

User guide

Door control MOTIX™ Bridge MOTIX™ SBC Z8F80481275

About this document

Scope and purpose

This user guide provides instructions for using the evaluation board, which is designed to evaluate the associated system solution for door control. Moreover, this user guide provides an overview on the whole system offering for door control and extensive technical information on the board.



Figure 1 Door control evaluation board

About this document

Intended audience

This document is intended for anyone using Infineon's Door control evaluation board.

Note: printed circuit board (PCB) and auxiliary circuits are NOT optimized for final customer design.

Important notice

Important notice

"Evaluation Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

Safety precautions

Safety precautions

Table 1

Safety precautions

Caution: The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.

Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.

Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and quidelines.

Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.

Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.

Table of contents

Table of contents

	Table of contents	5
1	System offering	7
1.1	Introduction to the system offering	. 7
1.1.1	Introduction to the Infineon door control evaluation board	8
1.1.2	Introduction to the MOTIX™ TLE9166EQ device driver	10
1.1.3	Introduction to the MOTIX™ TLE9562 device driver	10
1.1.4	Introduction to the Infineon door control evaluation board application software - basic	. 10
1.1.5	Introduction to the Infineon door control evaluation board application software - advanced .	. 11
1.1.6	Introduction to the MOTIX™ multi half-bridge IC configuration wizard	. 11
1.2	How to get the system offering	11
1.3	Benefits of the system offering	15
2	Setting up the Infineon door control evaluation board	17
3	In detail: Infineon door control evaluation board	20
3.1	Technical data	. 20
3.2	Functional description	.20
3.2.1	MOTIX™ bridge TLE9166EQ	20
3.2.1.1	Power stage of MOTIX™ bridge TLE9166EQ	20
3.2.1.2	Jumpers	21
3.2.1.3	Signal pin headers	21
3.2.1.4	Assembly options	22
3.2.2	MOTIX™ SBC TLE9562	23
3.2.2.1	Power stage of MOTIX™ SBC TLE9562	23
3.2.2.2	Jumpers	23
3.2.2.3	Test points	25
3.2.2.4	Signal pin headers	25
3.2.2.5	Pushbuttons	.26
3.2.2.6	LEDs	. 26
3.2.2.7	LIN	27
3.2.2.8	CAN	.27
3.2.2.9	Assembly options	28
3.2.3	TRAVEO™ II	.28
3.2.3.1	Jumpers	28
3.2.3.2	Test points	29
3.2.3.3	Push button	. 30
3.2.3.4	LEDs	. 30
3.2.3.5	Potentiometer	. 31
3.2.3.6	Traveo [™] pin headers	. 31
3.2.4	Power supply	32
3.2.4.1	Supply connectors	32

Table of contents

	Disclaimer	. 63
	Revision history	.62
5	Abbreviations	.61
	Glossary	. 60
4	Additional information	. 59
3.3.3	Bill of material Door control evaluation board	. 53
3.3.2	Layout Door control evaluation board	
3.3.1	Schematics Door control evaluation board	44
3.3	Design Files	44
3.2.6.7	Assembly option	. 42
3.2.6.6	LEDs	. 42
3.2.6.5	Pushbutton	41
3.2.6.4	Signal pin headers	39
3.2.6.3	Test point	. 39
3.2.6.2	Jumpers	37
3.2.6.1	Connector	.36
3.2.6	Debugger	
3.2.5.3	Test point	
3.2.5.2	Jumper	
3.2.5.1	uIO connector	
3.2.5	uIO-stick	
3.2.4.4	LEDs	
3.2.4.3	Test points	
3.2.4.2	Jumpers	33

1 System offering

System offering 1

1.1 Introduction to the system offering

Infineon's system offering for door control encompasses a range of components that work together to provide a comprehensive solution.

Key Components:

- Infineon door control evaluation board: A robust hardware foundation for efficient integration and connectivity with a TRAVEO™ II microcontroller, a MOTIX™ SBC TLE9562 a MOTIX™ Bridge TLE9166EQ, MOSFETs and several interfaces. For more information, refer to Introduction to the Infineon door control evaluation board
- MOTIX[™] device drivers: Microcontroller-independent embedded software for configuring and controlling
 - MOTIX™ TLE9166EQ; for more information, refer to Introduction to the MOTIX™ TLE9166EQ device driver
 - MOTIX™ TLE9562; for more information, refer to Introduction to the MOTIX™ TLE9562 device driver
- **Application software**: An embedded software project for IAR embedded work bench which includes the device drivers and the Traveo™ II sample driver library (SDL). There are two application software projects offered:
 - **Infineon door control evaluation board application software basic:** In this application software, the Traveo™ II initializes the MOTIX™ SBC TLE9562 and the MOTIX™ Bridge TLE9166EQ over SPI and start the cyclic status check function. Moreover, this application provides a glance at the integration of the device driver. For more information, refer to Introduction to the Infineon door control evaluation board application software - basic
 - Infineon door control evaluation board application software advanced: This application software extends the functionality of the basic software. Apart from all the initializations, the advanced software application contains a routine to operate various loads of the door control module such as the window lift operation, mirror features, and the door lock function. For more information, refer to Introduction to the Infineon door control evaluation board application software - advanced
- MOTIX™ multi half-bridge IC configuration wizard: A PC tool consisting of a *graphical user interface (GUI)* for configuring and visualizing the state of the MOTIX™ SBC TLE9562 and MOTIX™ bridge TLE9166EQ. For more information, refer to Introduction to the MOTIX™ multi half-bridge IC configuration wizard

1 System offering

Figure 2 Infineon's door control system offerings

1.1.1 Introduction to the Infineon door control evaluation board

The evaluation board combines a TRAVEO™ II microcontroller with a MOTIX™ SBC TLE9562 and MOTIX™ bridge TLE9166EQ. Every pin of the MOTIX™ bridge TLE9166EQ and most pins of the MOTIX™ SBC TLE9562 can be accessed via pin headers.

The evaluation board can be supplied over banana jacks with 12 Vdc. The board is protected against reverse polarity of the input voltage supply. The logic power supply for the microcontroller, MOTIX™ Bridge TLE9166EQ and the charge pump voltage for the MOTIX™ bridge TLE9166EQ is provided by the MOTIX™ SBC TLE9562.

All the OptiMOS^{$^{\text{M}}$} MOSFET half-bridges are placed on the board to drive BDC motors. The board has a USB-C port to use the on-board *serial wire debug (SWD)*. The *controller area network (CAN)* and *local interconnect network (LIN)* interfaces are available at a push-in connector.

To get the evaluation board, refer to How to get the system offering.

1 System offering

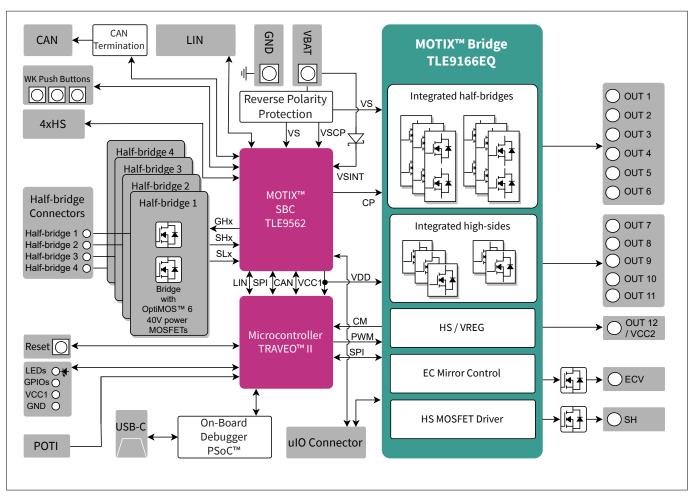


Figure 3 Block diagram

1 System offering

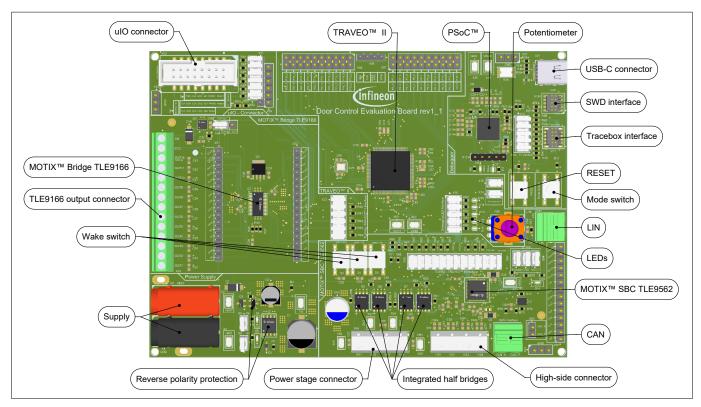


Figure 4 **Board description**

1.1.2 Introduction to the MOTIX™ TLE9166EQ device driver

The MOTIX™ TLE9166EQ device driver is a microcontroller-independent embedded software library that provides an easy-to-use application programming interface (API) for configuring the TLE9166 half-bridge driver integrated circuit (IC). The device driver is designed to be integrated into various microcontroller platforms and provides a set of functions to configure the TLE9166EQ and read its status registers. The device driver is available in the Infineon Developer Center.

Introduction to the MOTIX™ TLE9562 device driver 1.1.3

The MOTIX™ TLE9562 device driver is a microcontroller-independent embedded software library that provides an easy-to-use API for configuring the TLE9562 multifunctional system IC. The device driver is designed to be integrated into various microcontroller platforms and provides a set of functions to configure the TLE9562 and read its status registers. The device driver is available in the Infineon Developer Center.

Introduction to the Infineon door control evaluation board 1.1.4 application software - basic

The application software is designed to provide users with an initial insight into the capabilities of our devices. It serves as an example guide for integrating device drivers into software projects. It consists of an embedded software example tailored for the Infineon door control evaluation board. The application software:

- Is executed by the Traveo™ II microcontroller
- Initializes the TLE9166 and TLE9562, activating their outputs and high sides

1 System offering

- Periodically reads the status register of these devices, with errors indicated via light-emitting diode (LED)s on the board
- Integrates and uses the API provided in the embedded software libraries, including:
 - Traveo[™] II Sample Driver Library
 - TLE9166 device driver
 - TLF9562 device driver

This approach ensures that developers can seamlessly incorporate the devices into their projects, optimizing functionality.

Introduction to the Infineon door control evaluation board 1.1.5 application software - advanced

This application software enhances the capabilities of the basic software by incorporating additional functionalities. It not only encompasses all the features of the basic software but also includes routines specifically designed to manage various loads in the door control module. These loads include window lift motors, mirror folding, mirror glass movement, mirror LEDs, and door locks.

The software is configured to use the necessary peripherals of the Traveo™ II microcontroller such as serial peripheral interface (SPI), pulse-width modulation (PWM), and timers. Within the software, a state machine routine manages various configurations of Traveo™ II, MOTIX™ SBC TLE9562 and MOTIX™ bridge TLE9166EQ, by enabling or disabling various output stages to control specific loads within the door control module.

For access to this software and comprehensive documentation, refer to How to get the system offering.

Introduction to the MOTIX™ multi half-bridge IC configuration 1.1.6 wizard

The MOTIX™ multi-half-bridge /C configuration wizard is a PC tool consisting of a *GUI* within the Infineon Developer Center Launcher.

The GUI enables you to configure the charge pump of MOTIX™ SBC TLE9562 and to configure the MOTIX™ bridge TLE9166EQ during runtime. In addition, it monitors the values of the device register and the CM pin of the device.

This tool works together with the evaluation board and the uIO-stick, which sends the corresponding SPI messages, drives the digital inputs of the device, and monitors the CM analog pin of the device.

To get the configuration wizard, refer to How to get the system offering.

1.2 How to get the system offering

How to get the Infineon door control evaluation board

To order a board:

- 1. Go to https://www.infineon.com
- 2. In the search bar, enter your required product, for example, Door control evaluation board
- 3. Once you have found the product page, navigate to the order section
- 4. To order the product from Infineon directly or from the distribution partner, click **Order online**

1 System offering

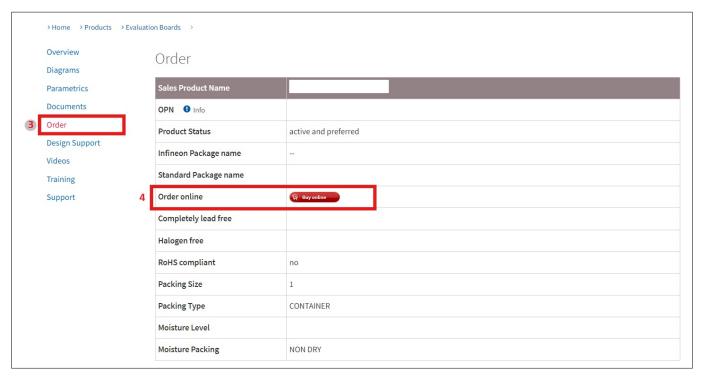


Figure 5 Navigation on the web page to order the board

How to get the application software examples and device drivers

To download an embedded software package:

- 1. Go to https://softwaretools.infineon.com/software
- 2. In the search field, enter the name of the embedded software package
- 3. Click **Request**, as shown in Figure 6
- 4. Click the cart
- 5. Click Request
- 6. Fill the questionnaire, accept the license terms, and click **Submit request**, as shown in Figure 7
- 7. A few minutes later, the software package is available for download in the My Space tab page under My **Software**. There, click **Details** and then **Download**

1 System offering

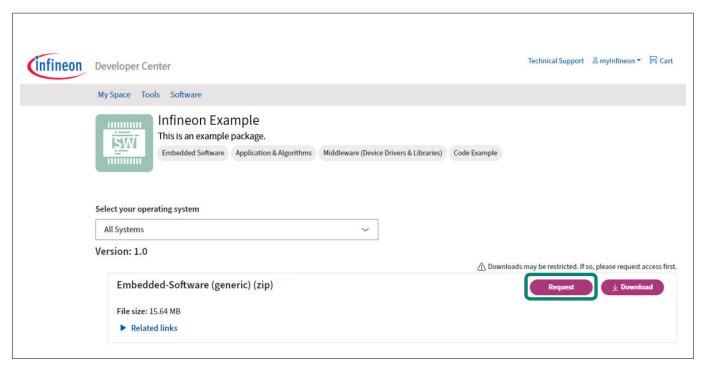


Figure 6 Software package within the Infineon Developer Center

1 System offering

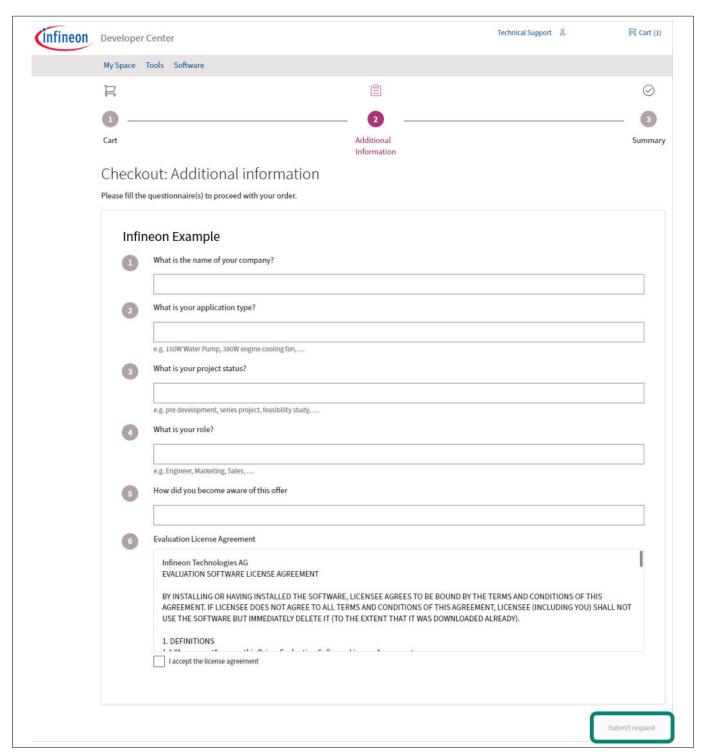


Figure 7 Requesting download of software package

How to get the MOTIX™ Multi half-bridge IC configuration wizard

You can install the tool from the Infineon Developer Center Launcher, which you can download here. From there, in Step 3, under **Tools**, search for MOTIX[™] Multi half-bridge IC configuration wizard. Once installed, in Step 5, under **Manage Tools** and hovering over the MOTIX[™] Multi half-bridge IC configuration wizard box, click **Start**. In the new window that appears, to start the tool, click TLE9166EQ EVALBOARD.

1 System offering

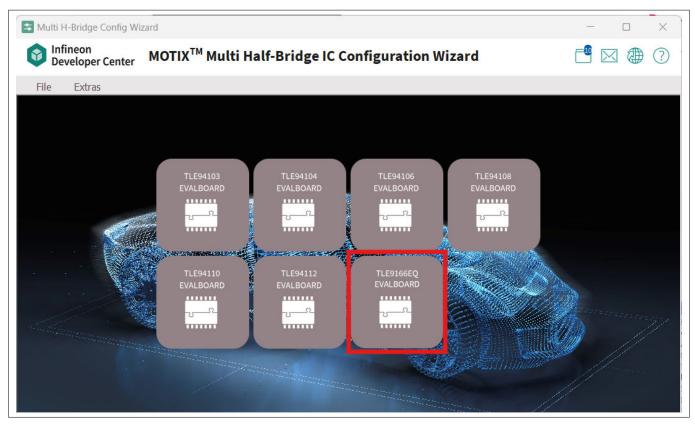


Figure 8 MOTIX™ Multi half-bridge IC configuration wizard

1.3 Benefits of the system offering

This integrated platform is designed to streamline the evaluation process, providing the necessary tools to effectively test, analyze, and harness the capabilities of Infineon's system solution for door control. The following explains how to combine components for maximum benefit.

• Evaluation board + application software: Enables rapid prototyping and development. The application software examples have been developed to run on this evaluation board, so they only have to be compiled and flashed into the Traveo™ II. All the required microcontroller peripherals (*general purpose input output (GPIO)*, *PWM*, *SPI*)* are configured for the correct pin mapping and functionality. The Infineon products on the evaluation board are the best fit for a door control application. The application software examples have been developed so that the correct application load type is connected to the correct output stage*. This serves as an inspiration for door modules system partitioning. Moreover, the application software examples showcase how the device drivers can be integrated in a bigger project and how their functions can be used to control the hardware.

Note: * = Infineon door control evaluation board application software - Advanced

1 System offering

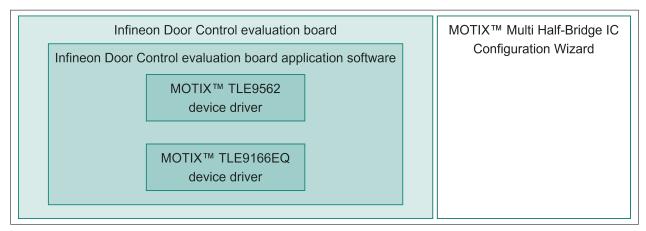


Figure 9 Evaluation board + Application software

• Evaluation board + configuration wizard: Enables run-time evaluation. The *GUI* enables you to configure the charge pump of MOTIX™ SBC TLE9562 and configure the MOTIX™ Bridge TLE9166EQ with the uIO-stick. The configuration of the MOTIX™ Bridge TLE9166EQ can be changed during run-time to monitor the values of the device registers. There is no need to re-flash or reboot any microcontroller to make any changes

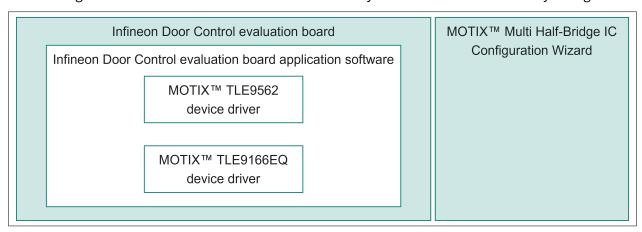


Figure 10 Evaluation board + configuration wizard

• Device driver + other microcontroller platform: The MOTIX™ TLE9166EQ and MOTIX™ TLE9562 device drivers are a microcontroller-independent software library that provides an easy-to-use API to control the MOTIX™ Bridge TLE9166EQ and MOTIX™ SBC TLE9562. The device drivers are designed to be integrated into various microcontroller platforms and provide a set of functions to configure and read the status of the TLE9166EQ and TLE9562

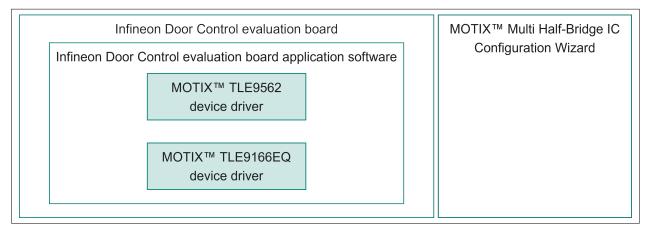


Figure 11 Device driver + other microcontroller platform

2 Setting up the Infineon door control evaluation board

Setting up the Infineon door control evaluation board 2

Box delivery content

The Door control evaluation board is delivered together with a USB-C cable to connect the board to a PC, and a QR code on the box to access exclusive content for the board, such as *PCB* design files

Initial board setup

The door control evaluation board comes with a pre-flashed Introduction to the Infineon door control evaluation board application software - basic. To ensure that the initial setup works as expected, follow these steps:

Check whether the default jumper position is set. The default jumper position is highlighted in purple in 1. the figure below

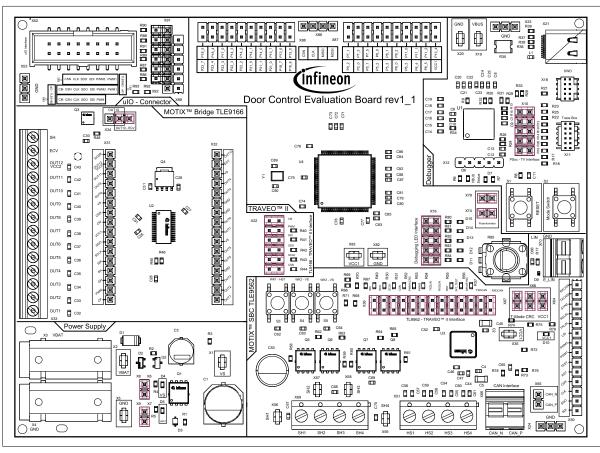


Figure 12 **Default jumper position**

2. After checking the default jumper position, follow the steps given in the table and relevant components as highlighted in the figure below:

Steps for setting up the evaluation board Table 2

Steps	Designator	Label	Description
a	X3, X4	V _{BAT} , GND	Connect the board to a 12 V power supply using banana connectors (X3, X4) on the board.

(table continues...)

2 Setting up the Infineon door control evaluation board

(continued) Steps for setting up the evaluation board Table 2

Steps	Designator	Label	Description
b	D5	V_{BAT}	V _{BAT} supply LED D5 indicated that positive supply voltage has been applied on the board
С	D4	V_{S}	V _s LED D4 indicates that there is a positive voltage after the reverse polarity protection, which is applied to the devices of the board
d	D10	V _{CC1}	V _{CC1} LED D10 indicated that MOTIX™ SBC TLE9562 device is active and LDO of the MOTIX™ SBC TLE9562 is supplying the 5 V supply for Traveo™ II and MOTIX™ Bridge TLE9166EQ
e	D14, D15	Debugging LED interface	If the above supply indication are observed as described then, now you can see the LEDs D15, D14 permanently ON. For more information on the functionality of the preflashed application software, refer to Introduction to the Infineon door control evaluation board application software - basic
f	D13, D12	Debugging LED Interface	LED D13, D12 blinking, which indicates that pre-flashed application software is working correctly. For more information on the functionality of the pre-flashed application software, refer to Introduction to the Infineon door control evaluation board application software - basic

2 Setting up the Infineon door control evaluation board

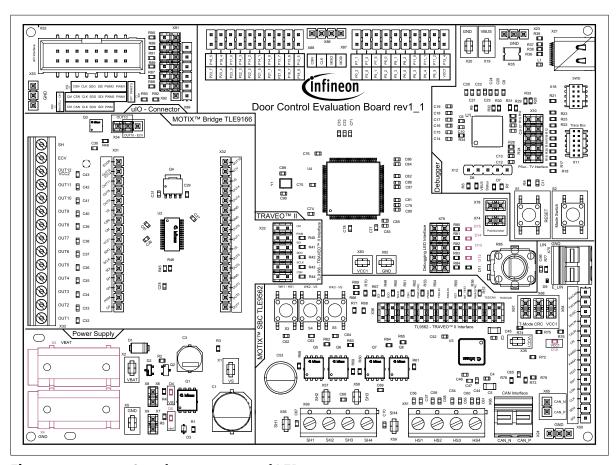


Figure 13 **Supply connector and LEDs**

Exclusive content

To access exclusive content, click https://softwaretools.infineon.com/projects/create.

3 In detail: Infineon door control evaluation board

3 In detail: Infineon door control evaluation board

3.1 Technical data

Technical data is specified in the table below. The current capability for supply and motor phases is limited by the default assembly of banana plugs for battery supply and the motor phase connector. Higher current capability can be reached by adjusting the battery and motor connectors.

If working with higher currents than the specified maximum ratings, the relevant safety measures must be applied.

Table 3 Technical data

Parameter	Value	
Supply voltage	Specified by design Typ. 12 V (max. 28 V)	
Supply current	Max. 10 A	
Pin ports	5 V	
Board size	150 mm x 110 mm	

3.2 Functional description

3.2.1 MOTIX™ bridge TLE9166EQ

3.2.1.1 Power stage of MOTIX™ bridge TLE9166EQ

The integrated power stages of MOTIX™ bridge TLE9166EQ are connected to the output screw connector X33. The high-side MOSFET driver is connected to X33 via Q3 and EC mirror control driver via Q4. The drain of the Q4 MOSFET can be connected to OUT10 using jumper X34. For more information, refer to Jumpers. Additionally, the placement option for D16 at SH to GND and gate source capacitance C92 is available for the high-side MOSFET driver.

Figure 14 Power stage of MOTIX™ bridge TLE9166EQ

3 In detail: Infineon door control evaluation board

Jumpers 3.2.1.2

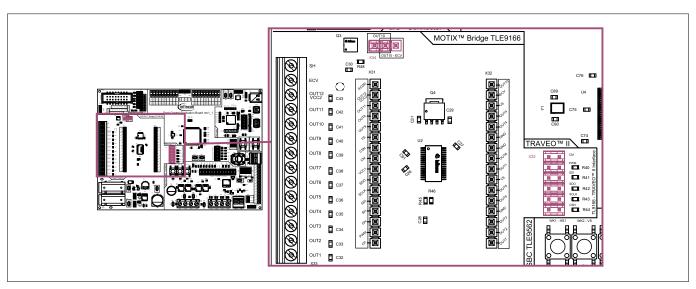


Figure 15 **Jumpers**

Table 4 **Jumpers**

Designator	Label	Description	
X34	OUT10 configuration	Set jumper to connect the OUT10 signal of MOTIX™ Bridge TLE9166EQ either to the output connector X33 or input of Q4. The jumper is set to output connector X33 by default.	
X22	СМ	Set jumper to connect MOTIX™ Bridge TLE9166EQ CM signal to TRAVEO™ II microcontroller port P6_2 (pin 20). The jumper is set by default.	
X22	PWM	Set jumper to connect MOTIX™ Bridge TLE9166EQ PWM signal to TRAVEO™ II microcontroller port P7_4 (pin 33). The jumper is set by default.	
X22	SDO	Set jumper to connect MOTIX™ Bridge TLE9166EQ SDO signal to TRAVEO™ II microcontroller port P13_0 (pin 52). The jumper is set by default.	
X22	SDI	Set jumper to connect MOTIX™ Bridge TLE9166EQ SDI signal to TRAVEO™ II microcontroller port P13_1 (pin 53). The jumper is set by default.	
X22	SCLK	Set jumper to connect MOTIX™ Bridge TLE9166EQ SCLK signal to TRAVEO™ II microcontroller port P13_2 (pin 54). The jumper is set by default.	
X22	CSN	Set jumper to connect MOTIX™ Bridge TLE9166EQ CSN signal to TRAVEO™ II microcontroller port P13_3 (pin 55). The jumper is set by default.	

Signal pin headers 3.2.1.3

Different measurement signals of MOTIX™ Bridge TLE9166EQ are routed to X31 and X32 pin headers for the easy access of measurement.

3 In detail: Infineon door control evaluation board

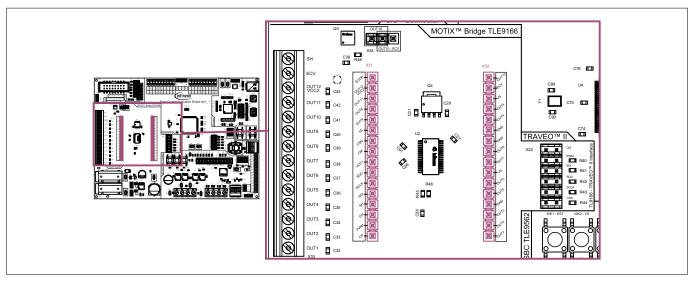


Figure 16 Signal pin headers

3.2.1.4 Assembly options

Values for these optional additional placements must be determined depending on the application. The typical components and values can be found in Chapter 3.3.3.

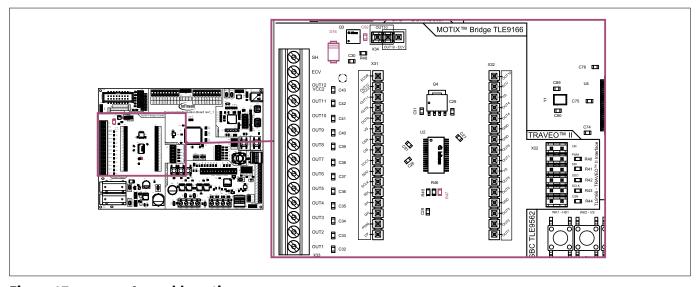


Figure 17 Assembly options

Table 5 Additional placements

Designator	Description
C92	Gate-drain capacitor high-side MOSFET
D16	Clamping diode at SH of the high-side driver
R47	To avoid measurement voltage saturation on the CM pin

3 In detail: Infineon door control evaluation board

3.2.2 MOTIX™ SBC TLE9562

3.2.2.1 Power stage of MOTIX™ SBC TLE9562

Four MOSFET half bridges are controlled by MOTIX™ SBC TLE9562 and are connected to the X69 screw connector. Every HBx (Q5, Q6, Q7 and Q8) integrates a half bridge, consisting of two N-channel MOSFETS inside the package.

Externally to each HBx: Gate resistors (R59,...,R65) on GHx and GLx are connected. Additionally, the placement option for the SH to GND capacitor is available for each HBx. The outputs of the half bridges Q5, Q6, Q7 and Q8 are routed respectively to SH1, SH2, SH3, SH4 at the screw connector.

Along with the HBx, MOTIX™ SBC TLE9562 also has four high-side switches, which can be used over the X51 connector.

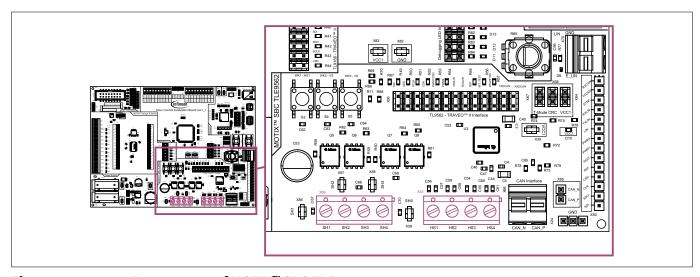


Figure 18 Power stage of MOTIX™ SBC TLE9562

3.2.2.2 **Jumpers**

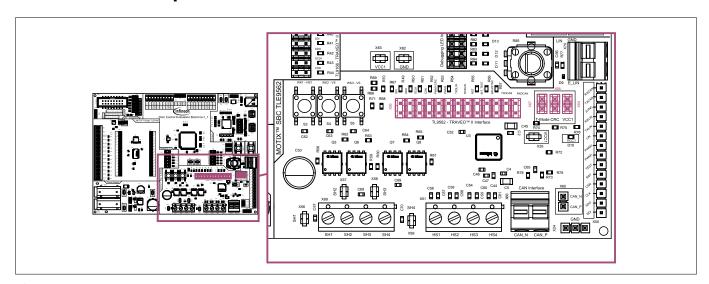


Figure 19 **Jumpers**

3 In detail: Infineon door control evaluation board

Table 0	Junipers		
Designator	Label	Description	
X64	V _{CC1}	Set jumper to connect supply to $V_{\rm CC1}$ indication LED. Jumper is set by default	
X68	CRC	Set jumper to pull down the CRC pin of MOTIX™ SBC TLE9562 to activate CRC functionality. Jumper is set by default	
X67	INT_N/TEST	Set jumper to pull down the INT_N/Test pin of MOTIX™ SBC TLE9562 to activate software development mode. Jumper is set by default	
X36	SDO	Set jumper to connect MOTIX™ SBC TLE9562 SDO signal to Traveo™ microcontroller port P18_0 (pin 67). Jumper is set by default	
X36	SDI	Set jumper to connect MOTIX™ SBC TLE9562 SDI signal to Traveo™ microcontroller port P18_1 (pin 68). Jumper is set by default	
X36	SCLK	Set jumper to connect MOTIX™ SBC TLE9562 SCLK signal to Traveo™ microcontroller port P18_2 (pin 69). Jumper is set by default	
X36	CSN	Set jumper to connect MOTIX™ SBC TLE9562 CSN signal to Traveo™ microcontroller port P18_3 (pin 70). Jumper is set by default	
X36	PWM1/CRC	Set jumper to connect MOTIX™ SBC TLE9562 PWM1/CRC signal to Trave microcontroller port P7_0 (pin 29). Jumper is set by default	
X36	PWM3	Set jumper to connect MOTIX™ SBC TLE9562 PWM3 signal to Traveo™ microcontroller port P7_2 (pin 31). Jumper is set by default	
X36	TXDLIN	Set jumper to connect MOTIX™ SBC TLE9562 TXDLIN signal to Traveo™ microcontroller port P0_0 (pin 2). Jumper is set by default	
X36	RXDLIN	Set jumper to connect MOTIX™ SBC TLE9562 RXDLIN signal to Traveo™ microcontroller port P0_1 (pin 3). Jumper is set by default	
X36	RST	Set jumper to connect MOTIX™ SBC TLE9562 RST signal to Traveo™ microcontroller port P2_3 (pin 9). Jumper is set by default	
X36	INT_TEST	Set jumper to connect MOTIX™ SBC TLE9562 INT_TEST signal to Traveo™ microcontroller port P0_3 (pin 5). Jumper is set by default	
X36	WK4/SYNC	Set jumper to connect MOTIX™ SBC TLE9562 WK4/SYNC signal to Traveo™ microcontroller port P5_0 (pin 14). Jumper is set by default	
X36	TXDCAN	Set jumper to connect MOTIX™ SBC TLE9562 TXDCAN signal to Traveo™ microcontroller port P3_0 (pin 11). Jumper is set by default	
X36	RXDCAN	Set jumper to connect MOTIX [™] SBC TLE9562 RXDCAN signal to Traveo [™] microcontroller port P3_1 (pin 10). Jumper is set by default	

3 In detail: Infineon door control evaluation board

3.2.2.3 Test points

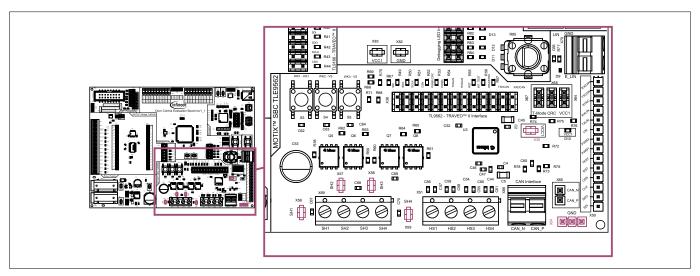


Figure 20 Test points

Table 7 Test points

Signal	Designator	Description	
V _{CC1}	X35	Test points to measure the digital supply voltage of TRAVEO™ I and MOTIX™ Bridge TLE9166EQ	
GND	X24	Test points to connect to ground	
SH1, SH2, SH3, SH4	X56, X57, X58, X59	Test points to measure the motor phase voltages	

3.2.2.4 Signal pin headers

Various measurement signals of MOTIX™ SBC TLE9562 are routed to X50 pin headers for the easy access of measurement.

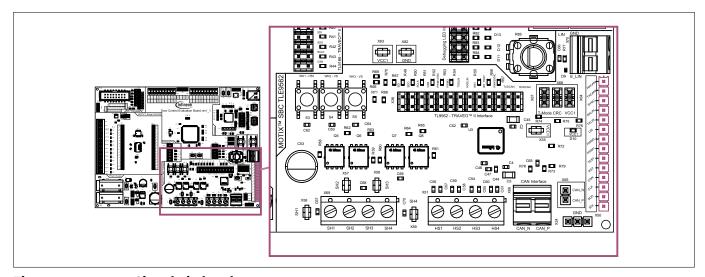


Figure 21 Signal pin headers

3 In detail: Infineon door control evaluation board

3.2.2.5 Pushbuttons

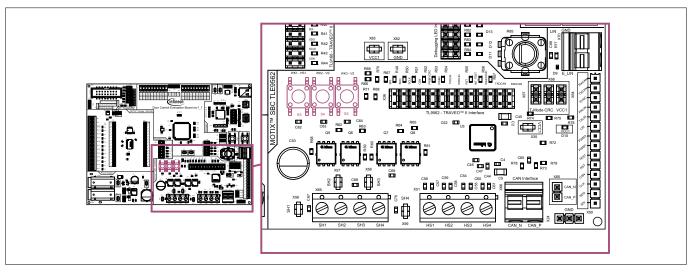


Figure 22 Pushbuttons

Table 8 Push buttons

Designator	Description
S3	WK1: Wake input trigger push button for MOTIX™ SBC TLE9562, Trigger is connected to the HS1 of the MOTIX™ SBC TLE9562
S4	WK2: Wake input trigger push button for MOTIX ^{M} SBC TLE9562, Trigger is connected to the V_S of the MOTIX M SBC TLE9562
S5 WK3: Wake input trigger push button for MOTIX™ SBC TLE9562, Trig	

3.2.2.6 LEDs

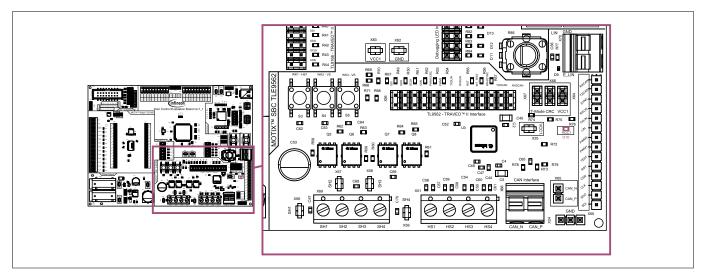


Figure 23 LEDs

3 In detail: Infineon door control evaluation board

Table	۹ م	LEDs
เลมเ	ヒン	LEDS

Designator	Description
D10	Indicates the digital supply V _{CC1} of TRAVEO™ II and MOTIX™ bridge TLE9166EQ is active

3.2.2.7 LIN

The integrated *LIN* transceiver of MOTIX[™] SBC TLE9562 is connected to a X70 PCB terminal block. To connect the Traveo[™] II lines with the transceiver, refer to MOTIX[™] SBC TLE9562 and TRAVEO[™] II connections

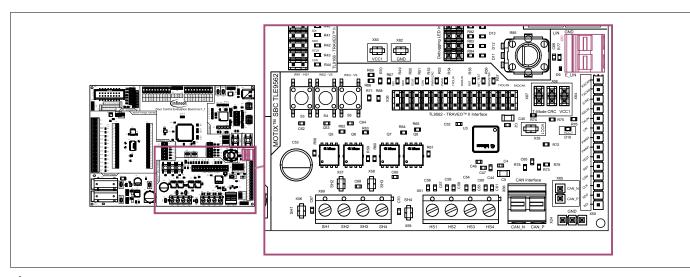


Figure 24 LIN Connector

3.2.2.8 CAN

The X66 PCB terminal block can be used to connect the CAN_P and CAN_N cables. To connect the Traveo™ II lines with the transceiver, refer to MOTIX™ SBC TLE9562 and TRAVEO™ II connections. The *CAN* termination resistors R78 and R73 are mounted by default.

Additionally, the capacitor C65 is mounted between the resistors. A placement option is available to solder a common mode choke L2. If L2 is placed, the 0 Ω resistors R72 and R79 must be removed.

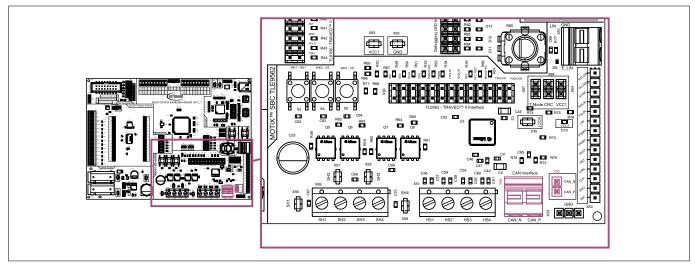


Figure 25 CAN connector and pinout

3 In detail: Infineon door control evaluation board

3.2.2.9 Assembly options

Values for these optional additional placements must be determined depending on the application. The typical components and values can be found in Chapter 3.3.3.

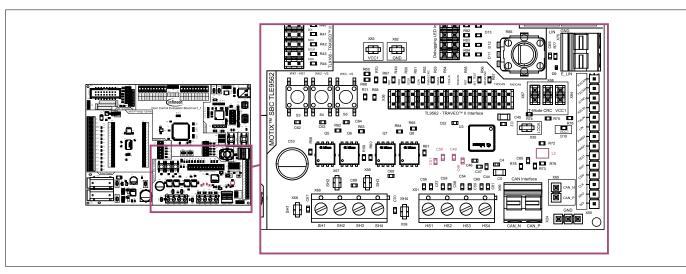


Figure 26 Assembly options

Table 10 Additional placements

Designator	Description	
C48, C49, C50, C51	SH-GND capacitor	
L2	CAN common mode choke. If placed, remove R72 and R79	

3.2.3 TRAVEO™ II

3.2.3.1 Jumpers

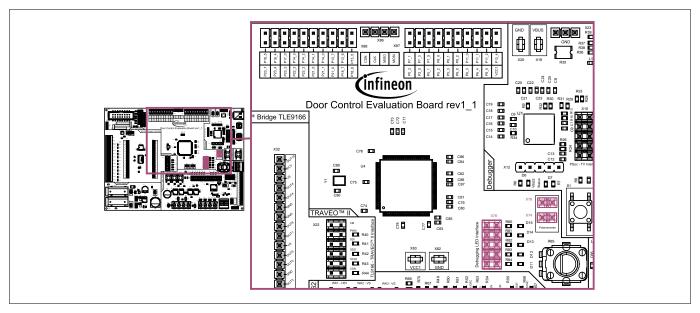


Figure 27 Jumpers

3 In detail: Infineon door control evaluation board

Table 11 Jumpers

Designator	Description		
X78	Set jumper to connect the potentiometer to $V_{\rm CC1}$ supply. Jumper is set by default. For more information, refer to Potentiometer		
X74	Set jumper to connect the potentiometer output to the analog pin P6_1 of the TRAVEO™ II microcontroller. Jumper is set by default. For more information, refer to Potentiometer		
X76	Set jumpers to connect <i>GPIO</i> s to <i>LED</i> s. Jumpers are set by default. For more information, refer to LEDs		

3.2.3.2 Test points

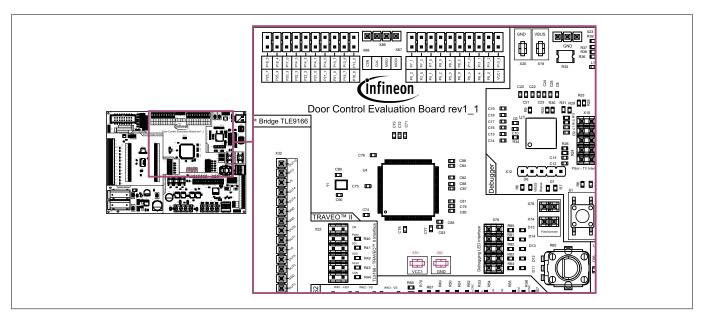


Figure 28 Test points

Table 12 Test points

Signal	Designator	Description
V _{CC1}	X85	Test points to measure the digital supply voltage of TRAVEO™ II and MOTIX™ bridge TLE9166EQ
GND	X82	Test points to connect to ground

3 In detail: Infineon door control evaluation board

3.2.3.3 Push button

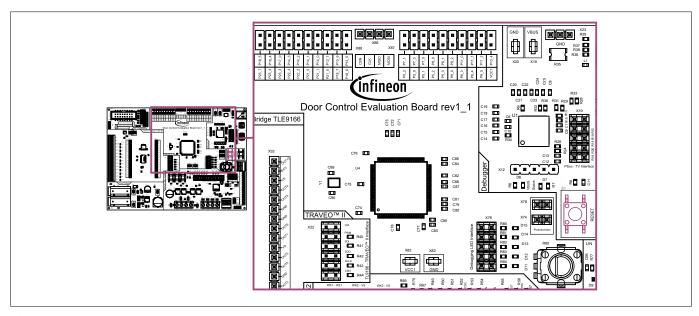


Figure 29 Push button

Table 13 Push button

Designator	Description
S1	RESET: Reset push button for TRAVEO™ II microcontroller

3.2.3.4 LEDs

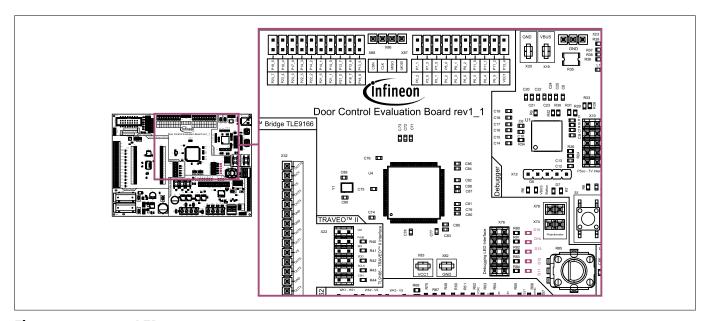


Figure 30 LEDs

3 In detail: Infineon door control evaluation board

Table 14 **LEDs**

Designator	Description	
D11	Can be connected to GPIO P12_4 (pin 49) with jumper X76, as described in Jumpers	
D12	Can be connected to GPIO P12_3 (pin 48) with jumper X76, as described in Jumpers	
D13	Can be connected to GPIO P12_2 (pin 47) with jumper X76, as described in Jumpers	
D14	Can be connected to GPIO P12_1 (pin 46) with jumper X76, as described in Jumpers	
D15	Can be connected to GPIO P12_0 (pin 45) with jumper X76, as described in Jumpers	

3.2.3.5 **Potentiometer**

A potentiometer is available on the board. It is supplied via $V_{\rm CC1}$ over jumper X78 . The output of the potentiometer is connected to the port P6_1 (pin 19) of the TRAVEO^M II over jumper X74.

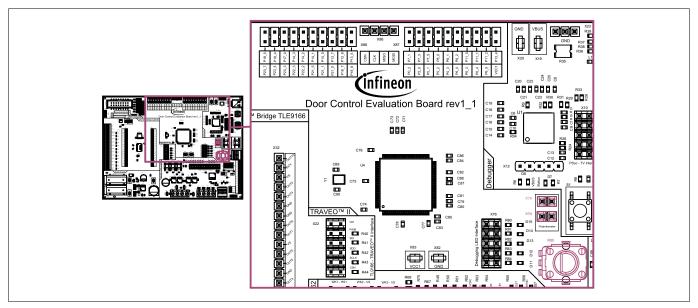


Figure 31 Placement and pinout of the potentiometer

Traveo[™] pin headers 3.2.3.6

Additional unused pins of the TRAVEO™ II are routed to X88, X86 and X87 pin headers for the easy access of measurement.

3 In detail: Infineon door control evaluation board

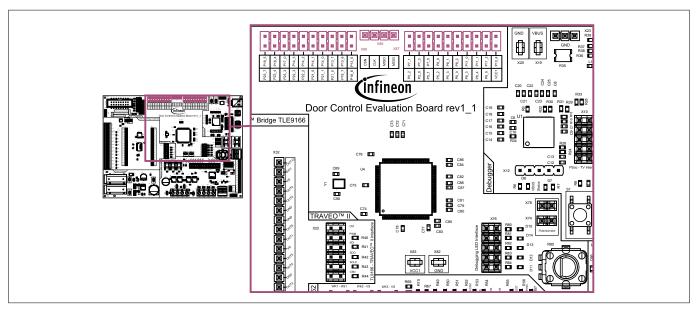


Figure 32 Signal pin headers

3.2.4 Power supply

3.2.4.1 Supply connectors

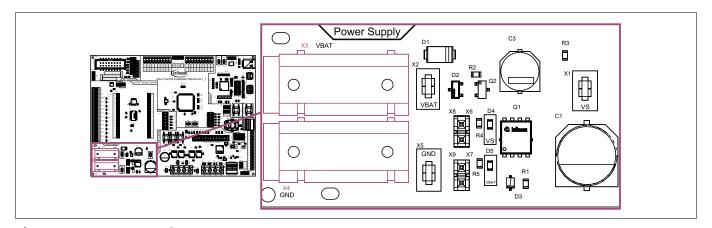


Figure 33 Supply connector

Table 15 Connectors

Functionality	Designator	Description
V _{BAT} , GND	X3, X4	Banana jacks for power supply (red) and ground (black)

3 In detail: Infineon door control evaluation board

3.2.4.2 Jumpers

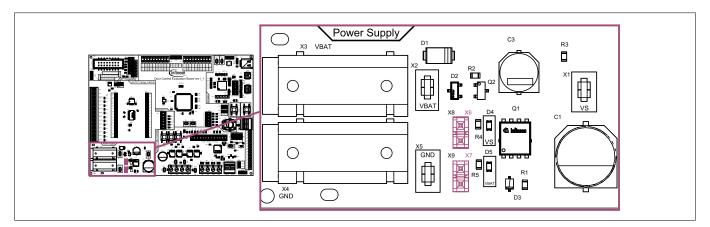


Figure 34 Jumpers

Table 16 Jumpers

Designator	Description	
X6	Set jumper to connect supply to $V_{\rm S}$ indication LED. Jumper is set by default	
X7	Set jumper to connect supply to $V_{\rm BAT}$ indication LED. Jumper is set by default	

3.2.4.3 Test points

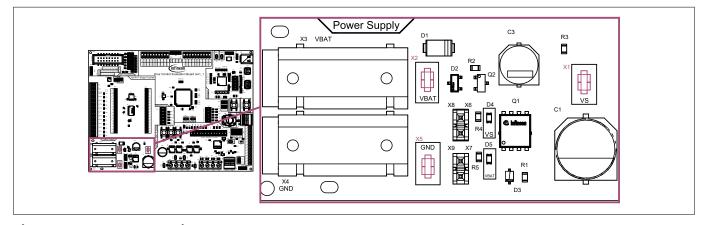


Figure 35 Test points

Table 17 Test points

Signal	Designator	Description
V_{BAT}	X2	Test point to measure supply voltage
$\overline{V_{S}}$	X1	Test point to measure supply voltage of MOTIX™ Bridge TLE9166EQ and MOTIX™ SBC TLE9562 after the reverse polarity protection
GND	X5	Test points to connect to ground

3 In detail: Infineon door control evaluation board

3.2.4.4 LEDs

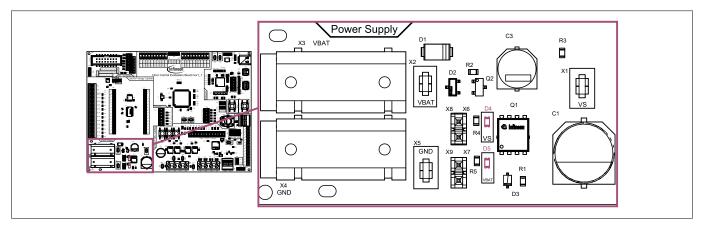


Figure 36 LEDs

Table 18 LEDs

Designator	Description	
D4	Indicates that supply voltage, V_S is active for the board after reverse recovery protection	
D5	Indicates that there is a positive voltage at $V_{\rm BAT}$	

3.2.5 uIO-stick

3.2.5.1 ulO connector

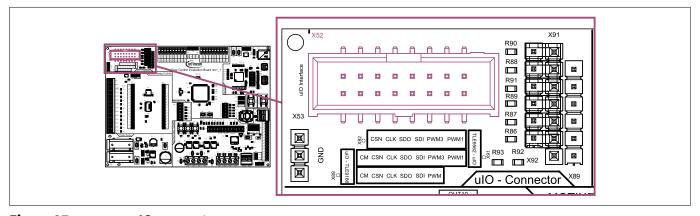


Figure 37 uIO connector

Table 19 Connectors

Functionality	Designator	Description
uIO	X52	Connector for uIO stick, direct interface of MOTIX [™] bridge TLE9166EQ and MOTIX [™] SBC TLE9562 to the PC configuration tool. For more information, refer to uIO-stick Interface

3 In detail: Infineon door control evaluation board

3.2.5.2 **Jumper**

MOTIX™ Bridge TLE9166EQ and MOTIX™ SBC TLE9562 can be configured using available configuration wizard over uIO-stick interface without involving TRAVEO™ II microcontroller. Use the following available jumpers to connect the uIO-stick to either MOTIX™ SBC TLE9562 or MOTIX™ bridge TLE9166.

To use this interface for MOTIX™ bridge TLE9166EQ, first disconnect the device from the microcontroller by removing X36 jumpers. Now, connect jumper between X89 and X91 pin header. Information on the different signals on the pin header is shown on the picture below or on the board. Use the connector X52 to connect the board to the PC using the uIO-stick.

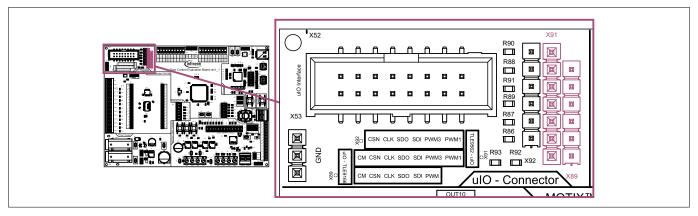


Figure 38 Using the uIO-Stick connector to configure MOTIX™ devices over the configuration wizard

To use this interface for the MOTIX™ SBC TLE9562 device, first disconnect device from microcontroller by removing X22 jumpers. Then, connect the jumper between X91 and X92 pin headers. The information of the different signals on the pin header is given on the picture below or on the board. Use the connector X52 to connect board to the PC over the uIO-stick.

3.2.5.3 **Test point**

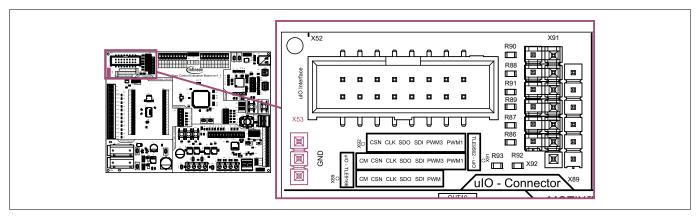


Figure 39 **Test points**

Table 20 **Test points**

Signal	Designator	Description
GND	X53	Test points to connect to ground

3 In detail: Infineon door control evaluation board

3.2.6 Debugger

3.2.6.1 **Connector**

The on-board debug circuit (CY8C5868LTI-LP039) connects the PC with the TRAVEO™ II using a USB-C connector. The debug circuit can be used for flashing and debugging embedded software, as in the application software examples. When connected to a PC, it connects as KitProg3 USB-UART, provides an SWD interface and a virtual COM port. KitProg3 supports CMSIS-DAP Bulk and HID mode, as well as arm DAPLink mode, the mode can be switched with push button S2, push to button will cycle through the different modes

The board can be used with other SWD linkers using the SWD connector. For that, the jumper bridges X10 must be removed to disconnect the on-board debug circuit from the TRAVEO™ II.

The tracebox connector can only be used while the on-board circuit is disconnected.

If the KitProg3 is not recognized by the PC, click **MODE** to switch the debug circuit to CMSIS-DAP mode. Tip:

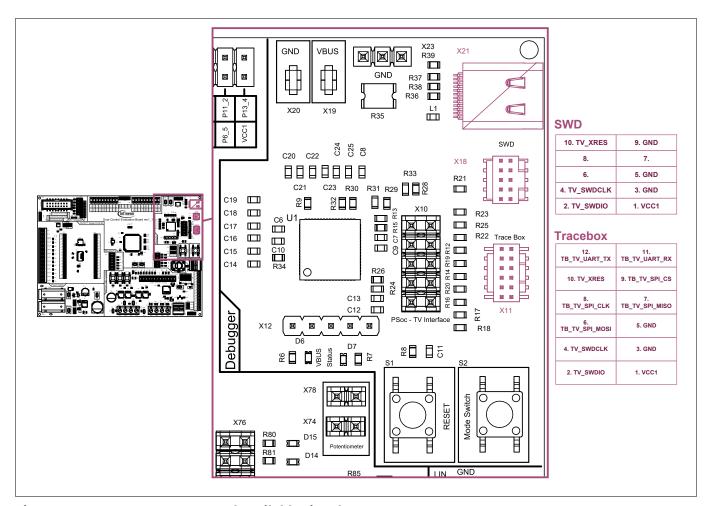


Figure 40 **Connectors and available signals**

Table 21 **Connectors**

Functionality	Designator	Description
SWD	X18	Debugging interface to connect external debugger.
Tracebox	X11	Connector for the tracebox.

(table continues...)

3 In detail: Infineon door control evaluation board

Table 21 (continued) Connectors

Functionality	Designator	Description
USB	X21	USB-C connector to connect the on-board debugger to a PC for debugging and virtual COM port

The table below provides the information of the TRAVEO™ II microcontroller pinout for signals connected to SWD, tracebox, and PSoC™ connectors.

TRAVEO™ II microcontroller pinout for debuggers interface Table 22

Signal	TRAVEO™ II Port (pin)
TV_XRES	XRES_L_N (Pin 85)
TV_SWDCLK	P23_5 (pin 97)
TV_SWDIO	P23_6 (pin 98)
TV_UART_TX	P17_1 (pin 65)
TV_UART_RX	P17_2 (pin 66)
TB_TV_UART_TX	P22_0 (pin 91)
TB_TV_UART_RX	P22_1 (pin 92)
TB_TV_SPI_MOSI (X86 - MOSI)	P19_0 (pin 77)
TB_TV_SPI_MISO (X86 - MISO)	P19_1 (pin 78)
TB_TV_SPI_CLK (X86 - CLK)	P19_2 (pin 79)
TB_TV_SPI_CS (X86 - CSN)	P19_3 (pin 80)

3.2.6.2 **Jumpers**

Use these jumpers to connect PSoC[™] based on-board debugger to flash Traveo[™]II microcontroler.

If you are using an external debugger with the SWD connector, these jumpers must be removed Note:

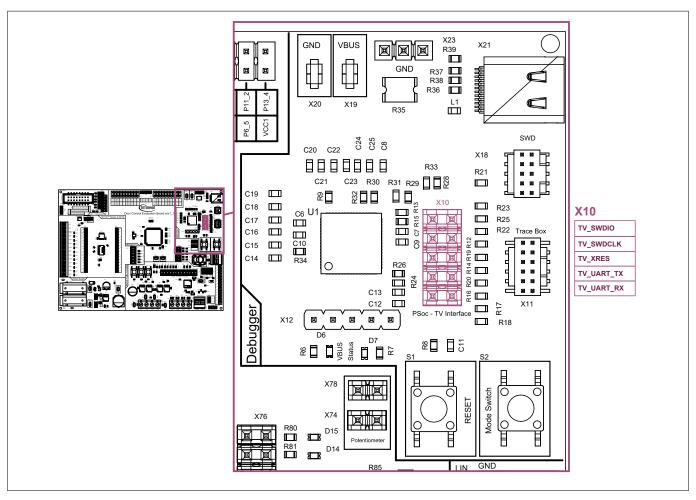


Figure 41 Jumpers

Table 23 Jumpers

Designator	Signal	Description
X10	TV_SWDIO	Set jumper to connect PSoC™ signal SWDIO to TRAVEO™ II microcontroller port P23_6 (pin 98). Jumper is set by default.
X10	TV_SWDCLK	Set jumper to connect PSoC™ signal SWDCLK to TRAVEO™ II microcontroller port P23_5 (pin 97). Jumper is set by default.
X10	TV_XRES	Set jumper to connect PSoC™ signal XRES to TRAVEO™ II microcontroller port XRES_L_N (Pin 85). Jumper is set by default.
X10	TV_UART_TX	Set jumper to connect PSoC™ signal UART_TX to TRAVEO™ II microcontroller port P17_1 (pin 65). Jumper is set by default.
X10	TV_UART_RX	Set jumper to connect PSoC™ signal UART_RX to TRAVEO™ II microcontroller port P17_2 (pin 66). Jumper is set by default.

3 In detail: Infineon door control evaluation board

Test point 3.2.6.3

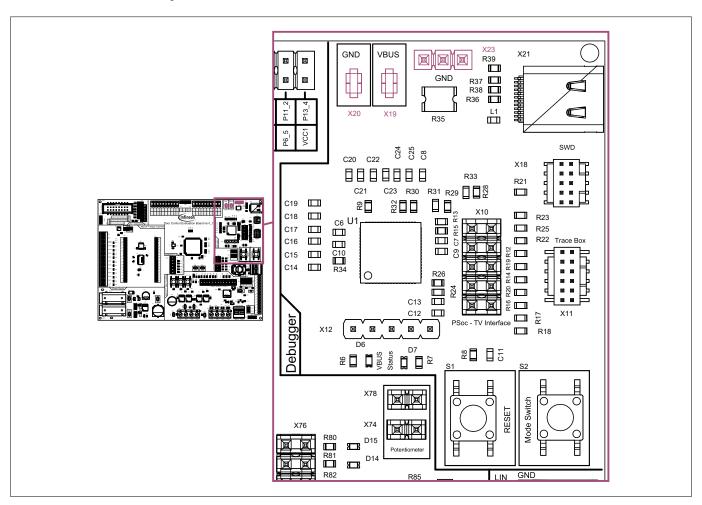


Figure 42 **Test points**

Table 24 **Test points**

Signal	Designator	Description
$\overline{V_{BUS}}$	X19	Test point to measure supply voltage of on-board debugger circuit
GND	X20, X23	Test points to connect to ground

Signal pin headers 3.2.6.4

Different measurement signals of PSoC[™] are routed to X12 pin headers for the easy access of measurement.

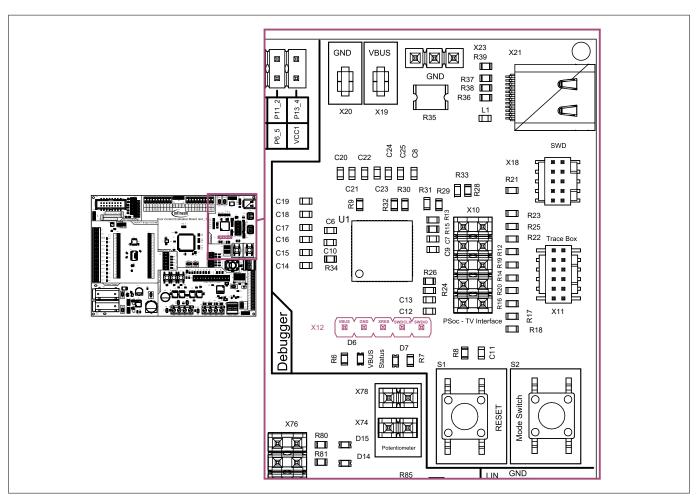


Figure 43 Signal pin headers

3 In detail: Infineon door control evaluation board

3.2.6.5 Pushbutton

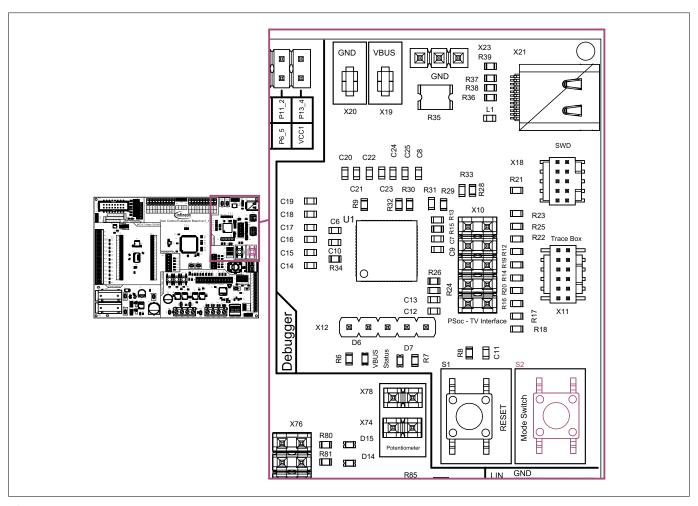


Figure 44 Push button

Table 25 Push buttons

Designator	Description
S2	Mode switch: Push button to switch the debug circuit to CMSIS-DAP mode

3 In detail: Infineon door control evaluation board

3.2.6.6 LEDs

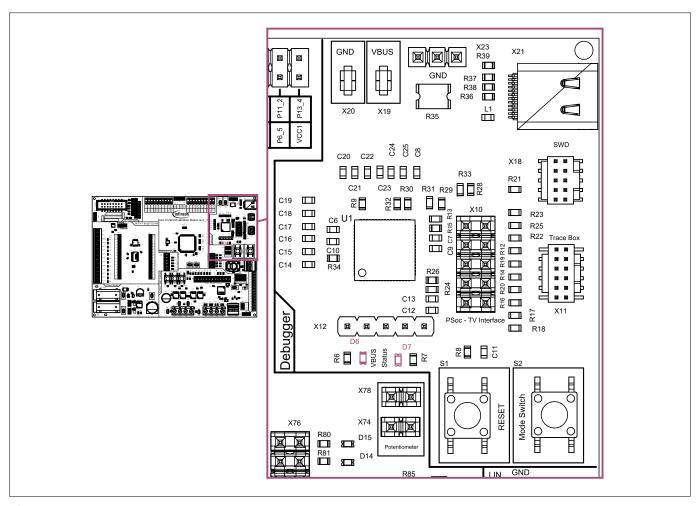


Figure 45 LEDs

Table 26 LEDs

Designator	Description
D6	Indicates the supply of the on-board debugger circuit, $V_{\rm BUS}$ is active
D7	Status of the KitProg3

3.2.6.7 Assembly option

Values for these optional additional placements must be determined depending on the application. The typical components and values can be found in the BOM in Chapter 3.3.3.

3 In detail: Infineon door control evaluation board

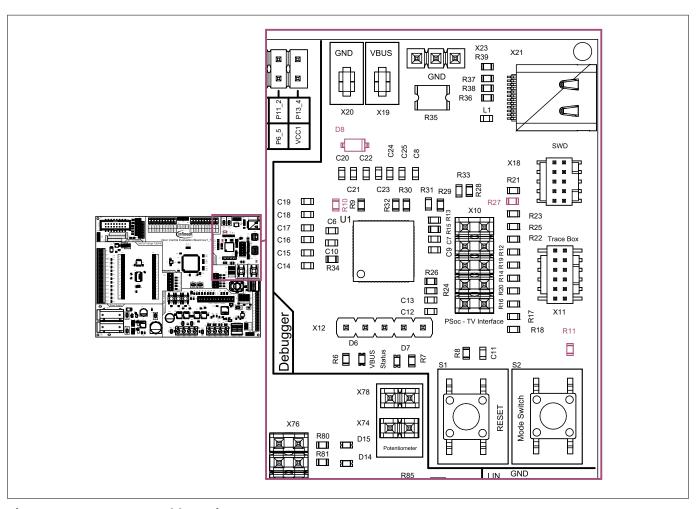


Figure 46 Assembly options

Table 27 Additional placements

Designator	Description	
D8	Diode to supply debugger circuit from V_{CC1}	
R10	Resistor to pull down SWDIO to GND	
R11	Resistor to pull up TRAVEO™ II XRES to V _{CC1}	
R27	Resistor to pull down P5LP_SIO_VREF signal to ground	

3 In detail: Infineon door control evaluation board

3.3 **Design Files**

Schematics Door control evaluation board 3.3.1

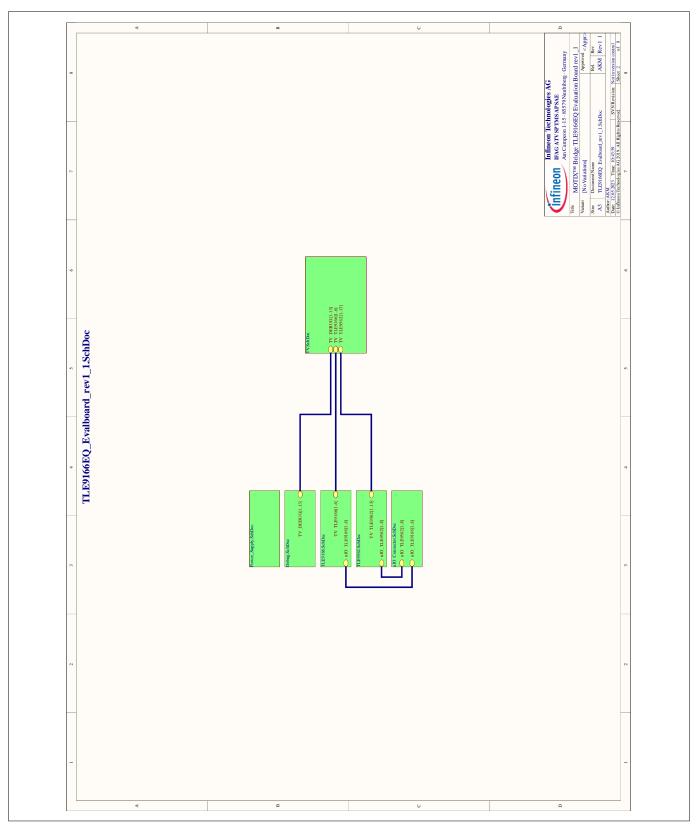


Figure 47 Door control evaluation board, sheet 2

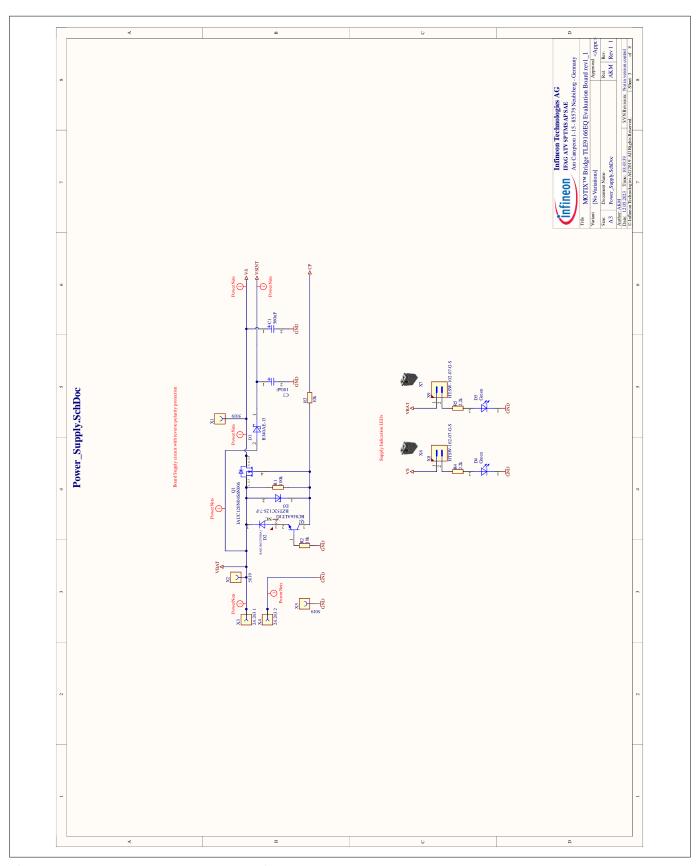


Figure 48 Door control evaluation board, sheet 3

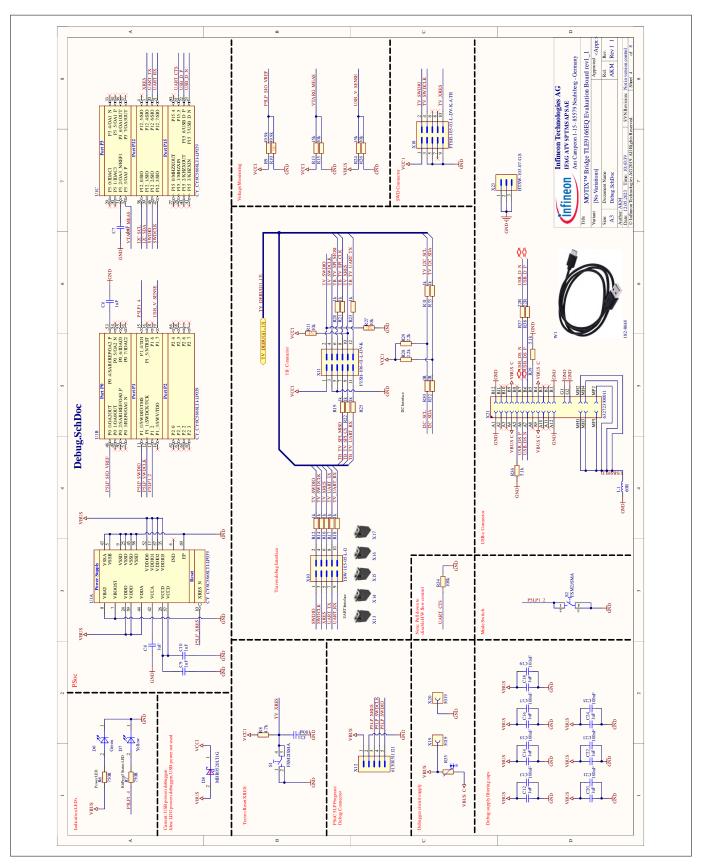


Figure 49 Door control evaluation board, sheet 4

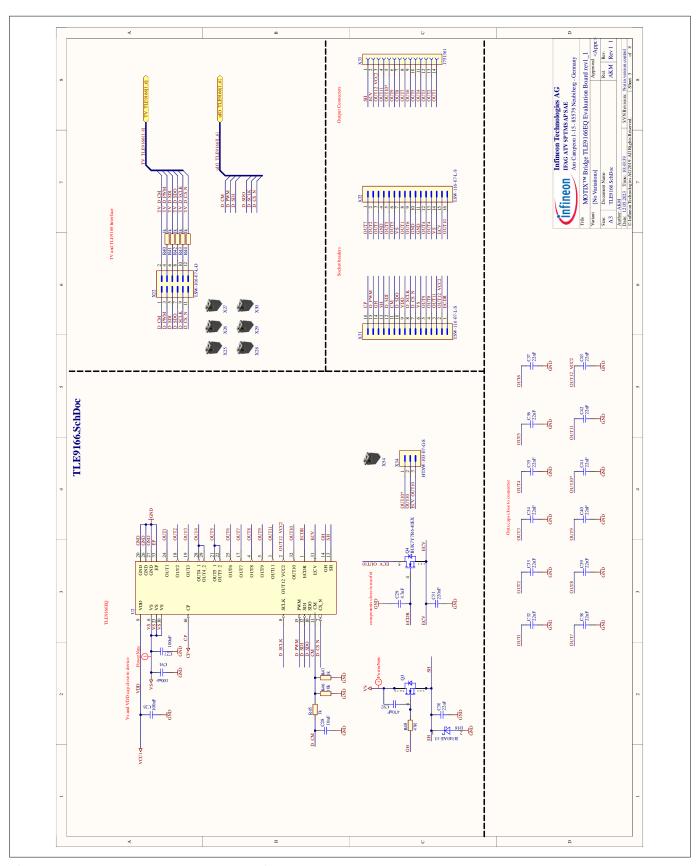


Figure 50 Door control evaluation board, sheet 5

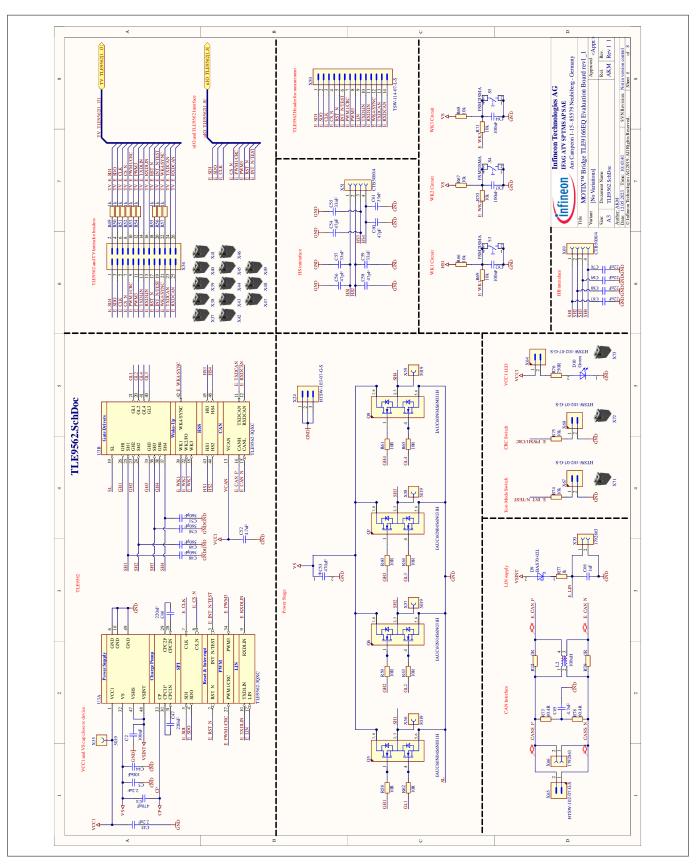


Figure 51 Door control evaluation board, sheet 6

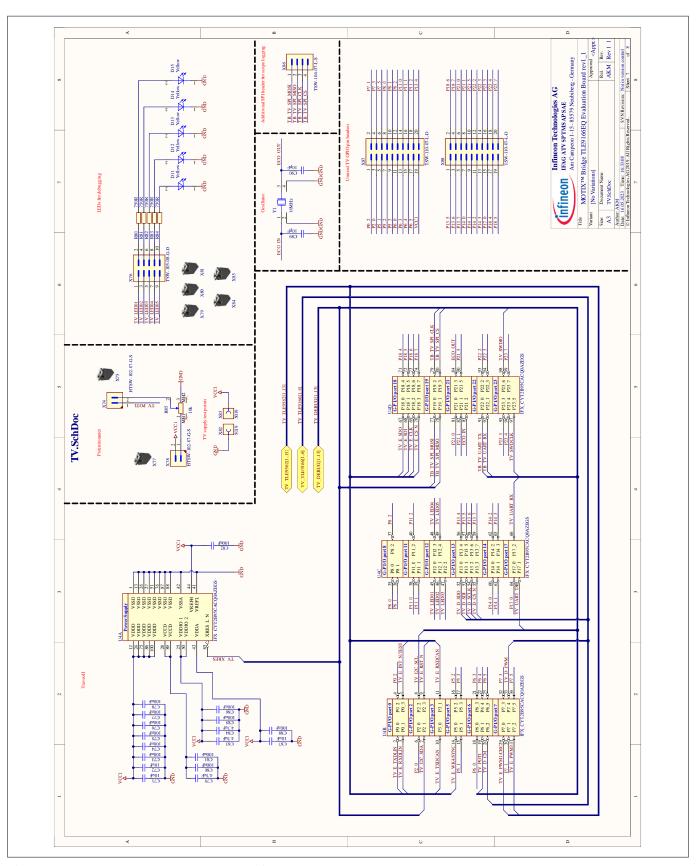


Figure 52 Door control evaluation board, sheet 7

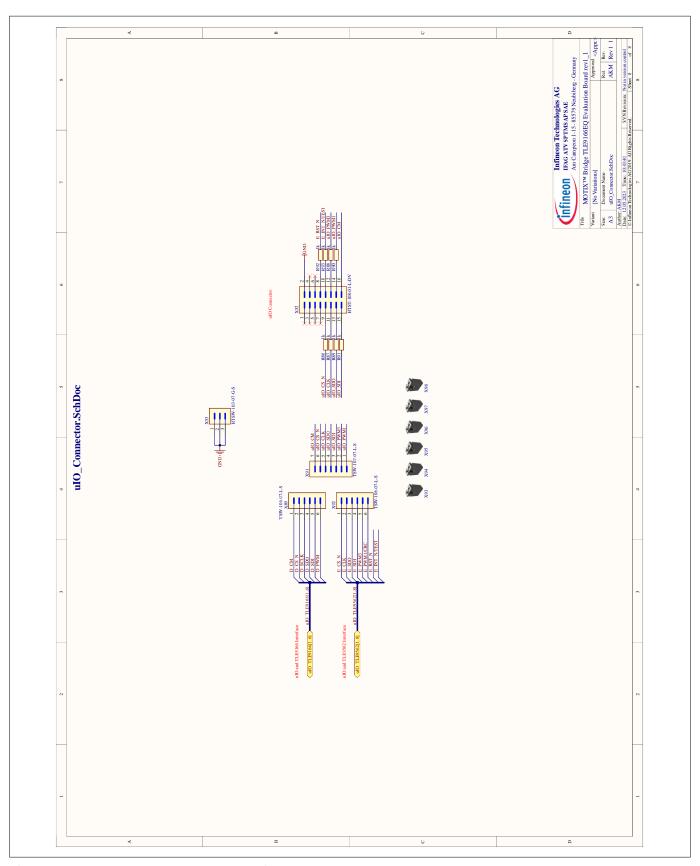


Figure 53 Door control evaluation board, sheet 8

3 In detail: Infineon door control evaluation board

3.3.2 Layout Door control evaluation board

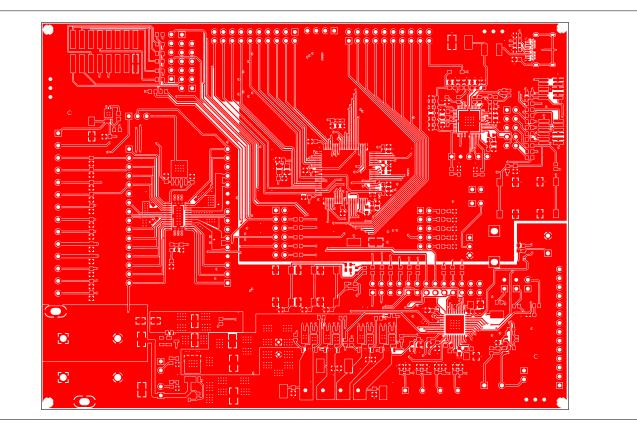


Figure 54 Door control evaluation board layer 1 (top layer, signal)

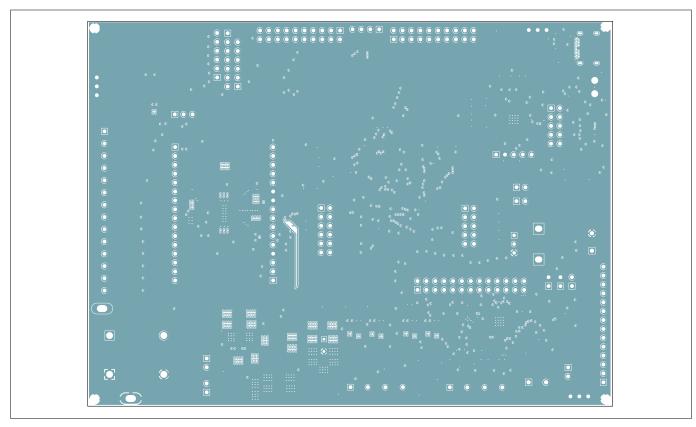


Figure 55 Door control evaluation board layer 2 (middle layer, GND)

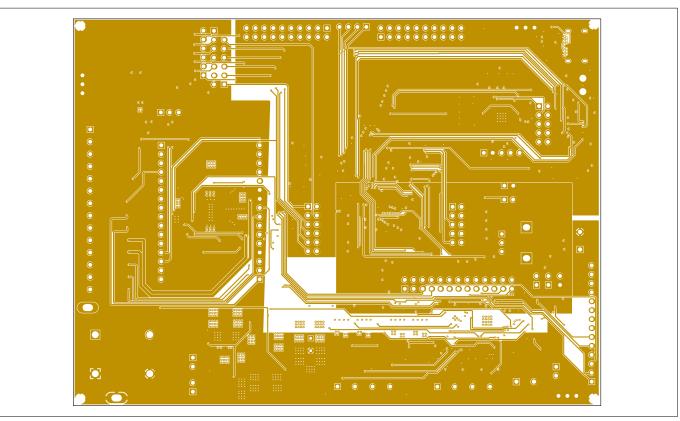


Figure 56 Door control evaluation board layer 3 (middle layer, signal)

Figure 57 Door control evaluation board layer 4 (bottom layer, power)

3 In detail: Infineon door control evaluation board

3.3.3 Bill of material Door control evaluation board

Mostly automotive-qualified components are used for the Door control evaluation board. The complete bill of material (BOM) is shown below and includes non-mounted components.

Note:

Due to a shortage of components, some of the components listed might differ slightly from those mounted.

BOM Door control evaluation board Table 28

Designator	Description	Quantity	Manufacturer order number	Manufacturer
C1	CAP/ELCO/560uF/35V/20%/-/-55°C to 105°C/10.30mm L X 10.30mm W X 10.50mm H/SMD/-	1	EEEFT1V561AP	Panasonic
C2, C11, C13, C15, C17, C19, C21, C23, C25, C26, C27, C44, C62, C63, C64, C73, C74, C75, C76, C77, C78, C80, C81, C82, C85, C86, C88, C91	CAP/CERA/100nF/50V/10% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	28	06035C104K4Z 2A	AVX
C3	CAP/ELCO/100uF/50V/20% / Aluminiumelectrolytic / -55°C to 105°C/6.60mm L X 6.60mm W X 8.00mm H/SMD / -	1	EEEFTH101XAP	Panasonic
C4	CAP/CERA/470nF/50V/10% / X7R (EIA) / -55°C to 125°C/0603/SMD / -	1	CGA3E3X7R1H4 74K080AE	TDK Corporation
C5, C45	CAP/CERA/2.2uF/50V/10% / X7R (EIA) / -55°C to 125°C/1206/SMD / -	2	CGA5L3X7R1H2 25K160AB	TDK Corporation
C6, C7, C8, C9, C10, C12, C14, C16, C18, C20, C22, C24	CAP/CERA/1uF/25V/10% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	12	GCM188R71E10 5KA64	MuRata
C28	CAP/CERA/10nF/50V/10% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	1	06035C103K4Z 2A	AVX
C29, C65	CAP/CERA/4.7nF/50V/5% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	2	GCM188R71H4 72JA37	MuRata
C30, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C67, C68, C69, C70	CAP/CERA/22nF/25V/5% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	17	GCM188R71E22 3JA37	MuRata
C31, C46, C47	CAP/CERA/220nF/50V/10% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	3	GCM188R71H2 24KA64	MuRata
C48, C49, C50, C51	CAP/CERA/560pF/50V/5% / X8G (Murata) / -55°C to 150°C/0603(1608) / SMD / -	4	GCM1885G1H5 61JA16	MuRata
C52, C79, C83, C84	CAP/CERA/4.7uF/25V/10% / X6S (EIA) / -55°C to 105°C/0603(1608) / SMD / -	4	GRT188C81E47 5KE13D	MuRata

3 In detail: Infineon door control evaluation board

Table 28 (continued) BOM Door control evaluation board

Designator	Description	Quantity	Manufacturer order number	Manufacturer
C53	CAP/FILM/470uF/25V/20% / - / -55°C to 125°C/3.50mm C X 0.60mm W 8.50mm Dia X 13.50mm H/THT / -	1	477AVG025MFB J	Cornell Dubilier
C54, C56, C58, C60	CAP/CERA/47pF/50V/1% / X8G (Murata) / -55°C to 150°C/0603(1608) / SMD / -	4	GCM1885G1H4 70FA16	MuRata
C55, C57, C59, C61	CAP/CERA/33nF/50V/10% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	4	GCM188R71H3 33KA55	MuRata
C66	CAP/CERA/1nF/50V/10% / X7R (EIA) / -55°C to 125°C/0603(1608) / SMD / -	1	GRM188R71H1 02KA01	MuRata
C71, C72, C87	CAP/CERA/10uF/10V/10% / X7T (EIA) / -55°C to 125°C/0603(1608) / SMD / -	3	ZRB18AD71A10 6KE01L	MuRata
C89, C90	CAP/CERA/10pF/50V/5% / C0G (EIA) / NP0 / -55°C to 125°C/0603(1608) / SMD / -	2	GCM1885C1H1 00JA16	MuRata
C92	CAP/CERA/470nF/50V/10% / X5R (EIA) / -55°C to 85°C/0603(1608) / SMD / -	1	GRM188R61H4 74KA12	MuRata
D1, D16	3.0A Surface Mount Schottky Barrier Rectifier	2	B340AE-13	Diodes Incorporated
D2	Silicon Switching Diode	1	BAS21E6327HT SA1	Infineon Technologies
D3	Surface Mount Zener Diode	1	BZT52C12S-7-F	Diodes Incorporated
D4, D5, D6, D10	EXCELED Series Chip LED, Green, 560nm	4	SML- D12P8WT86C	ROHM Semiconductor s
D7, D11, D12, D13, D14, D15	Chip LED, 589nm, Yellow, Electronic Equipment Applications	6	LY Q396- P1Q2-36	OSRAM Opto Semiconductor s
D8	Surface Mount Schottky Power Rectifier,0.5A/20V	1	MBR0520LT1G	ON Semiconductor
D9	Silicon Schottky Diode	1	BAS70-02L	Infineon Technologies
L1	IND/FERR/60R/1A / - / -55°C to 125°C/ 100mR/0603(1608) / Inductor,Chip; 1.60mm L X 0.80mm W X 0.95mm H/SMD / -	1	BLM18PG600S N1D	MuRata

(table continues...)

3 In detail: Infineon door control evaluation board

Table 28 (continued) BOM Door control evaluation board

Designator	Description	Quantity	Manufacturer order number	Manufacturer
L2	IND/STD/100uH/150mA/50% / -55°C to 150°C/1.5R/1210(3225) / Filter SMD, 4-Leads, Molded Body 3.20mm L X 2.50mm W X 2.5mm H/SMD / -	1	ACT1210-101-2 P-TL00	TDK Corporation
Q1	OptiMOS™ - power MOSFET for automotive applications, N-channel - Enhancement mode - Normal Level	1	IAUC120N04S6 N006	Infineon Technologies
Q2	General Purpose Transistors NPN Silicon	1	BC846ALT1G	ON Semiconductor
Q3	OptiMOS-5 N-Channel Enhancement Mode Power-Transistor, VDS 40V	1	IPZ40N04S5L-7 R4	Infineon Technologies
Q4	Standard level N-channel MOSFET,	1	BUK7Y7R6-40E X	Nexperia
Q5, Q6, Q7, Q8		4	IAUC60N04S6N 031H	Infineon Technologies
R1, R34	RES/STD/100k/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608) / SMD / -	2	CRCW0603100K FK	Vishay
R2, R3, R11, R27, R46, R66, R67, R68, R69, R70, R71, R74, R75	RES/STD/10k/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608) / SMD / -	13	CRCW060310K0 FKEA	Vishay
R4, R5, R28, R29	RES/STD/2.2k/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608) / SMD / -	4	CRCW06032K20 FK	Vishay
R6, R7, R76, R80, R81, R82, R83, R84	RES/STD/750R/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603/SMD / -	8	CRCW0603750 RFK	Vishay
R8	RES/STD/4.7k/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608) / SMD / -	1	CRCW06034K70 FK	Vishay
R9, R10	RES/STD/49.9k/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608) / SMD / -	2	CRCW060349K9 FK	Vishay
R12, R14, R16, R17, R18, R19, R20, R21, R22, R23, R25, R31, R33, R40, R41, R42, R43, R44, R45, R47, R49, R50, R51, R52, R53, R54, R55, R56, R57, R77, R86, R87, R88, R89, R90, R91, R92, R93	RES/STD/1k/100mW/1% / 100ppm/K / -55°C to 155°C/0603(1608) / SMD / -	38	RC0603FR-071K L	Yageo

(table continues...)

3 In detail: Infineon door control evaluation board

Table 28 (continued) BOM Door control evaluation board

Designator	Description	Quantity	Manufacturer order number	Manufacturer
R13, R24	RES/STD/15k/100mW/5% / 100ppm/K / -55°C to 155°C/ 0603(1608) / SMD / -	2	RC0603JR-0715 KL	Yageo
R15, R26	RES/STD/30k/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608) / SMD / -	2	CRCW060330K0 FK	Vishay
R30, R32, R72, R79	RES/STD/0R / - / 0% / - / -55°C to 155°C/0603(1608) / SMD / -	4	CRCW06030000 Z0EA	Vishay
R35	RES/PTC / - / 800mW / - / - / - / 1812/SMD / -	1	MF-MSMF030-2	Bourns
R36, R39	RES/STD/5.1k/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608) /SMD/-	2	CRCW06035K10 FK	Vishay
R37, R38	RES/STD/22R/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608)/SMD/ -	2	CRCW060322R 0FK	Vishay
R48	RES/STD/47R/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608)/SMD/ -	1	RC0603FR-0747 RL	Yageo
R58, R59, R60, R61, R62, R63, R64, R65	RES/STD/10R/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608)/SMD/ -	8	CRCW060310R 0FKEA	Vishay
R73, R78	RES/STD/60.4R/100mW/1% / 100ppm/K / -55°C to 155°C/ 0603(1608)/SMD / -	2	CRCW060360R 4FK	Vishay
R85	RES/VAR/10k/50mW/20% / - / -10°C to 70°C/THT, 2.5 mm pitch, 5 Pins, 11.80 mm L X 11.40 mm W X 15 mm H body/THT / -	1	RK09K1130A6S	ALPS
S1, S2, S3, S4, S5	Micro Miniature Push button Switch	5	FSM2JSMA	Tyco Electronics
U1	Programmable System-on-Chip (PSoC)	1	CY8C5868LTI- LP039	Cypress Semiconductor
U2	MOTIX [™] bridge	1		
U3	Bridge SBC Family, PLGM	1	TLE9562-3QXC	Infineon Technologies
U4	Family of TRAVEO™ T2G microcontrollers targeted at automotive systems	1	CYT2B95CACQ0 AZEGS	Infineon Technologies

(table continues...)

(continued) BOM Door control evaluation board Table 28

Designator	Description	Quantity	Manufacturer order number	Manufacture
W1	Test Point, Compact, Surface Mount, Finish- Silver Plate	1	182-8848	RS Pro
X1, X2, X5, X19, X20, X35, X56, X57, X58, X59, X82, X83	Banana Test Connector, 4 mm, Socket, PCB Mount, 24 A, 60 VDC, Silver Plated Contacts, Red	12	5019	Keystone Electronics Corp.
Х3	Banana Test Connector, 4 mm, Socket, PCB Mount, 24 A, 60 VDC, Silver Plated Contacts, Black	1	24.243.1	Multicomp
X4	Jumper, 1x2-Positions, Pitch 2,54mm, Body 5, 08x2, 54mm, black, Au, with handle	1	24.243.2	Multicomp
X6, X7, X13, X14, X15, X16, X17, X25, X26, X27, X28, X29, X30, X37, X38, X39, X40, X41, X42, X43, X44, X45, X46, X47, X48, X49, X54, X71, X72, X73, X75, X77, X79, X80, X81, X84, X85, X93, X94, X95, X96, X97, X98	Through hole .025 SQ Post Header, 2.54mm pitch, 2 pin, vertical, single row	43	SNT-100-BK-G- H	Samtec
X8, X9, X64, X65, X67, X68, X74, X78	Through hole .025 SQ Post Header, 2.54mm pitch, 10 pin, vertical, double row	8	HTSW-102-07- G-S	Samtec
X10	Connector Header Surface Mount 12 position 0.050 (1.27mm)	1	TSW-105-05-L- D	Samtec
X11	WR-PHD 2.54 mm Pitch, 5Pins, THT Pin Header	1	FTSH-106-01-L- DV-K	Samtec
X12	SMT Micro Header, 1.27mm pitch, 10 pin, Vertical, Double Row, Keying Shroud with Alignment pin, DAP	1	61300511121	Wurth Elektronik
X18	WR-COM USB 3.1 Type C Horizontal, 20V Working Voltage and 5A Rated Current	1	FTSH-105-01-L- DV-K-A-TR	Samtec
X21	Through hole .025 SQ Post Header, 2.54mm pitch, 12 pin, vertical, double row	1	632723300011	Wurth Elektronik
X22	Through hole .025 SQ Post Header, 2.54mm pitch, 3 pin, vertical, single row	1	TSW-106-07-L- D	Samtec
X23, X24, X34, X53	Through hole .025 SQ Post Header, 2.54mm pitch, 16 pin, vertical, single row	4	HTSW-103-07- G-S	Samtec

Table 28 (continued) BOM Door control evaluation board

Designator	Description	Quantity	Manufacturer order number	Manufacturer
X31, X32	PCB Terminal Block, Nominal Current 13.5 A, Nominal Voltage 200V, 3.5mm Pitch, 14 Pins	2	TSW-116-07-L-S	Samtec
X33	Through hole .025 SQ Post Header, 2.54mm pitch, 26 pin, vertical, double row	1	1751361	Phoenix Contact
X36	Through hole .025 SQ Post Header, 2.54mm pitch, 14 pin, vertical, single row	1	TSW-113-07-L- D	Samtec
X50	Terminal Block, 4 Pole, 5mm Pitch, Low Profile Screw Terminal	1	TSW-114-07-L-S	Samtec
X51, X69	SMT, .025 Shrouded SQ POST IDC Headers , 2.54mm pitch, 16-pin Vertical, Double row	2	CTB5000/4	Camden Boss
X52	PCB terminal block, nominal current: 16 A, rated voltage: 400 V, 2 Positions	1	HTST-108-01-L- DV	Samtec
X66, X70	Through hole .025 SQ Post Header, 2.54mm pitch, 10 pin, vertical, double row	2	1792863	Phoenix Contact
X76	Through hole .025 SQ Post Header, 2.54mm pitch, 4 pin, vertical, single row	1	TSW-105-08-G- D	Samtec
X86	Through hole .025 SQ Post Header, 2.54mm pitch, 20 pin, vertical, double row	1	TSW-104-07-L-S	Samtec
X87, X88	Through hole .025 SQ Post Header, 2.54mm pitch, 6 pin, vertical, single row	2	TSW-110-07-L- D	Samtec
X89, X92	Through hole .025 SQ Post Header, 2.54mm pitch, 7 pin, vertical, single row	2	TSW-106-07-L-S	Samtec
X91	Surface Mount Compact Crystal Unit	1	TSW-107-07-L-S	Samtec
Y1	CAP/ELCO/560uF/35V/20%/-/-55°C to 105°C/10.30mm L X 10.30mm W X 10.50mm H/SMD/-	1	NX3225GA-16.0 00M-STD- CRG-2	Nihon Dempa Kogyo

4 Additional information

Additional information 4

- IAR Embedded Workbench for ARM: https://www.iar.com/products/architectures/arm/iar-embeddedworkbench-for-arm/
- Infineon developer center: https://softwaretools.infineon.com/welcome
- Infineon MOTIX™ Bridge TLE9166EQ datasheet. Refer to product page: https://www.infineon.com/cms/de/ product/power/motor-control-ics/brushed-dc-motor-control-ics/multi-half-bridge-ics/tle9166eq/
- Infineon MOTIX™ TLE9562-3QX datasheet: https://www.infineon.com/dgdl/Infineon-TLE9562-3QX-DataSheet-v01_00-EN.pdf?fileId=5546d4627883d7e00178ca35b1603873
- Infineon PSoC® 5LP: CY8C58LP Family Datasheet: https://www.infineon.com/dgdl/Infineon-PSOC(R)_5LP_CY8C52LP_FAMILY_DATASHEET_PROGRAMMABLE_SYSTEM-ON-CHIP_(PSOC(R))-DataSheetv16_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ec56e153b1a
- Infineon TRAVEO™ T2G 32-bit Automotive MCU: https://www.infineon.com/dgdl/Infineon-TRAVEO_T2G_CYT2B9_Series-DataSheet-v10_00-EN.pdf?fileId=5546d462749a7c2d01749d90a2e34dbc

Glossary

Glossary

API

application programming interface (API)

A set of defined rules that enables various software components to communicate with each other.

CAN

controller area network (CAN)

GPIO

general purpose input output (GPIO)

GUI

graphical user interface (GUI)

An interface that enables users to interact with electronic devices through icons and visual indicators.

IC

integrated circuit (IC)

A miniature electronic circuit built on the surface of a thin substrate of a semiconductor material.

LED

light-emitting diode (LED)

A semiconductor circuit that emits light when activated.

LIN

local interconnect network (LIN)

PCB

printed circuit board (PCB)

A board that mechanically supports and electrically connects electronic components using conductive tracks, pads, and other features etched from copper sheets laminated onto a non-conductive substrate.

PWM

pulse-width modulation (PWM)

A technique to encode an analog value into the duty cycle of a pulsing signal with arbitrary amplitude.

SPI

serial peripheral interface (SPI)

A synchronous serial communication interface specification used for inter-chip communication, primarily in embedded systems.

SWD

serial wire debug (SWD)

A communication interface and protocol used for debugging and programming embedded systems, particularly microcontrollers and other integrated circuits.

5 Abbreviations

Abbreviations 5

Table 29 **Abbreviations**

Abbreviation	Meaning		
A	Ampere		
BDC	Brushed direct current		
ВОМ	Bill of material		
CM	Current measurement		
CMSIS	Common microcontroller software interface standard		
СОМ	Communication		
DAP	Debug access port		
EC	Electrochromatic		
EWARM	Embedded workbench ARM		
GH	Gate-high		
GND	Ground		
НВ	Half bridge		
HS	High-side		
LS	Low-side		
PC	Personal computer		
SDL	Sample driver library		
ТВ	Tracebox		
UART	Universal asynchronous receiver transmitter		
ulO	Universal input output		
USB-C	Universal serial bus type-c		
V	Voltage		
$\overline{V_{CC}}$	Voltage common collector		
$\overline{V_{S}}$	Supply voltage		
$\overline{V_{BAT}}$	Battery voltage		
WK	Wake		

Revision history

Revision history

Document version	Date of release	Description of changes	
Rev. 2.00	2024-10-15	Document updated; content restructured; chapters on system offerincluded	
		Document renamed from "Door control evaluation board user guide"	
Rev. 1.10	2024-03-01	Chapters Implementation of an Device Driver into IAR Embedded Workbench and Application software added	
		Typos corrected	
Rev. 1.00	2023-08-11	Initial release	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-10-15 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-awz1680601481767

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com)

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

ISLUSBI2CKITIZ ISL2109012EV1Z ISL8002AEVAL1Z ISL91108IIA-EVZ DCD48AP480T320A50 AP62250WU-EVM AP61102Z6EVM SAMPLEBOXILD8150TOBO1 AP61100Z6-EVM AP62300Z6-EVM Si8285_86v2-KIT EVALM7HVIGBTPFCINV4TOBO1
REFSHA35IMD111TSYSTOBO1 TDINV3000W50B-KIT NCP1681CCM1KWGEVB SI83401BAA-KIT SI83402BAA-KIT SI83411BAAKIT SI83412BAA-KIT MIKROE-5294 MIKROE-5374 EVB81332 MIKROE-5019 BTG70902EPLDAUGHBRDTOBO1 TAB-48017
APEK89307KET-01-T MIKROE-5510 64010 EVAL6EDL04I065PRTOBO1 EVB81340-100W RTKA489EPRDK0010BU DC3107A
EVL4248-QV-00A EVQ4371-V-1000-00A EVL28167-B-Q-00A EV6631B-L-00A EVL1608C-TL-00A APEK5932GES-01-T-01
R1810Z015A-EV BD9E203FP4-EVK-001 MOS7GENERICPOWBOARDTOBO1 EVAL7126G100VGANCTOBO1
EVALFFXMR20W2M1HXTOBO1 APEK49100KJP-A-03-T TEA2017DK1007 MIKROE-5886 APEK85000GEJ-01-T
1EDI3051EVALBOARDTOBO2 TLD609812BEVALTOBO1 EVQ4322C-D-00A