoint address

0x18 RC address upper dword

0x1C RC address lower dword

0x20

Descriptor 1

Control fields, DMA length

0x24 Endpoint address

0x28 RC address upper dword

0x2C RC address lower dword

. . . 

0x ..0

Descriptor <n>

Control fields, DMA length

0x ..4 Endpoint address

0x ..8 RC address upper dword

0x ..C RC address lower dword



15–18 Chapter 15: Testbench and Design Example
Test Driver Module

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table 15–11 shows the layout of the descriptor fields following the descriptor header. 

Each descriptor provides the hardware information on one DMA transfer. Table 15–13 
describes each descriptor field.

Test Driver Module 
The BFM driver module generated by the parameter editor during the generate step is 
configured to test the chaining DMA example endpoint design. The BFM driver 
module configures the endpoint configuration space registers and then tests the 
example endpoint chaining DMA channel. 

For an endpoint VHDL version of this file, see: 
<variation_name>_examples/chaining_dma/testbench/
altpcietb_bfm_driver_chaining.vhd

For an endpoint Verilog HDL file, see: 
<variation_name>_examples/chaining_dma/testbench/
altpcietb_bfm_driver_chaining.v

Table 15–11. Chaining DMA Descriptor Format Map

3122 21 16 150

Reserved Control Fields (refer to Table 15–12) DMA Length

Endpoint Address 

RC Address Upper DWORD

RC Address Lower DWORD

Table 15–12. Chaining DMA Descriptor Format Map (Control Fields)

2118 17 16

Reserved EPLAST_ENA MSI 

Table 15–13. Chaining DMA Descriptor Fields 

Descriptor Field Endpoint
Access RC Access Description 

Endpoint Address R R/W A 32-bit field that specifies the base address of the memory transfer on the 
endpoint site. 

RC Address

Upper DWORD
R R/W Specifies the upper base address of the memory transfer on the RC site.

RC Address 

Lower DWORD
R R/W Specifies the lower base address of the memory transfer on the RC site.

DMA Length R R/W Specifies the number of DMA DWORDs to transfer.

EPLAST_ENA R R/W

This bit is OR’d with the EPLAST_ENA bit of the control register. When 
EPLAST_ENA is set, the endpoint DMA module updates the EPLAST field of 
the descriptor table with the number of the last completed descriptor, in the 
form <0 – n>. (Refer to Table 15–10.)

MSI_ENA R R/W
This bit is OR’d with the MSI bit of the descriptor header. When this bit is set 
the endpoint DMA module sends an interrupt when the descriptor is 
completed.



Chapter 15: Testbench and Design Example 15–19
Test Driver Module

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

For a root port Verilog HDL file, see: 
<variation_name>_examples/rootport/testbench/altpcietb_bfm_driver_rp.v

The BFM test driver module performs the following steps in sequence:

1. Configures the root port and endpoint configuration spaces, which the BFM test 
driver module does by calling the procedure ebfm_cfg_rp_ep, which is part of 
altpcietb_bfm_configure. 

2. Finds a suitable BAR to access the example endpoint design control register space. 
Either BARs 2 or 3 must be at least a 256-byte memory BAR to perform the DMA 
channel test. The find_mem_bar procedure in the altpcietb_bfm_driver_chaining 
does this.

3. If a suitable BAR is found in the previous step, the driver performs the following 
tasks:

■ DMA read—The driver programs the chaining DMA to read data from the 
BFM shared memory into the endpoint memory. The descriptor control fields 
(Table 15–6) are specified so that the chaining DMA completes the following 
steps to indicate transfer completion:

a. The chaining DMA writes the EPLast bit of the “Chaining DMA Descriptor 
Table” on page 15–17 after finishing the data transfer for the first and last 
descriptors.

b. The chaining DMA issues an MSI when the last descriptor has completed.

■ DMA write—The driver programs the chaining DMA to write the data from its 
endpoint memory back to the BFM shared memory. The descriptor control 
fields (Table 15–6) are specified so that the chaining DMA completes the 
following steps to indicate transfer completion:

c. The chaining DMA writes the EPLast bit of the “Chaining DMA Descriptor 
Table” on page 15–17 after completing the data transfer for the first and last 
descriptors. 

d. The chaining DMA issues an MSI when the last descriptor has completed. 

e. The data written back to BFM is checked against the data that was read from 
the BFM. 

f. The driver programs the chaining DMA to perform a test that demonstrates 
downstream access of the chaining DMA endpoint memory.

DMA Write Cycles
The procedure dma_wr_test used for DMA writes uses the following steps:

1. Configures the BFM shared memory. Configuration is accomplished with three 
descriptor tables (Table 15–14, Table 15–15, and Table 15–16).

Table 15–14. Write Descriptor 0

Offset in BFM 
Shared Memory Value Description

DW0 0x810 82 Transfer length in DWORDS and control bits as described in 
Table 15–6 on page 15–14

DW1 0x814 3 Endpoint address 



15–20 Chapter 15: Testbench and Design Example
Test Driver Module

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

2. Sets up the chaining DMA descriptor header and starts the transfer data from the 
endpoint memory to the BFM shared memory. The transfer calls the procedure 
dma_set_header which writes four dwords, DW0:DW3 (Table 15–17), into the 
DMA write register module.

After writing the last dword, DW3, of the descriptor header, the DMA write starts 
the three subsequent data transfers.

DW2 0x818 0 BFM shared memory data buffer 0 upper address value

DW3 0x81c 0x1800 BFM shared memory data buffer 1 lower address value

Data 
Buffer 0 0x1800 Increment by 1 from 

0x1515_0001 
Data content in the BFM shared memory from address: 
0x01800–0x1840

Table 15–14. Write Descriptor 0

Table 15–15. Write Descriptor 1 

Offset in BFM 
Shared Memory Value Description

DW0 0x820 1,024 Transfer length in DWORDS and control bits as described in  on 
page 15–18

DW1 0x824 0 Endpoint address 

DW2 0x828 0 BFM shared memory data buffer 1 upper address value

DW3 0x82c 0x2800 BFM shared memory data buffer 1 lower address value

Data 
Buffer 1 0x02800 Increment by 1 from 

0x2525_0001 Data content in the BFM shared memory from address: 0x02800

Table 15–16. Write Descriptor 2

Offset in BFM 
Shared Memory Value Description

DW0 0x830 644 Transfer length in DWORDS and control bits as described in 
Table 15–6 on page 15–14

DW1 0x834 0 Endpoint address 

DW2 0x838 0 BFM shared memory data buffer 2 upper address value

DW3 0x83c 0x057A0 BFM shared memory data buffer 2 lower address value

Data 
Buffer 2 0x057A0 Increment by 1 from 

0x3535_0001 Data content in the BFM shared memory from address: 0x057A0

Table 15–17. DMA Control Register Setup for DMA Write

Offset in DMA 
Control Register 

(BAR2)
Value Description

DW0 0x0 3 Number of descriptors and control bits as described in Table 15–5 on 
page 15–14

DW1 0x4 0 BFM shared memory descriptor table upper address value

DW2 0x8 0x800 BFM shared memory descriptor table lower address value

DW3 0xc 2 Last valid descriptor 



Chapter 15: Testbench and Design Example 15–21
Test Driver Module

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

3. Waits for the DMA write completion by polling the BFM share memory location 
0x80c, where the DMA write engine is updating the value of the number of 
completed descriptor. Calls the procedures rcmem_poll and msi_poll to determine 
when the DMA write transfers have completed.

DMA Read Cycles
The procedure dma_rd_test used for DMA read uses the following three steps:

1. Configures the BFM shared memory with a call to the procedure 
dma_set_rd_desc_data which sets three descriptor tables (Table 15–18, 
Table 15–19, and Table 15–20).

Table 15–18. Read Descriptor 0

Offset in BFM 
Shared Memory Value Description

DW0 0x910 82 Transfer length in DWORDS and control bits as described in  on 
page 15–18

DW1 0x914 3 Endpoint address value

DW2 0x918 0 BFM shared memory data buffer 0 upper address value

DW3 0x91c 0x8DF0 BFM shared memory data buffer 0 lower address value

Data 
Buffer 0 0x8DF0 Increment by 1 from 

0xAAA0_0001 Data content in the BFM shared memory from address: 0x89F0

Table 15–19. Read Descriptor 1

Offset in BFM 
Shared Memory Value Description

DW0 0x920 1,024 Transfer length in DWORDS and control bits as described in  
on page 15–18

DW1 0x924 0 Endpoint address value

DW2 0x928 10 BFM shared memory data buffer 1 upper address value

DW3 0x92c 0x10900 BFM shared memory data buffer 1 lower address value

Data 
Buffer 1 0x10900 Increment by 1 from 

0xBBBB_0001
Data content in the BFM shared memory from address: 
0x10900

Table 15–20. Read Descriptor 2 

Offset in BFM Shared 
Memory Value Description

DW0 0x930 644 Transfer length in DWORDS and control bits as described 
in  on page 15–18

DW1 0x934 0 Endpoint address value

DW2 0x938 0 BFM shared memory upper address value

DW3 0x93c 0x20EF0 BFM shared memory lower address value

Data 
Buffer 2 0x20EF0 Increment by 1 from 

0xCCCC_0001
Data content in the BFM shared memory from address: 
0x20EF0



15–22 Chapter 15: Testbench and Design Example
Root Port Design Example

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

2. Sets up the chaining DMA descriptor header and starts the transfer data from the 
BFM shared memory to the endpoint memory by calling the procedure 
dma_set_header which writes four dwords, DW0:DW3, (Table 15–21) into the 
DMA read register module.

After writing the last dword of the Descriptor header (DW3), the DMA read starts 
the three subsequent data transfers. 

3. Waits for the DMA read completion by polling the BFM share memory location 
0x90c, where the DMA read engine is updating the value of the number of 
completed descriptors. Calls the procedures rcmem_poll and msi_poll to 
determine when the DMA read transfers have completed.

Root Port Design Example
The design example includes the following primary components:

■ IP Compiler for PCI Express root port variation (<variation_name>.v).

■ VC0:1 Avalon-ST Interfaces (altpcietb_bfm_vc_intf_ast)—handles the transfer of 
PCI Express requests and completions to and from the IP Compiler for PCI 
Express variation using the Avalon-ST interface.

■ Root Port BFM tasks—contains the high-level tasks called by the test driver,   
low-level tasks that request PCI Express transfers from altpcietb_bfm_vc_intf_ast, 
the root port memory space, and simulation functions such as displaying 
messages and stopping simulation. 

Table 15–21. DMA Control Register Setup for DMA Read

Offset in DMA Control 
Registers (BAR2) Value Description

DW0 0x0 3 Number of descriptors and control bits as described in Table 15–5 on 
page 15–14

DW1 0x14 0 BFM shared memory upper address value

DW2 0x18 0x900 BFM shared memory lower address value

DW3 0x1c 2 Last descriptor written



Chapter 15: Testbench and Design Example 15–23
Root Port Design Example

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ Test Driver (altpcietb_bfm_driver_rp.v)—the chaining DMA endpoint test driver 
which configures the root port and endpoint for DMA transfer and checks for the 
successful transfer of data. Refer to the “Test Driver Module” on page 15–18 for a 
detailed description.

You can use the example root port design for Verilog HDL simulation. All of the 
modules necessary to implement the example design with the variation file are 
contained in <variation_name>_example_rp_pipen1b.v. This file is created in the 
<variation_name>_examples/root_port subdirectory of your project when the IP 
Compiler for PCI Express variation is generated.

The parameter editor creates the variation files in the top-level directory of your 
project, including the following files:

■ <variation_name>.v—the top level file of the IP Compiler for PCI Express variation. 
The file instantiates the SERDES and PIPE interfaces, and the parameterized core, 
<variation_name>_core.v.

■ <variation_name>_serdes.v —contains the SERDES.

■ <variation_name>_core.v—used in synthesizing <variation_name>.v. 

■ <variation_name>_core.vo—used in simulating <variation_name>.v.

The following modules are generated for the design example in the subdirectory 
<variation_name>_examples/root_port:

Figure 15–5. Root Port Design Example

IP Compiler
for PCI Express 

Root Port 
Variation

(variation_name.v)

VC1 Avalon-ST Interface
(altpcietb_bfm_vcintf_ast)

Config Bus
(altpcietb_tl_
cfg_sample.v)

Test Driver
(altpcietb_bfm_

driver_rp.v)

<var>_example_rp_pipen1b.v

VC0 Avalon-ST Interface
(altpcietb_bfm_vcintf_ast)

BFM Shared Memory
(altpcietb_bfm_shmem)

BFM Read/Write Shared
Request Procedures
(altpcietb_bfm_rdwr)

BFM Configuration
Procedures

(altpcietb_bfm_configure)

BFM Request Interface
(altpcietb_bfm_req_intf)

BFM Log Interface
(altpcietb_bfm_log)

PCI Express

Root Port BFM Tasks and Shared Memory

Avalon-ST

Avalon-ST



15–24 Chapter 15: Testbench and Design Example
Root Port Design Example

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

■ <variation_name>_example_rp_pipen1b.v—the top-level of the root port design 
example that you use for simulation. This module instantiates the root port IP 
Compiler for PCI Express variation, <variation_name>.v, and the root port 
application altpcietb_bfm_vc_intf_ast. This module provides both PIPE and serial 
interfaces for the simulation environment. This module has two debug ports 
named test_out_icm (which is the test_out signal from the IP core) and test_in 
which allows you to monitor and control internal states of the IP Compiler for PCI 
Express variation. (Refer to “Test Signals” on page 5–58.)

■ <variation_name>_example_rp_top.v—the top level of the root port example 
design that you use for synthesis.   The file instantiates 
<variation_name>_example_rp_pipen1b.v. Note, however, that the synthesized 
design only contains the IP Compiler for PCI Express variation, and not the 
application layer, altpcietb_bfm_vc_intf_ast. Instead, the application is replaced 
with dummy signals in order to preserve the variant's application interface. This 
module is provided so that you can compile the variation in the Quartus II 
software. 

■ altpcietb_bfm_vc_intf_ast.v—a wrapper module which instantiates either 
altpcietb_vc_intf_ast_64 or altpcietb_vc_intf_ast_128 based on the type of 
Avalon-ST interface that is generated.   It also instantiates the ECRC modules 
altpcierd_cdma_ecrc_check and altpcierd_cdma_ecrc_gen which are used when 
ECRC forwarding is enabled.

■ altpcietb_vc_intf_ast_64.v and altpcietb_vc_intf_ast_128.v—provide the interface 
between the IP Compiler for PCI Express variation and the root port BFM tasks. 
They provide the same function as the altpcietb_vc_intf.v module, transmitting 
PCI Express requests and handling completions. Refer to the “Root Port BFM” on 
page 15–26 for a full description of this function. This version uses Avalon-ST 
signalling with either a 64- or 128-bit data bus to the IP Compiler for PCI Express 
variation. There is one VC interface per virtual channel.

■ altpcietb_bfm_vc_intf_ast_common.v—contains tasks called by 
altpcietb_vc_intf_ast_64.v and altpcietb_vc_intf_ast_128.v

■ altpcierd_cdma_ecrc_check.v—checks and removes the ECRC from TLPs 
received on the Avalon-ST interface of the IP Compiler for PCI Express variation. 
Contains the following submodules:

altpcierd_cdma_ecrc_check_64.v, altpcierd_rx_ecrc_64.v, altpcierd_rx_ecrc_64.vo, 
altpcierd_rx_ecrc_64_altcrc.v, altpcierd_rx_ecrc_128.v, altpcierd_rx_ecrc_128.vo, 
altpcierd_rx_ecrc_128_altcrc.v. Refer to the “Chaining DMA Design Example” on 
page 15–6 for a description of these submodules

■ altpcierd_cdma_ecrc_gen.v—generates and appends ECRC to the TLPs 
transmitted on the Avalon-ST interface of the IP Compiler for PCI Express 
variation. Contains the following submodules:

altpcierd_cdma_ecrc_gen_calc.v, altpcierd_cdma_ecrc_gen_ctl_64.v, 
altpcierd_cdma_ecrc_gen_ctl_128.v, altpcierd_cdma_ecrc_gen_datapath.v, 
altpcierd_tx_ecrc_64.v, altpcierd_tx_ecrc_64.vo, altpcierd_tx_ecrc_64_altcrc.v, 
altpcierd_tx_ecrc_128.v, altpcierd_tx_ecrc_128.vo, altpcierd_tx_ecrc_128_altcrc.v, 
altpcierd_tx_ecrc_ctl_fifo.v, altpcierd_tx_ecrc_data_fifo.v, 
altpcierd_tx_ecrc_fifo.v Refer to the “Chaining DMA Design Example” on 
page 15–6 for a description of these submodules.



Chapter 15: Testbench and Design Example 15–25
Root Port Design Example

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ altpcierd_tl_cfg_sample.v—accesses configuration space signals from the variant. 
Refer to the “Chaining DMA Design Example” on page 15–6 for a description of 
this module.

Files in subdirectory <variation_name>_example/common/testbench:

■ altpcietb_bfm_ep_example_chaining_pipen1b.vo—the simulation model for the 
chaining DMA endpoint. 

■ altpcietb_bfm_shmem.v, altpcietb_bfm_shmem_common.v—root port memory 
space. Refer to the “Root Port BFM” on page 15–26 for a full description of this 
module

■ altpcietb_bfm_rdwr.v— requests PCI Express read and writes. Refer to the “Root 
Port BFM” on page 15–26 for a full description of this module.

■ altpcietb_bfm_configure.v— configures PCI Express configuration space 
registers in the root port and endpoint. Refer to the “Root Port BFM” on 
page 15–26 for a full description of this module

■ altpcietb_bfm_log.v, and altpcietb_bfm_log_common.v—displays and logs 
simulation messages. Refer to the “Root Port BFM” on page 15–26 for a full 
description of this module.

■ altpcietb_bfm_req_intf.v, and altpcietb_bfm_req_intf_common.v—includes 
tasks used to manage requests from altpcietb_bfm_rdwr to altpcietb_vc_intf_ast.    
Refer to the “Root Port BFM” on page 15–26 for a full description of this module.

■ altpcietb_bfm_constants.v—contains global constants used by the root port BFM.

■ altpcietb_ltssm_mon.v—displays LTSSM state transitions. 

■ altpcietb_pipe_phy.v, altpcietb_pipe_xtx2yrx.v, and altpcie_phasefifo.v—used to 
simulate the PHY and support circuitry.

■ altpcie_pll_100_125.v, altpcie_pll_100_250.v, altpcie_pll_125_250.v, 
altpcie_pll_phy0.v, altpcie_pll_phy1_62p5.v, altpcie_pll_phy2.v, 
altpcie_pll_phy3_62p5.v, altpcie_pll_phy4_62p5.v, altpcie_pll_phy5_62p5.v— 
PLLs used for simulation.   The type of PHY interface selected for the variant 
determines which PLL is used. 

■ altpcie_4sgx_alt_reconfig.v—transceiver reconfiguration module used for 
simulation.

■ altpcietb_rst_clk.v— generates PCI Express and reference clock.



15–26 Chapter 15: Testbench and Design Example
Root Port BFM

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Root Port BFM
The basic root port BFM provides a VHDL procedure-based or Verilog HDL 
task-based interface for requesting transactions that are issued to the PCI Express link. 
The root port BFM also handles requests received from the PCI Express link. 
Figure 15–6 provides an overview of the root port BFM.

The functionality of each of the modules included in Figure 15–6 is explained below.

■ BFM shared memory (altpcietb_bfm_shmem VHDL package or Verilog HDL 
include file)—The root port BFM is based on the BFM memory that is used for the 
following purposes:

■ Storing data received with all completions from the PCI Express link.

■ Storing data received with all write transactions received from the PCI Express 
link.

■ Sourcing data for all completions in response to read transactions received 
from the PCI Express link.

■ Sourcing data for most write transactions issued to the PCI Express link. The 
only exception is certain BFM write procedures that have a four-byte field of 
write data passed in the call.

■ Storing a data structure that contains the sizes of and the values programmed 
in the BARs of the endpoint.

A set of procedures is provided to read, write, fill, and check the shared memory from 
the BFM driver. For details on these procedures, see “BFM Shared Memory Access 
Procedures” on page 15–40.

■ BFM Read/Write Request Procedures/Functions (altpcietb_bfm_rdwr VHDL 
package or Verilog HDL include file)— This package provides the basic BFM 
procedure calls for PCI Express read and write requests. For details on these 
procedures, see “BFM Read and Write Procedures” on page 15–34.

Figure 15–6. Root Port BFM

BFM Shared Memory
(altpcietb_bfm_shmem)

BFM Read/Write Shared
Request Procedures
(altpcietb_bfm_rdwr)

BFM Configuration
Procedures

(altpcietb_bfm_configure)

BFM Log Interface
(altpcietb_bfm_log)

BFM Request Interface
(altpcietb_bfm_req_intf)

Root Port RTL Model (altpcietb_bfm_rp_top_x8_pipen1b)

IP Functional Simulation
Model of the Root 

Port Interface 
(altpcietb_bfm_rpvar_64b_x8_pipen1b)

VC0 Interface
(altpcietb_bfm_vcintf)

VC1 Interface
(altpcietb_bfm_vcintf)

Root Port BFM



Chapter 15: Testbench and Design Example 15–27
Root Port BFM

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ BFM Configuration Procedures/Functions (altpcietb_bfm_configure VHDL 
package or Verilog HDL include file)—These procedures and functions provide 
the BFM calls to request configuration of the PCI Express link and the endpoint 
configuration space registers. For details on these procedures and functions, see 
“BFM Configuration Procedures” on page 15–39.

■ BFM Log Interface (altpcietb_bfm_log VHDL package or Verilog HDL include 
file)—The BFM log interface provides routines for writing commonly formatted 
messages to the simulator standard output and optionally to a log file. It also 
provides controls that stop simulation on errors. For details on these procedures, 
see “BFM Log and Message Procedures” on page 15–43.

■ BFM Request Interface (altpcietb_bfm_req_intf VHDL package or Verilog HDL 
include file)—This interface provides the low-level interface between the 
altpcietb_bfm_rdwr and altpcietb_bfm_configure procedures or functions and 
the root port RTL Model. This interface stores a write-protected data structure 
containing the sizes and the values programmed in the BAR registers of the 
endpoint, as well as, other critical data used for internal BFM management. You do 
not need to access these files directly to adapt the testbench to test your endpoint 
application.

■ The root port BFM included with the IP Compiler for PCI Express is designed to 
test just one IP Compiler for PCI Express at a time. In order to simulate correctly, 
you should comment out all but one of the IP Compiler for PCI Express testbench 
modules, named <variation_name>_testbench, in the system file. These modules 
are instantiated near the end of the system file. You can select which one to use for 
any given simulation run.

■ Root Port RTL Model (altpcietb_bfm_rp_top_x8_pipen1b VHDL entity or Verilog 
HDL Module)—This is the Register Transfer Level (RTL) portion of the model. 
This model takes the requests from the above modules and handles them at an 
RTL level to interface to the PCI Express link. You do not need to access this 
module directly to adapt the testbench to test your endpoint application. 

■ VC0:3 Interfaces (altpcietb_bfm_vc_intf)—These interface modules handle the 
VC-specific interfaces on the root port interface model. They take requests from 
the BFM request interface and generate the required PCI Express transactions. 
They handle completions received from the PCI Express link and notify the BFM 
request interface when requests are complete. Additionally, they handle any 
requests received from the PCI Express link, and store or fetch data from the 
shared memory before generating the required completions. 

■ Root port interface model(altpcietb_bfm_rpvar_64b_x8_pipen1b)—This is an IP 
functional simulation model of a version of the IP core specially modified to 
support root port operation. Its application layer interface is very similar to the 
application layer interface of the IP core used for endpoint mode. 

All of the files for the BFM are generated by the parameter editor in the 
<variation name>_examples/common/testbench directory. 



15–28 Chapter 15: Testbench and Design Example
Root Port BFM

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

BFM Memory Map 
The BFM shared memory is configured to be two MBytes. The BFM shared memory is 
mapped into the first two MBytes of I/O space and also the first two MBytes of 
memory space. When the endpoint application generates an I/O or memory 
transaction in this range, the BFM reads or writes the shared memory. For illustrations 
of the shared memory and I/O address spaces, refer to Figure 15–7 on page 15–31 – 
Figure 15–9 on page 15–33.

Configuration Space Bus and Device Numbering
The root port interface is assigned to be device number 0 on internal bus number 0. 
The endpoint can be assigned to be any device number on any bus number (greater 
than 0) through the call to procedure ebfm_cfg_rp_ep. The specified bus number is 
assigned to be the secondary bus in the root port configuration space. 

Configuration of Root Port and Endpoint
Before you issue transactions to the endpoint, you must configure the root port and 
endpoint configuration space registers. To configure these registers, call the procedure 
ebfm_cfg_rp_ep, which is part of altpcietb_bfm_configure. 

1 Configuration procedures and functions are in the VHDL package file 
altpcietb_bfm_configure.vhd or in the Verilog HDL include file 
altpcietb_bfm_configure.v that uses the altpcietb_bfm_configure_common.v.

The ebfm_cfg_rp_ep executes the following steps to initialize the configuration space:

1. Sets the root port configuration space to enable the root port to send transactions 
on the PCI Express link.

2. Sets the root port and endpoint PCI Express capability device control registers as 
follows:

a. Disables Error Reporting in both the root port and endpoint. BFM does not 
have error handling capability.

b. Enables Relaxed Ordering in both root port and endpoint.

c. Enables Extended Tags for the endpoint, if the endpoint has that capability.

d. Disables Phantom Functions, Aux Power PM, and No Snoop in both the root port 
and endpoint.

e. Sets the Max Payload Size to what the endpoint supports because the root port 
supports the maximum payload size.

f. Sets the root port Max Read Request Size to 4 KBytes because the example 
endpoint design supports breaking the read into as many completions as 
necessary.

g. Sets the endpoint Max Read Request Size equal to the Max Payload Size 
because the root port does not support breaking the read request into multiple 
completions.



Chapter 15: Testbench and Design Example 15–29
Root Port BFM

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

3. Assigns values to all the endpoint BAR registers. The BAR addresses are assigned 
by the algorithm outlined below.

a. I/O BARs are assigned smallest to largest starting just above the ending 
address of BFM shared memory in I/O space and continuing as needed 
throughout a full 32-bit I/O space. Refer to Figure 15–9 on page 15–33 for more 
information.

b. The 32-bit non-prefetchable memory BARs are assigned smallest to largest, 
starting just above the ending address of BFM shared memory in memory 
space and continuing as needed throughout a full 32-bit memory space.

c. Assignment of the 32-bit prefetchable and 64-bit prefetchable memory BARS 
are based on the value of the addr_map_4GB_limit input to the 
ebfm_cfg_rp_ep. The default value of the addr_map_4GB_limit is 0. 

If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 0, then the 32-
bit prefetchable memory BARs are assigned largest to smallest, starting at the 
top of 32-bit memory space and continuing as needed down to the ending 
address of the last 32-bit non-prefetchable BAR. 

However, if the addr_map_4GB_limit input is set to 1, the address map is 
limited to 4 GByte, the 32-bit and 64-bit prefetchable memory BARs are 
assigned largest to smallest, starting at the top of the 32-bit memory space and 
continuing as needed down to the ending address of the last 32-bit non-
prefetchable BAR.

d. If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 0, then the 64-
bit prefetchable memory BARs are assigned smallest to largest starting at the 4 
GByte address assigning memory ascending above the 4 GByte limit 
throughout the full 64-bit memory space. Refer to Figure 15–8 on page 15–32. 

If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 1, then the 32-
bit and the 64-bit prefetchable memory BARs are assigned largest to smallest 
starting at the 4 GByte address and assigning memory by descending below 
the 4 GByte address to addresses memory as needed down to the ending 
address of the last 32-bit non-prefetchable BAR. Refer to Figure 15–7 on 
page 15–31.

The above algorithm cannot always assign values to all BARs when there are a few 
very large (1 GByte or greater) 32-bit BARs. Although assigning addresses to all 
BARs may be possible, a more complex algorithm would be required to effectively 
assign these addresses. However, such a configuration is unlikely to be useful in 
real systems. If the procedure is unable to assign the BARs, it displays an error 
message and stops the simulation.

4. Based on the above BAR assignments, the root port configuration space address 
windows are assigned to encompass the valid BAR address ranges.

5. The endpoint PCI control register is set to enable master transactions, memory 
address decoding, and I/O address decoding.



15–30 Chapter 15: Testbench and Design Example
Root Port BFM

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

The ebfm_cfg_rp_ep procedure also sets up a bar_table data structure in BFM shared 
memory that lists the sizes and assigned addresses of all endpoint BARs. This area of 
BFM shared memory is write-protected, which means any user write accesses to this 
area cause a fatal simulation error. This data structure is then used by subsequent 
BFM procedure calls to generate the full PCI Express addresses for read and write 
requests to particular offsets from a BAR. This procedure allows the testbench code 
that accesses the endpoint application layer to be written to use offsets from a BAR 
and not have to keep track of the specific addresses assigned to the BAR. Table 15–22 
shows how those offsets are used.

The configuration routine does not configure any advanced PCI Express capabilities 
such as the virtual channel capability or advanced error reporting capability.

Table 15–22. BAR Table Structure

Offset (Bytes) Description

+0 PCI Express address in BAR0

+4 PCI Express address in BAR1

+8 PCI Express address in BAR2

+12 PCI Express address in BAR3

+16 PCI Express address in BAR4

+20 PCI Express address in BAR5

+24 PCI Express address in Expansion ROM BAR

+28 Reserved

+32 BAR0 read back value after being written with all 1’s (used to compute size)

+36 BAR1 read back value after being written with all 1’s

+40 BAR2 read back value after being written with all 1’s

+44 BAR3 read back value after being written with all 1’s

+48 BAR4 read back value after being written with all 1’s

+52 BAR5 read back value after being written with all 1’s

+56 Expansion ROM BAR read back value after being written with all 1’s

+60 Reserved



Chapter 15: Testbench and Design Example 15–31
Root Port BFM

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Besides the ebfm_cfg_rp_ep procedure in altpcietb_bfm_configure, routines to read 
and write endpoint configuration space registers directly are available in the 
altpcietb_bfm_rdwr VHDL package or Verilog HDL include file. After the 
ebfm_cfg_rp_ep procedure is run the PCI Express I/O and Memory Spaces have the 
layout as described in the following three figures. The memory space layout is 
dependent on the value of the addr_map_4GB_limit input parameter. If 
addr_map_4GB_limit is 1 the resulting memory space map is shown in Figure 15–7. 

Figure 15–7. Memory Space Layout—4 GByte Limit

Root Complex Shared 
Memory

0x0000 0000

Configuration Scratch 
Space

Used by BFM routines, 
not writable by user calls 

or endpoint 

0x001F FF80

BAR Table 
Used by BFM routines , 

not writable by user calls 
or endpoint 

0x001F FFC0

Endpoint Non -
Prefetchable Memory 

Space BARs
Assigned Smallest to 

Largest

0x0020 0000

0xFFFF FFFF

Endpoint Memory Space 
BARs

(Prefetchable 32 -bit and 
64- bit)

Assigned Smallest to 
Largest

Unused

Addr



15–32 Chapter 15: Testbench and Design Example
Root Port BFM

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

If addr_map_4GB_limit is 0, the resulting memory space map is shown in 
Figure 15–8.

Figure 15–8. Memory Space Layout—No Limit

Root Complex Shared 
Memory

0x0000 0000

Configuration Scratch 
Space

Used by BFM routines  
not writable by user calls 

or endpoint 

0x001F FF80

BAR Table 
Used by BFM routines  

not writable by user calls 
or endpoint 

0x001F FFC0

Endpoint Non -
Prefetchable Memory 

Space BARs
Assigned Smallest to 

Largest

0x0000 0001 0000 0000

Endpoint Memory Space 
BARs

(Prefetchable 32 bit)
Assigned Smallest to 

Largest

Unused

BAR size dependent

BAR size dependent

Endpoint Memory Space 
BARs

(Prefetchable 64 bit)
Assigned Smallest to 

Largest

Unused

BAR size dependent

0xFFFF FFFF FFFF FFFF

0x0020 0000

Addr



Chapter 15: Testbench and Design Example 15–33
Root Port BFM

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 15–9 shows the I/O address space.

Issuing Read and Write Transactions to the Application Layer
Read and write transactions are issued to the endpoint application layer by calling 
one of the ebfm_bar procedures in altpcietb_bfm_rdwr. The procedures and 
functions listed below are available in the VHDL package file 
altpcietb_bfm_rdwr.vhd or in the Verilog HDL include file altpcietb_bfm_rdwr.v. 
The complete list of available procedures and functions is as follows:

■ ebfm_barwr—writes data from BFM shared memory to an offset from a specific 
endpoint BAR. This procedure returns as soon as the request has been passed to 
the VC interface module for transmission.

■ ebfm_barwr_imm—writes a maximum of four bytes of immediate data (passed in a 
procedure call) to an offset from a specific endpoint BAR. This procedure returns 
as soon as the request has been passed to the VC interface module for 
transmission.

■ ebfm_barrd_wait—reads data from an offset of a specific endpoint BAR and stores 
it in BFM shared memory. This procedure blocks waiting for the completion data 
to be returned before returning control to the caller.

Figure 15–9. I/O Address Space

Root Complex Shared 
Memory

0x0000 0000

Configuration Scratch 

Used by BFM routines
not writable by user calls 

or endpoint 

0x001F FF80

BAR Table 
Used by BFM routines

not writable by user calls 
or endpoint 

0x001F FFC0

/O Space 
BARs

Assigned Smallest to 
Largest

0x0020 0000

0xFFFF FFFF

Unused

BAR size dependent

Endpoint

Space

Addr



15–34 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

■ ebfm_barrd_nowt—reads data from an offset of a specific endpoint BAR and stores 
it in the BFM shared memory. This procedure returns as soon as the request has 
been passed to the VC interface module for transmission, allowing subsequent 
reads to be issued in the interim.

These routines take as parameters a BAR number to access the memory space and the 
BFM shared memory address of the bar_table data structure that was set up by the 
ebfm_cfg_rp_ep procedure. (Refer to “Configuration of Root Port and Endpoint” on 
page 15–28.) Using these parameters simplifies the BFM test driver routines that 
access an offset from a specific BAR and eliminates calculating the addresses assigned 
to the specified BAR.

The root port BFM does not support accesses to endpoint I/O space BARs.

For further details on these procedure calls, refer to the section “BFM Read and Write 
Procedures” on page 15–34.

BFM Procedures and Functions
This section describes the interface to all of the BFM procedures, functions, and tasks 
that the BFM driver uses to drive endpoint application testing. 

1 The last subsection describes procedures that are specific to the chaining DMA design 
example.

This section describes both VHDL procedures and functions and Verilog HDL 
functions and tasks where applicable. Although most VHDL procedure are 
implemented as Verilog HDL tasks, some VHDL procedures are implemented as 
Verilog HDL functions rather than Verilog HDL tasks to allow these functions to be 
called by other Verilog HDL functions. Unless explicitly specified otherwise, all 
procedures in the following sections also are implemented as Verilog HDL tasks. 

1 You can see some underlying Verilog HDL procedures and functions that are called by 
other procedures that normally are hidden in the VHDL package. You should not call 
these undocumented procedures.

BFM Read and Write Procedures
This section describes the procedures used to read and write data among BFM shared 
memory, endpoint BARs, and specified configuration registers.

The following procedures and functions are available in the VHDL package 
altpcietb_bfm_rdwr.vhd or in the Verilog HDL include file altpcietb_bfm_rdwr.v. 
These procedures and functions support issuing memory and configuration 
transactions on the PCI Express link.

All VHDL arguments are subtype natural and are input-only unless specified 
otherwise. All Verilog HDL arguments are type integer and are input-only unless 
specified otherwise. 



Chapter 15: Testbench and Design Example 15–35
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

ebfm_barwr Procedure
The ebfm_barwr procedure writes a block of data from BFM shared memory to an 
offset from the specified endpoint BAR. The length can be longer than the configured 
MAXIMUM_PAYLOAD_SIZE; the procedure breaks the request up into multiple 
transactions as needed. This routine returns as soon as the last transaction has been 
accepted by the VC interface module.

ebfm_barwr_imm Procedure
The ebfm_barwr_imm procedure writes up to four bytes of data to an offset from the 
specified endpoint BAR. 

Table 15–23. ebfm_barwr Procedure 

Location  altpcietb_bfm_rdwr.v or altpcietb_bfm_rdwr.vhd

Syntax ebfm_barwr(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

Arguments bar_table

Address of the endpoint bar_table structure in BFM shared memory. The bar_table 
structure stores the address assigned to each BAR so that the driver code does not need 
to be aware of the actual assigned addresses only the application specific offsets from the 
BAR. 

bar_num Number of the BAR used with pcie_offset to determine PCI Express address.

pcie_offset Address offset from the BAR base.

lcladdr BFM shared memory address of the data to be written.

byte_len
Length, in bytes, of the data written. Can be 1 to the minimum of the bytes remaining in 
the BAR space or BFM shared memory.

tclass Traffic class used for the PCI Express transaction.

Table 15–24. ebfm_barwr_imm Procedure 

Location  altpcietb_bfm_rdwr.v or altpcietb_bfm_rdwr.vhd

Syntax ebfm_barwr_imm(bar_table, bar_num, pcie_offset, imm_data, byte_len, tclass)

Arguments bar_table

Address of the endpoint bar_table structure in BFM shared memory. The bar_table 
structure stores the address assigned to each BAR so that the driver code does not need 
to be aware of the actual assigned addresses only the application specific offsets from 
the BAR. 

bar_num Number of the BAR used with pcie_offset to determine PCI Express address.

pcie_offset Address offset from the BAR base.

imm_data

Data to be written. In VHDL, this argument is a std_logic_vector(31 downto 0). In 
Verilog HDL, this argument is reg [31:0].In both languages, the bits written depend on 
the length as follows:

Length Bits Written

4 31 downto 0 

3  23 downto 0

2 15 downto 0 

1 7 downto 0 

byte_len Length of the data to be written in bytes. Maximum length is 4 bytes.

tclass Traffic class to be used for the PCI Express transaction.



15–36 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

ebfm_barrd_wait Procedure 
The ebfm_barrd_wait procedure reads a block of data from the offset of the specified 
endpoint BAR and stores it in BFM shared memory. The length can be longer than the 
configured maximum read request size; the procedure breaks the request up into 
multiple transactions as needed. This procedure waits until all of the completion data 
is returned and places it in shared memory.

ebfm_barrd_nowt Procedure
The ebfm_barrd_nowt procedure reads a block of data from the offset of the specified 
endpoint BAR and stores the data in BFM shared memory. The length can be longer 
than the configured maximum read request size; the procedure breaks the request up 
into multiple transactions as needed. This routine returns as soon as the last read 
transaction has been accepted by the VC interface module, allowing subsequent reads 
to be issued immediately. 

Table 15–25. ebfm_barrd_wait Procedure 

Location  altpcietb_bfm_rdwr.v or altpcietb_bfm_rdwr.vhd

Syntax ebfm_barrd_wait(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

Arguments bar_table

Address of the endpoint bar_table structure in BFM shared memory. The 
bar_table structure stores the address assigned to each BAR so that the driver code 
does not need to be aware of the actual assigned addresses only the application 
specific offsets from the BAR. 

bar_num Number of the BAR used with pcie_offset to determine PCI Express address.

pcie_offset Address offset from the BAR base.

lcladdr BFM shared memory address where the read data is stored.

byte_len 
Length, in bytes, of the data to be read. Can be 1 to the minimum of the bytes 
remaining in the BAR space or BFM shared memory.

tclass Traffic class used for the PCI Express transaction.

Table 15–26. ebfm_barrd_nowt Procedure

Location  altpcietb_bfm_rdwr.v or altpcietb_bfm_rdwr.vhd

Syntax ebfm_barrd_nowt(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory.

bar_num Number of the BAR used with pcie_offset to determine PCI Express address.

pcie_offset Address offset from the BAR base.

lcladdr BFM shared memory address where the read data is stored.

byte_len 
Length, in bytes, of the data to be read. Can be 1 to the minimum of the bytes 
remaining in the BAR space or BFM shared memory.

tclass Traffic Class to be used for the PCI Express transaction.



Chapter 15: Testbench and Design Example 15–37
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

ebfm_cfgwr_imm_wait Procedure
The ebfm_cfgwr_imm_wait procedure writes up to four bytes of data to the specified 
configuration register. This procedure waits until the write completion has been 
returned.

ebfm_cfgwr_imm_nowt Procedure
The ebfm_cfgwr_imm_nowt procedure writes up to four bytes of data to the specified 
configuration register. This procedure returns as soon as the VC interface module 
accepts the transaction, allowing other writes to be issued in the interim. Use this 
procedure only when successful completion status is expected. 

Table 15–27. ebfm_cfgwr_imm_wait Procedure 

Location  altpcietb_bfm_rdwr.v or altpcietb_bfm_rdwr.vhd

Syntax ebfm_cfgwr_imm_wait(bus_num, dev_num, fnc_num, imm_regb_ad, regb_ln, imm_data, 
compl_status

Arguments bus_num PCI Express bus number of the target device. 

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln
Length, in bytes, of the data written. Maximum length is four bytes. The regb_ln and 
the regb_ad arguments cannot cross a DWORD boundary.

imm_data

Data to be written. 

In VHDL, this argument is a std_logic_vector(31 downto 0).

In Verilog HDL, this argument is reg [31:0].

In both languages, the bits written depend on the length:

Length Bits Written 

4 31 downto 0

3 23 downto 0

2 5 downto 0

1 7 downto 0

compl_status

In VHDL. this argument is a std_logic_vector(2 downto 0) and is set by the 
procedure on return. 

In Verilog HDL, this argument is reg [2:0].

In both languages, this argument is the completion status as specified in the PCI 
Express specification:

Compl_StatusDefinition

000SC— Successful completion

001UR— Unsupported Request

010CRS — Configuration Request Retry Status

100CA — Completer Abort

Table 15–28. ebfm_cfgwr_imm_nowt Procedure (Part 1 of 2)

Location  altpcietb_bfm_rdwr.v or altpcietb_bfm_rdwr.vhd

Syntax ebfm_cfgwr_imm_nowt(bus_num, dev_num, fnc_num, imm_regb_adr, regb_len, imm_data)



15–38 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

ebfm_cfgrd_wait Procedure
The ebfm_cfgrd_wait procedure reads up to four bytes of data from the specified 
configuration register and stores the data in BFM shared memory. This procedure 
waits until the read completion has been returned. 

Arguments

bus_num PCI Express bus number of the target device.

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln
Length, in bytes, of the data written. Maximum length is four bytes, The regb_ln the 
regb_ad arguments cannot cross a DWORD boundary.

imm_data

Data to be written

In VHDL. this argument is a std_logic_vector(31 downto 0).

In Verilog HDL, this argument is reg [31:0].

In both languages, the bits written depend on the length:

Length Bits Written 

4 [31:0]

3 [23:0]

2 [15:0]

1  [7:0]

Table 15–28. ebfm_cfgwr_imm_nowt Procedure (Part 2 of 2)

Table 15–29. ebfm_cfgrd_wait Procedure

Location  altpcietb_bfm_rdwr.v or altpcietb_bfm_rdwr.vhd

Syntax ebfm_cfgrd_wait(bus_num, dev_num, fnc_num, regb_ad, regb_ln, lcladdr, compl_status)

Arguments

bus_num PCI Express bus number of the target device. 

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln
Length, in bytes, of the data read. Maximum length is four bytes. The regb_ln and the 
regb_ad arguments cannot cross a DWORD boundary.

lcladdr BFM shared memory address of where the read data should be placed.

compl_status

Completion status for the configuration transaction. 

In VHDL, this argument is a std_logic_vector(2 downto 0) and is set by the 
procedure on return. 

In Verilog HDL, this argument is reg [2:0].

In both languages, this is the completion status as specified in the PCI Express 
specification:

Compl_StatusDefinition

000SC— Successful completion

001UR— Unsupported Request

010CRS — Configuration Request Retry Status

100CA — Completer Abort



Chapter 15: Testbench and Design Example 15–39
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

ebfm_cfgrd_nowt Procedure
The ebfm_cfgrd_nowt procedure reads up to four bytes of data from the specified 
configuration register and stores the data in the BFM shared memory. This procedure 
returns as soon as the VC interface module has accepted the transaction, allowing 
other reads to be issued in the interim. Use this procedure only when successful 
completion status is expected and a subsequent read or write with a wait can be used 
to guarantee the completion of this operation.

BFM Configuration Procedures
The following procedures are available in altpcietb_bfm_configure. These 
procedures support configuration of the root port and endpoint configuration space 
registers.

All VHDL arguments are subtype natural and are input-only unless specified 
otherwise. All Verilog HDL arguments are type integer and are input-only unless 
specified otherwise.

ebfm_cfg_rp_ep Procedure
The ebfm_cfg_rp_ep procedure configures the root port and endpoint configuration 
space registers for operation. Refer to Table 15–31 for a description the arguments for 
this procedure.

Table 15–30. ebfm_cfgrd_nowt Procedure

Location  altpcietb_bfm_rdwr.v or altpcietb_bfm_rdwr.vhd

Syntax ebfm_cfgrd_nowt(bus_num, dev_num, fnc_num, regb_ad, regb_ln, lcladdr)

Arguments bus_num PCI Express bus number of the target device. 

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln
Length, in bytes, of the data written. Maximum length is four bytes. The regb_ln and 
regb_ad arguments cannot cross a DWORD boundary.

lcladdr BFM shared memory address where the read data should be placed.

Table 15–31. ebfm_cfg_rp_ep Procedure (Part 1 of 2)

Location altpcietb_bfm_configure.v or altpcietb_bfm_configure.vhd

Syntax ebfm_cfg_rp_ep(bar_table, ep_bus_num, ep_dev_num, rp_max_rd_req_size, 
display_ep_config, addr_map_4GB_limit)

Arguments bar_table

Address of the endpoint bar_table structure in BFM shared memory. This 
routine populates the bar_table structure. The bar_table structure stores 
the size of each BAR and the address values assigned to each BAR. The address 
of the bar_table structure is passed to all subsequent read and write 
procedure calls that access an offset from a particular BAR. 



15–40 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

ebfm_cfg_decode_bar Procedure
The ebfm_cfg_decode_bar procedure analyzes the information in the BAR table for 
the specified BAR and returns details about the BAR attributes. 

BFM Shared Memory Access Procedures 
The following procedures and functions are available in the VHDL file 
altpcietb_bfm_shmem.vhd or in the Verilog HDL include file 
altpcietb_bfm_shmem.v that uses the module 
altpcietb_bfm_shmem_common.v, instantiated at the top level of the testbench. 
These procedures and functions support accessing the BFM shared memory.

All VHDL arguments are subtype natural and are input-only unless specified 
otherwise. All Verilog HDL arguments are type integer and are input-only unless 
specified otherwise.

ep_bus_num
PCI Express bus number of the target device. This number can be any value 
greater than 0. The root port uses this as its secondary bus number.

ep_dev_num
PCI Express device number of the target device. This number can be any value. 
The endpoint is automatically assigned this value when it receives its first 
configuration transaction.

rp_max_rd_req_size

Maximum read request size in bytes for reads issued by the root port. This 
parameter must be set to the maximum value supported by the endpoint 
application layer. If the application layer only supports reads of the 
MAXIMUM_PAYLOAD_SIZE, then this can be set to 0 and the read request size 
will be set to the maximum payload size. Valid values for this argument are 0, 
128, 256, 512, 1,024, 2,048 and 4,096. 

display_ep_config

When set to 1 many of the endpoint configuration space registers are displayed 
after they have been initialized, causing some additional reads of registers that 
are not normally accessed during the configuration process such as the Device 
ID and Vendor ID.

addr_map_4GB_limit
When set to 1 the address map of the simulation system will be limited to 4 
GBytes. Any 64-bit BARs will be assigned below the 4 GByte limit.

Table 15–31. ebfm_cfg_rp_ep Procedure (Part 2 of 2)

Table 15–32. ebfm_cfg_decode_bar Procedure

Location altpcietb_bfm_configure.v or altpcietb_bfm_configure.vhd

Syntax ebfm_cfg_decode_bar(bar_table, bar_num, log2_size, is_mem, is_pref, is_64b)

Arguments bar_table Address of the endpoint bar_table structure in BFM shared memory. 

bar_num BAR number to analyze.

log2_size
This argument is set by the procedure to the log base 2 of the size of the BAR. If the BAR is 
not enabled, this argument will be set to 0.

is_mem
The procedure sets this argument to indicate if the BAR is a memory space BAR (1) or I/O 
Space BAR (0). 

is_pref
The procedure sets this argument to indicate if the BAR is a prefetchable BAR (1) or non-
prefetchable BAR (0).

is_64b
The procedure sets this argument to indicate if the BAR is a 64-bit BAR (1) or 32-bit BAR 
(0). This is set to 1 only for the lower numbered BAR of the pair.



Chapter 15: Testbench and Design Example 15–41
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Shared Memory Constants
The following constants are defined in the BFM shared memory package. They select 
a data pattern in the shmem_fill and shmem_chk_ok routines. These shared memory 
constants are all VHDL subtype natural or Verilog HDL type integer.

shmem_write 
The shmem_write procedure writes data to the BFM shared memory.

shmem_read Function 
The shmem_read function reads data to the BFM shared memory.

Table 15–33. Constants: VHDL Subtype NATURAL or Verilog HDL Type INTEGER 

Constant Description

SHMEM_FILL_ZEROS Specifies a data pattern of all zeros

SHMEM_FILL_BYTE_INC Specifies a data pattern of incrementing 8-bit bytes (0x00, 0x01, 0x02, etc.)

SHMEM_FILL_WORD_INC Specifies a data pattern of incrementing 16-bit words (0x0000, 0x0001, 0x0002, etc.)

SHMEM_FILL_DWORD_INC
Specifies a data pattern of incrementing 32-bit dwords (0x00000000, 0x00000001, 
0x00000002, etc.)

SHMEM_FILL_QWORD_INC
Specifies a data pattern of incrementing 64-bit qwords (0x0000000000000000, 
0x0000000000000001, 0x0000000000000002, etc.)

SHMEM_FILL_ONE Specifies a data pattern of all ones

Table 15–34. shmem_write VHDL Procedure or Verilog HDL Task

Location altpcietb_bfm_shmem.v or altpcietb_bfm_shmem.vhd

Syntax shmem_write(addr, data, leng)

Arguments addr BFM shared memory starting address for writing data

data

Data to write to BFM shared memory. 

In VHDL, this argument is an unconstrained std_logic_vector. This vector must be 8 
times the leng length. In Verilog, this parameter is implemented as a 64-bit vector. leng is 
1–8 bytes. In both languages, bits 7 downto 0 are written to the location specified by addr; 
bits 15 downto 8 are written to the addr+1 location, etc.

leng Length, in bytes, of data written

Table 15–35. shmem_read Function

Location altpcietb_bfm_shmem.v or altpcietb_bfm_shmem.vhd

Syntax  data:= shmem_read(addr, leng)

Arguments addr  BFM shared memory starting address for reading data

leng Length, in bytes, of data read 

Return data

Data read from BFM shared memory.

In VHDL, this is an unconstrained std_logic_vector, in which the vector is 8 times the 
leng length. In Verilog, this parameter is implemented as a 64-bit vector. leng is 1- 8 bytes. 
If leng is less than 8 bytes, only the corresponding least significant bits of the returned data 
are valid. 

In both languages, bits 7 downto 0 are read from the location specified by addr; bits 15 
downto 8 are read from the addr+1 location, etc.



15–42 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

shmem_display VHDL Procedure or Verilog HDL Function
The shmem_display VHDL procedure or Verilog HDL function displays a block of 
data from the BFM shared memory.

shmem_fill Procedure
The shmem_fill procedure fills a block of BFM shared memory with a specified data 
pattern. 

shmem_chk_ok Function
The shmem_chk_ok function checks a block of BFM shared memory against a specified 
data pattern. 

Table 15–36. shmem_display VHDL Procedure/ or Verilog Function 

Location altpcietb_bfm_shmem.v or altpcietb_bfm_shmem.vhd

Syntax
VHDL: shmem_display(addr, leng, word_size, flag_addr, msg_type)

Verilog HDL: dummy_return:=shmem_display(addr, leng, word_size, flag_addr, msg_type);

Arguments addr BFM shared memory starting address for displaying data.

leng Length, in bytes, of data to display.

word_size
Size of the words to display. Groups individual bytes into words. Valid values are 1, 2, 4, and 
8.

flag_addr
Adds a <== flag to the end of the display line containing this address. Useful for marking 
specific data. Set to a value greater than 2**21 (size of BFM shared memory) to suppress the 
flag.

msg_type
Specifies the message type to be displayed at the beginning of each line. See “BFM Log and 
Message Procedures” on page 15–43 for more information about message types. Set to one 
of the constants defined in Table 15–39 on page 15–44. 

Table 15–37. shmem_fill Procedure

Location altpcietb_bfm_shmem.v or altpcietb_bfm_shmem.vhd

Syntax shmem_fill(addr, mode, leng, init)

Arguments addr BFM shared memory starting address for filling data.

mode
Data pattern used for filling the data. Should be one of the constants defined in section 
“Shared Memory Constants” on page 15–41.

leng 
Length, in bytes, of data to fill. If the length is not a multiple of the incrementing data pattern 
width, then the last data pattern is truncated to fit.

init

Initial data value used for incrementing data pattern modes In VHDL. This argument is type 
std_logic_vector(63 downto 0). In Verilog HDL, this argument is reg [63:0].

In both languages, the necessary least significant bits are used for the data patterns that are 
smaller than 64 bits.

Table 15–38. shmem_chk_ok Function (Part 1 of 2)

Location altpcietb_bfm_shmem.v or altpcietb_bfm_shmem.vhd

Syntax result:= shmem_chk_ok(addr, mode, leng, init, display_error)



Chapter 15: Testbench and Design Example 15–43
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

BFM Log and Message Procedures 
The following procedures and functions are available in the VHDL package file 
altpcietb_bfm_log.vhd or in the Verilog HDL include file altpcietb_bfm_log.v that 
uses the altpcietb_bfm_log_common.v module, instantiated at the top level of the 
testbench.

These procedures provide support for displaying messages in a common format, 
suppressing informational messages, and stopping simulation on specific message 
types.

Log Constants
The following constants are defined in the BFM Log package. They define the type of 
message and their values determine whether a message is displayed or simulation is 
stopped after a specific message. Each displayed message has a specific prefix, based 
on the message type in Table 15–39.

You can suppress the display of certain message types. The default values 
determining whether a message type is displayed are defined in Table 15–39. To 
change the default message display, modify the display default value with a 
procedure call to ebfm_log_set_suppressed_msg_mask.

Certain message types also stop simulation after the message is displayed. 
Table 15–39 shows the default value determining whether a message type stops 
simulation. You can specify whether simulation stops for particular messages with the 
procedure ebfm_log_set_stop_on_msg_mask.

Arguments

addr BFM shared memory starting address for checking data.

mode
Data pattern used for checking the data. Should be one of the constants defined in 
section “Shared Memory Constants” on page 15–41.

leng Length, in bytes, of data to check. 

init
In VHDL. this argument is type std_logic_vector(63 downto 0). In Verilog HDL, 
this argument is reg [63:0].In both languages, the necessary least significant bits are 
used for the data patterns that are smaller than 64-bits.

display_error
When set to 1, this argument displays the mis-comparing data on the simulator standard 
output.

Return Result

Result is VHDL type Boolean.
TRUE—Data pattern compared successfully
FALSE—Data pattern did not compare successfully

Result in Verilog HDL is 1-bit.
1’b1 — Data patterns compared successfully
1’b0 — Data patterns did not compare successfully

Table 15–38. shmem_chk_ok Function (Part 2 of 2)



15–44 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

All of these log message constants are VHDL subtype natural or type integer for 
Verilog HDL.

ebfm_display VHDL Procedure or Verilog HDL Function
The ebfm_display procedure or function displays a message of the specified type to 
the simulation standard output and also the log file if ebfm_log_open is called. 

A message can be suppressed, simulation can be stopped or both based on the default 
settings of the message type and the value of the bit mask when each of the 
procedures listed below is called. You can call one or both of these procedures based 
on what messages you want displayed and whether or not you want simulation to 
stop for specific messages.

■ When ebfm_log_set_suppressed_msg_mask is called, the display of the message 
might be suppressed based on the value of the bit mask. 

Table 15–39. Log Messages Using VHDL Constants - Subtype Natural 

Constant (Message Type) Description Mask 
Bit No

Display 
by Default

Simulation 
Stops by 
Default

Message 
Prefix

EBFM_MSG_DEBUG Specifies debug messages. 0 No No DEBUG:

EBFM_MSG_INFO

Specifies informational messages, 
such as configuration register 
values, starting and ending of 
tests. 

1 Yes No INFO:

EBFM_MSG_WARNING
Specifies warning messages, such 
as tests being skipped due to the 
specific configuration.

2 Yes No WARNING:

EBFM_MSG_ERROR_INFO

Specifies additional information for 
an error. Use this message to 
display preliminary information 
before an error message that stops 
simulation.

3 Yes No ERROR:

EBFM_MSG_ERROR_CONTINUE
Specifies a recoverable error that 
allows simulation to continue. Use 
this error for data miscompares.

4 Yes No ERROR:

EBFM_MSG_ERROR_FATAL

Specifies an error that stops 
simulation because the error leaves 
the testbench in a state where 
further simulation is not possible.

N/A
Yes

Cannot 
suppress

Yes

Cannot 
suppress

FATAL:

EBFM_MSG_ERROR_FATAL_TB_ERR

Used for BFM test driver or root 
port BFM fatal errors. Specifies an 
error that stops simulation because 
the error leaves the testbench in a 
state where further simulation is 
not possible. Use this error 
message for errors that occur due 
to a problem in the BFM test driver 
module or the root port BFM, that 
are not caused by the endpoint 
application layer being tested.

N/A
Y

Cannot 
suppress

Y

Cannot 
suppress

FATAL:



Chapter 15: Testbench and Design Example 15–45
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ When ebfm_log_set_stop_on_msg_mask is called, the simulation can be stopped 
after the message is displayed, based on the value of the bit mask. 

ebfm_log_stop_sim VHDL Procedure or Verilog HDL Function
The ebfm_log_stop_sim procedure stops the simulation. 

ebfm_log_set_suppressed_msg_mask Procedure
The ebfm_log_set_suppressed_msg_mask procedure controls which message types 
are suppressed. 

Table 15–40. ebfm_display Procedure

Location altpcietb_bfm_log.v or altpcietb_bfm_log.vhd

Syntax VHDL: ebfm_display(msg_type, message)
Verilog HDL: dummy_return:=ebfm_display(msg_type, message);

Argument msg_type
Message type for the message. Should be one of the constants defined in Table 15–39 on 
page 15–44.

message

In VHDL, this argument is VHDL type string and contains the message text to be displayed.

In Verilog HDL, the message string is limited to a maximum of 100 characters. Also, because 
Verilog HDL does not allow variable length strings, this routine strips off leading characters of 
8’h00 before displaying the message. 

Return always 0 Applies only to the Verilog HDL routine.

Table 15–41. ebfm_log_stop_sim Procedure

Location altpcietb_bfm_log.v or altpcietb_bfm_log.vhd

Syntax VHDL: ebfm_log_stop_sim(success)
Verilog VHDL: return:=ebfm_log_stop_sim(success);

Argument success

When set to a 1, this process stops the simulation with a message indicating successful 
completion. The message is prefixed with SUCCESS:. 

Otherwise, this process stops the simulation with a message indicating unsuccessful 
completion. The message is prefixed with FAILURE:.

Return Always 0 This value applies only to the Verilog HDL function. 

Table 15–42. ebfm_log_set_suppressed_msg_mask Procedure

Location altpcietb_bfm_log.v or altpcietb_bfm_log.vhd

Syntax bfm_log_set_suppressed_msg_mask (msg_mask)

Argument msg_mask

In VHDL, this argument is a subtype of std_logic_vector, EBFM_MSG_MASK. This vector 
has a range from EBFM_MSG_ERROR_CONTINUE downto EBFM_MSG_DEBUG.

In Verilog HDL, this argument is reg [EBFM_MSG_ERROR_CONTINUE: EBFM_MSG_DEBUG].

In both languages, a 1 in a specific bit position of the msg_mask causes messages of the type 
corresponding to the bit position to be suppressed. 



15–46 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

ebfm_log_set_stop_on_msg_mask Procedure 
The ebfm_log_set_stop_on_msg_mask procedure controls which message types stop 
simulation. This procedure alters the default behavior of the simulation when errors 
occur as described in the Table 15–39 on page 15–44.

ebfm_log_open Procedure
The ebfm_log_open procedure opens a log file of the specified name. All displayed 
messages are called by ebfm_display and are written to this log file as simulator 
standard output.

ebfm_log_close Procedure
The ebfm_log_close procedure closes the log file opened by a previous call to 
ebfm_log_open. 

VHDL Formatting Functions
The following procedures and functions are available in the VHDL package file 
altpcietb_bfm_log.vhd.This section outlines formatting functions that are only used 
by VHDL. They take a numeric value and return a string to display the value. 

Table 15–43. ebfm_log_set_stop_on_msg_mask Procedure

Location altpcietb_bfm_log.v or altpcietb_bfm_log.vhd

Syntax ebfm_log_set_stop_on_msg_mask (msg_mask)

Argument msg_mask

In VHDL, this argument is a subtype of std_logic_vector, EBFM_MSG_MASK. This vector has 
a range from EBFM_MSG_ERROR_CONTINUE downto EBFM_MSG_DEBUG.

In Verilog HDL, this argument is 
reg [EBFM_MSG_ERROR_CONTINUE:EBFM_MSG_DEBUG].

In both languages, a 1 in a specific bit position of the msg_mask causes messages of the type 
corresponding to the bit position to stop the simulation after the message is displayed.

Table 15–44. ebfm_log_open Procedure

Location altpcietb_bfm_log.v or altpcietb_bfm_log.vhd

Syntax ebfm_log_open (fn)

Argument fn This argument is type string and provides the file name of log file to be opened.

Table 15–45. ebfm_log_close Procedure

Location altpcietb_bfm_log.v or altpcietb_bfm_log.vhd

Syntax ebfm_log_close

Argument NONE



Chapter 15: Testbench and Design Example 15–47
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

himage (std_logic_vector) Function
The himage function is a utility routine that returns a hexadecimal string 
representation of the std_logic_vector argument. The string is the length of the 
std_logic_vector divided by four (rounded up). You can control the length of the 
string by padding or truncating the argument as needed.

himage (integer) Function
The himage function is a utility routine that returns a hexadecimal string 
representation of the integer argument. The string is the length specified by the hlen 
argument. 

Verilog HDL Formatting Functions
The following procedures and functions are available in the Verilog HDL include file 
altpcietb_bfm_log.v that uses the altpcietb_bfm_log_common.v module, 
instantiated at the top level of the testbench. This section outlines formatting 
functions that are only used by Verilog HDL. All these functions take one argument of 
a specified length and return a vector of a specified length.

himage1
This function creates a one-digit hexadecimal string representation of the input 
argument that can be concatenated into a larger message string and passed to 
ebfm_display. 

Table 15–46. himage (std_logic_vector) Function

Location  altpcietb_bfm_log.vhd

Syntax string:= himage(vec)

Argument vec This argument is a std_logic_vector that is converted to a hexadecimal string.

Return string Hexadecimal formatted string representation of the argument

Table 15–47. himage (integer) Function 

Location  altpcietb_bfm_log.vhd

Syntax string:= himage(num, hlen)

Arguments num Argument of type integer that is converted to a hexadecimal string.

hlen
Length of the returned string. The string is truncated or padded with 0s on the right as 
needed.

Return string Hexadecimal formatted string representation of the argument.

Table 15–48. himage1 

Location  altpcietb_bfm_log.v

syntax string:= himage(vec)

Argument vec Input data type reg with a range of 3:0.

Return range string
Returns a 1-digit hexadecimal representation of the input argument. Return data is type 
reg with a range of 8:1



15–48 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

himage2
This function creates a two-digit hexadecimal string representation of the input 
argument that can be concatenated into a larger message string and passed to 
ebfm_display.

himage4
This function creates a four-digit hexadecimal string representation of the input 
argument can be concatenated into a larger message string and passed to 
ebfm_display.

himage8 
This function creates an 8-digit hexadecimal string representation of the input 
argument that can be concatenated into a larger message string and passed to 
ebfm_display. 

himage16
This function creates a 16-digit hexadecimal string representation of the input 
argument that can be concatenated into a larger message string and passed to 
ebfm_display. 

Table 15–49. himage2

Location  altpcietb_bfm_log.v

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 7:0.

Return range string
Returns a 2-digit hexadecimal presentation of the input argument, padded with leading 
0s, if they are needed. Return data is type reg with a range of 16:1

Table 15–50. himage4

Location  altpcietb_bfm_log.v

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 15:0.

Return range Returns a four-digit hexadecimal representation of the input argument, padded with leading 
0s, if they are needed. Return data is type reg with a range of 32:1.

Table 15–51. himage8

Location  altpcietb_bfm_log.v

syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string
Returns an 8-digit hexadecimal representation of the input argument, padded with leading 
0s, if they are needed. Return data is type reg with a range of 64:1.

Table 15–52. himage16

Location  altpcietb_bfm_log.v

syntax string:= himage(vec)



Chapter 15: Testbench and Design Example 15–49
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

dimage1
This function creates a one-digit decimal string representation of the input argument 
that can be concatenated into a larger message string and passed to ebfm_display. 

dimage2
This function creates a two-digit decimal string representation of the input argument 
that can be concatenated into a larger message string and passed to ebfm_display. 

dimage3
This function creates a three-digit decimal string representation of the input argument 
that can be concatenated into a larger message string and passed to ebfm_display. 

Argument range vec Input data type reg with a range of 63:0.

Return range string
Returns a 16-digit hexadecimal representation of the input argument, padded with leading 
0s, if they are needed. Return data is type reg with a range of 128:1.

Table 15–52. himage16

Table 15–53. dimage1

Location  altpcietb_bfm_log.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 1-digit decimal representation of the input argument that is padded with leading 
0s if necessary. Return data is type reg with a range of 8:1. 

Returns the letter U if the value cannot be represented. 

Table 15–54. dimage2

Location  altpcietb_bfm_log.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 2-digit decimal representation of the input argument that is padded with leading 
0s if necessary. Return data is type reg with a range of 16:1. 

Returns the letter U if the value cannot be represented. 

Table 15–55. dimage3

Location  altpcietb_bfm_log.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string
Returns a 3-digit decimal representation of the input argument that is padded with leading 
0s if necessary. Return data is type reg with a range of 24:1. 

Returns the letter U if the value cannot be represented. 



15–50 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

dimage4
This function creates a four-digit decimal string representation of the input argument 
that can be concatenated into a larger message string and passed to ebfm_display.

dimage5
This function creates a five-digit decimal string representation of the input argument 
that can be concatenated into a larger message string and passed to ebfm_display. 

dimage6
This function creates a six-digit decimal string representation of the input argument 
that can be concatenated into a larger message string and passed to ebfm_display. 

dimage7
This function creates a seven-digit decimal string representation of the input 
argument that can be concatenated into a larger message string and passed to 
ebfm_display.

Table 15–56. dimage4

Location  altpcietb_bfm_log.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 4-digit decimal representation of the input argument that is padded with 
leading 0s if necessary. Return data is type reg with a range of 32:1. 

Returns the letter U if the value cannot be represented.

Table 15–57. dimage5

Location  altpcietb_bfm_log.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 5-digit decimal representation of the input argument that is padded with leading 
0s if necessary. Return data is type reg with a range of 40:1. 

Returns the letter U if the value cannot be represented.

Table 15–58. dimage6

Location  altpcietb_bfm_log.v

syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 6-digit decimal representation of the input argument that is padded with leading 
0s if necessary. Return data is type reg with a range of 48:1. 

Returns the letter U if the value cannot be represented.

Table 15–59. dimage7

Location  altpcietb_bfm_log.v

syntax string:= dimage(vec)



Chapter 15: Testbench and Design Example 15–51
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Procedures and Functions Specific to the Chaining DMA Design Example
This section describes procedures that are specific to the chaining DMA design 
example. These procedures are located in the VHDL entity file 
altpcietb_bfm_driver_chaining.vhd or the Verilog HDL module file 
altpcietb_bfm_driver_chaining.v. 

chained_dma_test Procedure
The chained_dma_test procedure is the top-level procedure that runs the chaining 
DMA read and the chaining DMA write 

dma_rd_test Procedure
Use the dma_rd_test procedure for DMA reads from the endpoint memory to the 
BFM shared memory. 

Argument range vec Input data type reg with a range of 31:0.

Return range string

Returns a 7-digit decimal representation of the input argument that is padded with 
leading 0s if necessary. Return data is type reg with a range of 56:1. 

Returns the letter <U> if the value cannot be represented.

Table 15–59. dimage7

Table 15–60. chained_dma_test Procedure 

Location altpcietb_bfm_driver_chaining.v or altpcietb_bfm_driver_chaining.vhd

Syntax chained_dma_test (bar_table, bar_num, direction, use_msi, use_eplast)

Arguments

bar_table Address of the endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

direction
When 0 the direction is read. 

When 1 the direction is write.

Use_msi When set, the root port uses native PCI Express MSI to detect the DMA completion.

Use_eplast When set, the root port uses BFM shared memory polling to detect the DMA completion.

Table 15–61. dma_rd_test Procedure 

Location altpcietb_bfm_driver_chaining.v or altpcietb_bfm_driver_chaining.vhd

Syntax dma_rd_test (bar_table, bar_num, use_msi, use_eplast)

Arguments

bar_table Address of the endpoint bar_table structure in BFM shared memory. 

bar_num BAR number to analyze.

Use_msi When set, the root port uses native PCI express MSI to detect the DMA completion.

Use_eplast When set, the root port uses BFM shared memory polling to detect the DMA completion.



15–52 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

dma_wr_test Procedure
Use the dma_wr_test procedure for DMA writes from the BFM shared memory to the 
endpoint memory. 

dma_set_rd_desc_data Procedure
Use the dma_set_rd_desc_data procedure to configure the BFM shared memory for 
the DMA read. 

dma_set_wr_desc_data Procedure
Use the dma_set_wr_desc_data procedure to configure the BFM shared memory for 
the DMA write. 

dma_set_header Procedure 
Use the dma_set_header procedure to configure the DMA descriptor table for DMA 
read or DMA write. 

Table 15–62. dma_wr_test Procedure 

Location altpcietb_bfm_driver_chaining.v or altpcietb_bfm_driver_chaining.vhd

Syntax dma_wr_test (bar_table, bar_num, use_msi, use_eplast)

Arguments

bar_table Address of the endpoint bar_table structure in BFM shared memory. 

bar_num BAR number to analyze.

Use_msi When set, the root port uses native PCI Express MSI to detect the DMA completion.

Use_eplast When set, the root port uses BFM shared memory polling to detect the DMA completion.

Table 15–63. dma_set_rd_desc_data Procedure 

Location altpcietb_bfm_driver_chaining.v or altpcietb_bfm_driver_chaining.vhd

Syntax dma_set_rd_desc_data (bar_table, bar_num)

Arguments
bar_table Address of the endpoint bar_table structure in BFM shared memory. 

bar_num BAR number to analyze.

Table 15–64. dma_set_wr_desc_data_header Procedure 

Location altpcietb_bfm_driver_chaining.v or altpcietb_bfm_driver_chaining.vhd

Syntax dma_set_wr_desc_data_header (bar_table, bar_num)

Arguments
bar_table Address of the endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Table 15–65. dma_set_header Procedure 

Location altpcietb_bfm_driver_chaining.v or altpcietb_bfm_driver_chaining.vhd

Syntax dma_set_header (bar_table, bar_num, Descriptor_size, direction, Use_msi, Use_eplast, 
Bdt_msb, Bdt_lab, Msi_number, Msi_traffic_class, Multi_message_enable)



Chapter 15: Testbench and Design Example 15–53
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

rc_mempoll Procedure
Use the rc_mempoll procedure to poll a given DWORD in a given BFM shared 
memory location.

msi_poll Procedure
The msi_poll procedure tracks MSI completion from the endpoint. 

Arguments

bar_table Address of the endpoint bar_table structure in BFM shared memory. 

bar_num BAR number to analyze.

Descriptor_size Number of descriptor.

direction
When 0 the direction is read. 

When 1 the direction is write. 

Use_msi
When set, the root port uses native PCI Express MSI to detect the DMA 
completion.

Use_eplast
When set, the root port uses BFM shared memory polling to detect the DMA 
completion.

Bdt_msb BFM shared memory upper address value.

Bdt_lsb BFM shared memory lower address value.

Msi_number
When use_msi is set, specifies the number of the MSI which is set by the 
dma_set_msi procedure.

Msi_traffic_class
When use_msi is set, specifies the MSI traffic class which is set by the 
dma_set_msi procedure.

Multi_message_enable
When use_msi is set, specifies the MSI traffic class which is set by the 
dma_set_msi procedure.

Table 15–65. dma_set_header Procedure 

Table 15–66. rc_mempoll Procedure 

Location altpcietb_bfm_driver_chaining.v or altpcietb_bfm_driver_chaining.vhd

Syntax rc_mempoll (rc_addr, rc_data, rc_mask)

Arguments

rc_addr Address of the BFM shared memory that is being polled. 

rc_data Expected data value of the that is being polled.

rc_mask Mask that is logically ANDed with the shared memory data before it is 
compared with rc_data. 

Table 15–67. msi_poll Procedure 

Location altpcietb_bfm_driver_chaining.v or altpcietb_bfm_driver_chaining.vhd

Syntax msi_poll(max_number_of_msi,msi_address,msi_expected_dmawr,msi_expected_dmard,dma_wri
te,dma_read)



15–54 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

dma_set_msi Procedure
The dma_set_msi procedure sets PCI Express native MSI for the DMA read or the 
DMA write.

find_mem_bar Procedure
The find_mem_bar procedure locates a BAR which satisfies a given memory space 
requirement. 

Arguments

max_number_of_msi Specifies the number of MSI interrupts to wait for.

msi_address The shared memory location to which the MSI messages will be written.

msi_expected_dmawr
When dma_write is set, this specifies the expected MSI data value for the 
write DMA interrupts which is set by the dma_set_msi procedure. 

msi_expected_dmard
When the dma_read is set, this specifies the expected MSI data value for the 
read DMA interrupts which is set by the dma_set_msi procedure.

Dma_write When set, poll for MSI from the DMA write module.

Dma_read When set, poll for MSI from the DMA read module. 

Table 15–67. msi_poll Procedure 

Table 15–68. dma_set_msi Procedure 

Location altpcietb_bfm_driver_chaining.v or altpcietb_bfm_driver_chaining.vhd

Syntax dma_set_msi(bar_table, bar_num, bus_num, dev_num, fun_num, direction, msi_address, 
msi_data, msi_number, msi_traffic_class, multi_message_enable, msi_expected) 

Arguments

bar_table Address of the endpoint bar_table structure in BFM shared memory. 

bar_num BAR number to analyze.

Bus_num Set configuration bus number. 

dev_num Set configuration device number.

Fun_num Set configuration function number.

Direction
When 0 the direction is read. 

When 1 the direction is write.

msi_address
Specifies the location in shared memory where the MSI message data 
will be stored. 

msi_data
The 16-bit message data that will be stored when an MSI message is 
sent. The lower bits of the message data will be modified with the 
message number as per the PCI specifications. 

Msi_number Returns the MSI number to be used for these interrupts.

Msi_traffic_class Returns the MSI traffic class value.

Multi_message_enable Returns the MSI multi message enable status.

msi_expected
Returns the expected MSI data value, which is msi_data modified by the 
msi_number chosen.

Table 15–69. find_mem_bar Procedure 

Location altpcietb_bfm_driver_chaining.v

Syntax Find_mem_bar(bar_table,allowed_bars,min_log2_size, sel_bar)



Chapter 15: Testbench and Design Example 15–55
BFM Procedures and Functions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

dma_set_rclast Procedure
The dma_set_rclast procedure starts the DMA operation by writing to the endpoint 
DMA register the value of the last descriptor to process (RCLast). 

ebfm_display_verb Procedure
The ebfm_display_verb procedure calls the procedure ebfm_display when the global 
variable DISPLAY_ALL is set to 1. 

Arguments

bar_table Address of the endpoint bar_table structure in BFM shared memory 

allowed_bars One hot 6 bits BAR selection

min_log2_size Number of bit required for the specified address space

sel_bar BAR number to use

Table 15–69. find_mem_bar Procedure 

Table 15–70. dma_set_rclast Procedure 

Location altpcietb_bfm_driver_chaining.v

Syntax Dma_set_rclast(bar_table, setup_bar, dt_direction, dt_rclast)

Arguments

bar_table Address of the endpoint bar_table structure in BFM shared memory 

setup_bar BAR number to use

dt_direction When 0 read, When 1 write

dt_rclast Last descriptor number

Table 15–71. ebfm_display_verb Procedure 

Location altpcietb_bfm_driver_chaining.v

Syntax ebfm_display_verb(msg_type, message)

Arguments

msg_type
Message type for the message. Should be one of the constants

defined in Table 15–39 on page 15–44.

message

In VHDL, this argument is VHDL type string and contains the message text to 
be displayed. In Verilog HDL, the message string is limited to a maximum of 100 
characters. Also, because Verilog HDL does not allow variable length strings, this 
routine strips off leading characters of 8'h00 before displaying the message.



15–56 Chapter 15: Testbench and Design Example
BFM Procedures and Functions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

16. Qsys Design Example

The Qsys design example provides detailed step-by-step instructions to generate a 
Qsys system. The Qsys design flow supports the following IP Compiler for PCI 
Express features:

■ Hard IP implementation

■ Arria II GX and Stratix IV GX devices

■ 125 MHz Gen1 ×1 and ×4 with a 64-bit interface, 250 MHz Gen2 ×1 with a 64-bit 
interface

■ Dynamic bus sizing as opposed to native addressing

The IP Compiler for PCI Express installs with supporting files for design examples 
that support the following two IP Compiler for PCI Express variations:

■ Gen1:×8 IP Compiler for PCI Express hard IP implementation that targets a 
Stratix IV GX device

■ Gen1:×4 IP Compiler for PCI Express hard IP implementation that targets a 
Cyclone IV GX device

This chapters walks through the Gen1:×8 design example. You can run the Gen1:×4 
design example by substituting the appropriate target device, number of lanes, and 
folder substitutions in the instructions in this chapter.

In this design example walkthrough, you generate a Qsys system that contains the 
following components:

■ Gen1:×8 IP Compiler for PCI Express hard IP implementation that targets a 
Stratix IV GX device

■ On-Chip memory

■ DMA controller

In the Qsys design flow you select the IP Compiler for PCI Express as a component. 
This component supports PCI Express ×1, ×2, ×4, or ×8 endpoint applications with 
bridging logic to convert PCI Express packets to Avalon-MM transactions and vice 
versa. The design example in this chapter illustrates the use of a single hard IP 
implementation with an embedded transceiver. The Qsys design flow does not 
support an external transceiver.

August 2014
<edit Part Number variable in chapter>



16–2 Chapter 16: Qsys Design Example
Creating a Quartus II Project

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 16–1 shows how Qsys integrates components and the IP Compiler for PCI 
Express. This design example transfers data between an on-chip memory buffer 
located on the Avalon-MM side and a system memory buffer located on the root 
complex side. The data transfer uses the DMA component which is programmed by 
the PCI Express software application running on the root complex processor.

This design example consists of the following steps:

1. Creating a Quartus II Project

2. Running Qsys

3. Parameterizing the IP Compiler for PCI Express

4. Adding the Remaining Components to the Qsys System

5. Completing the Connections in Qsys

6. Specifying Exported Interfaces

7. Specifying Address Assignments

8. Generating the Qsys System

9. Simulating the Qsys System

10. Preparing the Design for Compilation

11. Compiling the Design

12. Programming a Device

Creating a Quartus II Project
You must create a new Quartus II project with the New Project Wizard, which helps 
you specify the working directory for the project, assign the project name, and 
designate the name of the top-level design entity. To create a new project follow these 
steps:

1. Choose Programs > Altera > Quartus II><version_number> (Windows Start 
menu) to run the Quartus II software. Alternatively, you can also use the 
Quartus II Web Edition software.

Figure 16–1. Qsys Generated Endpoint

Transaction,
Data Link,
and PHY
Layers

On-Chip
Memory

DMA

Qsys Generated Endpoint

 

 

 

PCI Express
Link

PCI
Express

Avalon-MM
Bridge

 In
te

rc
on

ne
ct

 

IP Compiler for PCI Express



Chapter 16: Qsys Design Example 16–3
Running Qsys

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

2. On the Quartus II File menu, click New Project Wizard.

3. Click Next in the New Project Wizard: Introduction (The introduction is not 
displayed if you turned it off previously.)

4. In the Directory, Name, Top-Level Entity page, enter the following information:

a. Specify the working directory for your project. This design example uses the 
directory C:\projects\s4gx_gen1x8_qsys.

b. Specify the name of the project. This design example uses 
s4gx_gen1x8_qsys_top. You must specify the same name for both the project 
and the top-level design entity.

1 The Quartus II software specifies a top-level design entity that has the same 
name as the project automatically. Do not change this name.

5. Click Next to display the Add Files page.

1 Click Yes, if prompted, to create a new directory.

6. Click Next to display the Family & Device Settings page.

7. On the Family & Device Settings page, choose the following target device family 
and options:

a. In the Family list, select Stratix IV (GT, GX, E).

1 This design example creates a design targeting the Stratix IV GX device 
family. You can also use these procedures for other supported device 
families.

b. In the Target device box, select Auto device selected by the Fitter. 

8. Click Next to close this page and display the EDA Tool Settings page.

9. Click Next to display the Summary page.

10. Check the Summary page to ensure that you have entered all the information 
correctly.

11. Click Finish to complete the Quartus II project. 

Running Qsys
Follow these steps to set up your Qsys system: 

1. On the Tools menu, click Qsys. Qsys appears.

2. To establish global settings, on the Project Settings tab, specify the settings in 
Table 16–1.

Table 16–1. Project Settings

Parameter Value

Device Family Stratix IV

Clock Crossing Adapter Type FIFO



16–4 Chapter 16: Qsys Design Example
Parameterizing the IP Compiler for PCI Express

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

f Refer to Creating a System with Qsys in volume 1 of the Quartus II Handbook for more 
information about how to use Qsys, including information about the Project Settings 
tab. For an explanation of each Qsys menu item, refer to About Qsys in Quartus II 
Help. 

3. To name your Qsys system, follow these steps:

a. On the File menu, click Save.

b. Under File name, type hip_s4gx_gen1x8_qsys.

c. Click Save. The Qsys system is saved in the new file 
hip_s4gx_gen1x8_qsys.qsys in your project directory.

1 This example design requires that you not specify the same name for the Qsys system 
as for the top-level project file, because you must configure additional blocks in your 
system that are not available as Qsys components. Later, you create a wrapper HDL 
file of the same name as the project and instantiate the generated Qsys system and 
these additional blocks in the wrapper HDL file.

4. To remove the default clock clk_0 from the Qsys system, in the System Contents 
tab, highlight the component and click the red X on the left edge of the System 
Contents tab. All modules in your synchronous design use the IP Compiler for 
PCI Express core clock.

5. To add the IP Compiler for PCI Express component to your system, from the 
System Contents tab, under Interface Protocols in the PCI folder, double-click the 
IP Compiler for PCI Express component. The IP Compiler for PCI Express 
parameter editor appears.

Parameterizing the IP Compiler for PCI Express
Bold headings in the IP Compiler for PCI Express parameter editor divide the 
parameter list into separate sections. You can use the scroll bar on the right to view 
parameters that are not initially visible. To parameterize the IP Compiler for PCI 
Express, follow these steps:

1. Under the System Settings heading, specify the settings in Table 16–2.

Limit interconnect pipeline stages to 2

Generation ID 0

Table 16–1. Project Settings

Parameter Value

Table 16–2. IP Compiler for PCI Express System Settings (Part 1 of 2)

Parameter Value

Device Family Stratix IV GX

Gen2 Lane Rate Mode Leave this option off

Number of Lanes ×8

Reference clock frequency 100 MHz



Chapter 16: Qsys Design Example 16–5
Parameterizing the IP Compiler for PCI Express

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

2. Under the PCI Base Address Registers (Type 0 Configuration Space) heading, 
specify the settings in Table 16–3. 

1 You cannot fill in the Bar Size or Avalon Base Address in the IP Compiler for PCI 
Express parameter editor. Qsys calculates the Bar Size from the size of the 
Avalon-MM slave port to which the BAR is connected. After you add components to 
your Qsys system, you can use the Auto-Assign Base Addresses function on the 
System menu to define the address map.

3. Under the Device Identification Registers heading, specify the values in 
Table 16–4. After you configure your device, the values you specify in the 
parameter editor can be read by software from these read-only registers.

4. Under the Link Capabilities heading, leave Link port number at its default value 
of 1.

5. Under the Error Reporting heading, leave all types of error reporting turned off.

6. Under the Buffer Configuration heading, specify the settings in Table 16–5.

Use 62.5 MHz application clock Leave this option off

Test out width 64 bits

Table 16–3. PCI Base Address Registers (Type 0 Configuration Space)

BAR BA BAR Size Avalon Base Address

0 64-bit Prefetchable Memory Auto Auto

1 Not used — —

2 32 bit Non-Prefetchable Auto Auto

3–5 Not used — —

Table 16–2. IP Compiler for PCI Express System Settings (Part 2 of 2)

Parameter Value

Table 16–4. Device Identification Registers

Parameter Value

Vendor ID 0x00001172

Device ID 0x00000004

Revision ID 0x00000001

Class code 0x00FF0000

Subsystem vendor ID 0x00001172

Subsystem ID 0x00000004

Table 16–5. Buffer Configuration Settings

Parameter Value

Maximum payload size 256 Bytes

RX buffer credit allocation –
performance for received requests High



16–6 Chapter 16: Qsys Design Example
Adding the Remaining Components to the Qsys System

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

1 The values displayed for Posted header credit, Posted data credit, 
Non-posted header credit, Completion header credit, and Completion 
data credit are read-only. The values are computed based on the values set 
for Maximum payload size and RX buffer credit allocation – performance 
for received requests.

7. Under the Avalon-MM Settings heading, specify the settings in Table 16–6.

8. Under the Address Translation heading, specify the settings in Table 16–7.

You can ignore the Address Translation Table Contents, as they are valid only for 
the Fixed translation table configuration.

9. Click Finish to add the IP Compiler for PCI Express component pcie_hard_ip_0 to 
your Qsys system.

1 Your system is not yet complete, so you can ignore any error messages generated by 
Qsys at this stage.

Adding the Remaining Components to the Qsys System
This section describes adding the DMA controller and on-chip memory to your Qsys 
system.

1. To add the DMA Controller component to your system, from the System Contents 
tab, under Bridges and Adapters in the DMA folder, double-click the DMA 
Controller component. This component contains read and write master ports and 
a control port slave.

2. In the DMA Controller parameter editor, specify the settings in Table 16–8. 

Table 16–6. Avalon-MM Settings

Parameter Value

Peripheral Mode Requester/Completer

Control Register Access (CRA) Avalon slave port Turn this option on

Auto Enable PCIe Interrupt (enabled at power-on) Turn this option off

Table 16–7. Address Translation Settings

Parameter Value

Address Translation Table Configuration Dynamic translation table

Number of address pages 2

Size of address pages 1 MByte - 20 bits

Table 16–8. DMA Controller Parameters

Parameter Value

Width of the DMA length register 13

Enable burst transfers Turn this option on

Maximum burst size 128



Chapter 16: Qsys Design Example 16–7
Completing the Connections in Qsys

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

3. Click Finish. The DMA Controller module dma_0 is added to your Qsys system.

4. To add the on-chip memory to your system, under Memories and Memory 
Controllers in the On-Chip folder, double-click the On-Chip Memory (RAM or 
ROM) component. 

5. In the On-Chip Memory parameter editor, specify the parameters listed in 
Table 16–9.

6. Click Finish. The on-chip memory component is added to your Qsys system.

7. To rename the new component, right-click the component name and select 
Rename. 

8. Type the new name onchip_memory_0.

Completing the Connections in Qsys
In Qsys, hovering the mouse over the Connections column displays the potential 
connection points between components, represented as dots on connecting wires. A 
filled dot shows that a connection is made; an open dot shows a potential connection 
point. Clicking a dot toggles the connection status. To complete your Qsys system, 
follow these steps:

1. To view all the component interfaces, including the clock and interrupt interfaces, 
click the filter icon on the left edge of the System Contents tab and in the Filter 
menu, select All Interfaces. Figure 16–2 shows the filter icon.

Data transfer FIFO depth 32

Construct FIFO from embedded memory blocks Turn this option on

Table 16–9. On-Chip Memory Parameters 

Parameter Value

Memory type

Type RAM (Writeable)

Dual-port access Turn this option off

Block type Auto

Size

Data width 64

Total memory size 4096 bytes 

Minimize memory block usage (may impact 
fMAX) Not applicable

Read latency

Slave s1 latency 1

Memory initialization

Initialize memory content Turn this option off

Table 16–8. DMA Controller Parameters

Parameter Value



16–8 Chapter 16: Qsys Design Example
Completing the Connections in Qsys

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

2. Connect the pcie_hard_ip_0 bar1_0 Avalon-MM master port to the 
onchip_memory_0 s1 Avalon-MM slave port using the following procedure:

a. Click the bar1_0 port then hover in the Connections column to display 
possible connections. 

b. Click the open dot at the intersection of the onchip_memory_0 s1 port and the 
pcie_hard_ip_0 bar1_0 to create a connection.

Figure 16–2 shows the Connections panel and the pcie_hard_ip_0.bar1_0 to 
onchip_memory_0.s1 open Connections dot before you create the connection. 
After you create the connection, the dot is filled.

3. Repeat step 2 to make the remaining connections listed in Table 16–10.

Figure 16–2. Making the Connections in Your Qsys System: Filter Icon and First Connection

Filter Icon

Table 16–10. Complete List of Qsys Connections (Part 1 of 2)

Make Connection From: To:

pcie_hard_ip_0 pcie_core_clk Clock Output onchip_memory_0 clk1 Clock Input

pcie_hard_ip_0 pcie_core_clk Clock Output dma_0 clk Clock Input

pcie_hard_ip_0 pcie_core_reset Reset onchip_memory_0 reset1 Reset

pcie_hard_ip_0 pcie_core_reset Reset dma_0 reset Reset

pcie_hard_ip_0 bar1_0 Avalon-MM Master (step 2) onchip_memory_0 s1 Avalon-MM Slave (step 2)



Chapter 16: Qsys Design Example 16–9
Specifying Exported Interfaces

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

4. In the IRQ panel, click the connection from dma_0.irq to pcie_hard_ip_0.rxm_irq 
and type 0. 

Because the Qsys-generated IP Compiler for PCI Express implements an 
individual interrupt scheme, you must specify the specific bit in the rxm_irq 
interface to which each interrupt connects. In this case, the DMA controller’s 
interrupt sender signal connects to bit 0 of the IP Compiler for PCI Express input 
interrupt bus.

Specifying Exported Interfaces
To make them visible outside the Qsys system, you must export the remaining 
interfaces of the IP Compiler for PCI Express Qsys component pcie_hard_ip_0. After 
an interface is exported, it can connect to modules outside the Qsys system.

Follow these steps to export an interface:

1. In the row for the interface you want to export, click the Export column.

2. Accept the default name that appears in the Export column by clicking outside the 
cell without modifying the text.

Export the pcie_hard_ip_0 interfaces listed in Table 16–11.

pcie_hard_ip_0 bar2 Avalon-MM Master dma_0 control_port_slave Avalon-MM Slave

pcie_hard_ip_0 bar2 Avalon-MM Master pcie_hard_ip_0 cra Avalon-MM Slave

dma_0 irq Interrupt Sender pcie_hard_ip_0 rxm_irq Interrupt Receiver

dma_0 read_master Avalon-MM Master onchip_memory_0 s1 Avalon-MM Slave

dma_0 read_master Avalon-MM Master pcie_hard_ip_0 txs Avalon-MM Slave

dma_0 write_master Avalon-MM Master onchip_memory_0 s1 Avalon-MM Slave

dma_0 write_master Avalon-MM Master pcie_hard_ip_0 txs Avalon-MM Slave

Table 16–10. Complete List of Qsys Connections (Part 2 of 2)

Make Connection From: To:

Table 16–11. pcie_hard_ip_0 Exported Interfaces (Part 1 of 2)

Interface Name Exported Name

cal_blk_clk pcie_hard_ip_0_cal_blk_clk

refclk pcie_hard_ip_0_refclk

test_in pcie_hard_ip_0_test_in

pcie_rstn pcie_hard_ip_0_pcie_rstn

clocks_sim pcie_hard_ip_0_clocks_sim

reconfig_busy pcie_hard_ip_0_reconfig_busy

pipe_ext pcie_hard_ip_0_pipe_ext

test_out pcie_hard_ip_0_test_out

rx_in pcie_hard_ip_0_rx_in

tx_out pcie_hard_ip_0_tx_out

reconfig_togxb pcie_hard_ip_0_reconfig_togxb

reconfig_gxbclk pcie_hard_ip_0_reconfig_gxbclk



16–10 Chapter 16: Qsys Design Example
Specifying Address Assignments

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Specifying Address Assignments
Qsys requires that you resolve the base addresses of all Avalon-MM slave interfaces in 
the Qsys system. You can either use the auto-assign feature, or specify the base 
addresses manually. To use the auto-assign feature, on the System menu, click Assign 
Base Addresses. In the design example, you assign the base addresses manually.

The IP Compiler for PCI Express stores the base addresses in BARs. The maximum 
supported size for a slave IP Compiler for PCI Express BAR is 1 GByte. Therefore, 
every Avalon-MM slave base address in your system must be less than 0x20000000. 
The restriction applies to all Avalon-MM slave ports that connect to an IP Compiler 
for PCI Express master port.

Follow these steps to assign a base address to an Avalon-MM slave interface 
manually:

1. In the row for the interface you want to export, click the Base column.

2. Type your preferred base address for the interface.

Assign the base addresses listed in Table 16–12.

After you make these assignments, the Qsys error messages about overlapping 
address ranges disappear from the Messages tab. If error messages about address 
ranges remain, review the preceding steps in the chapter. If your design follows these 
steps, the error messages should disappear.

reconfig_fromgxb_0 pcie_hard_ip_0_reconfig_fromgxb_0

reconfig_fromgxb_1 (1) pcie_hard_ip_0_reconfig_fromgxb_1

fixedclk pcie_hard_ip_0_fixedclk

Note to Table 16–11:

(1) Only ×8 variations of the IP Compiler for PCI Express Qsys component have a reconfig_fromgxb_1 port. In 
systems with an IP Compiler for PCI Express ×8 variation, this port connects to the upper 17 bits of the 
altgxb_reconfig block 34-bit reconfig_fromgxb port.

Table 16–11. pcie_hard_ip_0 Exported Interfaces (Part 2 of 2)

Interface Name Exported Name

Table 16–12. Base Address Assignments for Avalon-MM Slave Interfaces

Interface Name Exported Name

pcie_hard_ip_0 txs 0x00000000

pcie_hard_ip_0 cra 0x00000000

dma_0 control_port_slave 0x00004000

onchip_memory_0 s1 0x00200000



Chapter 16: Qsys Design Example 16–11
Specifying Address Assignments

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure 16–3 shows the Address Map tab of the Qsys system after you assign the base 
addresses in Table 16–12.

PCI Express requests to an address in the range assigned to BAR1:0 are converted to 
Avalon-MM read and write transfers to onchip_memory_0. PCI Express requests to an 
address in the range assigned to BAR2 are converted to Avalon-MM read and write 
transfers to the IP Compiler for PCI Express cra slave port or to the DMA controller 
control_port_slave port. 

The pcie_hard_ip_0 cra slave port is accessible at offsets 0x0000000–0x0003FFF from 
the programmed BAR2 base address. The DMA control_port_slave is accessible at 
offsets 0x00004000 through 0x0000403F from the programmed BAR2 base address. 
Refer to “PCI Express-to-Avalon-MM Address Translation” on page 4–21 for 
additional information about this address mapping.

For Avalon-MM accesses directed to the pcie_hard_ip_0 txs Avalon-MM Slave port, 
Avalon-MM address bits 19-0 pass to the PCI Express address unchanged because you 
selected a 1 MByte or 20–bit address page size. Bit 20 selects which one of the two 
address translation table entries provides the upper bits of the PCI Express address. 
Avalon-MM address bits [31:21] select the txs Avalon-MM Slave port. Refer to section 
“Avalon-MM-to-PCI Express Address Translation” on page 4–20 for additional 
information about this address mapping.

Figure 16–3. Qsys System Address Map



16–12 Chapter 16: Qsys Design Example
Generating the Qsys System

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 16–4 illustrates the complete Qsys system.

Generating the Qsys System
To generate the Qsys system, follow these steps:

1. On the Generation tab, in the Simulation section, set the following options:

■ For Create simulation model, select Verilog.

■ For Create testbench Qsys system, select Standard, BFMs for standard 
Avalon interfaces.

■ For Create testbench simulation model, select Verilog.

2. In the Synthesis section, turn on Create HDL design files for synthesis.

3. Click the Generate button at the bottom of the tab. 

4. After Qsys reports Generate Completed in the Generate progress box title, click 
Close. 

5. On the File menu, click Save.

Figure 16–4. Complete IP Compiler for PCI Express Example Design Qsys System



Chapter 16: Qsys Design Example 16–13
Simulating the Qsys System

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table 16–13 lists the files that are generated in your Quartus II project directory. In this 
design example, the project directory is C:\projects\s4gx_gen1x8_qsys and the Qsys 
system directory is hip_s4gx_gen1x8_qsys.

Simulating the Qsys System
Qsys creates a top-level testbench named 
<project_dir>/hip_s4gx_gen1x8_qsys/testbench/hip_s4gx_gen1x8_qsys_tb.qsys. This 
testbench connects an appropriate BFM to each exported interface. Qsys generates the 
required files and models to simulate your IP Compiler for PCI Express system.

This section of the design example walkthrough uses the following files and software:

■ The system you created using Qsys

■ The testbench created by Qsys in the 
<project_dir>/hip_s4gx_gen1x8_qsys/testbench directory. You can view this 
testbench in Qsys by opening the file 
<project_dir>/hip_s4gx_gen1x8_qsys/testbench/hip_s4gx_gen1x8_qsys_tb.qsys.

■ The ModelSim-Altera Edition software

1 You can also use any other supported third-party simulator to simulate your design.

Qsys creates IP functional simulation models for all the system components. The IP 
functional simulation models are the .vo or .vho files generated by Qsys in your 
project directory.

f For more information about IP functional simulation models, refer to Simulating Altera 
Designs in volume 3 of the Quartus II Handbook. 

Table 16–13. Qsys System Generated Directories

Directory Location

Qsys system <project_dir>/hip_s4gx_gen1x8_qsys

Synthesis <project_dir>/hip_s4gx_gen1x8_qsys/synthesis

Simulation <project_dir>/hip_s4gx_gen1x8_qsys/simulation

Testbench <project_dir>/hip_s4gx_gen1x8_qsys/testbench



16–14 Chapter 16: Qsys Design Example
Simulating the Qsys System

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure 16–5 shows the testbench that Qsys creates in 
<project_dir>/hip_s4gx_gen1x8_qsys/testbench/hip_s4gx_gen1x8_qsys_tb.qsys.

The <Quartus II installation 
directory>/ip/altera/altera_pcie/altera_pcie_avmm/example_designs/s4gx_gen1x8 
folder includes a pregenerated version of the same .qsys file.

Changing from PIPE Mode to Serial Mode
By default, simulation runs in PIPE mode. To run simulation in serial mode, follow 
these steps before you begin running the Qsys testbench:

1. Change directory to your project directory subdirectory 
hip_s4gx_gen1x8_qsys/testbench/hip_s4gx_gen1x8_qsys_tb/simulation.

2. Open the file hip_s4gx_gen1x8_qsys_tb.v in a text editor.

3. Find the module instantiation that generates the busy_altgxb_reconfig signal. 
The signal has a long prefix in the file and is instantiated in the following code:

hip_s4gx_gen1x8_qsys_tb_hip_s4gx_gen1x8_qsys_inst_pcie_hard_ip_0_reconfig_busy_bfm 
hip_s4gx_gen1x8_qsys_inst_pcie_hard_ip_0_reconfig_busy_bfm (

.sig_busy_altgxb_reconfig 
(hip_s4gx_gen1x8_qsys_inst_pcie_hard_ip_0_reconfig_busy_bfm_conduit_busy_altgxb_reconfig)
);

4. Replace this module instantiation with the following assignment:

assign hip_s4gx_gen1x8_qsys_inst_pcie_hard_ip_0_reconfig_busy_bfm_conduit_busy_altgxb_reconfig \
= 0;

5. Save and close the file.

6. Change directory to submodules.

Figure 16–5. Qsys Testbench for the IP Compiler for PCI Express Design Example



Chapter 16: Qsys Design Example 16–15
Simulating the Qsys System

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

7. Open the file altera_pcie_bfm.v in a text editor.

8. Replace the following line of code:

parameter PIPE_MODE_SIM = 1’b1;

with the following replacement code:

parameter PIPE_MODE_SIM = 1’b0.

9. Save and close the file.

In the Qsys design flow, the altgxb_reconfig block must be instantiated outside the 
Qsys system. Therefore, the design example Qsys system does not include an 
altgxb_reconfig block. When simulating the Qsys system in serial simulation mode, 
you must force the busy_altgxb_reconfig signal to zero to ensure that the reset 
controller never detects a busy_altgxb_reconfig signal falling edge; because the 
transceiver reconfiguration block is not instantiated, the reset controller subsequent 
actions would lead to failure. In PIPE mode, the altgxb_reconfig signal is ignored. In 
the full design example, the altgxb_reconfig module is instantiated outside the Qsys 
system.

Running Simulation
To run the Qsys testbench, follow these steps:

1. Start the ModelSim simulator.

2. In the ModelSim simulator, change directories to your testbench directory, 
<project_dir>/hip_s4gx_gen1x8_qsys/testbench. Call this directory <testbench 
directory>.

3. To run the setup script, type the following command at the simulator command 
prompt:

do mti_setup.tcl r
4. To compile all the files and load the design in Modelsim, type one of the following 

commands at the simulator prompt:

■ To prepare to debug with waveforms, type the following command:

ld_debug r
■ To prepare to simulate in optimized mode, type the following command:

ld r
5. To set up a waveform file if you have not already done so, follow these steps:

a. In the ModelSim Objects tab, highlight files you wish to display in your 
simulation waveform.

b. Right-click on your selected signals, select Add > To Wave and click Selected 
Signals. The Wave tab displays with your selected signals.

c. On the File menu, click Save Format. The Save Format dialog box appears.

d. Change Pathname to <testbench directory>/wave_presets.do.

e. Click OK.

Your simulation run is set up to display these signals. In future runs, you can skip 
step 5.



16–16 Chapter 16: Qsys Design Example
Simulating the Qsys System

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

6. To use a waveform file you set up for a previous simulation run, you must call the 
waveform setup file explicitly. If your waveform file name is wave_presets.do, at 
the simulator prompt, type the following command:

do wave_presets.do r
7. To simulate your Qsys system, at the simulator prompt, type the following 

command:

run -all r
The IP Compiler for PCI Express test driver performs a sequence of transactions. The 
status of these transactions is displayed in the ModelSim simulation message 
window. The test driver performs the following transactions:

■ Various configuration accesses to the IP Compiler for PCI Express in your system 
after the link is initialized

■ Setup of the Address Translation Table for requests from the DMA component

■ Setup of the DMA controller to read 512 bytes of data from the Root Port BFM’s 
shared memory

■ Setup of the DMA controller to write the same 512 bytes of data back to the Root 
Port BFM’s shared memory

■ Data comparison and report of any mismatch

After simulation completes successfully, at the ModelSim prompt, type quit to exit the 
ModelSim simulator.



Chapter 16: Qsys Design Example 16–17
Preparing the Design for Compilation

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Preparing the Design for Compilation
The Qsys design you generate and simulate in the preceding sections is a subsystem 
of your Quartus II project. To configure and run in hardware, the Quartus II project 
requires additional modules to support the IP Compiler for PCI Express. Figure 16–6 
shows a block diagram of the complete Quartus II project that you can compile, 
configure, and run on a device.

Design Example Wrapper File
Altera provides a wrapper file s4gx_gen1x8_qsys_top.v that includes the required 
connections and functionality for this design example. The file is located in your 
Quartus II installation directory, in 
/ip/altera/altera_pcie/altera_pcie_avmm/example_designs/s4gx_gen1x8. You can 
add it to the project with the design example Qsys system to create a Quartus II 
project that configures and runs in hardware.

For more information about how the PLL and the altgxb_reconfig block connect to 
and behave with the IP Compiler for PCI Express, refer to “Reset Hard IP 
Implementation” on page 7–1. These modules are required to generate the 125 MHz 
fixedclk and 50 MHz reconfig_clk input clocks to the IP Compiler for PCI Express.

The Qsys design flow requires that you instantiate the altgxb_reconfig block outside 
the Qsys system. When you create your own design, you can use the design example 
wrapper file as a reference to help you write your own wrapper file. 

Figure 16–6. Quartus II Project Block Diagram

Transaction,
Data Link,
and PHY
Layers

On-Chip
Memory

DMA

PLL altgxb_reconfig

Qsys Generated Endpoint

Wrapper File

 

 

 

PCI Express
Link

fixedclk

pll_locked
reconfig_clk

reconfig_fromgxb
reconfig_togxb
reconfig_busy

PCI
Express

Avalon-MM
Bridge

 In
te

rc
on

ne
ct

 

IP Compiler for PCI Express



16–18 Chapter 16: Qsys Design Example
Preparing the Design for Compilation

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Adding Files to your Quartus II Project
To complete your design example, you must add the wrapper file to your project. To 
ensure the project configures and runs correctly on hardware, your project also 
requires FPGA pin assignments and timing constraints for the top-level signals. 
Altera provides a Synopsys Design Constraints File (.sdc) and a Tcl file (.tcl) that 
include these assignments for an EP4SGX230KF40C2 device. In addition, you must 
include the altgxb_reconfig and GPLL files. You can generate these two files by 
creating an altgxb_reconfig instance and a GPLL instance in the parameter editor, or 
you can use the Altera-provided Verilog HDL files that are already generated with the 
correct names to connect with the Altera-provided wrapper file.

To add the files to your Quartus II project, follow these steps:

1. Copy the following files from <installation_directory>/ip/altera/altera_pcie/
altera_pcie_avmm/example_designs/s4gx_gen1x8 to your project directory:

■ altgxb_reconfig.v

■ gpll.v

■ s4gx_gen1x8_qsys_top.sdc

■ s4gx_gen1x8_qsys_top.tcl

■ s4gx_gen1x8_qsys_top.v

2. In the Quartus II software, open the s4gx_gen1x8_qsys_top.qpf project in which 
you generated your design example Qsys system.

3. On the Assignments menu, click Settings.

4. In the Category panel, click Files.

5. Browse to each of the following files in the Quartus II project directory and click 
Add:

■ altgxb_reconfig.v

■ gpll.v

■ s4gx_gen1x8_qsys_top.sdc

■ s4gx_gen1x8_qsys_top.tcl

■ s4gx_gen1x8_qsys_top.v

■ hip_s4gx_gen1x8_qsys/synthesis/hip_s4gx_gen1x8_qsys.qip

■ hip_s4gx_gen1x8_qsys/synthesis/submodules/altera_pci_express.sdc

6. Click Apply.

7. To confirm that the wrapper file is added to your project, follow these steps:

a. In the Quartus II software, in the Project Navigator panel, click the 
s4gx_en1x8_qsys_top entity. Verilog HDL code displays in the Quartus II text 
editor.

b. Open the s4gx_gen1x8_qsys_top.v file in a text editor.

c. Confirm that the code in the Quartus II text editor is the code in the 
s4gx_gen1x8_qsys_top.v file.



Chapter 16: Qsys Design Example 16–19
Compiling the Design

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

8. In the Settings window, in the Category panel, click Libraries.

9. Under Project libraries, browse to add the directories listed in Table 16–14.

10. Click Apply.

11. Click OK.

Compiling the Design
Follow these steps to compile your design:

1. In the Quartus II software, open the s4gx_gen1x8_qsys_top.qpf project if it is not 
already open

2. On the Processing menu, click Start Compilation.

3. After compilation, expand the TimeQuest Timing Analyzer folder in the 
Compilation Report. Note whether the timing constraints are achieved in the 
Compilation Report.

If your design does not initially meet the timing constraints, you can find the 
optimal Fitter settings for your design by using the Design Space Explorer. To use 
the Design Space Explorer,on the Tools menu, click Launch Design Space 
Explorer.

Programming a Device
After you compile your design, you can program your targeted Altera device and 
verify your design in hardware. 

f For information about programming a device, refer to the Device Programming section 
in volume 3 of the Quartus II Handbook. 

Table 16–14. Library Search Paths

Directory Path Description

<project directory> Current project directory for project top-level 
file, altgxb_reconfig file, and PLL file.

hip_s4gx_gen1x8_qsys/synthesis Path to Qsys top level files.

hip_s4gx_gen1x8_qsys/synthesis/submodules Path to other modules in the design.



16–20 Chapter 16: Qsys Design Example
Programming a Device

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

17. Debugging

As you bring up your PCI Express system, you may face a number of issues related to 
FPGA configuration, link training, BIOS enumeration, data transfer, and so on. This 
chapter suggests some strategies to resolve the common issues that occur during 
hardware bring-up.

Hardware Bring-Up Issues
Typically, PCI Express hardware bring-up involves the following steps:

1. System reset

2. Linking training

3. BIOS enumeration

The following sections, describe how to debug the hardware bring-up flow. Altera 
recommends a systematic approach to diagnosing bring-up issues as illustrated in 
Figure 17–1.

Link Training
The physical layer automatically performs link training and initialization without 
software intervention. This is a well-defined process to configure and initialize the 
device's physical layer and link so that PCIe packets can be transmitted. If you 
encounter link training issues, viewing the actual data in hardware should help you 
determine the root cause. You can use the following tools to provide hardware 
visibility:

■ Altera SignalTap® II Embedded Logic Analyzer

■ Third-party PCIe analyzer

Debugging Link Training Issues Using Quartus II SignalTap II Logic Analyzer
You can use the SignalTap II Embedded Logic Analyzer to diagnose the LTSSM state 
transitions that are occurring at the PIPE interface.

Figure 17–1. Debugging Link Training Issues

No

system reset
Does Link 

Train
 Correctly?

Check PIPE
Interface 

Use PCIe 
 Analyzer

Soft Reset System to
 Force Enumeration 

Check Configuration 
Space 

Check LTSSM
Status 

YesYes

No

Successful
OS/BIOS

Enumeration?

August 2014
<edit Part Number variable in chapter>



17–2 Chapter 17: Debugging
Hardware Bring-Up Issues

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Check Link Training and Status State Machine (ltssm[4:0])

The IP Compiler for PCI Express ltssm[4:0] bus encodes the status of LTSSM. The 
LTSSM state machine reflects the physical layer’s progress through the link training 
process. For a complete description of the states these signals encode, refer to “Reset 
and Link Training Signals” on page 5–24. When link training completes successfully 
and the link is up, the LTSSM should remain stable in the L0 state. 

When link issues occur, you can monitor ltssm[4:0] to determine whether link 
training fails before reaching the L0 state or the link was initially established (L0), but 
then lost due to an additional link training issue. If you have link training issues, you 
can check the actual link status in hardware using the SignalTap II logic analyzer. The 
LTSSM encodings indicate the LTSSM state of the physical layer as it proceeds 
through the link training process. 

f For more information about link training, refer to the “Link Training and Status State 
Machine (LTSSM) Descriptions” section of PCI Express Base Specification 2.0.

f For more information about the SignalTap II logic analyzer, refer to the Design 
Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of the 
Quartus II Handbook.

Check PIPE Interface

Because the LTSSM signals reflect the behavior of one side of the PCI Express link, 
you may find it difficult to determine the root cause of the link issue solely by 
monitoring these signals. Monitoring the PIPE interface signals in addition to the 
ltssm bus provides greater visibility. 

The PIPE interface is specified by Intel. This interface defines the MAC/PCS 
functional partitioning and defines the interface signals for these two sublayers. Using 
the SignalTap II logic analyzer to monitor the PIPE interface signals provides more 
information about the devices that form the link. 

During link training and initialization, different pre-defined physical layer packets 
(PLPs), known as ordered sets are exchanged between the two devices on all lanes. All 
of these ordered sets have special symbols (K codes) that carry important information 
to allow two connected devices to exchange capabilities, such as link width, link data 
rate, lane reversal, lane-to-lane de-skew, and so on. You can track the ordered sets in 
the link initialization and training on both sides of the link to help you diagnose link 
issues. You can usethe SignalTap II logic analyzer to determine the behavior. The 
following signals are some of the most important for diagnosing bring-up issues:

■ txdata<n>_ext[15:0]/txdatak<n>_ext[1:0]—these signals show the data and 
control being transmitted from the Altera IP Compiler for PCI Express to the other 
device. 

■ rxdata<n>_ext[15:0]/rxdatak<n>_ext[1:0]—these signals show the data and 
control received by the Altera IP Compiler for PCI Express from the other device.

■ phystatus<n>_ext—this signal communicates completion of several PHY 
requests.

■ rxstatus<n>_ext[2:0]—this signal encodes receive status and error codes for the 
receive data stream and receiver detection.



Chapter 17: Debugging 17–3
Link and Transceiver Testing

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

If you are using the soft IP implementation of the IP Compiler for PCI Express, you 
can see the PIPE interface at the pins of your device. If you are using the hard IP 
implementation, you can monitor the PIPE signals through the test_out bus. 

f The PHY Interface for PCI Express Architecture specification is available on the Intel 
website (www.intel.com).

Use Third-Party PCIe Analyzer
A third-party PCI Express logic analyzer records the traffic on the physical link and 
decodes traffic, saving you the trouble of translating the symbols yourself. A 
third-party PCI Express logic analyzer can show the two-way traffic at different levels 
for different requirements. For high-level diagnostics, the analyzer shows the LTSSM 
flows for devices on both side of the link side-by-side. This display can help you see 
the link training handshake behavior and identify where the traffic gets stuck. A PCIe 
traffic analyzer can display the contents of packets so that you can verify the contents. 
For complete details, refer to the third-party documentation. 

BIOS Enumeration Issues
Both FPGA programming (configuration) and the PCIe link initialization require time. 
There is some possibility that Altera FPGA including an IP Compiler for PCI Express 
may not be ready when the OS/BIOS begins enumeration of the device tree. If the 
FPGA is not fully programmed when the OS/BIOS begins its enumeration, the OS 
does not include the IP Compiler for PCI Express module in its device map. To 
eliminate this issue, you can do a soft reset of the system to retain the FPGA 
programming while forcing the OS/BIOS to repeat its enumeration.

Configuration Space Settings
Check the actual configuration space settings in hardware to verify that they are 
correct. You can do so using one of the following two tools: 

■ PCItree (in Windows)–PCItree is a third-party tool that allows you to see the actual 
hardware configuration space in the PCIe device. It is available on the PCI Tree 
website (www.pcitree.de/index.html).

■ lspci (in Linux)–lspci is a Linux command that allows you to see actual hardware 
configuration space in the PCI devices. Both first, 64 bytes and extended 
configuration space of the device are listed. Refer to the lspci Linux man page 
(linux.die.net/man/8/lspci) for more usage options. You can find this command in 
your /sbin directory.

Link and Transceiver Testing
In Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX devices, the IP 
Compiler for PCI Express hard IP implementation supports a reverse parallel 
loopback path you can use to test the IP Compiler for PCI Express endpoint link 
implementation from a working PCI Express root complex. For more information 
about this loopback path, refer to “Reverse Parallel Loopback” on page 4–17. 

This section tells you how to configure and use the reverse parallel loopback path in 
your IP Compiler for PCI Express system.



17–4 Chapter 17: Debugging
Link and Transceiver Testing

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

To support data integrity when using the reverse parallel loopback path for testing, 
ensure that your system includes AC coupling between the root complex TX pins and 
the endpoint RX pins on the PCI Express link.

To configure the transceiver in this loopback mode and perform PMA testing, your 
AC-coupled system must follow these steps:

1. During link training, in the Configuration.LinkWidth.Start substate, the root 
complex asserts the loopback bit (bit [2] of symbol 5) in TS1 and TS2 ordered sets.

2. After the endpoint enters the Loopback state successfully, the endpoint asserts the 
tx_detectrxloopback signal and deasserts the txelecidle signal. The endpoint 
transceiver enables the reverse parallel loopback path automatically after it detects 
the assertion of the tx_detectrxloopback signal.

3. The root complex transmits 8B/10B encoded patterns to the endpoint, 
interspersed with SKP ordered sets at the intervals dictated by the PCI Express 
specification. Transmission of SKP ordered sets is necessary to ensure the rate 
matching FIFO buffer does not underflow or overflow.

4. The root complex compares the loopback TX data with the original data it 
transmitted to the endpoint, ignoring the SKP ordered sets as per the PCI Express 
specification. 



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

A. Transaction Layer Packet (TLP) Header
Formats

TLP Packet Format without Data Payload
Table A–2 through A–3 show the header format for TLPs without a data payload. 
When these headers are transferred to and from the IP core as tx_desc and rx_desc, 
the mapping shown in Table A–1 is used 

Table A–1. Header Mapping

Header Byte tx_desc/rx_desc Bits

Byte 0 127:120

Byte 1 119:112

Byte 2 111:104

Byte 3 103:96

Byte 4 95:88

Byte 5 87:80

Byte 6 79:72

Byte 7 71:64

Byte 8 63:56

Byte 9 55:48

Byte 10 47:40

Byte 11 39:32

Byte 12 31:24

Byte 13 23:16

Byte 14 15:8

Byte 15 7:0

Table A–2. Memory Read Request, 32-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 0 0 TC 0 0 0 0 TD EP Attr 0 0 Length

Byte 4 Requestor ID Tag Last BE First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–3. Memory Read Request, Locked 32-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 1 0 TC 0 0 0 0 TD EP Attr 0 0 Length

Byte 4 Requestor ID Tag Last BE First BE

August 2014
<edit Part Number variable in chapter>



A–2 Chapter :
TLP Packet Format without Data Payload

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

\

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–3. Memory Read Request, Locked 32-Bit Addressing

Table A–4. Memory Read Request, 64-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 0 0 0 0 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 Requestor ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0

Table A–5. Memory Read Request, Locked 64-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 0 0 0 0 1 0 TC 0 0 0 0 T EP
Att
r

0 0 Length

Byte 4 Requestor ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0

Table A–6. Configuration Read Request Root Port (Type 1)

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requestor ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device No Func 0 0 0 0 Ext Reg Register No 0 0

Byte 12 Reserved

Table A–7. I/O Read Request

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requestor ID Tag 0 0 0 0 First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–8. Message without Data 

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0



Chapter : A–3
TLP Packet Format with Data Payload

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

TLP Packet Format with Data Payload
Table A–11 through A–5 show the content for transaction layer packets with a data 
payload.

Byte 0 0 0 1 1 0 r
2

r
1

r
0 0 TC 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Byte 4 Requestor ID Tag Message Code

Byte 8 Vendor defined or all zeros

Byte 12 Vendor defined or all zeros

Notes to Table A–8:

(1) Not supported in Avalon-MM.

Table A–8. Message without Data 

Table A–9. Completion without Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 0 1 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requestor ID Tag 0 Lower Address

Byte 12 Reserved

Table A–10. Completion Locked without Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 0 1 1 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requestor ID Tag 0 Lower Address

Byte 12 Reserved

Table A–11. Memory Write Request, 32-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 0 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 Requestor ID Tag Last BE First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–12. Memory Write Request, 64-Bit Addressing

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0



A–4 Chapter :
TLP Packet Format with Data Payload

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Byte 0 0 1 1 0 0 0 0 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 Requestor ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0

Table A–12. Memory Write Request, 64-Bit Addressing

Table A–13. Configuration Write Request Root Port (Type 1)

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requestor ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device No 0 0 0 0 Ext Reg Register No 0 0

Byte 12 Reserved

Table A–14. I/O Write Request

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requestor ID Tag 0 0 0 0 First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Table A–15. Completion with Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requestor ID Tag 0 Lower Address

Byte 12 Reserved

Table A–16. Completion Locked with Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 1 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requestor ID Tag 0 Lower Address

Byte 12 Reserved



Chapter : A–5
TLP Packet Format with Data Payload

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table A–17. Message with Data

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 1 1 0 r
2

r
1

r
0 0 TC 0 0 0 0 TD EP 0 0 0 0 Length

Byte 4 Requestor ID Tag Message Code

Byte 8 Vendor defined or all zeros for Slot Power Limit

Byte 12 Vendor defined or all zeros for Slots Power Limit



A–6 Chapter :
TLP Packet Format with Data Payload

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

B. IP Compiler for PCI Express Core with
the Descriptor/Data Interface

This chapter describes the IP Compiler for PCI Express variation that employs the 
legacy descriptor/data interface. It includes the following sections:

■ Descriptor/Data Interface

■ Incremental Compile Module for Descriptor/Data Examples

1 Altera recommends choosing the Avalon-ST or Avalon-MM interface for all new 
designs for compatibility with the hard IP implementation of the IP Compiler for PCI 
Express.

Descriptor/Data Interface 
When you generate an IP Compiler for PCI Express endpoint with the 
descriptor/data interface, the parameter editor generates the transaction, data link, 
and PHY layers. Figure B–1 illustrates this interface.

RX and TX ports use a data/descriptor style interface, which presents the application 
with a descriptor bus containing the TLP header and a separate data bus containing 
the TLP payload. A single-cycle-turnaround handshaking protocol controls the 
transfer of data. 

Figure B–1. PCI Express IP core with Descriptor/Data Interface

Tx

Rx

Transaction Layer Data Link Layer Physical Layer

IP Compiler for PCI Express

To Application Layer To Link

tx_desc
tx_data

rx_desc
rx_data

With information sent 
by the application 
layer, the transaction 
layer generates a TLP, 
which includes a 
header and, optionally, 
a data payload.

The data link layer 
ensures packet 
integrity, and adds a 
sequence number and 
link cyclic redundancy 
code (LCRC) check to 
the packet.

The physical layer 
encodes the packet 
and transmits it to the 
receiving device on the 
other side of the link.

The transaction layer
disassembles the
transaction and 
transfers data to the 
application layer in a 
form that it recognizes.

The data link layer 
verifies the packet's 
sequence number and 
checks for errors.

The physical layer 
decodes the packet 
and transfers it to the 
data link layer.

August 2014
<edit Part Number variable in chapter>



B–2 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure B–2 shows all the signals for IP Compiler for PCI Express using the 
descriptor/data interface. 

Figure B–2. IP Compiler for PCI Express with Descriptor Data Interface

Notes to Figure B–2:
(1) clk125_in replaced with clk250_in for ×8 IP core
(2) clk125_out replaced with clk250_out for ×8 IP core
(3) srst and crst removed for ×8 IP core
(4) test_out[511:0] replaced with test_out[127:0] for ×8 IP core
(5) Available in Stratix II GX, Stratix IV GX, Arria GX, and HardCopy IV GX devices. The reconfig_fromgxb is a single wire for Stratix II GX and 

Arria GX devices. For Stratix IV GX devices, <n> = 16 for ×1 and ×4 IP cores and <n> = 33 in the ×8 IP core. 
(6) Available in Stratix II GX, Stratix IV GX, Arria GX, and HardCopy IV GX devices. For Stratix II GX and Arria GX reconfig_togxb, <n> = 2. For 

Stratix IV GX reconfig_togxb, <n> = 3.

rx_req<n>
rx_desc<n>[135:0]
rx_ack<n>
rx_abort<n>
rx_retry<n>
rx_mask<n>
rx_dfr<n>
rx_dv<n>
rx_data<n>[63:0]
rx_be<n>[7:0]
rx_ws<n>

tx_req<n>
tx_desc<n>
tx_ack<n>
tx_dfr<n>
tx_dv<n>
tx_data<n>[63:0]
tx_ws<n>
tx_cred<n>[21:0]
tx_err<n> (x1 and x4 only)

refclk
clk125_in
clk125_out

npor
srst
crst
12_exit
hotrst_exit
dlup_exit

app_msi_req
app_msi_ack
ack_msi_tc[2:0]
msi_num[4:0]
pex_msi_num[4:0]
app_int_sts
app_int_ack

pme_to_cr
pme_to_sr
cfg_pmcsr[31:0]

cpl_err[2:0]
cpl_pending
ko_cpl_spc_vcn[19:0]

cfg_tcvcmap[23:0]
cfg_busdev[12:0]
cfg_prmcsr[31:0]
cfg_devcsr[31:0]
cfg_linkcsr[31:0]
cfg_msicsr[15:0]

test_in[31:0]
test_out[511:0]

Signals in the IP Compiler for PCI Express
with Descriptor/Data Interface

1-Bit Serial

tx[7:0]
rx[7:0]

pipe_mode
xphy_pll_areset
xphy_pll_locked

txdata0_ext[15:0]
txdatak0_ext[1:0]

txdetectrx0_ext
txelecidle0_ext

txcompliance0_ext
rxpolarity0_ext

powerdown0_ext[1:0]
rxdata0_ext[15:0]
rxdatak0_ext[1:0]

rxvalid0_ext
phystatus0_ext
rxelecidle0_ext

rxstatus0_ext[2:0]

16-Bit PIPE for x1 and x4 
(Repeated for Lanes 1 - 3 
in the x4 MegaCore Function)

Transmit Data 
Path (for VC<n>)

Receive Data 
Path (for VC<n>)

Power Management

Interrupt

Clock

Reset

Configuration

Completion Interface

Test Interface

txdata0_ext[7:0]
txdatak0_ext

txdetectrx0_ext
txelecidle0_ext

txcompliance0_ext
rxpolarity0_ext

powerdown0_ext[1:0]
rxdata0_ext[7:0]

rxdatak0_ext
rxvalid0_ext

phystatus0_ext
rxelecidle0_ext

rxstatus0_ext[2:0]

8-Bit PIPE for x8
(Repeated for Lanes 1 - 7
in the x8 MegaCore Function)

(1)
(2)

(3)
(3)

(4)

(5)
(6)
reconfig_fromgxb[<n>:0]

reconfig_togxb[<n>:0]
reconfig_clk
cal_blk_clk

gxb_powerdown

Transceiver
Control



Chapter : B–3
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

In Figure B–2, the transmit and receive signals apply to each implemented virtual 
channel, while configuration and global signals are common to all virtual channels on 
a link.

Table B–1 lists the interfaces for this IP Compiler for PCI Express with links to the 
sections that describe each interface.

Receive Datapath Interface Signals
The receive interface, like the transmit interface, is based on two independent buses: 
one for the descriptor phase (rx_desc[135:0]) and one for the data phase 
(rx_data[63:0]). Every transaction includes a descriptor. A descriptor is a standard 
transaction layer packet header as defined by the PCI Express Base Specification 1.0a, 1.1 
or 2.0, with two exceptions. Bits 126 and 127 indicate the transaction layer packet 
group and bits 135:128 describe BAR and address decoding information. Refer to 
rx_desc[135:0] in Table B–2 for details. 

Receive datapath signals can be divided into the following two groups: 

■ Descriptor phase signals

■ Data phase signals

1 In the following tables, transmit interface signal names with an <n> suffix are for 
virtual channel <n>. If the IP core implements multiple virtual channels, there is an 
additional set of signals for each virtual channel number.

Table B–1. Signal Groups in the IP Compiler for PCI Express using the Descriptor/Data Interface 

Signal Group Description

Logical

Descriptor RX “Receive Datapath Interface Signals” on page B–3

Descriptor TX “Transmit Operation Interface Signals” on page B–12

Clock “Clock Signals—Soft IP Implementation” on page 5–23

Reset “Reset and Link Training Signals” on page 5–24

Interrupt “PCI Express Interrupts for Endpoints” on page 5–27

Configuration space “Configuration Space Signals—Soft IP Implementation” on page 5–36

Power management “IP Core Reconfiguration Block Signals—Hard IP Implementation” on 
page 5–38

Completion “Completion Interface Signals for Descriptor/Data Interface” on 
page B–25

Physical

Transceiver Control “Transceiver Control Signals” on page 5–53

Serial “Serial Interface Signals” on page 5–55

Pipe “PIPE Interface Signals” on page 5–56

Test

Test “Test Interface Signals—Soft IP Implementation” on page 5–61



B–4 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table B–2 describes the standard RX descriptor phase signals.

Table B–2. RX Descriptor Phase Signals (Part 1 of 2)

Signal I/O Description

rx_req<n> (1) O

Receive request. This signal is asserted by the IP core to request a packet transfer to the 
application interface. It is asserted when the first 2 DWORDS of a transaction layer 
packet header are valid. This signal is asserted for a minimum of 2 clock cycles; 
rx_abort, rx_retry, and rx_ack cannot be asserted at the same time as this signal. 
The complete descriptor is valid on the second clock cycle that this signal is asserted.

rx_desc<n>[135:0] 
O

Receive descriptor bus. Bits [125:0] have the same meaning as a standard transaction 
layer packet header as defined by the PCI Express Base Specification Revision 1.0a, 1.1 
or 2.0. Byte 0 of the header occupies bits [127:120] of the rx_desc bus, byte 1 of the 
header occupies bits [119:112], and so on, with byte 15 in bits [7:0]. Refer to 
Appendix A, Transaction Layer Packet (TLP) Header Formats for the header formats.

For bits [135:128] (descriptor and BAR decoding), refer to Table B–3. Completion 
transactions received by an endpoint do not have any bits asserted and must be routed 
to the master block in the application layer.

rx_desc[127:64] begins transmission on the same clock cycle that rx_req is 
asserted, allowing precoding and arbitration to begin as quickly as possible. The other 
bits of rx_desc are not valid until the following clock cycle as shown in the following 
figure. 

Bit 126 of the descriptor indicates the type of transaction layer packet in transit:

■ rx_desc[126]when set to 0: transaction layer packet without data

■ rx_desc[126] when set to 1: transaction layer packet with data

rx_ack<n> I

Receive acknowledge. This signal is asserted for 1 clock cycle when the application 
interface acknowledges the descriptor phase and starts the data phase, if any. The 
rx_req signal is deasserted on the following clock cycle and the rx_desc is ready for 
the next transmission. rx_ack is independent of rx_dv and rx_data. It cannot be 
used to backpressure rx_data. You can use rx_ws to insert wait states.

rx_abort<n> I

Receive abort. This signal is asserted by the application interface if the application 
cannot accept the requested descriptor. In this case, the descriptor is removed from the 
receive buffer space, flow control credits are updated, and, if necessary, the application 
layer generates a completion transaction with unsupported request (UR) status on the 
transmit side.

rx_retry<n> I

Receive retry. The application interface asserts this signal if it is not able to accept a 
non-posted request. In this case, the application layer must assert rx_mask<n> along 
with rx_retry<n> so that only posted and completion transactions are presented on 
the receive interface for the duration of rx_mask<n>.

clk

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

valid

valid

valid

1 2 3 4



Chapter : B–5
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

The IP core generates the eight MSBs of this signal with BAR decoding information. 
Refer to Table B–3. 

Table B–4 describes the data phase signals.

rx_mask<n> I

Receive mask (non-posted requests). This signal is used to mask all non-posted 
request transactions made to the application interface to present only posted and 
completion transactions. This signal must be asserted with rx_retry<n> and 
deasserted when the IP core can once again accept non-posted requests.

Note to Table B–2:

(1) For all signals, <n> is the virtual channel number which can be 0 or 1.

Table B–2. RX Descriptor Phase Signals (Part 2 of 2)

Signal I/O Description

Table B–3. rx_desc[135:128]: Descriptor and BAR Decoding (Note 1)

Bit Type 0 Component

128 = 1: BAR 0 decoded

129 = 1: BAR 1 decoded

130 = 1: BAR 2 decoded

131 = 1: BAR 3 decoded

132 = 1: BAR 4 decoded

133 = 1: BAR 5 decoded

134 = 1: Expansion ROM decoded

135 Reserved

Note to Table B–3:

(1) Only one bit of [135:128] is asserted at a time.

Table B–4. RX Data Phase Signals (Part 1 of 2)

Signal I/O Description

rx_dfr<n> (1) O

Receive data phase framing. This signal is asserted on the same or subsequent clock 
cycle as rx_req to request a data phase (assuming a data phase is needed). It is 
deasserted on the clock cycle preceding the last data phase to signal to the application 
layer the end of the data phase. The application layer does not need to implement a 
data phase counter.

rx_dv<n> (1) O Receive data valid. This signal is asserted by the IP core to signify that 
rx_data[63:0] contains data.



B–6 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Transaction Examples Using Receive Signals 
This section provides the following additional examples that illustrate how 
transaction signals interact:

■ Transaction without Data Payload

■ Retried Transaction and Masked Non-Posted Transactions

■ Transaction Aborted

■ Transaction with Data Payload

■ Transaction with Data Payload and Wait States

■ Dependencies Between Receive Signals

rx_data<n>[63:0]
(1) O

Receive data bus. This bus transfers data from the link to the application layer. It is 2 
DWORDS wide and is naturally aligned with the address in one of two ways, depending 
on bit 2 of rx_desc.

■ rx_desc[2] (64-bit address) when 0: The first DWORD is located on rx_data[31:0].

■ rx_desc[34] (32-bit address) when 0: The first DWORD is located on bits 
rx_data[31:0].

■ rx_desc[2] (64-bit address) when 1: The first DWORD is located on bits 
rx_data[63:32].

■ rx_desc[34] (32-bit address) when 1: The first DWORD is located on bits 
rx_data[63:32].

This natural alignment allows you to connect rx_data[63:0] directly to a 64-bit datapath 
aligned on a QW address (in the little endian convention).

Bit 2 is set to 1 (5 DWORD transaction)

Figure B–3.

Bit 2 is set to 0 (5 DWORD transaction)

Figure B–4.

rx_be<n>[7:0] O
Receive byte enable. These signals qualify data on rx_data[63:0]. Each bit of the 
signal indicates whether the corresponding byte of data on rx_data[63:0] is valid. 
These signals are not available in the ×8 IP core.

rx_ws<n> I Receive wait states. With this signal, the application layer can insert wait states to 
throttle data transfer.

Note to Table B–4:

(1) For all signals, <n> is the virtual channel number which can be 0 or 1.

Table B–4. RX Data Phase Signals (Part 2 of 2)

Signal I/O Description

clk

rx_data[63:32]

rx_data[31:0]

DW 0 DW 2 DW 4

DW 1 DW 3

1 2 3 4 5 6

clk

rx_data[63:32]

rx_data[31:0]

DW 1 DW 3

DW 0 DW 2 DW 4

1 2 3 4 5 6



Chapter : B–7
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Transaction without Data Payload

In Figure B–5, the IP core receives three consecutive transactions, none of which have 
data payloads:

■ Memory read request (64-bit addressing mode)

■ Memory read request (32-bit addressing mode)

■ I/O read request

In clock cycles 4, 7, and 12, the IP core updates flow control credits after each 
transaction layer packet has either been acknowledged or aborted. When necessary, 
the IP core generates flow control DLLPs to advertise flow control credit levels.

The I/O read request initiated at clock cycle 8 is not acknowledged until clock cycle 11 
with assertion of rx_ack. The relatively late acknowledgment could be due to possible 
congestion.

Retried Transaction and Masked Non-Posted Transactions

When the application layer can no longer accept non-posted requests, one of two 
things happen: either the application layer requests the packet be resent or it asserts 
rx_mask. For the duration of rx_mask, the IP core masks all non-posted transactions 
and reprioritizes waiting transactions in favor of posted and completion transactions. 
When the application layer can once again accept non-posted transactions, rx_mask is 
deasserted and priority is given to all non-posted transactions that have accumulated 
in the receive buffer.

Figure B–5. RX Three Transactions without Data Payloads Waveform

clk

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

valid valid valid

MEMRD64 MEMRD32 I/O RD

valid valid valid

1 2 3 4 5 6 7 8 9 10 11 12

Descriptor
Signals

Data
Signals



B–8 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Each virtual channel has a dedicated datapath and associated buffers and no ordering 
relationships exist between virtual channels. While one virtual channel may be 
temporarily blocked, data flow continues across other virtual channels without 
impact. Within a virtual channel, reordering is mandatory only for non-posted 
transactions to prevent deadlock. Reordering is not implemented in the following 
cases:

■ Between traffic classes mapped in the same virtual channel

■ Between posted and completion transactions

■ Between transactions of the same type regardless of the relaxed-ordering bit of 
the transaction layer packet

In Figure B–6, the IP core receives a memory read request transaction of 4 DWORDS 
that it cannot immediately accept. A second transaction (memory write transaction of 
one DWORD) is waiting in the receive buffer. Bit 2 of rx_data[63:0] for the memory 
write request is set to 1.

In clock cycle three, transmission of non-posted transactions is not permitted for as 
long as rx_mask is asserted.

Flow control credits are updated only after a transaction layer packet has been 
extracted from the receive buffer and both the descriptor phase and data phase (if 
any) have ended. This update happens in clock cycles 8 and 12 in Figure B–6.

Figure B–6. RX Retried Transaction and Masked Non-Posted Transaction Waveform

clk

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

valid valid valid

MEMRD 4 DW MEMWR 1DW MEMRD 4DW

valid valid valid

DW 0

0x00 0xF0 0x00

1 2 3 4 5 6 7 8 9 10 11 12

Descriptor
Signals

Data
Signals



Chapter : B–9
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Transaction Aborted

In Figure B–7, a memory read of 16 DWORDS is sent to the application layer. Having 
determined it will never be able to accept the transaction layer packet, the application 
layer discards it by asserting rx_abort. An alternative design might implement logic 
whereby all transaction layer packets are accepted and, after verification, potentially 
rejected by the application layer. An advantage of asserting rx_abort is that 
transaction layer packets with data payloads can be discarded in one clock cycle. 

Having aborted the first transaction layer packet, the IP core can transmit the second, 
a three DWORD completion in this case. The IP core does not treat the aborted 
transaction layer packet as an error and updates flow control credits as if the 
transaction were acknowledged. In this case, the application layer is responsible for 
generating and transmitting a completion with completer abort status and to signal a 
completer abort event to the IP core configuration space through assertion of cpl_err.

In clock cycle 6, rx_abort is asserted and transmission of the next transaction begins 
on clock cycle number. 

Transaction with Data Payload

In Figure B–8, the IP core receives a completion transaction of eight DWORDS and a 
second memory write request of three DWORDS. Bit 2 of rx_data[63:0] is set to 0 for 
the completion transaction and to 1 for the memory write request transaction.

Figure B–7. RX Aborted Transaction Waveform

clk

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

valid valid

MEMRD 16 DW CPL 3 DW

valid valid

DW 1

DW 0 DW 2

0xFF 0x0F

1 2 3 4 5 6 7 8 9 10 11 12

Descriptor
 Signals

Data
Signals



B–10 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Normally, rx_dfr is asserted on the same or following clock cycle as rx_req; however, 
in this case the signal is already asserted until clock cycle 7 to signal the end of 
transmission of the first transaction. It is immediately reasserted on clock cycle eight 
to request a data phase for the second transaction.

Transaction with Data Payload and Wait States

The application layer can assert rx_ws without restrictions. In Figure B–9, the IP core 
receives a completion transaction of four DWORDS. Bit 2 of rx_data[63:0] is set to 1. 
Both the application layer and the IP core insert wait states. Normally rx_data[63:0] 
would contain data in clock cycle 4, but the IP core has inserted a wait state by 
deasserting rx_dv. 

In clock cycle 11, data transmission does not resume until both of the following 
conditions are met:

■ The IP core asserts rx_dv at clock cycle 10, thereby ending a IP core-induced wait 
state. 

Figure B–8. RX Transaction with a Data Payload Waveform

clk

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

valid valid

CPLD 8 DW MEMWR/AD 3 DW

valid valid

DW 1 DW 3 DW 5 DW 7 DW 0 DW 2

DW 0 DW 2 DW 4 DW 6 DW 1

0xFF 0x0F 0xFF

1 2 3 4 5 6 7 8 9 10 11 12

Descriptor
 Signals

Data
Signals



Chapter : B–11
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

■ The application layer deasserts rx_ws at clock cycle 11, thereby ending an 
application interface-induced wait state. 

Dependencies Between Receive Signals

Table B–5 describes the minimum and maximum latency values in clock cycles 
between various receive signals.

Figure B–9. RX Transaction with a Data Payload and Wait States Waveform

clk

rx_req

rx_ack

rx_desc[135:128]

rx_desc[127:64]

rx_desc[63:0]

rx_abort

rx_retry

rx_mask

rx_dfr

rx_dv

rx_ws

rx_data[63:32]

rx_data[31:0]

rx_be[7:0]

valid

CPLD 4 DW

valid

DW 0 DW 2

DW 1 DW 3

0xF0 0xFF 0x0F

1 2 3 4 5 6 7 8 9 10 11 12

Descriptor
 Signals

Data
Signals

Table B–5. RX Minimum and Maximum Latency Values in Clock Cycles Between Receive Signals 

Signal 1 Signal 2 Min Typical Max Notes

rx_req rx_ack 1 1 N —

rx_req rx_dfr 0 0 0
Always asserted on the same clock cycle if a data payload is present, 
except when a previous data transfer is still in progress. Refer to 
Figure B–8 on page B–10.

rx_req rx_dv 1 1-2 N Assuming data is sent.

rx_retry rx_req 1 2 N rx_req refers to the next transaction request.



B–12 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Transmit Operation Interface Signals
The transmit interface is established per initialized virtual channel and is based on 
two independent buses, one for the descriptor phase (tx_desc[127:0]) and one for 
the data phase (tx_data[63:0]). Every transaction includes a descriptor. A descriptor 
is a standard transaction layer packet header as defined by the PCI Express Base 
Specification 1.0a, 1.1 or 2.0 with the exception of bits 126 and 127, which indicate the 
transaction layer packet group as described in the following section. Only transaction 
layer packets with a normal data payload include one or more data phases.

Transmit Datapath Interface Signals
The IP core assumes that transaction layer packets sent by the application layer are 
well-formed; the IP core does not detect malformed transaction layer packets sent by 
the application layer.

Transmit datapath signals can be divided into the following two groups:

■ Descriptor phase signals

■ Data phase signals

1 In the following tables, transmit interface signal names suffixed with <n> are for 
virtual channel <n>. If the IP core implements additional virtual channels, there are 
additional sets of signals, each  suffixed with the corresponding virtual channel 
number.

Table B–6 describes the standard TX descriptor phase signals.

Table B–6. Standard TX Descriptor Phase Signals (Part 1 of 2)

Signal I/O Description

tx_req<n> (1) I
Transmit request. This signal must be asserted for each request. It is always asserted 
with the tx_desc[127:0] and must remain asserted until tx_ack is asserted. This 
signal does not need to be deasserted between back-to-back descriptor packets.

tx_desc<n>[127:0] I

Transmit descriptor bus. The transmit descriptor bus, bits [127:0] of a transaction, can 
include a 3 or 4 DWORDS PCI Express transaction header. Bits have the same meaning 
as a standard transaction layer packet header as defined by the PCI Express Base 
Specification Revision 1.0a, 1.1 or 2.0. Byte 0 of the header occupies bits [127:120] of 
the tx_desc bus, byte 1 of the header occupies bits [119:112], and so on, with byte 15 
in bits [7:0]. Refer to Appendix A, Transaction Layer Packet (TLP) Header Formats for 
the header formats.

The following bits have special significance:

■ tx_desc[2] or tx_desc[34] indicate the alignment of data on tx_data.

■ tx_desc[2] (64-bit address) when 0: The first DWORD is located on 
tx_data[31:0].

■ tx_desc[34] (32-bit address) when 0: The first DWORD is located on bits 
tx_data[31:0].

■ tx_desc[2] (64-bit address) when1: The first DWORD is located on bits 
tx_data[63:32].

■ tx_desc[34] (32-bit address) when 1: The first DWORD is located on bits 
tx_data[63:32].



Chapter : B–13
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table B–7 describes the standard TX data phase signals.

tx_desc<n>[127:0]
(cont.) I

Bit 126 of the descriptor indicates the type of transaction layer packet in transit:

■ tx_desc[126] when 0: transaction layer packet without data

■ tx_desc[126] when 1: transaction layer packet with data

The following list provides a few examples of bit fields on this bus:

■ tx_desc[105:96]: length[9:0]

■ tx_desc[126:125]: fmt[1:0]

■ tx_desc[126:120]: type[4:0]

tx_ack<n> O

Transmit acknowledge. This signal is asserted for one clock cycle when the IP core 
acknowledges the descriptor phase requested by the application through the tx_req 
signal. On the following clock cycle, a new descriptor can be requested for transmission 
through the tx_req signal (kept asserted) and the tx_desc.

Note to Table B–6:

(1) For all signals, <n> is the virtual channel number which can be 0 or 1.

Table B–6. Standard TX Descriptor Phase Signals (Part 2 of 2)

Signal I/O Description

Table B–7. Standard TX Data Phase Signals (Part 1 of 2) 

Signal I/O Description

tx_dfr<n> (1) I
Transmit data phase framing. This signal is asserted on the same clock cycle as tx_req to 
request a data phase (assuming a data phase is needed). This signal must be kept asserted 
until the clock cycle preceding the last data phase.

tx_dv<n> I

Transmit data valid. This signal is asserted by the user application interface to signify that 
the tx_data[63:0] signal is valid. This signal must be asserted on the clock cycle 
following assertion of tx_dfr until the last data phase of transmission. The IP core 
accepts data only when this signal is asserted and as long as tx_ws is not asserted.

The application interface can rely on the fact that the first data phase never occurs before a 
descriptor phase is acknowledged (through assertion of tx_ack). However, the first data 
phase can coincide with assertion of tx_ack if the transaction layer packet header is only 3 
DWORDS.

tx_ws<n> O

Transmit wait states. The IP core uses this signal to insert wait states that prevent data 
loss. This signal might be used in the following circumstances:

■ To give a DLLP transmission priority.

■ To give a high-priority virtual channel or the retry buffer transmission priority when the 
link is initialized with fewer lanes than are permitted by the link.

If the IP core is not ready to acknowledge a descriptor phase (through assertion of tx_ack 
on the following cycle), it will automatically assert tx_ws to throttle transmission. When 
tx_dv is not asserted, tx_ws should be ignored. 



B–14 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

tx_data<n>[63:0] I

Transmit data bus. This signal transfers data from the application interface to the link. It is 
2 DWORDS wide and is naturally aligned with the address in one of two ways, depending 
on bit 2 of the transaction layer packet address, which is located on bit 2 or 34 of the 
tx_desc (depending on the 3 or 4 DWORDS transaction layer packet header bit 125 of the 
tx_desc signal).

■ tx_desc[2] (64-bit address) when 0: The first DWORD is located on tx_data[31:0].

■ tx_desc[34] (32-bit address) when 0: The first DWORD is located on bits 
tx_data[31:0].

■ tx_desc[2](64-bit address) when 1: The first DWORD is located on bits 
tx_data[63:32].

■ tx_desc[34] (32-bit address) when 1: The first DWORD is located on bits 
tx_data[63:32].

This natural alignment allows you to connect the tx_data[63:0] directly to a 64-bit 
datapath aligned on a QWORD address (in the little endian convention).

Figure B–10. Bit 2 is set to 1 (5 DWORDS transaction)

Figure B–11. Bit 2 is set to 0 (5 DWORDS transaction)

The application layer must provide a properly formatted TLP on the TX Data interface. The 
number of data cycles must be correct for the length and address fields in the header. 
Issuing a packet with an incorrect number data cycles will result in the TX interface 
hanging and unable to accept further requests. 

Note to Table B–7:

(1) For all signals, <n> is the virtual channel number which can be 0 or 1.

Table B–7. Standard TX Data Phase Signals (Part 2 of 2) 

Signal I/O Description

clk

tx_data[63:32]

tx_data[31:0]

DW 0 DW 2 DW 4

DW 1 DW 3

1 2 3 4 5 6 7

clk

tx_data[63:32]

tx_data[31:0]

DW 1 DW 3

DW 0 DW 2 DW 4

1 2 3 4 5 6 7



Chapter : B–15
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Table B–8 describes the advanced data phase signals.

Table B–9 shows the bit information for tx_cred<n>[21:0] for the ×1 and ×4 IP cores. 

Table B–8. Advanced TX Data Phase Signals 

Signal I/O Description

tx_cred<n>[65:0]
(1) O

Transmit credit. This signal controls the transmission of transaction layer packets of a 
particular type by the application layer based on the number of flow control credits 
available. This signal is optional because the IP core always checks for sufficient credits 
before acknowledging a request. However, by checking available credits with this signal, the 
application can improve system performance by dividing a large transaction layer packet 
into smaller transaction layer packets based on available credits or arbitrating among 
different types of transaction layer packets by sending a particular transaction layer packet 
across a virtual channel that advertises available credits. Each data credit is 4 dwords or 16 
bytes as per the PCI Express Base Specification. Refer to Table B–9 for the bit details.Once 
a transaction layer packet is acknowledged by the IP core, the corresponding flow control 
credits are consumed and this signal is updated 1 clock cycle after assertion of tx_ack.

For a component that has received infinite credits at initialization, each field of this signal is 
set to its highest potential value. 

For the ×1 and ×4 IP cores this signal is 22 bits wide with some encoding of the available 
credits to facilitate the application layer check of available credits. Refer to Table B–9 for 
details. 

In the ×8 IP core this signal is 66 bits wide and provides the exact number of available 
credits for each flow control type. Refer to Table B–10 for details. 

Refer to Table B–9 for the layout of fields in this signal.

tx_err<n> I

Transmit error. This signal is used to discard or nullify a transaction layer packet, and is 
asserted for one clock cycle during a data phase. The IP core automatically commits the 
event to memory and waits for the end of the data phase.

Upon assertion of tx_err, the application interface should stop transaction layer packet 
transmission by deasserting tx_dfr and tx_dv.

This signal only applies to transaction layer packets sent to the link (as opposed to 
transaction layer packets sent to the configuration space). If unused, this signal can be tied 
to zero. This signal is not available in the ×8 IP core.

Note to Table B–8:

(1) For all signals, <n> is the virtual channel number which can be 0 or 1.

Table B–9. tx_cred0[21:0] Bits for the ×1 and ×4 IP cores (Part 1 of 2)

Bits Value Description

[0]
■ 0: No credits available

■ 1: Sufficient credit available for at 
least 1 transaction layer packet

Posted header.

[9:1]

■ 0: No credits available

■ 1-256: number of credits available

■ 257-511: reserved

Posted data: 9 bits permit advertisement of 256 credits, which 
corresponds to 4 KBytes, the maximum payload size.

[10]
■ 0: No credits available

■ 1: Sufficient credit available for at 
least 1 transaction layer packet

Non-Posted header.



B–16 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table B–10 shows the bit information for tx_cred<n>[65:0] for the ×8 IP cores.

[11]
■ 0: No credits available

■ 1: Sufficient credit available for at 
least 1 transaction layer packet

Non-Posted data.

[12]
■ 0: No credits available

■ 1: Sufficient credit available for at 
least 1 transaction layer packet

Completion header.

[21:13]
9 bits permit advertisement of 256 
credits, which corresponds to 4 KBytes, 
the maximum payload size.

Completion data, posted data.

Table B–9. tx_cred0[21:0] Bits for the ×1 and ×4 IP cores (Part 2 of 2)

Bits Value Description

Table B–10. tx_cred[65:0] Bits for ×8 IP core

Bits Value Description

tx_cred[7:0]
■ 0-127: Number of credits available

■ >127: No credits available

Posted header. Ignore this field if the value of 
posted header credits, tx_cred[60], is set to 
1.

tx_cred[19:8]
■  0-2047: Number of credits available

■  >2047: No credits available
Posted data. Ignore this field if the value of 
posted data credits, tx_cred[61], is set to 1.

 tx_cred[27:20] 
■ 0-127: Number of credits available

■ >127: No credits available

Non-posted header. Ignore this field if value of 
non-posted header credits, tx_cred[62], is 
set to 1.

 tx_cred[39:28] 
■  0-2047: Number of credits available

■  >2047: No credits available

Non-posted data. Ignore this field if value of 
non-posted data credits, tx_cred[63], is set 
to 1.

 tx_cred[47:40]
■ 0–127: Number of credits available

■ >127: No credits available
Completion header. Ignore this field if value of 
CPL header credits, tx_cred[64], is set to 1.

 tx_cred[59:48]
■  0-2047: Number of credits available

■  >2047: No credits available
Completion data. Ignore this field if value of 
CPL data credits, tx_cred[65], is set to 1.

tx_cred[60]
■ 0: Posted header credits are not infinite

■ 1: Posted header credits are infinite
Posted header credits are infinite when set to 
1.

tx_cred[61]
■ 0: Posted data credits are not infinite

■ 1: Posted data credits are infinite
Posted data credits are infinite.when set to 1. 

tx_cred[62]
■ 0: Non-Posted header credits are not infinite

■ 1: Non-Posted header credits are infinite
Non-posted header credits are infinite when set 
to 1.

tx_cred[63]
■ 0: Non-posted data credits are not infinite

■ 1: Non-posted data credits are infinite
Non-posted data credits are infinite when set to 
1. 

tx_cred[64]
■ 0: Completion credits are not infinite

■ 1: Completion credits are infinite
Completion header credits are infinite when set 
to 1.

tx_cred[65] 
■ 0: Completion data credits are not infinite

■ 1: Completion data credits are infinite
Completion data credits are infinite when set to 
1.



Chapter : B–17
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Transaction Examples Using Transmit Signals 
This section provides the following examples that illustrate how transaction signals 
interact:

■ Ideal Case Transmission

■ Transaction Layer Not Ready to Accept Packet

■ Possible Wait State Insertion

■ Transmit Request Can Remain Asserted Between Transaction Layer Packets

■ Priority Given Elsewhere

■ Transmit Request Can Remain Asserted Between Transaction Layer Packets

■ Multiple Wait States Throttle Data Transmission

■ Error Asserted and Transmission Is Nullified

Ideal Case Transmission

In the ideal case, the descriptor and data transfer are independent of each other, and 
can even happen simultaneously. Refer to Figure B–12. The IP core transmits a 
completion transaction of eight dwords. Address bit 2 is set to 0.

In clock cycle 4, the first data phase is acknowledged at the same time as transfer of 
the descriptor. 

Figure B–12. TX 64-Bit Completion with Data Transaction of Eight DWORD Waveform

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

CPLD

DW0

DW1

DW2

DW3

DW4

DW5

DW6

DW7

1 2 3 4 5 6 7 8 9

Descriptor
 Signals

Data
Signals



B–18 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure B–13 shows the IP core transmitting a memory write of one DWORD. 

Transaction Layer Not Ready to Accept Packet

In this example, the application transmits a 64-bit memory read transaction of six 
DWORDs. Address bit 2 is set to 0. Refer to Figure B–14. 

Data transmission cannot begin if the IP core’s transaction layer state machine is still 
busy transmitting the previous packet, as is the case in this example.

Figure B–13. TX Transfer for A Single DWORD Write

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

MEMWR32

DW0

Descriptor
 Signals

Data
Signals

1 2 3 4 5 6 7 8 9

Figure B–14. TX State Machine Is Busy with the Preceding Transaction Layer Packet Waveform

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

MEMWR64

1 2 3 4 5 6 7

Descriptor
 Signals

Data
Signals



Chapter : B–19
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure B–15 shows that the application layer must wait to receive an acknowledge 
before write data can be transferred. Prior to the start of a transaction (for example, 
tx_req being asserted), note that the tx_ws signal is set low for the ×1 and ×4 
configurations and is set high for the ×8 configuration.

Possible Wait State Insertion

If the IP core is not initialized with the maximum potential lanes, data transfer is 
necessarily hindered. Refer to Figure B–17. The application transmits a 32-bit memory 
write transaction of 8 dwords. Address bit 2 is set to 0. 

In clock cycle three, data transfer can begin immediately as long as the transfer buffer 
is not full.

In clock cycle five, once the buffer is full and the IP core implements wait states to 
throttle transmission; four clock cycles are required per transfer instead of one 
because the IP core is not configured with the maximum possible number of lanes 
implemented.

Figure B–15. TX Transaction Layer Not Ready to Accept Packet

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

MEMWR32

DW0

Descriptor
Signals

Data
Signals

1 2 3 4 5 6 7 8 9



B–20 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Figure B–16 shows how the transaction layer extends the a data phase by asserting the 
wait state signal. 

Transaction Layer Inserts Wait States because of Four Dword Header

In this example, the application transmits a 64-bit memory write transaction. Address 
bit 2 is set to 1. Refer to Figure B–18. No wait states are inserted during the first two 
data phases because the IP core implements a small buffer to give maximum 
performance during transmission of back-to-back transaction layer packets.

Figure B–16. TX Transfer with Wait State Inserted for a Single DWORD Write

Figure B–17. TX Signal Activity When IP core Has Fewer than Maximum Potential Lanes Waveform

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

MEMWR32

DW0

1 2 3 4 5 6 7

Descriptor
Signals

Data
Signals

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

MEMWR32

DW 1 DW 3 DW 5 DW 7

DW 0 DW 2 DW 4 DW 6

1 2 3 4 5 6 7 8 9 10 11 12 13

Descriptor
 Signals

Data
Signals



Chapter : B–21
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

In clock cycle 3, the IP core inserts a wait state because the memory write 64-bit 
transaction layer packet request has a 4-DWORD header. In this case, tx_dv could 
have been sent one clock cycle later.

Priority Given Elsewhere

In this example, the application transmits a 64-bit memory write transaction of 8 
DWORDS. Address bit 2 is set to 0. The transmit path has a 3-deep, 64-bit buffer to 
handle back-to-back transaction layer packets as fast as possible, and it accepts the 
tx_desc and first tx_data without delay. Refer to Figure B–19. 

Figure B–18. TX Inserting Wait States because of 4-DWORD Header Waveform

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[63:32]

tx_ws

tx_err

Descriptor
 Signals

Data
Signals

DW 0 DW 2 DW 4 DW 6

DW 1 DW 3 DW 5 DW 7

1 2 3 4 5 6 7 8 9



B–22 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

In clock cycle five, the IP core asserts tx_ws a second time to throttle the flow of data 
because priority was not given immediately to this virtual channel. Priority was given 
to either a pending data link layer packet, a configuration completion, or another 
virtual channel. The tx_err is not available in the ×8 IP core.

Transmit Request Can Remain Asserted Between Transaction Layer Packets

In this example, the application transmits a 64-bit memory read transaction followed 
by a 64-bit memory write transaction. Address bit 2 is set to 0. Refer to Figure B–20.

In clock cycle four, tx_req is not deasserted between transaction layer packets. 

Figure B–19. TX 64-Bit Memory Write Request Waveform

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

MEMWR64

DW 1 DW 3 DW 5 DW 7

DW 0 DW 2 DW 4 DW 6

1 2 3 4 5 6 7 8 9 10 11 12

Descriptor
 Signals

Data
Signals



Chapter : B–23
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

In clock cycle five, the second transaction layer packet is not immediately 
acknowledged because of additional overhead associated with a 64-bit address, such 
as a separate number and an LCRC. This situation leads to an extra clock cycle 
between two consecutive transaction layer packets. 

Multiple Wait States Throttle Data Transmission

In this example, the application transmits a 32-bit memory write transaction. Address 
bit 2 is set to 0. Refer to Figure B–21. No wait states are inserted during the first two 
data phases because the IP core implements a small buffer to give maximum 
performance during transmission of back-to-back transaction layer packets.

Figure B–20. TX 64-Bit Memory Read Request Waveform

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

MEMRD64 MEMWR64

DW 1 DW 3 DW 5 DW 7

DW 0 DW 2 DW 4 DW 6

1 2 3 4 5 6 7 8 9 10 11 12

Descriptor
 Signals

Data
Signals



B–24 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

In clock cycles 5, 7, 9, and 11, the IP core inserts wait states to throttle the flow of 
transmission.

Error Asserted and Transmission Is Nullified

In this example, the application transmits a 64-bit memory write transaction of 14 
DWORDS. Address bit 2 is set to 0. Refer to Figure B–22. 

In clock cycle 12, tx_err is asserted which nullifies transmission of the transaction 
layer packet on the link. Nullified packets have the LCRC inverted from the 
calculated value and use the end bad packet (EDB) control character instead of the 
normal END control character.

Figure B–21. TX Multiple Wait States that Throttle Data Transmission Waveform

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[31:0]

tx_ws

tx_err

MEMWR64

DW 1 DW 3 DW 5 DW 7 DW 9 DW 11

DW 0 DW 2 DW 4 DW 6 DW 8 DW 10

1 2 3 4 5 6 7 98 10 11 12 1413

Descriptor
 Signals

Data
Signals

Figure B–22. TX Error Assertion Waveform

clk

tx_req

tx_ack

tx_desc[127:0]

tx_dfr

tx_dv

tx_data[63:32]

tx_data[63:32]

tx_ws

tx_err

MEMWR64

DW 1 DW 3 DW 5 DW 7 DW 9 DW B DW D DW F

DW 0 DW 2 DW 4 DW 6 DW 8 DW A DW C DW E

1 2 3 4 5 6 7 98 10 11 12 1413

Descriptor
 Signals

Data
Signals



Chapter : B–25
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Completion Interface Signals for Descriptor/Data Interface
Table B–11 describes the signals that comprise the completion interface for the 
descriptor/data interface. 

Table B–11. Completion Interface Signals

Signal I/O Description

cpl_err[2:0] I

Completion error. This signal reports completion errors to the configuration space 
by pulsing for one cycle. The three types of errors that the application layer must 
report are:

■ cpl_err[0]: Completion timeout error. This signal must be asserted when a 
master-like interface has performed a non-posted request that never receives a 
corresponding completion transaction after the 50 ms time-out period. The IP 
core automatically generates an error message that is sent to the root complex.

■ cpl_err[1]: Completer abort error. This signal must be asserted when a 
target block cannot process a non-posted request. In this case, the target block 
generates and sends a completion packet with completer abort (CA) status to 
the requestor and then asserts this error signal to the IP core. The block 
automatically generates the error message and sends it to the root complex.

■ cpl_err[2]: Unexpected completion error. This signal must be asserted when 
a master block detects an unexpected completion transaction, for example, if 
no completion resource is waiting for a specific packet.

For ×1 and ×4 the wrapper output is a 7-bit signal with the following format: 

{3’h0, cpl_err[2:0], 1’b0}

cpl_pending I

Completion pending. The application layer must assert this signal when a master 
block is waiting for completion, for example, when a transaction is pending. If this 
signal is asserted and low power mode is requested, the IP core waits for the 
deassertion of this signal before transitioning into low-power state.



B–26 Chapter :
Incremental Compile Module for Descriptor/Data Examples

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Incremental Compile Module for Descriptor/Data Examples
When the descriptor/data IP Compiler for PCI Express is generated, the example 
designs are generated with an Incremental Compile Module. This module facilitates 
timing closure using Quartus II incremental compilation and is provided for 
backward compatibility only. The ICM facilitates incremental compilation by 
providing a fully registered interface between the user application and the PCI 
Express transaction layer. (Refer to Figure B–23) With the ICM, you can lock down the 
placement and routing of the IP Compiler for PCI Express to preserve timing while 
changes are made to your application. Altera provides the ICM as clear text to allow 
its customization if required. 

ko_cpl_spc_vc<n>[19:0]
(1) O

This static signal reflects the amount of RX buffer space reserved for completion 
headers and data. It provides the same information as is shown in the RX buffer 
space allocation table of the parameter editor Buffer Setup page (refer to “Buffer 
Setup” on page 3–16). The bit field assignments for this signal are:

■ ko_cpl_spc_vc<n>[7:0]: Number of completion headers that can be stored 
in the RX buffer.

■ ko_cpl_spc_vc<n>[19:8]: Number of 16-byte completion data segments 
that can be stored in the RX buffer. 

The application layer logic is responsible for making sure that the completion 
buffer space does not overflow. It needs to limit the number and size of 
non-posted requests outstanding to ensure this. (2)

Notes to Table B–11:

(1) where <n> is 0 - 3 for the ×1 and ×4 cores, and 0 - 1 for the ×8 core
(2) Receive Buffer size consideration: The receive buffer size is variable for the IP Compiler for PCI Express soft IP variations and fixed to 16 KByte 

per VC for the hard IP variations.The RX Buffer size is set to accommodate optimum throughput of the PCIe link.The receive buffer collects all 
incoming TLPs from the PCIe link which consists of posted or non-posted TLPs. When configured as an endpoint, the IP Compiler for PCI 
Express credit advertising mechanism prevents the RX Buffer from overflowing for all TLP packets except incoming completion TLP packets 
because the endpoint variation advertises infinite credits for completion, per the PCI Express Base Specification Revision 1.1 or 2.0.

Therefore for endpoint variations, there could be some rare TLP completion sequences which could lead to a RX Buffer overflow. For example, 
a sequence of 3 dword completion TLP using a qword aligned address would require 6 dwords of elapsed time to be written in the RX buffer: 
3 dwords for the TLP header, 1 dword for the TLP data, plus 2 dwords of PHY MAC and data link layer overhead. When using the Avalon-ST 
128-bit interface, reading this TLP from the RX Buffer requires 8 dwords of elapsed time.Therefore, theoretically, if such completion TLPs are 
sent back-to-back, without any gap introduced by DLLP, update FC or a skip character, the RX Buffer will overflow because the read frequency 
does not offset the write frequency. This is certainly an extreme case and in practicalities such a sequence has a very low probably of occurring. 
However, to ensure that the RX buffer never overflows with completion TLPs, Altera recommends building a circuit in the application layer that 
arbitrates the upstream memory read request TLP based on the available space in the completion buffer.

Table B–11. Completion Interface Signals

Signal I/O Description



Chapter : B–27
Incremental Compile Module for Descriptor/Data Examples

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

1 The ICM is provided for backward compatibility only. New designs using the 
Avalon-ST interface should use the Avalon-ST IP Compiler for PCI Express instead. 

ICM Features 
The ICM provides the following features:

■ A fully registered boundary to the application to support design partitioning for 
incremental compilation

■ An Avalon-ST protocol interface for the application at the RX, TX, and interrupt 
(MSI) interfaces for designs using the Avalon-ST interface

■ Optional filters and ACK’s for PCI Express message packets received from the 
transaction layer

■ Maintains packet ordering between the TX and MSI Avalon-ST interfaces

■ TX bypassing of non-posted PCI Express packets for deadlock prevention

ICM Functional Description 
This section describes details of the ICM within the following topics:

■ “<variation_name>_icm Partition”

■ “ICM Block Diagram”

■ “ICM Files”

■ “ICM Application-Side Interface”

Figure B–23. Design Example with ICM

<variation_name>_icm

Endpoint

PCI Express Link

IP Compiler for 
PCI Express  - Desc/Data IF

Chaining DMA/
User Application

ICM

   Stratix IV, Stratix III, Stratix II, Stratix II GX, Cyclone II, 

Cyclone III, Arria GX, or Stratix GX Device



B–28 Chapter :
Incremental Compile Module for Descriptor/Data Examples

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

<variation_name>_icm Partition
When you generate an IP Compiler for PCI Express, the parameter editor generates 
module  <variation_name>_icm in the subdirectory 
<variation_name>_examples\common\incremental_compile_module, as a 
wrapper file that contains the IP core and the ICM module. (Refer to Figure B–23.) 
Your application connects to this wrapper file. The wrapper interface resembles the IP 
Compiler for PCI Express interface, but replaces it with an Avalon-ST interface. (Refer 
to Table B–12.)

1 The wrapper interface omits some signals from the IP core to maximize circuit 
optimization across the partition boundary. However, all of the IP core signals are still 
available in the IP core instance and can be wired to the wrapper interface by editing 
the <variation_name>_icm file as required.

By setting this wrapper module as a design partition, you can preserve timing of the 
IP core using the incremental synthesis flow.

Table B–12 describes the <variation_name>_icm interfaces.

Table B–12. <variation_name>_icm Interface Descriptions

Signal Group Description

Transmit Datapath
ICM Avalon-ST TX interface. These signals include tx_stream_valid0, tx_stream_data0, 
tx_stream_ready0, tx_stream_cred0, and tx_stream_mask0. Refer to Table B–15 on 
page B–33 for details.

Receive Datapath ICM interface. These signals include rx_stream_valid0, rx_stream_data0, 
rx_stream_ready0, and rx_stream_mask0. Refer to Table B–14 on page B–32 for details.

Configuration () Part of ICM sideband interface. These signals include cfg_busdev_icm, cfg_devcsr_icm, and 
cfg_linkcsr_icm. 

Completion interfaces Part of ICM sideband interface. These signals include cpl_pending_icm, cpl_err_icm, 
pex_msi_num_icm, and app_int_sts_icm. Refer to Table B–17 on page B–36 for details.

Interrupt ICM Avalon-ST MSI interface. These signals include msi_stream_valid0, msi_stream_data0, 
and msi_stream_ready0. Refer to Table B–16 on page B–35 for details.

Test Interface Part of ICM sideband signals; includes test_out_icm. Refer to Table B–17 on page B–36 for 
details.

Global Interface IP core signals; includes refclk, clk125_in, clk125_out, npor, srst, crst, ls_exit, 
hotrst_exit, and dlup_exit. Refer to Chapter 5, IP Core Interfaces for details.

PIPE Interface

IP core signals; includes tx, rx, pipe_mode, txdata0_ext, txdatak0_ext, 
txdetectrx0_ext, txelecidle0_ext, txcompliance0_ext, rxpolarity0_ext, 
powerdown0_ext, rxdata0_ext, rxdatak0_ext, rxvalid0_ext, phystatus0_ext, 
rxelecidle0_ext, rxstatus0_ext, txdata0_ext, txdatak0_ext, txdetectrx0_ext, 
txelecidle0_ext, txcompliance0_ext, rxpolarity0_ext, powerdown0_ext, 
rxdata0_ext, rxdatak0_ext, rxvalid0_ext, phystatus0_ext, rxelecidle0_ext, and 
rxstatus0_ext. Refer Chapter 5, IP Core Interfaces for details.

Maximum Completion 
Space Signals

This signal is ko_cpl_spc_vc<n>, and is not available at the <variation_name>_icm ports (). 
Instead, this static signal is regenerated for the user in the <variation_name>_example_pipen1b 
module. 

Note to Table B–12: 

(1) Cfg_tcvcmap is available from the ICM module, but not wired to the <variation_name>_icm ports. Refer to Table B–17 on page B–36 for 
details.



Chapter : B–29
Incremental Compile Module for Descriptor/Data Examples

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

ICM Block Diagram
Figure B–24 shows the ICM block diagram.

The ICM comprises four main sections:

■ “RX Datapath”

■ “TX Datapath”

■ “MSI Datapath”

■ “Sideband Datapath”

All signals between the IP Compiler for PCI Express and the user application are 
registered by the ICM. The design example implements the ICM interface with one 
virtual channel. For multiple virtual channels, duplicate the RX and TX Avalon-ST 
interfaces for each virtual channel.

Figure B–24. ICM Block Diagram

To PCI Express
Transaction Layer

1'b0

ICM Rx

To user application
(streaming interface )

rx_stream_ready0

rx_stream_valid0

rx_stream_data0

tx_stream_ready0

tx_stream_valid0

tx_stream_data0

msi_stream_ready0

msi_stream_valid0

msi_stream_data0

cpl_pending_icm
cpl_err_icm

pex_msi_num_icm
app_int_sts_icm

app_int_sts_ack_icm

cfg_busdev_icm
cfg_devcsr_icm
cfg_linkcsr_icm

cfg_tcvcmap_icm
cfg_msicsr_icm

test_out_icm

cpl_pending
cpl_err
pex_msi_num
app_int_sts
app_int_sts_ack
cfg_msicsr

cfg_busdev
cfg_devcsr
cfg_linkcsr
cfg_tcvcmap
test_out

app_msi_num
app_msi_req
app_msi_tc
app_msi_ack

tx_ack0
tx_ws0

tx_req0
tx_desc0
tx_dfr0
tx_dv0
tx_data0
tx_err0
cpl_err0
cpl_pending0

rx_retry0
rx_abort0
rx_mask0

rx_ack0
rx_ws0

rx_req0
rx_desc0
rx_dfr0
rx_dv0
rx_data0

tx_cred0

rx_stream_mask0

tx_stream_mask0
tx_stream_mask0

tx_stream_cred0

ICM Sideband

Msg Handler
(ack & drop 
messages)

Incremental Compile Module (ICM)

Instantiate
one per
virtual

channel

ICM Tx

F
I
F
O

Read Control
Arbitration

Reg

Reg

Reg

Reg

Avalon-ST Rx
Conversion

Avalon-ST Tx Conversion

NP Bypass

Avalon-ST MSI
Conversion



B–30 Chapter :
Incremental Compile Module for Descriptor/Data Examples

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

RX Datapath

The RX datapath contains the RX boundary registers (for incremental compile) and a 
bridge to transport data from the IP Compiler for PCI Express interface to the 
Avalon-ST interface. The bridge autonomously acks all packets received from the IP 
Compiler for PCI Express. For simplicity, the rx_abort and rx_retry features of the IP 
core are not used, and RX_mask is loosely supported. (Refer to Table B–14 on page B–32 
for further details.) The RX datapath also provides an optional message-dropping 
feature that is enabled by default. The feature acknowledges PCI Express message 
packets from the IP Compiler for PCI Express, but does not pass them to the user 
application. The user can optionally allow messages to pass to the application by 
setting the DROP_MESSAGE parameter in altpcierd_icm_rxbridge.v to 1’b0. The 
latency through the ICM RX datapath is approximately four clock cycles.

TX Datapath

The TX datapath contains the TX boundary registers (for incremental compile) and a 
bridge to transport data from the Avalon-ST interface to the IP Compiler for PCI 
Express interface. A data FIFO buffers the Avalon-ST data from the user application 
until the IP Compiler for PCI Express accepts it. The TX datapath also implements an 
NPBypass function for deadlock prevention. When the IP Compiler for PCI Express 
runs out of non-posted (NP) credits, the ICM allows completions and posted requests 
to bypass NP requests until credits become available. The ICM handles any NP 
requests pending in the ICM when credits run out and asserts the tx_mask signal to 
the user application to indicate that it should stop sending NP requests. The latency 
through the ICM TX datapath is approximately five clock cycles.

MSI Datapath

The MSI datapath contains the MSI boundary registers (for incremental compile) and 
a bridge to transport data from the Avalon-ST interface to the IP Compiler for PCI 
Express interface. The ICM maintains packet ordering between the TX and MSI 
datapaths. In this design example, the MSI interface supports low-bandwidth MSI 
requests. For example, not more than one MSI request can coincide with a single TX 
packet. The MSI interface assumes that the MSI function in the IP Compiler for PCI 
Express is enabled. For other applications, you may need to modify this module to 
include internal buffering, MSI-throttling at the application, and so on.

Sideband Datapath

The sideband interface contains boundary registers for non-timing critical signals 
such as configuration signals. (Refer to Table B–17 on page B–36 for details.)

ICM Files
This section lists and briefly describes the ICM files. The IP Compiler for PCI Express 
parameter editor generates all these ICM files and places them in the 

<variation name>_examples\common\incremental_compile_module folder.



Chapter : B–31
Incremental Compile Module for Descriptor/Data Examples

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

When using the Quartus II software, include the files listed in Table B–13 in your 
design:

ICM Application-Side Interface
Tables and timing diagrams in this section describe the following application-side 
interfaces of the ICM:

■ RX ports

■ TX ports

■ MSI port

■ Sideband interface

Table B–13. ICM Files

Filename Description

altpcierd_icm_top.v or 
altpcierd_icm_top.vhd

This is the top-level module for the ICM instance. It contains all of the following 
modules listed below in column 1.

altpcierd_icm_rx.v or 
altpcierd_icm_rx.vhd

This module contains the ICM RX datapath. It instantiates the 
altpcierd_icm_rxbridge and an interface FIFO.

altpcierd_icm_rxbridge.v or 
altpcierd_icm_rxbridge.vhd

This module implements the bridging required to connect the application’s 
interface to the PCI Express transaction layer.

altpcierd_icm_tx.v or 
altpcierd_icm_tx.vhd

This module contains the ICM TX and MSI datapaths. It instantiates the 
altpcierd_icm_msibridge, altpcierd_icm_txbridge_withbypass, and interface 
FIFOs.

altpcierd_icm_msibridge.v or 
altpcierd_icm_msibridge.vhd

This module implements the bridging required to connect the application’s 
Avalon-ST MSI interface to the PCI Express transaction layer.

altpcierd_icm_txbridge_withbypass.v or 
altpcierd_icm_txbridge_withbypass.vhd

This module instantiates the altpcierd_icm_txbridge and 
altpcierd_icm_tx_pktordering modules.

altpcierd_icm_txbridge.v or 
altpcierd_icm_txbridge.vhd

This module implements the bridging required to connect the application’s 
Avalon-ST TX interface to the IP core’s TX interface.

altpcierd_icm_tx_pktordering.v or 
altpcierd_icm_tx_pktordering.vhd

This module contains the NP-Bypass function. It instantiates the npbypass FIFO 
and altpcierd_icm_npbypassctl.

altpcierd_icm_npbypassctl.v or 
altpcierd_icm_npbypassctl.vhd

This module controls whether a Non-Posted PCI Express request is forwarded 
to the IP core or held in a bypass FIFO until the IP core has enough credits to 
accept it. Arbitration is based on the available non-posted header and data 
credits indicated by the IP core. 

altpcierd_icm_sideband.v or 
altpcierd_icm_sideband.vhd

This module implements incremental-compile boundary registers for the 
non-timing critical sideband signals to and from the IP core. 

altpcierd_icm_fifo.v or 
altpcierd_icm_fifo.vhd This is a generated RAM-based FIFO.

altpcierd_icm_fifo_lkahd.v or 
altpcierd_icm_fifo_lkahd.vhd This is a generated RAM-based look-ahead FIFO.

altpcierd_icm_defines.v or 
altpcierd_icm_defines.vhd

This file contains global define’s used by the Verilog ICM modules.



B–32 Chapter :
Incremental Compile Module for Descriptor/Data Examples

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

RX Ports

Table B–14 describes the application-side ICM RX signals.

Figure B–25 shows the application-side RX interface timing diagram.

Table B–14. Application-Side RX Signals

Signal Bits Subsignals Description

 Interface Signals

rx_st_valid0   Clocks rx_st_data into the application. The application must accept the 
data when rx_st_valid is high.

rx_st_data0

[81:74] Byte Enable bits Byte-enable bits. These are valid on the data (3rd to last) cycles of the 
packet.

[73] rx_sop_flag When asserted, indicates that this is the first cycle of the packet.

[72] rx_eop_flag When asserted, indicates that this is the last cycle of the packet.

[71:64] Bar bits BAR bits. These are valid on the 2nd cycle of the packet.

[63:0] rx_desc/rx_data

Multiplexed rx_desc/rx_data bus 

1st cycle – rx_desc0[127:64]

2nd cycle – rx_desc0[63:0]

3rd cycle – rx_data0 (if any)
Refer to Table B–1 on page B–3 for information on rx_desc0 and 
rx_data0.

rx_st_ready0   The application asserts this signal to indicate that it can accept more 
data. The ICM responds 3 cycles later by deasserting rx_st_valid.

Other RX Interface Signals

rx_stream_mask0
Application asserts this to tell the IP core to stop sending non-posted 
requests to the ICM. Note: This does not affect non-posted requests that 
the IP core already passed to the ICM.

Figure B–25. RX Interface Timing Diagram

clk

rx_stream_ready0

rx_stream_valid0

rx_desc0

rx_sop_flag

rx_eop_flag

desc_hi desc_lo data0 data1 last data

ICM_response_time

1 2 3 4 5 6 7 8 9 10 11 12 13 14

rx
_s

tr
ea

m
_d

at
a0

rx_data0

source 
throttles

data



Chapter : B–33
Recommended Incremental Compilation Flow

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

TX Ports

Table B–15 describes the application-side TX signals.

Recommended Incremental Compilation Flow 
When using the incremental compilation flow, Altera recommends that you include a 
fully registered boundary on your application. By registering signals, you reserve the 
entire timing budget between the application and IP Compiler for PCI Express for 
routing.

f Refer to Quartus II Incremental Compilation for Hierarchical and Team-Based Design in 
volume 1 of the Quartus II Handbook. 

The following is a suggested incremental compile flow. The instructions cover 
incremental compilation for both the Avalon-ST and the descriptor/data interfaces.

Table B–15. Application-Side TX Signals

Signal Bit Subsignals Description

Avalon-ST TX Interface Signals

tx_st_valid0   Clocks tx_st_data0 into the ICM. The ICM accepts data when 
tx_st_valid0 is high.

tx_st_data0

63:0 tx_desc/tx_data

Multiplexed tx_desc0/tx_data0 bus.

   1st cycle – tx_desc0[127:64]

   2nd cycle – tx_desc0[63:0]

   3rd cycle – tx_data0 (if any)
Refer to for information on Table B–6 on page B–12 tx_desc0 and 
tx_data0.

71:64 Unused bits

72 tx_eop_flag Asserts on the last cycle of the packet

73 tx_sop_flag Asserts on the 1st cycle of the packet

74 tx_err Same as IP core definition. Refer to Table B–8 on page B–15 for more 
information.

tx_st_ready0   

The ICM asserts this signal when it can accept more data. The ICM 
deasserts this signal to throttle the data. When the ICM deasserts this 
signal, the user application must also deassert tx_st_valid0 within 
3 clk cycles.

Other TX Interface Signals

tx_stream_cred0  65:0

Available credits in IP core (credit limit minus credits consumed). 
This signal corresponds to tx_cred0 from the IP Compiler for PCI 
Express delayed by one system clock cycle. This information can be 
used by the application to send packets based on available credits. 
Note that this signal does not account for credits consumed in the 
ICM. Refer to Table B–8 on page B–15 for information on tx_cred0.

tx_stream_mask0
Asserted by ICM to throttle Non-Posted requests from application. 
When set, application should stop issuing Non-Posted requests in 
order to prevent head-of-line blocking.



B–34 Chapter :
Recommended Incremental Compilation Flow

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

1 Altera recommends disabling the OpenCore Plus feature when compiling with this 
flow. (On the Assignments menu, click Settings. Under Compilation Process 
Settings, click More Settings. Under Disable OpenCore Plus hardware evaluation 
select On.)

1. Open a Quartus II project.

2. To run initial logic synthesis on your top-level design, on the Processing menu, 
point to Start, and then click Start Analysis & Synthesis. The design hierarchy 
appears in the Project Navigator. 

3. Perform one of the following steps:

a. For Avalon-ST designs, in the Project Navigator, expand the 
<variation_name>_icm module as follows: <variation_name>_example_top -> 
<variation_name>_example_pipen1b:core ->. Right-click 
<variation_name>:epmap and click Set as Design Partition.

b. For descriptor/data interface designs, in the Project Navigator, expand the 
<variation_name>_icm module as follows: <variation_name>_example_top -> 
<variation_name>_example_pipen1b:core -> 
<variation_name>_icm:icm_epmap. Right-click <variation_name>_icm and click 
Set as Design Partition.

4. On the Assignments menu, click Design Partitions Window. The design partition, 
Partition_<variation_name>_ or Partition_<variation_name>_icm for 
descriptor/data designs, appears. Under Netlist Type, right-click and click 
Post-Synthesis. 

5. To turn on incremental compilation, follow these steps:

a. On the Assignments menu, click Settings.

b. In the Category list, expand Compilation Process Settings.

c. Click Incremental Compilation.

d. Under Incremental Compilation, select Full incremental compilation.

6. To run a full compilation, on the Processing menu, click Start Compilation. Run 
Design Space Explorer (DSE) if required to achieve timing requirements. (On the 
Tools menu, click Launch Design Space Explorer.)

7. After timing is met, you can preserve the timing of the partition in subsequent 
compilations by using the following procedure:

a. On the Assignments menu, click Design Partition Window. 

b. Under the Netlist Type for the Top design partition, double-click to select 
Post-Fit. 

c. Right-click Partition Name column to bring up additional design partition 
options and select Fitter Preservation Level.

d. Under Fitter Preservation level and double-click to select Placement And 
Routing. 

1 Information for the partition netlist is saved in the db folder. Do not delete this folder.



Chapter : B–35
Recommended Incremental Compilation Flow

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Figure B–26 shows the application-side TX interface timing diagram.

Table B–16 describes the MSI TX signals.

Figure B–27 shows the application-side MSI interface timing diagram.

Figure B–26. TX Interface Timing Diagram

clk

tx_stream_ready0

tx_stream_valid0

tx_desc0

tx_sop_flag

tx_eop_flag

desc_hi desc_lo data0 data1 last data
tx_data0

tx
_s

tre
am

_d
at

a0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

allowed 
response time

0 - 3 clocks
source 
throttles

data

Table B–16. MSI TX Signals

Signal Bit Subsignals Description

msi_stream_valid0   Clocks msi_st_data into the ICM.

msi_stream_data0

63:8 msi data.

7:5 Corresponds to the app_msi_tc signal on the IP core. Refer to Table 5–9 
on page 5–27 for more information.

4:0 Corresponds to the app_msi_num signal on the IP core. Refer to 
Table 5–9 on page 5–27 for more information.

msi_stream_ready0   
The ICM asserts this signal when it can accept more MSI requests. When 
deasserted, the application must deassert msi_st_valid within 3 CLK 
cycles. 

Figure B–27. MSI Interface Timing Diagram

clk

msi_stream_ready0

msi_stream_valid0

msi_stream_data0 msi1 msi2

1 2 3 4 5 6 7 8 9 10 11 12 13

allowed 
response time

0 - 3 clocks



B–36 Chapter :
Recommended Incremental Compilation Flow

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Sideband Interface

Table B–17 describes the application-side sideband signals.

Table B–17. Sideband Signals

Signal Bit Description

app_int_sts_icm — Same as app_int_sts on the IP core interface. ICM delays this signal by one clock. (3)

cfg_busdev_icm — Delayed version of cfg_busdev on the IP core interface. (2)

cfg_devcsr_icm — Delayed version of cfg_devcsr on the IP core interface. (2)

cfg_linkcsr_icm — Delayed version of cfg_linkcsr on IP core interface. ICM delays this signal by one 
clock. (2)

cfg_tcvcmap_icm — Delayed version of cfg_tcvcmap on IP core interface. (2)

cpl_err_icm — Same as cpl_err_icm on IP core interface (1). ICM delays this signal by one clock.

pex_msi_num_icm — Same as pex_msi_num on IP core interface (3). ICM delays this signal by one clock.

cpl_pending_icm — Same as cpl_pending on IP core interface (1). ICM delays this signal by one clock.

app_int_sts_ack_ic
m

—  Delayed version of app_int_sts_ack on IP core interface. ICM delays this by one 
clock. This signal applies to the ×1 and ×4 IP cores only. In ×8, this signal is tied low. 

cfg_msicsr_icm —  Delayed version of cfg_msicsr on the IP core interface. ICM delays this signal by one 
clock.

test_out_icm

[8:0] This is a subset of test_out signals from the IP core. Refer to Appendix B for a 
description of test_out.

[4:0] “ltssm_r” debug signal. Delayed version of test_out[4:0] on ×8 IP core interface. 
Delayed version of test_out[324:320] on ×4/ ×1 IP core interface.

[8:5] “lane_act” debug signal. Delayed version of test_out[91:88] on ×8 IP core interface. 
Delayed version of test_out[411:408] on ×4/ ×1 IP core interface.

Notes to Table B–17:

(1) Refer to Table B–11 on page B–25f or more information.
(2) Refer to Table 5–16 on page 5–36 for more information.
(3) Refer to Table 5–9 on page 5–27 for more information.



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

C. Performance and Resource Utilization
Soft IP Implementation

This appendix shows the resource utilization for the soft IP implementation of the IP 
Compiler for PCI Express. This appendix includes performance and resource 
utilization numbers for the following application interfaces:

■ Avalon-ST Interface

■ Avalon-MM Interface

■ Descriptor/Data Interface

f Refer to Performance and Resource Utilization in Chapter 1, Datasheet for 
performance and resource utilization of the hard IP implementation.

Avalon-ST Interface
This section provides performance and resource utilization for the soft IP 
implementation of the following device families:

■ Arria GX Devices

■ Arria II GX Devices

■ Stratix II GX Devices

■ Stratix III Family

■ Stratix IV Family

Arria GX Devices
Table C–1 shows the typical expected performance and resource utilization of 
Arria GX (EP1AGX60DF780C6) devices for different parameters with a maximum 
payload of 256 bytes using the Quartus II software, version 11.0.

Table C–1. Performance and Resource Utilization, Avalon-ST Interface–Arria GX Devices 
(Note 1)

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual 
Channel

Combinational
ALUTs

Logic
Registers

Memory Blocks

M512 M4K

 ×1 125 1 5900 4100 2 13

 ×1 125 2 7400 5300 3 17

 ×4 125 1 7400 5100 6 17

 ×4 125 2 9000 6200 7 25

Note to Table C–1:

(1) This configuration only supports Gen1.

August 2014
<edit Part Number variable in chapter>



C–2 Chapter :
Avalon-ST Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Arria II GX Devices
Table C–2 shows the typical expected performance and resource utilization of 
Arria II GX (EP2AGX125EF35C4) devices for different parameters with a maximum 
payload of 256 bytes using the Quartus II software, version 11.0.

Stratix II GX Devices
Table C–3 shows the typical expected performance and resource utilization of 
Stratix II and Stratix II GX (EP2SGX130GF1508C3) devices for a maximum payload of 
256 bytes for devices with different parameters, using the Quartus II software, version 
11.0.

Table C–2. Performance and Resource Utilization, Avalon-ST Interface–Arria GX Devices 
(Note 1)

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual 
Channel

Combinational
ALUTs

Logic
Registers M9K

 ×1 125 1 5300 4000 9

 ×1 125 2 6800 5200 14

 ×4 125 1 6900 5000 11

 ×4 125 2 8400 6200 18

Note to Table C–1:

(1) This configuration only supports Gen1.

Table C–3. Performance and Resource Utilization, Avalon-ST Interface - Stratix II and 
Stratix II GX Devices 

Parameters Size

 ×1/ ×4
 ×8

Internal
Clock (MHz)

Virtual
Channels

Combinational
ALUTs

Logic
Registers

Memory Blocks

M512 M4K

 ×1 125 1 5400 4000 2 13

 ×1 125 2 7000 5200 3 19

 ×4 125 1 6900 4900 6 17

 ×4 125 2 8500 6100 7 27

 ×8 250 1 6300 5900 10 15

 ×8 250 2 7600 7000 10 23



Chapter : C–3
Avalon-MM Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Stratix III Family
Table C–4 shows the typical expected performance and resource utilization of 
Stratix III (EP3SL200F1152C2) devices for a maximum payload of 256 bytes with 
different parameters, using the Quartus II software, version 11.0.

Stratix IV Family
Table C–5 shows the typical expected performance and resource utilization of 
Stratix IV GX (EP3SGX290FH29C2X) devices for a maximum payload of 256 bytes 
with different parameters, using the Quartus II software, version 11.0.

Avalon-MM Interface
 This section tabulates the typical expected performance and resource utilization for 
the soft IP implementation for various parameters when using the Stratix IV Family

Table C–4. Performance and Resource Utilization, Avalon-ST Interface - Stratix III Family

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual
Channels

Combinational
ALUTs

Logic
Registers

M9K Memory
Blocks

M144K Memory 
Blocks

 ×1 125 1 5300 4500 5 0

 ×1 125 2 6800 5900 9 0

 ×1 (1) 62.5 1 5500 4800 5 0

 ×1 (2) 62.5 2 6800 6000 11 1

 ×4 125 1 7000 5300 8 0

 ×4 125 2 8500 6500 15 0

Note to Table C–4:

(1) C4 device used.
(2) C3 device used.

Table C–5. Performance and Resource Utilization, Avalon-ST Interface - Stratix IV Family

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual
Channels

Combinational
ALUTs

Logic
Registers

M9K Memory
Blocks M144K

 ×1 125 1 5500 4100 9 0

 ×1 125 2 6900 5200 14 0

 ×4 125 1 7100 5100 10 1

 ×4 125 2 8500 6200 18 0



C–4 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Table C–6 shows the typical expected performance and resource utilization of 
Stratix IV (EP4SGX230KF40C2) devices for a maximum payload of 256 bytes with 
different parameters, using the Quartus II software, version 11.0.

Descriptor/Data Interface
This section tabulates the typical expected performance and resource utilization of the 
listed device families for various parameters when using the descriptor/data 
interface, with the OpenCore Plus evaluation feature disabled and the following 
parameter settings:

■ On the Buffer Setup page, for ×1, ×4, and ×8 configurations:

■ Maximum payload size set to 256 Bytes unless specified otherwise.

■ Desired performance for received requests and Desired performance for 
completions both set to Medium unless specified otherwise.

■ On the Capabilities page, the number of Tags supported set to 16 for all 
configurations unless specified otherwise.

Size and performance tables appear here for the following device families:

■ Arria GX Devices

■ Cyclone III Family

■ Stratix II GX Devices

■ Stratix III Family

■ Stratix IV Family

Arria GX Devices
Table C–7 shows the typical expected performance and resource utilization of 
Arria GX (EP1AGX60DF780C6) devices for a maximum payload of 256 bytes with 
different parameters, using the Quartus II software, version 11.0.

Table C–6. Performance and Resource Utilization, Avalon-MM Interface - Stratix IV Family 

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Combinational
ALUTs

Dedicated
Registers

M9K Memory
Blocks

×1 125 6800 4700 25

 ×4 125 8300 5600 25

Table C–7. Performance and Resource Utilization, Descriptor/Data Interface - Arria GX Devices

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual 
Channels

Combinational
ALUTs

Logic
Registers

Memory Blocks

M512 M4K

 ×1 125 1 5200 3600 1 21

 ×1 125 2 6400 4400 2 13



Chapter : C–5
Descriptor/Data Interface

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Cyclone III Family
Table C–8 shows the typical expected performance and resource utilization of 
Cyclone III (EP3C80F780C6) devices for different parameters, using the Quartus II 
software, version 11.0.

Stratix II GX Devices
Table C–9 shows the typical expected performance and resource utilization of the 
Stratix II and Stratix II GX (EP2SGX130GF1508C3) devices for a maximum payload of 
256 bytes with different parameters, using the Quartus II software, version 11.0.

 ×4 125 1 6800 4600 6 12

 ×4 125 2 8210 5400 6 19

Table C–7. Performance and Resource Utilization, Descriptor/Data Interface - Arria GX Devices

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual 
Channels

Combinational
ALUTs

Logic
Registers

Memory Blocks

M512 M4K

Table C–8. Performance and Resource Utilization, Descriptor/Data Interface - Cyclone III Family 

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual
Channels

Logic
Elements

Dedicated 
Registers

M9K Memory
Blocks

 ×1 125 1 8200 3600 6

 ×1 125 2 10100 4500 9

 ×1 (1) 62.5 1 8500 3800 25

 ×1 62.5 2 10200 4600
28

 ×4 125 1 10500 4500 12

 ×4 125 2 122000 5300 17

Note to Table C–8:

(1) Max payload set to 128 bytes, the number of Tags supported set to 4, and Desired performance for received 
requests and Desired performance for completions both set to Low.

Table C–9. Performance and Resource Utilization, Descriptor/Data Interface - Stratix II and 
Stratix II GX Devices (Part 1 of 2)

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual
Channels

Combinational
ALUTs

Logic
Registers

Memory Blocks

M512 M4K

 ×1 125 1 5000 3500 1 9

 ×1 125 2 6200 4400 2 13

 ×4 125 1 6600 4500 5 13

 ×4 125 2 7600 5300 6 21



C–6 Chapter :
Descriptor/Data Interface

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

Stratix III Family
Table C–10 shows the typical expected performance and resource utilization of 
Stratix III (EP3SL200F1152C2) devices for a maximum payload of 256 bytes with 
different parameters, using the Quartus II software, version 11.0.

Stratix IV Family
Table C–11 shows the typical expected performance and resource utilization of 
Stratix IV (EP4SGX290FH29C2X) devices for a maximum payload of 256 bytes with 
different parameters, using the Quartus II software, version 11.0.

 ×8 250 1 6200 5600 10 16

 ×8 250 2 6900 6200 8 16

Table C–9. Performance and Resource Utilization, Descriptor/Data Interface - Stratix II and 
Stratix II GX Devices (Part 2 of 2)

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual
Channels

Combinational
ALUTs

Logic
Registers

Memory Blocks

M512 M4K

Table C–10. Performance and Resource Utilization, Descriptor/Data Interface - Stratix III Family

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual
Channels

Combinational
ALUTs

Dedicated
Registers

M9K Memory
Blocks

 ×1 125 1 5100 3800 3

 ×1 125 2 6200 4600 7

 ×1 (1) 62.5 1 5300 3900 8

 ×1 (2) 62.5 2 6200 4800 7

 ×4 125 1 6700 4500 9

 ×4 125 2 7700 5300 12

Notes to Table C–10:

(1) C4 device used.
(2) C3 device used.

Table C–11. Performance and Resource Utilization, Descriptor/Data Interface - Stratix IV Family 

Parameters Size

 ×1/ ×4 Internal
Clock (MHz)

Virtual
Channels

Combinational
ALUTs

Dedicated
Registers

M9K Memory
Blocks

 ×1 125 1 5200 3600 5

 ×1 125 2 6200 4400 8

 ×4 125 1 6800 4600 7

 ×4 125 2 7900 5500 10



August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Additional Information

Revision History
The table below displays the revision history for this User Guide.

Date Version Changes Made SPR

2014.08.18 14.0a10
■ Added information about modifying an IP variation.

■ Updated descriptions of IP Catalog and parameter editor.

2014.07.01 14.0.1 ■ Replaced updated device support table.

2014.06.30 14.0.0

■ Replaced MegaWizard Plug-In Manager information with IP Catalog.

■ Added standard information about upgrading IP cores.

■ Added standard installation and licensing information.

■ Removed outdated device support information. IP core device support is now available in IP 
Catalog and parameter editor.

■ Removed most references to obsolete SOPC Builder tool.



Info–2 Chapter :
Revision History

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

May 2011 11.0

■ Changed IP core name to IP Compiler for PCI Express.

■ Removed support for Stratix V devices.

■ Added Qsys support.

■ Added Chapter 16, Qsys Design Example.

■ Corrected Table 1–9 on page 1–12 to indicate that IP Compiler for PCI Express variations 
that include an Avalon-MM interface cannot target a Cyclone II, Cyclone III, Stratix II, or 
Stratix III device.

■ Changed clocking description for PIPE mode in “Clocking for a Generic PIPE PHY and the 
Simulation Testbench” on page 7–11. Fixed section hierarchy.

■ Addded Correctable and Uncorrectable status register descriptions in Chapter 12, Error 
Handling.

■ Described the sequence to enable the reverse parallel loopback path in Chapter 17, 
Debugging.

■ Updated description of criteria for unsupported request completion status in Table 12–4 on 
page 12–3.

■ Fixed clocking figure Figure 7–4 on page 7–5 (previously Figure 7-6).

■ Updated definition of rx_st_mask in Table 5–2 on page 5–6.

■ Added definition for test_in[7] signal and aligned expected input values for test_in[3] 
and test_in[11:8] with design example, in Table 5–32 on page 5–58.

■ Corrected title for Figure 7–6. This figure also applies to Cyclone IV GX ×1 and does not 
apply to ×8. 

■ Updated Table 4–1 on page 4–5 to clarify the variations that support a 62.5 MHz applicatin 
clock.

■ Corrected Table 4–1 on page 4–5 which showed support for Gen2 in Arria II GX. Arria II GX 
does not support Gen2. Arria II GZ supports Gen2.

■ Clarified definition of rx_st_err signal in Table 5–2 on page 5–6. ECC checking is always 
on for hard IP variants with the exception of Gen2 ×8.

■ Added 0x1A speed.recovery state in definition of ltssm in Table 5–7 on page 5–24.

■ Fixed definition of tl_cfg_sts[0] in Table 5–13 on page 5–30.

Date Version Changes Made SPR



Chapter : Info–3
Revision History

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

December 
2010 10.1

■ Added support for the following new features in Stratix V devices:

■ 256-bit interface

■ Simulation support

■ Added support for soft IP implementation of PCI Express IP core in Cyclone IV GX with 
Avalon-ST interface

■ Added support for Arria II GZ with Avalon-ST interface

■ Revised description of reset logic to reflect changes in the implementation. Added new free 
running fixedclk, busy_reconfig_altgxb_reconfig, and 
reset_reconfig_altgxb_reconfig signals to hard IP implementation in Arria II GX, 
Arria II GZ, Cyclone IV GX, HardCopy IV GX, and Stratix IV GX devices.

■ Added CBB module to testbench to provide push button access for CBB testing

■ The ECC error signals, derr_*, r2c_err0, and rx_st_err<0> are not available in the hard IP 
implementation of the PCI Express IP core for Arria II GX devices.

■ Corrected Type field of the Configuration Write header in Table A–13 on page A–4. The value 
should be 5’b00101, not 5’b00010.

■ Improved description of AVL_IRQ_INPUT_VECTOR in Table 6–13 on page 6–7.

■ Corrected size of tx_cred signal for soft IP implementation in Figure 5–3 on page 5–4. It is 
36 bits, not 22 bits.

■ Clarified behavior of the rx_st_valid signal in the hard IP implementation of Arria II GX, 
Cyclone IV GX, HardCopy, and Stratix IV GX devices in Figure 5–2 on page 5–3.

■ Added fact that tx_st_err is not available for packets that are 1 or 2 cycles long in 
Table 5–4 on page 5–12.

■ Updated Figure 5–26 on page 5–29 and Figure 5–28 on page 5–30 to include pld_clk in 
64-bit and 128-bit mode. Also added discussion of .sdc timing constraints for the 
tl_cfg_ctl_wr and tl_cfg_sts_wr. .

■ Corrected bit definitions for Max Payload and Max Read Request Size in Table 5–14 on 
page 5–31.

■ Corrected description of dynamic reconfiguration in Chapter 13, Reconfiguration and Offset 
Cancellation. Link is brought down by asserting pcie_reconfig_rstn, not npor.

July 2010 10.0

■ Added support for Stratix V GX and GT devices.

■ Added 2 new variants:

■ Support for an integrated PCI Express hard IP endpoint that includes all of the reset and 
calibration logic. 

■ Support for a basic PCI Express completer-only endpoint with fixed transfer size of a 
single dword. Removed recommended frequencies for calibration and reconfiguration 
clocks. Referred reader to appropriate device handbook.

■ Added parity protection in Stratix V GX devices.

■ Added speed grade information for Cyclone IV GX and included a second entry for 
Cyclone IV GX running at 62.5 MHz in Table 1–9 on page 1–13.

■ Clarified qword alignment for request and completion TLPs for Avalon-ST interfaces. 

Date Version Changes Made SPR



Info–4 Chapter :
Revision History

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

July 2010 10.0

■ Added table specifying the Total RX buffer space, the RX Retry buffer size and Maximum 
payload size for devices that include the hard IP implementation. 

■ Recommended that designs specify may eventually target the HardCopy IV GX device, 
specify this device as the PHY type to ensure compatibility.

■ Improved definitions for hpg_ctrler signal. This bus is only available in root port mode. In 
the definition for the various bits, changed “This signal is” to “This signal should be.”

■ Removed information about Stratix GX devices. The PCI Express Compiler no longer 
supports Stratix GX.

■ Removed appendix describing test_in/test_out bus. Supported bits are described in 
Chapter 5, IP Core Interfaces.

■ Moved information on descriptor/data interface to an appendix. This interface is not 
recommended for new designs.

■ Clarified use of tx_cred for non-posted, posted, and completion TLPs. 

■ Corrected definition of Receive port error in Table 12–2 on page 12–2. 

■ Removed references to the PCI Express Advisor. It is no longer supported.

■ Reorganized entire User Guide to highlight more topics and provide a complete walkthough 
for the variants.

February 2010 9.1 SP1

■ Added support of Cyclone IV GX ×2.

■ Added r2c_err0 and r2c_err1 signals to report uncorrectable ECC errors for the hard IP 
implementation with Avalon-ST interface.

■ Added suc_spd_neg signal for all hard IP implementations which indicates successful 
negotiation to the Gen2 speed.

■ Added support for 125 MHz input reference clock (in addition to the 100 MHz input 
reference clock) for Gen1 for Arria II GX, Cyclone IV GX, HardCopy IV GX, and Stratix IV GX 
devices.

■ Added new entry to Table 1–9 on page 1–13. The hard IP implementation using the 
Avalon-MM interface for Stratix IV GX Gen2 ×1 is available in the -2 and -3 speed grades.

■ Corrected entries in Table 9–2 on page 9–2, as follows: Assert_INTA and Deassert_INTA are 
also generated by the core with application layer. For PCI Base Specification 1.1 or 2.0 hot 
plug messages are not transmitted to the application layer.

■ Clarified mapping of message TLPs. They use the standard 4 dword format for all TLPs.

■ Corrected field assignments for device_id and revision_id in Table 13–1 on page 13–2.

■ Removed documentation for BFM Performance Counting in the Testbench chapter; these 
procedures are not included in the release.

■ Updated definition of rx_st_bardec<n> to say that this signal is also ignored for message 
TLPs. Updated Figure 5–8 on page 5–10 and Figure 5–9 on page 5–10 to show the timing of 
this signal. 

Date Version Changes Made SPR



Chapter : Info–5
Revision History

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

November 
2009 9.1

■ Added support for Cyclone IV GX and HardCopy IV GX.

■ Added ability to parameterize the ALTGX Megafunction from the PCI Express IP core.

■ Added ability to run the hard IP implementation Gen1 ×1 application clock at 62.5 MHz, 
presumably to save power. 

■ Added the following signals to the IP core: xphy_pll_areset, xphy_pll_locked, 
nph_alloc_1cred_vc0, npd_alloc_1cred_vc1, npd_cred_vio_vc0, and 
nph_cred_vio_vc1

■ Clarified use of qword alignment for TLPs in Chapter 5, IP Core Interfaces.

■ Updated Table 5–15 on page 5–32 to include cross-references to the appropriate PCI 
Express configuration register table and provide more information about the various fields.

■ Corrected definition of the definitions of cfg_devcsr[31:0] in Table 5–15 on page 5–32. 
cfg_devcsr[31:16] is device status. cfg_devcsr[15:0] is device control. 

■ Corrected definition of Completer abort in Table 12–4 on page 12–3. The error is reported on 
cpl_error[2].

■ Added 2 unexpected completions to Table 12–4 on page 12–3.

■ Updated Figure 7–9 on page 7–11 to show clk and AvlClk_L.

■ Added detailed description of the tx_cred<n> signal.

■ Corrected Table 3–2 on page 3–6. Expansion ROM is non-prefetchable.

March 2009
9.0

■ Expanded discussion of “Serial Interface Signals” on page 5–53.

■ Clarified Table 1–9 on page 1–13. All cores support ECC with the exception of Gen2 ×8. The 
internal clock of the ×8 core runs at 500 MHz. 

■ Added warning about use of test_out and test_in buses. 

■ Moved debug signals rx_st_fifo_full0 and rx_st_fifo_empty0 to the test bus. 
Documentation for these signals moved from the Signals chapter to Appendix B, Test Port 
Interface Signals.

Date Version Changes Made SPR



Info–6 Chapter :
Revision History

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

February 2009 9.0

■ Updated Table 1–8 on page 1–11 and Table 1–9 on page 1–13. Removed tx_swing signal.

■ Added device support for Arria II GX in both the hard and soft IP implementations. Added 
preliminary support for HardCopy III and HardCopy IV E. 

■ Added support for hard IP endpoints in the SOPC Builder design flow.

■ Added PCI Express reconfiguration block for dynamic reconfiguration of configuration space 
registers. Updated figures to show this block. 

■ Enhanced Chapter 15, Testbench and Design Example to include default instantiation of the 
RC slave module, tests for ECRC and PCI Express dynamic reconfiguration.

■ Changed Chapter 16, SOPC Builder Design Example to demonstrate use of interrupts.

■ Improved documentation of MSI. 

■ Added definitions of DMA read and writes status registers in Chapter 15, Testbench and 
Design Example.

■ Added the following signals to the hard IP implementation of root port and endpoint using 
the MegaWizard Plug-In Manager design flow: tx_pipemargin, tx_pipedeemph, 
tx_swing (PIPE interface), ltssm[4:0], and lane_act[3:0] (Test interface). 

■ Added recommendation in “Avalon Configuration Settings” on page 3–15 that when the 
Avalon Configuration selects a dynamic translation table that multiple address translation 
table entries be employed to avoid updating a table entry before outstanding requests 
complete.

■ Clarified that ECC support is only available in the hard IP implementation.

■ Updated Figure 4–7 on page 4–9 to show connections between the Type 0 Configuration 
Space register and all virtual channels.

■ Made the following corrections to description of Chapter 3, Parameter Settings:

■ The enable rate match FIFO is available for Stratix IV GX 

■ Completion timeout is available for v2.0

■ MSI-X Table BAR Indicator (BIR) value can range 1:0–5:0 depending on BAR settings

■ Changes in “Power Management Parameters” on page 3–13: L0s acceptable latency is 
<= 4 μs, not < 4 μs; L1 acceptable latency is <= 64 μs, not < 64 μs, L1 exit latency 
common clock is <= 64 μs, not < 64 μs, L1 exit latency separate clock is <= 64 μs, not < 
64 μs

■ N_FTS controls are disabled for Stratix IV GX pending devices characterization

Date Version Changes Made SPR



Chapter : Info–7
Revision History

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

November 
2008 8.1

■ Added new material on root port which is available for the hard IP implementation in 
Stratix IV GX devices. 

■ Changed to full support for Gen2 ×8 in the Stratix IV GX device.

■ Added discussion of dynamic reconfiguration of the transceiver for Stratix IV GX devices. 
Refer to Table 5–29. 

■ Updated Resource Usage and Performance numbers for Quartus II 8.1 software

■ Added text explaining where TX I/Os are constrained. (Chapter 1)

■ Corrected Number of Address Pages in Table 3–6.

■ Revised the Table 9–2 on page 9–2. The following message types Assert_INTB, 
Assert_INTC, Assert_INTD, Deassert_INTB, Deassert_INTC and Deassert_INTD are not 
generated by the core. 

■ Clarified definition of rx_ack. It cannot be used to backpressure rx_data.

■ Corrected descriptions of cpl_err[4] and cpl_err[5] which were reversed. Added the 
fact that the cpl_err signals are pulsed for 1 cycle.

■ Corrected 128-bit RX data layout in Figure 5–9, Figure 5–10, Figure 5–11, Figure 5–12, 
Figure 5–18, Figure 5–19, and Figure 5–20.

■ Added explanation that for tx_cred port, completion header, posted header, non-
posted header and non-posted data fields, a value of 7 indicates 7 or more available 
credits.

■ Added warning that in the Cyclone III designs using the external PHY must not use the dual-
purpose VREF pins.

■ Revised Figure 14–6. For 8.1 txclk goes through a flip flop and is not inverted. 

■ Corrected (reversed) positions of the SMI and EPLAST_ENA bits in Table 15–12.

■ Added note that the RC slave module which is by default not instantiated in the Chapter 15, 
Testbench and Design Example must be instantiated to avoid deadline in designs that 
interface to a commercial BIOS. 

■ Added definitions for test_out in hard IP implementation.

■ Removed description of Training error bit which is not supported in PCI Express 
Specifications 1.1, 2.0 or 1.0a for endpoints.

266573

278539

Date Version Changes Made SPR



Info–8 Chapter :
Revision History

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

May 2008 8.0

■ Added information describing PCI Express hard IP IP core. 

■ Moved sections describing signals to separate chapter. 

■ Corrected description of cpl_err signals. 263470

■ Corrected Figure 16–3 on page 16–8 showing connections for SOPC Builder system. This 
system no longer requires an interrupt. 263992

■ Improved description of Chapter 15, Testbench and Design Example. Corrected module 
names and added descriptions of additional modules.

264302

260449

■ Removed descriptions of Type 0 and Type 1 Configuration Read/Write requests because they 
are not used in the PCI Express endpoint. 259190

■ Added missing signal descriptions for Avalon-ST interface.

■ Completed connections for npor in Figure 5–25 on page 5–24. 257867

■ Expanded definition of Quartus II .qip file. 255634

■ Added instructions for connecting the calibration clock of the PCI Express Compiler.

■ Updated discussion of clocking for external PHY.

■ Removed simple DMA design example.

October 7.2

■ Added support for Avalon-ST interface in the MegaWizard Plug-In Manager flow.

■ Added single-clock mode in SOPC Builder flow.

■ Re-organized document to put introductory information about the core first and streamline 
the design examples and moved detailed design example to a separate chapter.

■ Corrected text describing reset for ×1, ×4 and ×8 IP cores.

■ Corrected Timing Diagram: Transaction with a Data Payload.

249078

May 2007 7.1

■ Added support for Arria GX device family.

■ Added SOPC Builder support for ×1 and ×4.

■ Added Incremental Compile Module (ICM).

December 
2006 7.0 ■ Maintenance release; updated version numbers.

April 2006 2.1.0 
rev 2 

■ Minor format changes throughout user guide.

May 2007 7.1

■ Added support for Arria GX device family.

■ Added SOPC Builder support for ×1 and ×4.

■ Added Incremental Compile Module (ICM).

December 
2006 7.0 ■ Added support for Cyclone III device family.

December 
2006 6.1

■ Added support Stratix III device family.

■ Updated version and performance information. 

April 2006 2.1.0
■ Rearranged content.

■ Updated performance information.

October 2005 2.0.0

■ Added ×8 support.

■ Added device support for Stratix® II GX and Cyclone® II. 

■ Updated performance information.

Date Version Changes Made SPR



Chapter : Info–9
Revision History

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

June 2005 1.0.0 ■ First release.

May 2007 7.1
■ Added SOPC Builder Design Flow walkthrough.

■ Revised MegaWizard Plug-In Manager Design Flow walkthrough.

December 6.1

■ Updated screen shots and version numbers.

■ Modified text to accommodate new MegaWizard interface. 

■ Updated installation diagram.

■ Updated walkthrough to accommodate new MegaWizard interface.

April 2006 2.1.0

■ Updated screen shots and version numbers. 

■ Added steps for sourcing Tcl constraint file during compilation to the walkthrough in the 
section.

■ Moved installation information to release notes.

October 2005 2.0.0 ■ Updated screen shots and version numbers.

June 2005 1.0.0 ■ First release.

May 2007 7.1 ■ Added sections relating to SOPC Builder.

December 
2006 6.1

■ Updated screen shots and parameters for new MegaWizard interface.

■ Corrected timing diagrams.

April 2006 2.1.0

■ Added section Chapter 11, Flow Control.

■ Updated screen shots and version numbers.

■ Updated System Settings, Capabilities, Buffer Setup, and Power Management Pages and 
their parameters.

■ Added three waveform diagrams:

■ Transfer for a single write.

■ Transaction layer not ready to accept packet.

■ Transfer with wait state inserted for a single DWORD.

October 2005 2.0.0 ■ Updated screen shots and version numbers.

June 2005 1.0.0 ■ First release.

May 2007 7.1 ■ Made minor edits and corrected formatting.

December 
2006 6.1

■ Modified file names to accommodate new project directory structure.

■ Added references for high performance, Chaining DMA Example. 

April 2006 2.1.0 ■ New chapter Chapter 14, External PHYs added for external PHY support.

May 2007 7.1 ■ Added Incremental Compile Module (ICM) section.

December 
2006 6.1 ■ Added high performance, Chaining DMA Example. 

April 2006 2.1.0

■ Updated chapter number to chapter 5.

■ Added section.

■ Added two BFM Read/Write Procedures:

■ ebfm_start_perf_sample Procedure

■ ebfm_disp_perf_sample Procedure

October 2005 2.0.0 ■ Updated screen shots and version numbers.

June 2005 1.0.0 ■ First release.

Date Version Changes Made SPR



Info–10 Chapter :
How to Contact Altera

IP Compiler for PCI Express User Guide August 2014 Altera Corporation

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the 
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

April 2006 2.1.0 ■ Removed restrictions for ×8 ECRC.

June 2005 1.0.0 ■ First release.

May 2007 7.1 ■ Recovered hidden Content Without Data Payload tables.

October 2005 2.1.0 ■ Minor corrections.

June 2005 1.0.0 ■ First release.

April 2.1.0 ■ Updated ECRC to include ECRC support for ×8.

October 2005 1.0.0 ■ Updated ECRC noting no support for ×8.

June 2005 ■ First release.

Date Version Changes Made SPR

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative. 

Visual Cue Meaning

Bold Type with Initial Capital 
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. For GUI elements, capitalization matches 
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name 
extensions, software utility names, and GUI labels. For example, \qdesigns 
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the 
Options menu. 

“Subheading Title” Quotation marks indicate references to sections within a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”



Chapter : Info–11
Typographic Conventions

August 2014 Altera Corporation IP Compiler for PCI Express User Guide

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1, 
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it 
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. 

Also indicates sections of an actual file, such as a Report File, references to parts of 
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI). 

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important, 
such as the steps listed in a procedure. 

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important. 

1 The hand points to information that requires special attention. 

h A question mark directs you to a software help system with related information. 

f The feet direct you to another document or website with related information. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you 
injury.

The envelope links to the Email Subscription Management Center page of the Altera 
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning



Info–12 Chapter :
Typographic Conventions

IP Compiler for PCI Express User Guide August 2014 Altera Corporation



X-ON Electronics
 
Largest Supplier of Electrical and Electronic Components
 
Click to view similar products for Development Software category:
 
Click to view products by  Intel manufacturer:  
 
Other Similar products are found below :  

RAPPID-567XFSW  SRP004001-01  SW163052  SYSWINEV21  Core429-SA  WS01NCTF1E  W128E13  SW89CN0-ZCC  IPS-EMBEDDED 

IP-UART-16550  MPROG-PRO535E  AFLCF-08-LX-CE060-R21  WS02-CFSC1-EV3-UP  SYSMAC-STUDIO-EIPCPLR  LIB-PL-PC-N-

1YR-DISKID  LIB-PL-A-F  SW006026-COV  1120270005  1120270006  MIKROBASIC PRO FOR FT90X (USB DONGLE)  MIKROC PRO

FOR FT90X (USB DONGLE)  MIKROC PRO FOR PIC (USB DONGLE LICENSE)  MIKROBASIC PRO FOR AVR (USB DONGLE LICEN

MIKROBASIC PRO FOR FT90X  MIKROC PRO FOR DSPIC30/33 (USB DONGLE LI  MIKROPASCAL PRO FOR ARM (USB DONGLE

LICE  MIKROPASCAL PRO FOR FT90X  MIKROPASCAL PRO FOR FT90X (USB DONGLE)  MIKROPASCAL PRO FOR PIC32 (USB

DONGLE LI  SW006021-2H  ATATMELSTUDIO  2400573  2702579  2988609  2702546  SW006022-DGL  2400303  2701356  VDSP-21XX-

PCFLOAT  VDSP-BLKFN-PC-FULL  88970111  DG-ACC-NET-CD  55195101-102  SW1A-W1C  MDK-ARM  PCI-EXP1-E3-US  PCI-T32-

E3-US  SW006021-2NH  SW006021-1H  SW006021-2  

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/development-software
https://www.x-on.com.au/manufacturer/intel
https://www.x-on.com.au/mpn/nxp/rappid567xfsw
https://www.x-on.com.au/mpn/lantronix/srp00400101
https://www.x-on.com.au/mpn/microchip/sw163052
https://www.x-on.com.au/mpn/omron/syswinev21
https://www.x-on.com.au/mpn/microsemi/core429sa
https://www.x-on.com.au/mpn/omron/ws01nctf1e
https://www.x-on.com.au/mpn/omron/w128e13
https://www.x-on.com.au/mpn/toshiba/sw89cn0zcc
https://www.x-on.com.au/mpn/intel/ipsembedded
https://www.x-on.com.au/mpn/intel/ipuart16550
https://www.x-on.com.au/mpn/advantech/mprogpro535e
https://www.x-on.com.au/mpn/iei/aflcf08lxce060r21
https://www.x-on.com.au/mpn/omron/ws02cfsc1ev3up
https://www.x-on.com.au/mpn/omron/sysmacstudioeipcplr
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microchip/libplaf
https://www.x-on.com.au/mpn/microchip/sw006026cov
https://www.x-on.com.au/mpn/molex/1120270005
https://www.x-on.com.au/mpn/molex/1120270006
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforpicusbdonglelicense
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforavrusbdonglelicen
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikrocprofordspic3033usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/microchip/sw0060212h
https://www.x-on.com.au/mpn/microchip/atatmelstudio
https://www.x-on.com.au/mpn/phoenixcontact/2400573
https://www.x-on.com.au/mpn/phoenixcontact/2702579
https://www.x-on.com.au/mpn/phoenixcontact/2988609
https://www.x-on.com.au/mpn/phoenixcontact/2702546
https://www.x-on.com.au/mpn/microchip/sw006022dgl
https://www.x-on.com.au/mpn/phoenixcontact/2400303
https://www.x-on.com.au/mpn/phoenixcontact/2701356
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdspblkfnpcfull
https://www.x-on.com.au/mpn/crouzet/88970111
https://www.x-on.com.au/mpn/digiinternational/dgaccnetcd
https://www.x-on.com.au/mpn/honeywell/55195101102
https://www.x-on.com.au/mpn/idec/sw1aw1c
https://www.x-on.com.au/mpn/keil/mdkarm
https://www.x-on.com.au/mpn/lattice/pciexp1e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/microchip/sw0060212nh
https://www.x-on.com.au/mpn/microchip/sw0060211h
https://www.x-on.com.au/mpn/microchip/sw0060212

