

REF_48V_270W_EBIKE: Compact motor drive inverter for e-Bikes

About this document

Scope and purpose

This document describes Infineon's REF_48V_270W_EBIKE motor drive inverter reference board intended for use in e-Bikes with a 250 W output power capability. It utilizes the MOTIX[™] 6EDL7151 gate driver, which is a highly integrated 3-phase gate driver for motor drive applications, with integrated power supplies, integrated current sense amplifiers, and various protection features. The gate driver interacts with the XMC1400 family XMC[™] XMC1404-Q064X0200 AA microcontroller, and drives the OptiMOS[™] 5 IQE050N08NM5SC power MOSFETs that utilize a compact 3x3mm top-side cooled package (PG-WHSON-8).

The REF_48V_270W_EBIKE Reference Board represents a compact system intended for implementation where the small form factors plays a vital part in the overall design.

Intended audience

This document is intended for engineers who intend to implement REF_48V_270W_EBIKE in a system of their design, or wish to test the functionalities and capabilities of the essential components comprising this system.

Infineon components featured

- OptiMOS[™] 5 IQE050N08NM5SC (Power MOSFET, 80 V, R_{DS(on),max} = 5.0 mΩ, PQFN 3.3 x 3.3 mm²/PG-WHSON-8 top-side-cooled package)
- MOTIX[™] 6EDL7151 (three-phase BLDC or PMSM gate driver with integrated power supply system, onboard current sense amplifiers, slew rate control, integrated protection features)
- XMC[™] XMC1404-Q064X0200 AA (200 KB flash, 16 KB RAM, core frequency: 48 MHz, Supply voltage range: 1.8 V 5.5 V, optimized for motor control)
- TLE8250G (CAN transceiver, < 15 µA at 5 V standby, ISO 11898-2, receive-only mode)

Important notice

Important notice

"Evaluation Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

Safety precautions

Safety precautions

Note: Please note the following warnings regarding the hazards associated with development systems.

Table 1Safety precautions

4	Warning : The evaluation or reference board contains DC bus capacitors which take time to discharge after removal of the main supply. Before working on the drive system, wait five minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.
4	Warning: Remove or disconnect power from the drive before you disconnect or reconnect wires, or perform maintenance work. Wait five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.
555	Caution: The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.
	Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.
	Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.
	Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.
	Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.

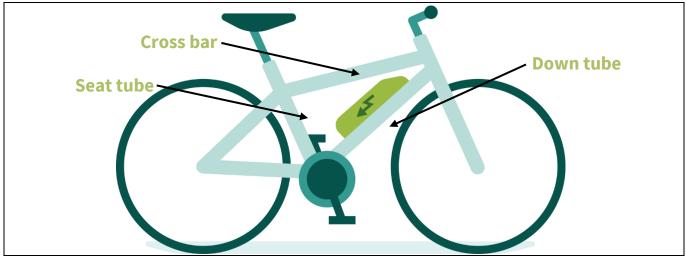
Table of contents

Table of contents

About t	his document	
Importa	Int notice	
Safety p	precautions	
Table of	f contents	
	/stem overview	
1.1	Block diagram	
1.2	Main features	
1.3	Board parameters and technical data	9
1.4	Application-specific load properties	
2 Fi	rmware description	
2.1	Firmware configuration – Excel configurator file	
2.1.1	Updating the configuration	
2.2	General Excel parameters description	
2.2.1	Motor	
2.2.1.1	Motor specification	
2.2.1.2	Motor speed	
2.2.2	Control topology	
2.2.2.1	Control scheme	
2.2.2.2	Open loop control	
2.2.2.3	VQ control	14
2.2.2.4	Torque control	14
2.2.2.5	Flux PI controller	15
2.2.2.6	Torque PI controller	15
2.2.3	Protection	16
2.2.3.1	Overcurrent protection (OCP)	16
2.2.3.2	Under/Overvoltage protection	16
2.2.3.3	6EDL7151 Hardware overcurrent protection	
2.2.4	Hardware/Inverter	
2.2.4.1	Inverter parameters	
2.2.4.2	Motor phase current measurement	
2.2.4.3	MOSFET slew rate controller	
2.3	Motor Hall calibration	
2.3.1	Hall calibration process	
2.3.2	Hall calibration Excel configuration	
2.3.3	Hall calibration firmware configuration	
2.3.3.1	Hall direction	
2.3.3.2	Hall pattern	
2.4	e-Bike functions	
2.4.1	e-Bike Excel configuration	
2.4.2	Input signal processing – Low pass filtering and moving average	
2.4.3	Throttle strategy	
2.4.3.1	Throttle mode	
2.4.3.2	Max. assist torque limit	
2.4.3.3	Power limiting	
2.4.4	Brake ramp down	
2.4.5	Start-up zero throttle check	
3 e-	Bike GUI	
User guide	e 4	V 1.0

2024-11-12

Table of contents


3.1	GUI setup	32
3.2	General GUI Builder overview	34
4	Hardware system description	35
4.1	Gate driver 6EDL7151	35
4.1.1	6EDL7151 integrated power supply (Buck controller and linear regulator)	
4.1.2	Power supply start-up – system ignition	38
4.1.3	Charge pumps – gate driver supply	
4.1.4	Gate driver settings and electromagnetic compatibility (EMC)	40
4.1.5	Current sense amplifiers	44
4.2	Microcontroller XMC1404	45
4.3	Power output stage	48
4.3.1	Power MOSFET – IQE050N08NM5SC	49
4.3.2	Layout	
4.4	Interconnections	
4.4.1	Power connection	
4.4.2	Small signal and interface connection	
4.4.3	Connection of the XMC™ Link programmer/debugger	
4.5	Heatsink and M2 screw threading	58
5	Test results	62
5.1	Phase current sine wave	62
5.2	Continuous power	63
5.3	Peak power	64
5.4	Efficiency	65
5.5	Power limiting	66
6	Schematics	68
7	Bill of materials	76
8	Conclusion	79
Refer	rences	80
Revis	sion history	81
Discla	aimer	82

1 System overview

The REF_48V_270W_EBIKE Reference Board is a fully functioning motor drive inverter, designed for low-power e-Bikes.

The board size is adapted for implementation inside the down tube or cross bar (i.e. top tube) of a typical bicycle frame. Its size of 101 mm x 26.8 mm makes it possible to fit inside a tube as small as 30 mm of inner diameter to enable implementation with minimal impact on the bike frame design. It allows for direct implementation into an e-Bike frame together with a corresponding motor of their choice. It demonstrates the performance of the 3.3 x 3.3 mm² PQFN top-side cooled MOSFET package, as well as the versatility of 6EDL7151 configurable gate driver and their combined impact on the form factor.

Figure 1 Bicycle frame – basic parts

The REF_48V_270W_EBIKE Reference Board is optimized for 48 V battery-powered e-Bikes (e.g., 12S to 14S Liion), operating with sensor-based field-oriented or vector control. The design utilizes three Hall sensors, typically integrated at the stator of a PMSM motor, to determine rotor position and speed.

The power and voltage ratings aim to accommodate the EU standard: EN 15194:2017. This is the standard governing the category of low-power e-Bikes, or as referred to in the standard: electrically powered assisted cycles – EPAC.

As stated in the EN 15194:2017:

"This European Standard is intended to cover electrically powered assisted bicycles of a type which have a maximum continuous rated power of 0.25 kW, of which the output is progressively reduced and finally cut off as the EPAC reaches a speed of 25 km/h, or sooner, if the cyclist stops pedaling.

This European Standard specifies requirements and test methods for engine power management systems, electrical circuits including the charging system for the design and assembly of electrically power assisted bicycles and sub-assemblies for systems having a rated voltage up to and including 48 V DC or integrated battery charger with a nominal 230 V AC input".

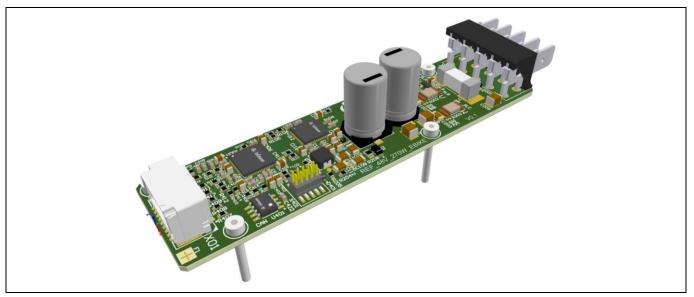


Figure 2 REF_48V_270W_EBIKE Reference Board

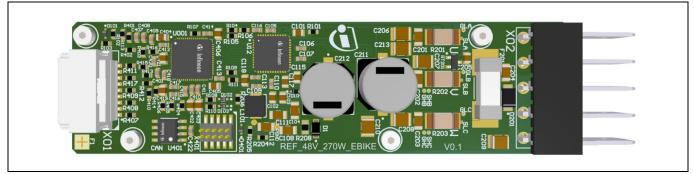
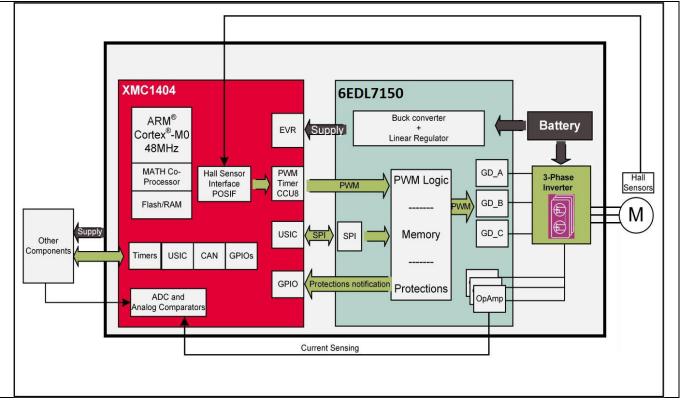


Figure 3 REF_48V_270W_EBIKE Reference Board top-side view


1.1 Block diagram

The REF_48V_270W_EBIKE consists of a power stage, 6EDL7151 gate driver IC with integrated supply, the XMC1404 microcontroller (MCU), and the necessary connections.

6EDL7151 gate driver IC provides the 3-phase hi- and low-side gate drivers designed to drive the hi- and lowside N-type power MOSFETs. The gate driver IC also manages the overall system supply. It utilizes a buck converter, with a linear regulator for the logic side and charge pump regulators to supply the gate drive circuits.

Current is measured via shunt resistors in the low-side MOSFET source positions. The signals are amplified via integrated amplifiers of 6EDL7151 and passed to the ADC inputs of the MCU.

Figure 4 System block diagram

The MCU utilizes a sensored FOC motor control algorithm, estimating the rotor position by processing the signals of the three Hall position sensors (typically integrated in the motor stator). The FOC produces the six PWM control signals used by the gate drivers. The MCU also provides the interface to the gate driver IC via SPI which is used to configure the gate driver IC parameters of 6EDL7151. Dedicated error signals are also provided by the gate driver IC to the MCU in order to ensure safe operation.

The MCU additionally interfaces to external units (BMS and dashboard) and driver control inputs (brake signal, throttle signal, and ignition) through the CAN bus and analog/supply inputs and outputs.

The power stage consists of six power MOSFETs (IQE050N08NM5SC) comprising three half-bridges with a shunt resistor in the lower leg (connected to the source of the low-side MOSFET) of each half-bridge. The DC supply voltage is stabilized by several DC bus capacitors (electrolytic and ceramic) and protected by an SMD fuse.

The REF_48V_270W_EBIKE provides a 10-pin (50 mil pitch) header connector X401 as the interface to the external debugger - KIT_XMC_LINK_SEGGER_V1. The isolated debugger is directly connected to a PC via a USB type A port.

The board provides the high-power connections to the supply/battery and the motor via a 5-pin "blade" connector intended to interface the standard 6.3 mm cable-crimped female blade connectors. The blade connector pins (connector "X02") are visible at the right-side edge of the board in Figure 3.

The small signal connections to motor hall sensors, "throttle" and brake inputs, key-ignition, and CAN-bus, with their corresponding supply lines are provided at the left side of the board at connector X01.

1.2 Main features

Small form factor

Dimensions: W = 26.8 mm, H \leq 20 mm, L = 111 mm

V 1.0

Input and output at normal operation

- DC input voltage: 48 V_{DC} nominal (36 V to 60 V, for use with 12S to 14S Li-ion)
- Maximum input current: 14 A
- Output voltage three-phase FOC
- Maximum output peak current per phase: 15 ARMS
- Maximum output continuous current per phase: 11 ARMS
- Maximum output continuous power: 270 W

Control scheme

- Hall-based FOC
- Switching frequency: 12 ~ 20 kHz
- Three current sense shunts LS source placement

Protection features

- Input fuse
- Output overcurrent
- Thermal shutdown

1.3 Board parameters and technical data

Table 2 REF_48V_270W_EBIKE Reference Board parameters

Parameter	Symbol	Conditions	Value	Unit
Supply voltage	V _{DC}	12S to 14S Li-ion	36~60	V
Rated power – continuous	P _{continuous}	$V_{DC} = 48 V, T_a = 25^{\circ}C$	270	W
Maximum supply current – continuous	I _{IN(max_cont.)}	$V_{DC} = 36 V, T_a = 25^{\circ}C$	7.5	А
Maximum phase current – continuous	I _{OUT(max_cont)}	V _{DC} = 48 V, T _a = 25°C, f _{PWM} = 20 kHz	11	A
Rated power – peak	P_{peak}	$V_{DC} = 48 V, T_a = 25^{\circ}C, 2 min$	1000	W
Maximum supply current – peak	I _{IN(max_peak)}	$V_{DC} = 36 V, T_a = 25^{\circ}C, 2 min$	23	А
Maximum phase current – peak	I _{OUT(max_peak)}	V _{DC} = 48 V, T _a = 25°C, 2 min	29	А
Maximum allowed operating temperature of power half bridges (MOSFETs and shunts)	T _{HB(max)}	Case temperature	110	°C
Maximum allowed operating temperature of other components	T _{Comp.(max)}	Case temperature	100	°C
PWM switching frequency	f _{PWM}	-	12~20	kHz
Maximum efficiency	η_{max}	V _{DC} = 48 V, T _a = 25°C, f _{PWM} = 20 kHz	97	%
Peripheral supply voltage	DVDD	R111 = 10 kΩ	5	V
Peripheral supply linear regulator overcurrent protection	DVDD_OCP	DVDD = 5 V	450	mA

1.4 Application-specific load properties

The typical recommended pedaling cadence for cyclists is between 80 RPM to 100 RPM. The torque values expected at the crank shaft could go up to around 100 Nm for shorter periods but would stay below 20 Nm in a relaxed steady cycling activity. This means that the allowed 250 W continuous assisting power is approximately set to those of a cyclist's capabilities.

24 Nm at 100 RPM roughly corresponds to the mentioned limit of 250 W continuous assisting power, however typically there may be a geared transmission between motor and crank shaft so the actual torque vs. RPM ratio in an e-Bike motor will differ.

2 Firmware description

This chapter describes the functionality of the dedicated firmware designed for the REF_48V_270W_EBIKE. The firmware supports parametric adjustments in order to operate with various motors and transmissions. It also supports further adjustments of onboard features (e.g., the FOC and the gate driver parameters).

Therefore, in order for the board to operate, the firmware must be configured correctly before flashing the firmware to the target board.

Some configurations are configurable via the dedicated GUI, alternatively the full set of available firmware configurations are accessible in the excel configurator file as described in the following sections.

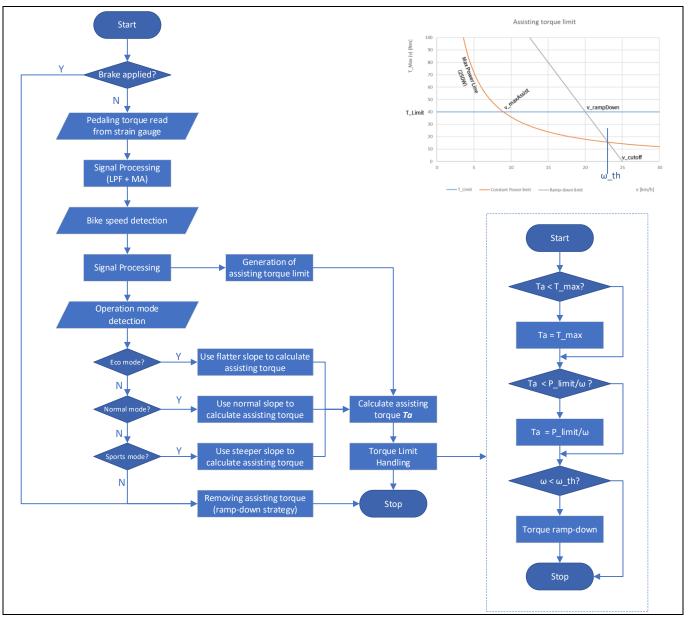


Figure 5 Firmware overview

2.1 Firmware configuration – Excel configurator file

All the firmware configurations can be configured through the Excel configurator file shown in Figure 6, that comes together with the project. All user inputs are marked as bright yellow. User guide 11 V

Α	В	C	D	E
USER INPUT	•			
SCALING		SAVE THIS FILE TO GENE	ERATE CONFIGURATION FILE "pmsm_foc_co	onfig.h"
INFO/Fixed				
_	Configuration Category	Motor Parameter		
_	_	USER_MOTOR_R_PER_PHASE_OHM	0.0700	Ω (ohm)
		USER_MOTOR_LQ_PER_PHASE_uH	101	μΗ
_		USER_MOTOR_LD_PER_PHASE_uH	101	μΗ
-		USER_MOTOR_POLE_PAIR	3	dec
)		USER_MOTOR_FLUX_LINKAGE_CONSTANT	0.00261	Vph_pk/(electrical rad/s)
	Motor			
!		Motor Speed Limit		
		USER_MOTOR_SPEED_LOW_LIMIT_RPM	20	RPM
+		USER_MOTOR_SPEED_HIGH_LIMIT_RPM_INPUT	4300	RPM
i		USER_MOTOR_SPEED_HIGH_LIMIT_RPM	1326	RPM
i		Angle Increment/PWM cycle	1.1934	°/PWM
1				
		Device Access		
		USER_AUTHENTICATION_ID	35	dec
)		USER_PASSWORD	4281791882	dec
		Voltage/Speed Reference Setting		
			MICRIUM_UC_ONLY	MICRIUM_UC_ONLY /
		USER_REF_SETTING		BY_POT_ONLY
+		USER_TH_POT_ADC_START	20	dec
		USER_TH_POT_ADC_STOP	10	dec
		USER_POT_ADC_LPF	1	dec
	-	Critical Code execution From	RAM FUNC	RAM FUNC/None
		PMSM_FOC_RAM_ATTRIBUTE	KAW_FONC	KAW_FONC/Nofie
		MicroInspector GUI Configuration		
		USER_UCPROBE_GUI	ENABLED	ENABLED/DISABLED
		USER UCPROBE OSCILLOSCOPE	ENABLED	ENABLED/DISABLED
		Control Topology Selection		
				VQ_VOLTAGE_CTRL
				SPEED_INNER_CURRENT_CTRL
			TORQUE_CTRL	VF_OPEN_LOOP_CTRL
i		USER_FOC_CTRL_SCHEME		TORQUE_CTRL
'				
		Motor Direction Control		
F		USER_MOTOR_BI_DIRECTION_CTRL	DISABLED	ENABLED/DISABLED

Excel Configurator file in project location: /PMSM_FOC/Configuration/excel_config.xlsm

Figure 6 Firmware Excel configurator

2.1.1 Updating the configuration

Save the Excel file in the project location metioned before with macros enabled to update the configured parameters. After saving the file, the project *pmsm_foc_config.h* file will be generated which you can find in the same location as the Excel file. Make sure the saved Excel file is in the correct location listed above, together with the *pmsm_foc_config.h* file. You will then need to rebuild and compile the firmware code and flash into the board.

2.2 General Excel parameters description

The following parameters are necessary and need to be configured before starting the motor.

2.2.1 Motor

2.2.1.1 Motor specification

- USER_MOTOR_R_PER_PHASE_OHM Motor resistance per phase
- USER_MOTOR_LQ_PER_PHASE_uH Motor inductance per phase
- USER_MOTOR_LD_PER_PHASE_uH Motor inductance per phase

• USER_MOTOR_POLE_PAIR – Motor pole pair

USER_MOTOR_R_PER_PHASE_OHM	0.0700	Ω (ohm)
USER_MOTOR_LQ_PER_PHASE_uH	101	μH
USER_MOTOR_LD_PER_PHASE_uH	101	μH
USER_MOTOR_POLE_PAIR	3	dec

Figure 7 Motor specification

2.2.1.2 Motor speed

- USER_MOTOR_SPEED_LOW_LIMIT_RPM Motor minimum speed
- USER_MOTOR_SPEED_HIGH_LIMIT_RPM_INPUT Motor maximum speed

USER_MOTOR_SPEED_LOW_LIMIT_RPM	20	RPM	
USER_MOTOR_SPEED_HIGH_LIMIT_RPM_INPUT	4300	RPM	

Figure 8 Motor speed

2.2.2 Control topology

2.2.2.1 Control scheme

Dropdown list selection for different control scheme.

USER_FOC_CTRL_SCHEME	TORQUE_CTRL	VQ_VOLTAGE_CTRL SPEED_INNER_CURRENT_CTRL VF_OPEN_LOOP_CTRL TORQUE_CTRL	
----------------------	-------------	---	--

Figure 9 Control scheme

2.2.2.2 Open loop control

You can configure the control based on the diagram shown in Figure 10.

2.2.2.3 VQ control

- USER_VQ_REF_HIGH_LIMIT_V High Limit of voltage. Must be less than DC Link voltage
- USER_VQ_REF_LOW_LIMIT_V Low limit of reference voltage
- USER_VQ_RAMP_UP_STEP_V Ramp up rate in voltage
- USER_VQ_RAMP_DOWN_STEP_V Ramp down rate in voltage

USER_VQ_REF_HIGH_LIMIT_V	32	V
USER_VQ_REF_LOW_LIMIT_V	0	V
USER_VQ_RAMP_UP_STEP_V	0.005	V
USER VQ RAMP DOWN STEP V	0.0002	V

Figure 11 VQ control

2.2.2.4 Torque control

- USER_IQ_CURRENT_ALLOWED_A High limit of torque current
- USER_IQ_REF_LOW_LIMIT_A Low limit of torque current
- USER_IQ_RAMP_UP_STEP_A Ramp up rate in current
- USER_IQ_RAMP_DOWN_STEP_A Ramp down rate in current

JSER_IQ_CURRENT_ALLOWED_A	20	А
JSER_IQ_REF_LOW_LIMIT_A	0	А
JSER_IQ_RAMP_UP_STEP_A	0.03	А
JSER_IQ_RAMP_DOWN_STEP_A	0.008	А

Figure 12 Torque control

2.2.2.5 Flux PI controller

Under the VQ control scheme, you only need to tune this PI controller. The flux kp and ki is auto-calculated by fine tuning of the flux bandwidth frequency.

• USER_PI_FLUX_BW_HZ - Bandwidth of a PI controller determines how quickly the controller can respond to disturbances or changes in the process variable. A higher bandwidth means the controller can respond faster and more accurately to changes, while a lower bandwidth means the controller responds more slowly.

Flux PI Controller		
USER_PI_FLUX_BW_HZ	500	Hz
USER_PI_FLUX_DAMP_RATIO	0.7070	dec
USER_PI_FLUX_KP	0.3173	dec
USER_PI_FLUX_KI	219.9115	dec
USER_PI_FLUX_UK_LIMIT_MAX	32.0000	V
USER_PI_FLUX_UK_LIMIT_MIN	-32.0000	V
USER_PI_FLUX_ENABLE_ANTIWINDUP	ENABLED	ENABLED/DISABLED

Figure 13 Flux PI controller

2.2.2.6 Torque PI controller

Under the torque control scheme, you will need to tune and configure both the flux PI controller and the torque PI controller. Both use the same configuration value.

• USER_PI_TORQUE_BW_HZ - Bandwidth of a PI controller determines how quickly the controller can respond to disturbances or changes in the process variable. A higher bandwidth means the controller can respond faster and more accurately to changes, while a lower bandwidth means the controller responds more slowly.

500.00000	Hz
0.70700	dec
0.31730	dec
219.91149	dec
32.00000	V
-32.00000	V
ENABLED	ENABLED/DISABLED
	0.70700 0.31730 219.91149 32.00000 -32.00000

Figure 14 Torque PI controller

2.2.3 Protection

2.2.3.1 Overcurrent protection (OCP)

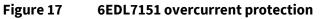
- USER_MAP_CURRENT_TO_DCLINK:
 - Enable for DC Link over current protection
 - Disable and it will be phase current protection
- USER_OCP_LEVEL_RMS_A Maximum current limit
- USER_OCP_LEVEL_TIME_ms Total Amount of time OCP is detected before OCP triggered

Over Current Protection(OCP)					
USER_OVERCURRENT_PROTECTION_ENABLE ENABLED ENABLED					
USER_MAP_CURRENT_TO_DCLINK	DISABLED	ENABLED/DISABLED			
USER_OCP_LEVEL_RMS_A	28	A			
USER_OCP_LEVEL_TIME_ms	1	mSec			
USER_OCP_LEVELS_PROTECTION	DISABLED	ENABLED/DISABLED			

Figure 15 Overcurrent protection

2.2.3.2 Under/overvoltage protection

Under/Over Voltage Protection				
USER_VDC_UV_OV_PROTECTION_ENABLE	ENABLED	ENABLED/DISABLED		
USER_VDC_OVER_VOLTAGE_LIMIT_V	57.6	V		
USER_VDC_UNDER_VOLTAGE_LIMIT_V	38.4	V		
USER_VDC_LPF	2	dec		


Figure 16 Under/overvoltage protection

2.2.3.3 6EDL7151 Hardware overcurrent protection

Depending on the shunt resistor of the board and the user preferred OCP current value.

E.g., Shunt resistor = 5 mohm

	V= IR, I = V/R,							
	175 mV/0.005 ohm = 40 A (OCP)							
195	5 .CS_OCP_PTHR = OCP_POS_THR_175mV, /* Posi	itive threshold for OCP, 0x0->+0.3V, 0xF->0.02V */						
196	6 .CS_OCP_NTHR = OCP_POS_THR_175mV, /* Nega	ative threshold for OCP, 0x0->-0.3V, 0xF->0.02V */						

2.2.4 Hardware/inverter

2.2.4.1 Inverter parameters

Inverter Parameter		
USER_VDC_LINK_V	48	V
USER_DEAD_TIME_US	0.80	uSec
USER_CCU8_PWM_FREQ_HZ	20000	Hz

Figure 18 Inverter parameters

2.2.4.2 Motor phase current measurement

• USER_R_SHUNT_OHM – Current shunt resistance

USER_R_SHUNT_OHM	5.0000	mΩ
6EDL7141 OPAMP Gain	12	dec
VDD / Maximum voltage at ADC	5	V
USER_CURRENT_SENSING	THREE_SHUNT_SYNC_CONV	THREE_SHUNT_SYNC_CONV/ THREE_SHUNT_ASYNC_CONV
GATE_DRIVER_IC_PROPOGATION_DELAY_US	0.2	uSec
CSOPAMP SETTLING TIME US	0.8	uSec

Figure 19 Motor phase current measurement

2.2.4.3 MOSFET slew rate controller

USER_GD_PVCC_SETPT	PVCC_15V	7V/10V/12V/15V
USER_CP_CLK_FREQ_kHz	CP_CLK_1562_5kHz	Charge pump clock frequency configuration 781.25kHz/390.625kHz/ 195.3125kHz/1.5625MHz
USER_CP_CLK_SS_EN_DIS	CP_CLK_SS_EN	Charge pump clock spread spectrum ENABLED/DISABLED
USER_GD_I_PRE_EN	PRECHAR_MODE_EN	PRECHAR_MODE_EN/ PRECHAR_MODE_DIS
USER_GD_IPRE_SRC	IDRIVE_PRE_40mA	6EDL7141_CONFIG_MACRO
USER_GD_IPRE_SINK	IDRIVE_PRE_60mA	6EDL7141_CONFIG_MACRO
USER_GD_IHS_SRC	IDRIVE_40mA	6EDL7141_CONFIG_MACRO
USER_GD_IHS_SINK	IDRIVE_60mA	6EDL7141_CONFIG_MACRO
USER_GD_ILS_SRC	IDRIVE_40mA	6EDL7141_CONFIG_MACRO
USER_GD_ILS_SINK	IDRIVE_60mA	6EDL7141_CONFIG_MACRO
USER_GD_TDRIVE1	TDRIVE1_Ons	6EDL7141_CONFIG_MACRO
USER_GD_TDRIVE2	TDRIVE2_450ns	6EDL7141_CONFIG_MACRO
USER_GD_TDRIVE3	TDRIVE3_Ons	6EDL7141_CONFIG_MACRO
USER_GD_TDRIVE4	TDRIVE4_880ns	6EDL7141_CONFIG_MACRO
USER_GD_DT_RISE	DT_840ns	6EDL7141_CONFIG_MACRO
USER GD DT FALL	DT 840ns	6EDL7141 CONFIG MACRO

Figure 20 MOSFET slew rate controller

2.3 Motor Hall calibration

The prerequisite for the motor Hall calibration is that the motor needs to be able to run smoothly under openloop control. The Hall calibration process will auto-update the zero-angle information and angle direction table and use the parameters to run the motor. After the Hall calibration process, the GUI interface displays the

correct zero-degree Hall pattern and Hall pattern direction from the open loop motor run, as shown in Figure 21.

Hall Zero Id
Zero Deg Hall Pattern Value 0 Hall Pattern Direction 0

Figure 21 GUI zero-degree pattern and direction

2.3.1 Hall calibration process

- 1. Click on the HALL Zero ID button OFF to ON the hall calibration.
- 2. Adjust POT to any non-zero value.
- 3. POT value will return to zero once the hall calibration process is completed.
- 4. Click on HALL Zero ID again to OFF the hall calibration.
- 5. Adjust POT again to run motor in closed loop

2.3.2 Hall calibration Excel configuration

During the Hall calibration process, the rotor is observed to turn abruptly and then moving continuously for a while before coming to a standstill. Depending on the motor type, you can adjust the following parameters in the Excel configurator.

- USER_ROTOR_ZERO_DEG_ID_SVPWM_REF_V
 - Init voltage. Adjust so that the motor has enough power to move the rotor.
- USER_ROTOR_ZERO_DEG_ID_TIME_MS
 - Rotor motion settling time

Hall Calibration				
USER_ROTOR_ZERO_DEG_ID_SVPWM_REF_V	1	V		
USER_ROTOR_ZERO_DEG_ID_TIME_MS	100	mSec		

Figure 22 Hall calibration Excel configuration

2.3.3 Hall calibration firmware configuration

The parameters are volatile and are lost after a power-off of the board. Every time the board is powered up, it is initialized with the default parameters. Therefore, you must redo the Hall calibration process again before running the motor.

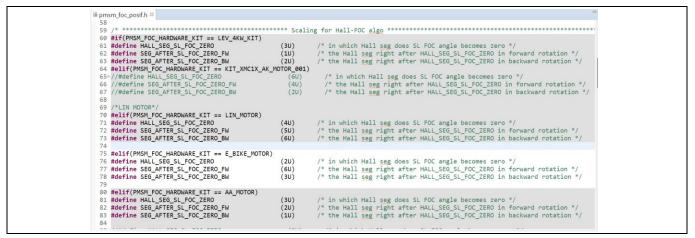
Otherwise, you can overwrite the default information with the known information from the Hall calibration. User guide 18 V

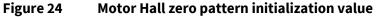
2.3.3.1 Hall direction

In the GUI interface, the Hall pattern direction gives 0, 1, and -1, which represent error, forward, and backward direction respectively. Therefore, in the firmware for forward direction, "hall_pat_angle_fw" should be replaced as in the following figure. For backward direction, "hall_pat_angle_rev" is used instead. In addition, also change the DIRECTION_INC if forward direction, else use DIRECTION_DEC if backward direction.

```
Image: Image
       413
       414 /* API to initialize MCU and peripherals for motor control */
      415 void PMSM_FOC_Init(void)
     416 {
                                                    Initializes motor control peripherals */
      417
                                          PMSM_FOC_PeripheralsInit();
      418
       419
      420 #if(MOTOR CTRL SCHEME == PMSM HALL FOC)
       421
                                         pmsm_foc_ccu4_hall_init();
      422
                                            /* Configure default hall pattern angle *
      423
                                          memcpy(hall_pat_angle, hall_pat_angle_fw](HALL_SEG_SL_FOC_ZERO-1)], sizeof(hall_pat_angle));
      424
                                         pmsm_foc_set_default_hall_pattern();
       425
                                                                                                                                                                                            else DIRECTION_DEC (-1)*/
       426
                                                   Change the DIRECTION INC if (1)
                                          hall_sensor_data.hall_pat_dir = DIRECTION_INC;
       427
       428
                                         pmsm_foc_reset_hall_pattern();
```

Figure 23 Hall direction firmware configuration


2.3.3.2 Hall pattern


Replace the Hall pattern (zero degree) value in GUI interface to the firmware code.

HALL_SEG_SL_FOC_ZERO – Zero-degree Hall pattern value shown in GUI.

- Direction increment (forward +1) follows the following pattern: 1, 3, 2, 6, 4, 5.
- Direction decrement (backward -1) follows the following pattern: 1, 5, 4, 6, 2, 3.

If the zero-degree Hall pattern is 2 with direction (forward +1), firmware configuration should be as shown in Figure 24.

2.4 e-Bike functions

The e-Bike functionality refers to the vehicle properties and behavior. Since certain system requirements refer to vehicle properties like top speed etc., the relevant gear ratios and wheel diameters need to be determined. The following e-bike functions have been implemented in the firmware:

- Moving Average
- Throttle Strategy
 - Three operational mode-based torque assistance.
- Torque limit
 - Max. assist torque limit according to bike speed.
 - Power limit
- Brake ramp down
- Startup throttle check

2.4.1 e-Bike Excel configuration

You can find all the related e-Bike function configurations under the E Bike section as shown in Figure 25.

	E_BIKE_FUNCTION_ENABLE	ENABLED	ENABLED/DISABLED
	Moving Average Window Size	8	Dec
	Potentiometer Voltage Divider - R1	5100.0000	Ω (ohm)
	Potentiometer Voltage Divider - R2	3300.0000	Ω (ohm)
	BEMF/Torque Constant, Kt	0.0305	Vp/rad-s
	Eco_torque_rampup_gain, K_gain	0.0008	Dec
	Normal_torque_rampup_gain, K_gain	0.0010	Dec
	Sport_torque_rampup_gain, K_gain	0.0020	Dec
	INPUT_TORQUE_MAX_NM (From Torque Sensor Spec)	80.000	Nm
	INPUT_MAX_VOLTAGE_V (From Torque Sensor Spec)	5.000	V
E Bike	Voltage to Torque Coefficient, K	0.0625	V/Nm
	Bike Speed limit	25.000	km/h
	Gear ratio Motor to Wheel (Out/IN gear)	6.000	Dec
	Wheel radius	0.300	m
	T_MAX - 250W Power line		
	Max Power Limit	250.000	W
	Ramp down during Brake ON		
	E_BIKE_IQ_RAMP_DOWN_STEP_A	0.0010	A/PWM cycle
	E_BIKE_RAMP_STEP_TIME_FCL_COUNT	1.0000	dec
	E_BIKE_IQ_RAMP_DOWN_STEP_A_SEC	20.000	A/Sec

Figure 25 e-Bike Excel configuration

Table 3Motor and vehicle parameters

Symbol	Property of	Quantity/Meaning	Unit	
K_T Motor		Torque constant	Nm/Arms	
n_pp	Motor	number of pole pairs		
g_motorVehicleGear ratio - Motor $(g_{motor} = \tau_{wheel} / \tau_{motor} = \omega_{motor} / \omega_{wheel})$ CAN input – if bike has gears		dec		
r_wheel	Vehicle	Wheel Diameter / Radius / Circumference	m	
USER_POT_ADC_LPF Vehicle ADC potentiometer low-		ADC potentiometer low-pass filter	dec	
K_GUser/VehicleInpK_G (1,2,3)inp		Input control torque gain (Throttle gain) input several values to make "operational Mode" user selectable	dec	
P_max	Vehicle	Max. power limit	W	
v_cutoff Vehicle		Top speed - above which no assistance is allowed	km/h	

Symbol	Property of	Quantity/Meaning	Unit
T_brake_rampDown	User/Vehicle	Rate of assisting torque ramp-down when brake is applied	S
K _{VT}	Motor	Voltage-to-Torque Coefficient. Base max torque reading and max voltage from torque sensor	V/Nm
T _{NM}	Motor	Max input torque reading form torque sensor	Nm

2.4.2 Input signal processing – Low pass filtering and moving average

To process the signal in terms of reducing noise as well as averaging out the torque ripple coming from pedaling, both a low-pass filter (LPF), and a moving-average (MA) are applied before the proportional processing.

The LPF is used to remove the noise and the high-speed interference.

Since the pedaling torque fluctuation (ripple) is periodic, a moving average function related to the pedaling period, is very effective in evening out the resulting assisting torque. MA with the configurable sampling window size shown in Figure 28 is used to average out of the torque ripple coming from the pedaling.

The example in Figure 26 uses a half-sinewave shape as the approximation of the pedaling torque. Based on that, a moving average window (T_averaging) is defined as the period of a single half sinewave length, which represents a half of a pedaling turn (T_pedaling – single side pedaling burst). The resulting average – i.e., the motor torque in this case is a constant torque without any ripples, however it is also important to consider the resulting sum of both torques.

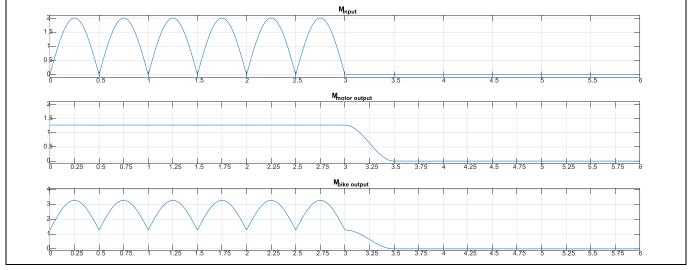


Figure 26 T_averaging = T_pedaling = 0.5 s at cadence = 60 rpm

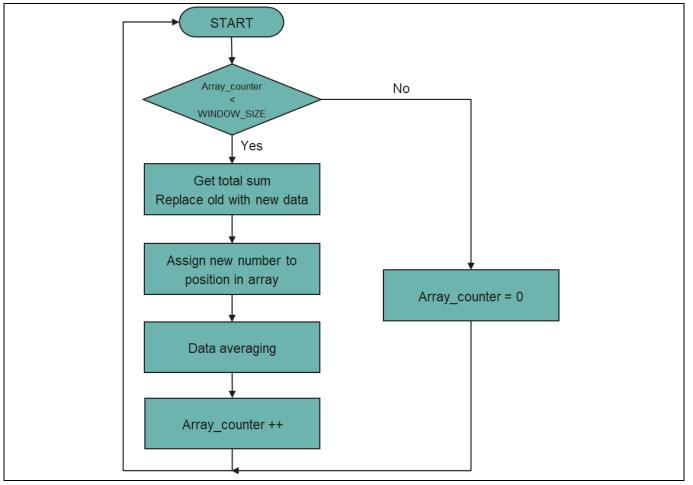


Figure 27 Moving average flowchart

The moving average window (T_averaging) is defined in the configuration file as "Electrical Cycle Moving Average Window Size" (see Figure 28). It is expressed in the number of electrical cycles to average the throttle reading (e.g., the number is by default the same as the pole pair number so that it represents one mechanical cycle).

The other related parameter "Noise Filter Moving Average Window Size" is a moving average filter that averages a number of the last obtained throttle samples (sampled every PWM cycle). The configuration value is the number of samples calculated in the averaging.

E_BIKE_FUNCTION_ENABLE	DISABLED	ENABLED/DISABLED	
Noise Filter Moving Average Window Size	8	Dec	
Electrical Cycle Moving Average Window Size	3	Dec	

Figure 28 Excel configuration for moving average window size

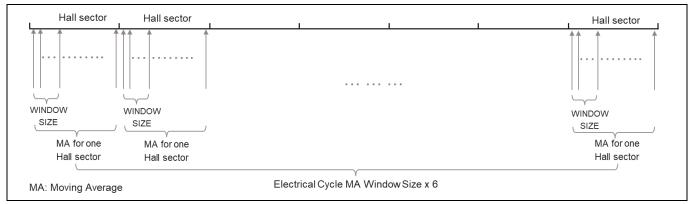


Figure 29 Moving average window size representation

2.4.3 Throttle strategy

Pedal assist e-bike/pedelecs uses a throttle strategy to control of the output torque according to the pedaling effort. This will be done by using of a torque sensor (strain gauge) and reading the output from the sensor. The sensor will have an analog output voltage of 0.74 V to 3.3 V/5 V according to the torque sensor specification.

This allows measurement of how much force a rider applies to the pedals and determine how much power the motor should output to the e-Bike. The output torque is linearly proportional to the input control signal, which may be a direct analog signal from a potentiometer. Higher input torque, higher assisting torque output is shown in Figure 30.

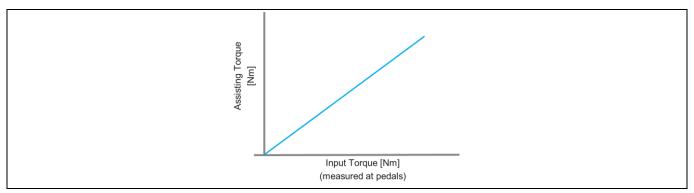


Figure 30 Assisting torque vs. input torque

2.4.3.1 Throttle mode

The input control gain could optionally be offered as a selection by you as an "Operational mode" for the torque assistance.

There will be three operational mode-based torque assistance: Each mode will have a different slope relationship of assisting torque vs. input torque. ECO, NORMAL, SPORTS as shown in Figure 31.

- Eco mode: Flatter slope of assisting torque vs. input torque
- Normal mode: Normal slope of assisting torque vs. input torque
- Sports mode: Steeper slope of assisting torque vs. input torque

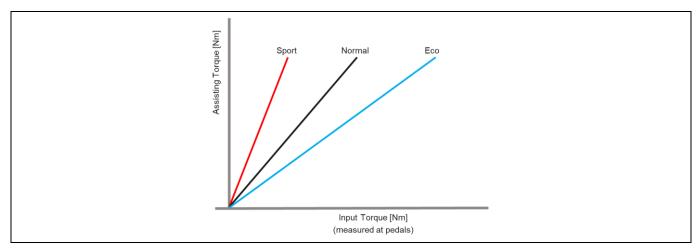
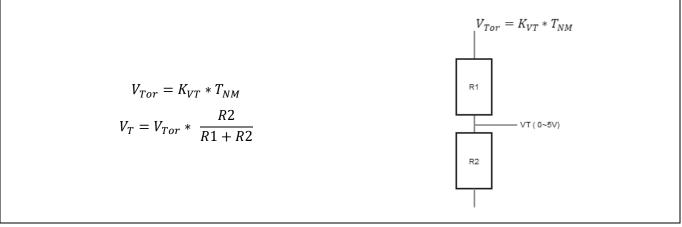



Figure 31 Three operational throttle modes

The following equations are needed to get the Torque current *Iq* based on the different torque gain & ADC input.

Potentiometer Voltage Divider,

Equation 1

ADC value reading from torque sensor,

$ADC_{VT} *$	5V*(R1+R2)	
	$4095 * R2 * K_{VT}$	

Equation 2

Assisting torque output,

$$T_{out} = K_G * T_{NM}$$

 $T_{out} = K_T * Iq$

Equation 3

Getting torque current *Iq*,

 $Iq = \frac{K_G * (R1+R2) * 5V}{K_t * 4095 * R2 * K_{VT}} * ADC_{VT}$

Equation 4

Where,

 K_G = Gain constant

 K_T = Torque/BEMF constant

 K_{VT} = Voltage to torque coefficient

 T_{NM} = Max. torque reading from torque sensor in Nm

Potentiometer Voltage Divider - R1	5100.0000	Ω (ohm)
Potentiometer Voltage Divider - R2	3300.0000	Ω (ohm)
BEMF/Torque Constant, Kt	0.0305	Vp/rad-s
Eco_torque_rampup_gain, K_gain	0.0008	Dec
Normal_torque_rampup_gain, K_gain	0.0010	Dec
Sport_torque_rampup_gain, K_gain	0.0020	Dec
INPUT_TORQUE_MAX_NM (From Torque Sensor Spec), T_NM	80.000	Nm
INPUT_MAX_VOLTAGE_V (From Torque Sensor Spec)	5.000	V
Voltage to Torque Coefficient, K_VT	0.0625	V/Nm

Figure 32 Excel configuration torque sensor and throttle gain

2.4.3.2 Max. assist torque limit

The max. assist torque limit is determined by the bike speed, having a reverse relationship between assisting torque and bike speed. The higher the bike speed, the lower the assisting torque max. value as shown. Max. speed is a user-defined parameter in which no output assisting torque is allowed for any speed above the user-defined speed. Figure 33 shows the relation of the assisting torque to the bike speed.

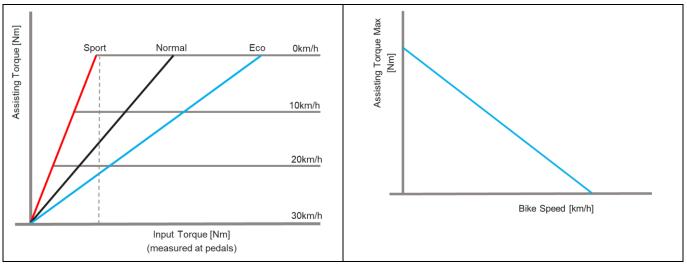


Figure 33 Assisting torque vs. bike speed

In the excel configurator file shown in Figure 34 you can define the bike speed limit, gear ratio of motor to wheel, and the wheel radius. Excel will calculate and convert it to a revolution per minute (rpm) value. If the E_BIKE_FUNCTION_ENABLE macro has been ENABLED, USER_MOTOR_SPEED_HIGH_LIMIT_RPM the converted rpm value will be used.

ENABLED	ENABLED/DISABLED
25.000	km/h
6.000	Dec
0.300	m
1326	RPM
	25.000 6.000 0.300

Figure 34 Bike specification Excel configuration

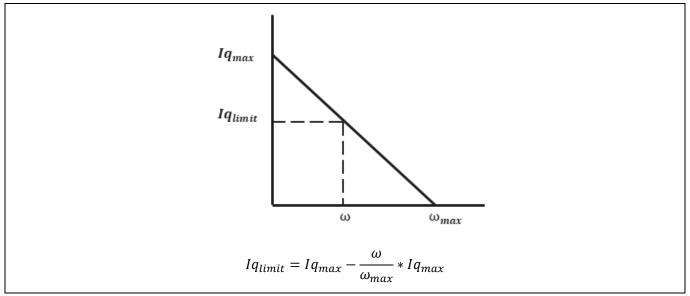
Getting the max. rpm limit from wheel radius, bike speed, and gear ratio:

$$USER_MOTOR_SPEED_HIGH_LIMIT_RPM = \frac{25}{3*\pi*r_{wheel}}*v_cutoff*g_motor$$

Equation 5 Motor speed high limit rpm

Where,

r_wheel = The radius of the bike wheel in meter (m)


v_cutoff = The user defined max bike speed in km/h

g_motor = The gear ratio of motor(input) to bike wheel(output) in outer gear: input gear

Speed ratio = Motor (input)/output (bike speed) = Gear ratio

The torque current will always be limit by the torque current limit threshold and not exceeding it.

Equation 6 Torque current limit threshold

2.4.3.3 Power limiting

The assisting torque output will also be limited by the maximum power defined. This is done by calculating and getting the normalized power limit torque current threshold value. Torque current will be limited by the threshold value and not exceed the power limit torque current threshold.

Power, torque, and angular velocity,

 $P = \tau_{NM} * \omega_{mechanical}$ $P = \tau_{NM} * \frac{\omega_{electrical}}{Pole Pair}$ $P = K_T * Iq * \frac{\omega_e}{n_pp}$

Equation 7

Power base,

$$P_{base} = \frac{K_T}{n_pp} * Iq_{base} * \omega_{e_base}$$

Equation 8

Power max., defined by you

$$P_{max} = \frac{K_T}{n_pp} * Iq_{max} * \omega_e$$

Equation 9

Derivative from Equation 8 and Equation 9,

 $\frac{P_{max}}{P_{base}} = \frac{Iq_{max} * \omega_e}{Iq_{base} * \omega_{e_base}}$

Equation 10

Normalizing of the power limit torque current threshold value,

 $\frac{P_{max}}{P_{base}} * 2^{15} * 2^{15} = \frac{Iq_{max}}{Iq_{base}} * 2^{15} * \frac{\omega_e}{\omega_{e_base}} * 2^{15}$ $P_{max_int} * 2^{15} = Iq_{power_max_int} * \omega_{e_int}$ $Iq_{power_max_int} = P_{max_int} * 2^{15} * \frac{1}{\omega_{e_int}}$

Equation 11

Where,

 P_{max} = User-defined power, 250 W etc.

*P*_{base} = Max. torque sensor from specification (etc. 80 Nm) * user-defined max. speed (km/h to rad/s)

 $P_{max_int} = \frac{P_{max}}{P_{base}} * 2^{15}$

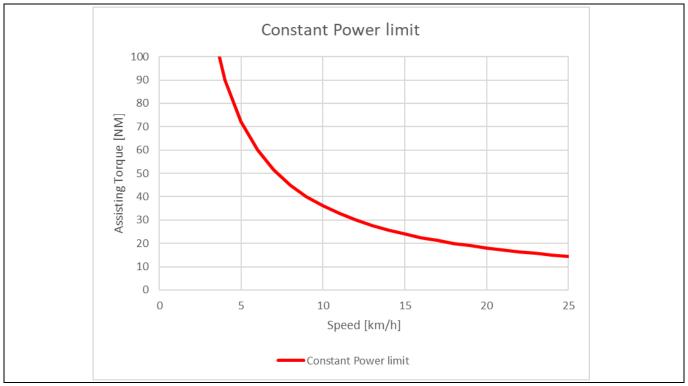


Figure 35 Power limit in relation to speed

2.4.4 Brake ramp down

Motor ramping down during the brake will be applied for riding comfort to avoid a sharp instantaneous change in torque.

Brake is detected on the switch level of 1/0 where no output torque is allowed whenever the brake is pressed. From the point of brake signal detection, the torque current will be ramped down to zero and goes into "MOTOR_STOP" state. There will be no torque assisting output and the motor will be in coasting. You can configure the torque current ramp down rate to determine how fast or slow the brake ramp down it would like.

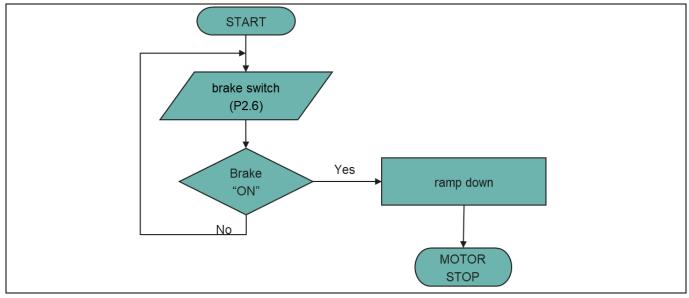
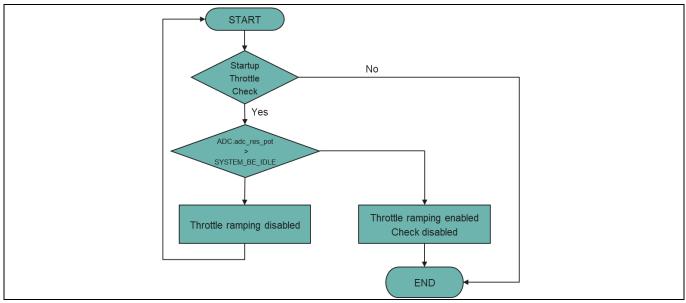


Figure 36 Brake ramp down firmware flowchart

You can configure the torque current ramp down rate to determine how fast or slow the brake ramp down it would like.

E_BIKE_IQ_RAMP_DOWN_STEP_A	0.0010	A/PWM cycle
E_BIKE_RAMP_STEP_TIME_FCL_COUNT	1.0000	dec
E_BIKE_IQ_RAMP_DOWN_STEP_A_SEC	20.000	A/Sec


Figure 37 Brake ramp down rate excel configuration

2.4.5 Start-up zero throttle check

During the first start-up, the start-up throttle check will be on, ADC potentiometer from GUI or torque sensor reading will be read. If the reading value is above a certain min/threshold value or the SYSTEM_BE_IDLE value, throttle ramping up will be disabled and motor will not start.

Once the ADC potentiometer reading shown drops below the min/threshold value, the throttle ramp will be enabled and the check will be disabled.

e-Bike GUI

3 e-Bike GUI

The dedicated e-Bike GUI is implemented as an application in the GUI Builder as part of the ModusToolbox™ Motor Suite.

To use the GUI as the input and control method for the REF_48V_270W_EBIKE, the USER_REF_SETTING parameter in the Excel configuration file needs to be set as MICRIUM_UC_ONLY. Alternatively, selecting BY_POT_ONLY, the microcontroller will only use the analog inputs as the control method.

When the firmware with this setting is flashed on the microcontroller, the firmware can run independently and communicate with the PC via the XMC[™] Link programmer (see section 4.4.3 for connection details).

In summary, after flashing the firmware, the microcontroller needs to be reset (or after following power ups), then it can be connected to the GUI.

3.1 GUI setup

The following steps describe the process of setting up the GUI builder.

1. Open ModusToolbox[™] Motor Suite and find GUI Builder and open it.

2. Go to "open project" and select the project gui.mcws file.

e-Bike GUI

ModusToolbox™ Motor Suite GUI Builder				- 0 ×
			+	Workspace1 Oscilloscope
Open Project (Ctrl+O)			Toolbox	
			> Buttons	
1			> Inputs	
			> Indicators	
e 🝷 New folder			≣ •	
Name	Date modified	Туре	S	ize
S GUI for Ebike Project V1_0	3/10/2024 3:52 pm	Motor Control \	Workspace File	51 KB
				1
		$\oplus \oplus$		
Symbol Browser Definitions				
		Si	mply drag & drop a component to the w	orkspace to use it. For more
			formation about components, please se	

Figure 40 Project GUI file selection

3. Select the ELF file.

It can be found in *project folder/Debug/ELF file*.

 ModusToolbox[™] ModusToolbox ModusToolbox ModusToolbox	otor Suite GUI		Select	GUI for I	Ebike Project V1_0		Dashboard	PID Tuning Oscille	oscope
POT Ref Input 4095 	Eco	Normal	Sports	input.iq_ref 0 input.lq_ref_temp	Moto	Speed (rpm)	DC Link Voltage(V)	Board Temperature	Hε Ze
- 2275 - 1820 - 1365 - 910 - 455 - 0	Name metao Librari PMSM	es 1_FOC	^	3/10/2 3/10/2 3/10/2	odified 024 5:11 pm 024 5:11 pm 024 5:11 pm	Type File folder File folder File folder	Size	↓ 100 72 50 0 0	P Di
FOC CLOSED LOC			↓ 	4/10/2	024 3:30 pm 024 3:30 pm 024 3:30 pm	File folder File folder ELF File	512 КВ	Ø	
HALL CALIB PRO	CESS 🌈	ERRO BOOT			DC Link Ove Motor STALL			© ©	
Version 2.2.0					Inverter Ove	r Temperature	Invalid Hall Pattern	() (+) (inected Select a	device

Figure 41 Selecting the ELF file

e-Bike GUI

3.2 General GUI Builder overview

Figure 42 GUI Builder

- 1. GUI connection indicator: Make sure it is in Connected state before motor control.
- 2. During a powering off/on of the board: You can reselect the J-link device and re-connect to the GUI interface.
- 3. Potentiometer: You can either use the slider or key in the value (+ enter) to start the motor.
- 4. e-Bike mode selection button: ECO, NORMAL, and SPORT.
- 5. Debugging purposes: To check on torque current reference value and comparing to the current limit threshold value and power limit threshold.
- 6. e-Bike brake toggle button: Brake "ON" to ramp down and disable throttle. Brake "OFF" to enable throttle.
- 7. Start-up throttle ramp up enable indicator
- 8. Emergency push button for stopping motor immediately
- 9. Indicator reading of the mechanical motor speed in RPM, DC link voltage, and board temperature.
- 10. Auto Hall calibration toggle button: "ON" to start calibration. Shows Hall pattern of the zero degree and the Hall pattern direction.
- 11. State machine indicator: Shows the current Motor Control State machine.
- 12. Error Monitoring state: To show the specific cause of error when motor fail.

Hardware system description

4 Hardware system description

4.1 Gate driver 6EDL7151

6EDL7151 is a configurable 3-phase gate driver IC for BLDC or permanent magnet synchronous motor (PMSM) motor drive applications, in a 48-pin VQFN package. It provides three half-bridge drivers, each capable of driving a high side and low side N-type MOSFET. It also provides an integrated DC-DC synchronous buck converter, low dropout linear voltage regulator, and configurable precision current sense (CS) amplifiers.

6EDL7151 gate driver IC is controlled and configured by the onboard microcontroller (XMC1404) and is able to operate in multiple PWM modes. The MCU communicates with 6EDL7151 via an internal SPI to enable configuration.

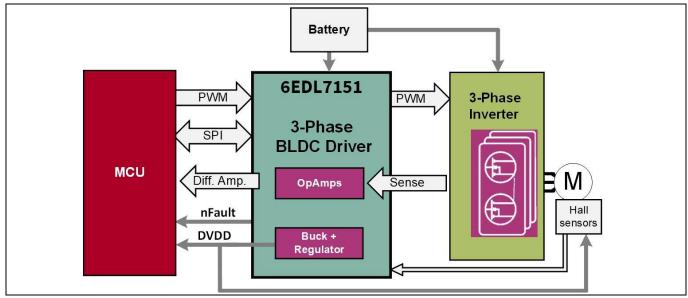


Figure 43 Top-level system block diagram using 6EDL7151

Main features of 6EDL7151

- 5.5 V to 70 V operating supply voltage (recommended operating condition)
 - 3-phase smart gate driver
 - 1.5 A sink/ 1.5 A source peak gate driver currents
 - Programmable driving voltage (7 V, 10 V, 12 V, 15 V)
 - Independently programmable high side/low side slew rate control
 - Independently programmable dead time for turn-on/off switching
- Integrated power supplies
 - High efficiency synchronous buck converter with programmable switching frequency. Supplies gate driver charge pumps, DVDD linear regulator and both internal and external components
 - Linear regulator with 300 mA current capability for MCU and other component supply (DVDD)
 - Dual charge pump for supplying gate driver even at low supply voltage
- Three integrated current sense amplifiers
 - Adjustable gain and offset
- SPI digital interface for setting of 6EDL7151 parameters

Hardware system description

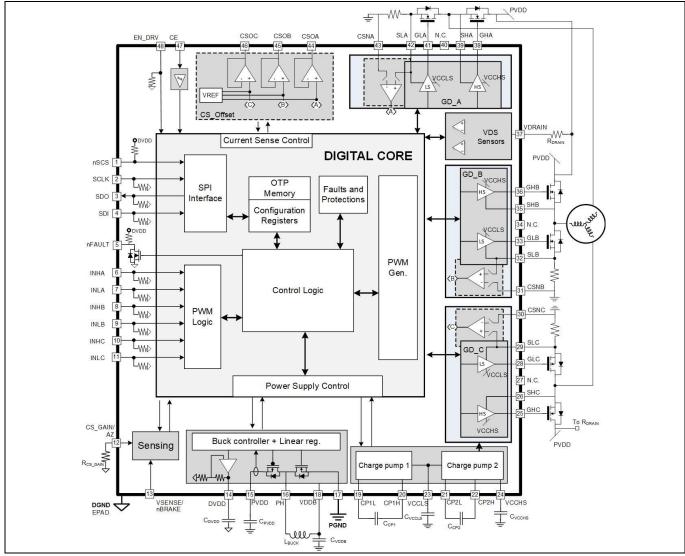


Figure 44 6EDL7151 internal block diagram

More details about 6EDL7151 can be found in the following documents:

- 6EDL7151 datasheet [1] •
- Application Note: EVAL_6EDL7141_TRAP_1SH 18 V brushless DC motor drive board [3]
- Design Guide: Battery-powered BLDC motor drive design using the 6EDL71x1 series [4] •

4.1.1 6EDL7151 integrated power supply (buck controller and linear regulator)

6EDL7151 is used as a one-chip solution to supply the entire system. This helps reduce the overall size of the board by eliminating the need for additional individual devices.

The onboard buck converter can operate at up to 70 V supply voltage (PVDD). The output voltage of the buck regulator may be set to 6.5 V, 7 V, or 8 V, depending on the gate drive voltage selection. The VDDB output can be used to supply external components as long as the current limits of the buck converter, charge pumps, and linear regulator are not exceeded. Intelligent overcurrent protections (OCPs) are also implemented for both the buck converter and the linear regulator to prevent any damage to the device if the VDDB output becomes overloaded. Additional overtemperature protections (OTS, OTW) are integrated to ensure that the device User guide 36 V 1.0

operates within the correct thermal limits. Two different switching frequencies, 500 kHz (default value) or 1 MHz, can be selected. The buck inductor L101 value is 22 μH intended for operation at 500 kHz.

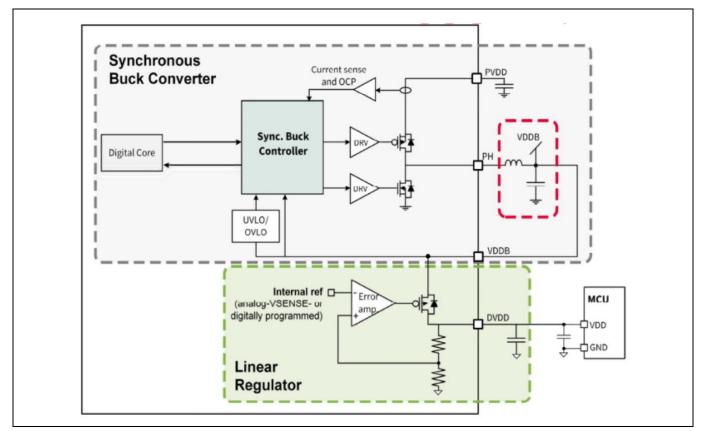


Figure 45 Detail of integrated synchronous buck converter and linear regulator

The system settings are indicated in Table 4.

The buck converter output voltage is set to $VDDB_{NOM} = 8 V$. The selection corresponds to the gate driver charge pump supply voltage selection of PVCC = 15 V. The linear regulator is set to operate at DVDD = 5 V which is used to supply the XMC1404 microcontroller with the onboard peripherals (CAN transceiver), as well as the offboard units like the throttle potentiometer or torque sensor, motor hall sensors etc.

Table 4Configuration of the regulators

Parameter/feature	Value	Register set
VDDB _{NOM} - Buck converter output target voltage	8 V	PVCC_SETPT=b'0x
PVCC - GD supply voltage	15 V	Bitfield PVCC_SETPT = b'01
DVDD - uC supply voltage	5 V	bitfield DVDD_ST in register FUNCT_ST
Linear Regulator OCP (DVDD)	450 mA	DVDD_OCP_CFG = b'00

The DVDD output voltage is set by an external resistor R111 which at $R = 10 \text{ k}\Omega$ selects the 5 V output setting at IC start-up. Alternatively, the setting can be set via the SPI interface.

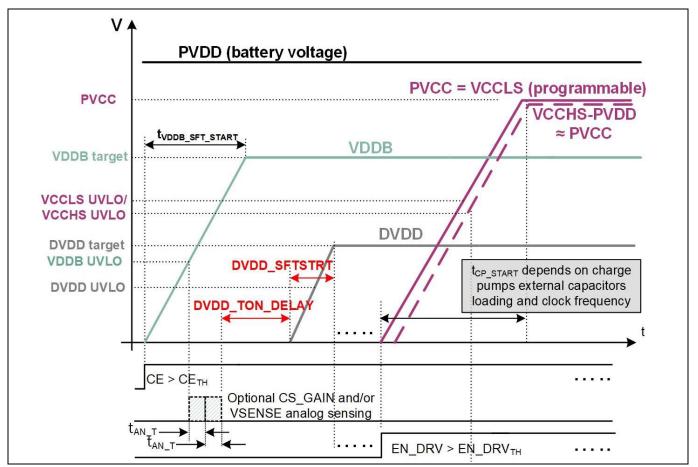
The following protections are implemented to ensure correct operation of the buck converter:

- Output UVLO
- Output overvoltage lockout (OVLO)

User guide

• OCP, cycle by cycle.

In a situation in which the current exceeds the OCP level, the buck converter controller terminates the high-side gate drive pulse until the start of the next PWM period. The low-side operates accordingly after insertion of the dead time.


Once the OCP event takes place, a counter increments each consecutive period that the peak current is reached. After 16 switching cycles, the buck OCP fault is triggered and the nFAULT pin is set low to signal the MCU. The buck converter will continue operation in current limitation to ensure the MCU remains powered. If the OCP is not triggered for three consecutive PWM periods, the counter resets.

DVDD OCP can be configured between four different levels: 50 mA, 150 mA, 300 mA, or 450 mA, with 450 mA being the default value. If the OCP level is reached a fault is reported through the nFAULT pin.

4.1.2 Power supply start-up – system ignition

6EDL7151 is activated via the chip-enable (CE) pin which controls the start-up of the power supply system, given a steady battery supply voltage (PVDD). Figure 46 shows the ramp up of buck converter voltage once CE voltage goes above V_{CE_TH_R} value.

Soft-start for the buck converter is automatically implemented using an integrated DAC for generating the target reference. Once VDDB has reached its UVLO voltage, the analog programming starts. This initiates a period of t_{AN_T} duration in which the external resistors in CS_GAIN/AZ and VSENSE/nBRAKE pins are read internally. The analog programming of these two functions can be disabled by the user via OTP programming. Therefore, reducing the start-up time.

In the REF_48V_270W_EBIKE, the CE pin can be used as an ignition switch. The IGNITION_VDD and IGNITION_IN signals connected through the X01 small signal interface header, to be connected to a key ignition switch. When the switch connects the two signals the CE is pulled up. Figure 47 shows the circuitry that protects the CE input.

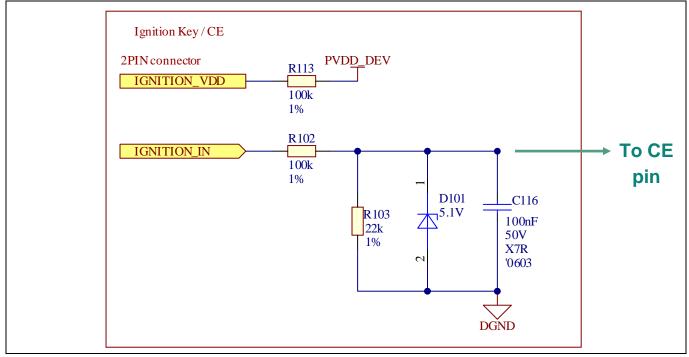


Figure 47 Chip enable external switch connection

4.1.3 Charge pumps – gate driver supply

The high- and low-side gate driver charge pumps are based on switched capacitor circuits that operate at a determined switching frequency. Selection from one of four frequencies, 781.3 kHz, 390.6 kHz, 195.3 kHz, and 1.56 MHz, allows flexibility for EMC optimization, with 1.56 MHz being the default setting used in REF_48V_270W_EBIKE. Another useful feature in reducing the EMI impact of the charge pump is the spread spectrum feature, which can also be enabled and disabled via the GUI. This function is enabled by default to provide a frequency variation into the charge pump clock signal in order to distribute emissions over a wider frequency range, thereby reducing peaks.

The selection of charge pump flying capacitors C102 and C103 are set at 220 nF and the tank capacitors C115 and C117 are set to 2.2 μ F. 6EDL7151 provides pre-charging of the charge pump output capacitors (C115 and C117) to a voltage just below the buck converter output voltage (VDDB) before the EN_DRV pin is activated. In this way, the charge pump start-up time and therefore the system start-up time are reduced. In this case, when EN_DRV is activated by the microcontroller to enable the gate driver stage, the charge pumps need only to ramp up the voltage from the existing pre-charge voltage to the selected target value. Pre-charge is disabled by default and can be enabled via the GUI.

The start-up time for the charge pumps, defined as the time that the gate drive supply voltages require to get to the target programmed voltage, depends on several factors:

- Target voltage: Higher the value, the longer the start-up time for the gate drivers.
- Charge pump clock frequency: Higher clock frequency results in faster start-up time.
- Charge pump tank capacitor values: Smaller value results in faster ramp-up time but higher ripple.

• Charge pump flying capacitors: Smaller capacitors lead to slower start-up time.

The gate drive voltages can be set to different levels, including 7 V, 10 V, 12 V, and 15 V. One benefit of the charge pumps is that voltage levels can be maintained even if the battery voltage drops to a lower level, allowing standard/normal gate-level MOSFETs to be used.

In REF_48V_270W_EBIKE, 15 V is used by default as the gate drive voltage.

4.1.4 Gate driver settings and electromagnetic compatibility (EMC)

The high- and low-side gate drivers allow operation over the full duty-cycle range up to 100 percent.

Control of the drain-source rise and fall times is one of the most important parameters for optimizing drive systems, affecting critical factors such as switching losses, dead-time optimization and drain voltage ringing that can lead to possible MOSFET avalanching. Correct configuration of the gate drive also helps to minimize EMI emissions.

The SPI accessible registers allow the designer to configure the gate driver current and corresponding timings described in this chapter. 6EDL7151 gate driver sets the gate currents without the need for any external gate drive components. Figure 48 shows the definition of the relevant timeframes and gate currents to be set. The exemplary charges refer to the IQE050N08NM5SC MOSFET.

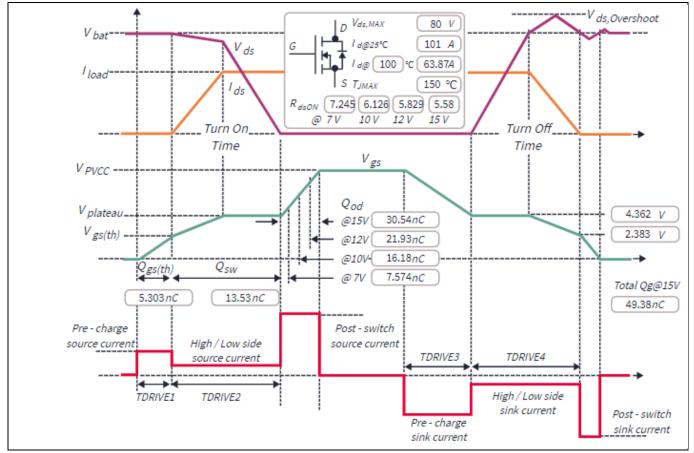


Figure 48 Settable gate driver parameters definitions

Turn ON

When the input signal from the microcontroller transitions from low to high, the gate driver switch-on sequence is triggered. The gate drive output first applies a constant current defined by the user-programmable value User guide 40 V 1.0

 I_{PRE_SRC} (Pre-charge source current) for a time defined by T_{DRIVE1} , at the end of which the MOSFET gate voltage should ideally have reached threshold voltage $V_{GS(TH)}$. However, to accommodate for the MOSFET gate charge tolerances should be set lower accordingly.

The current applied during TDRIVE2 determines both dID/dt and dVDS/dt of the MOSFETs, as it will supply the current to charge the QSW of the MOSFET being driven.

Once the T_{DRIVE2} period has elapsed, the gate driver applies full current (1.5 A) to ensure the fastest full turn-on of the MOSFET by supplying the remaining charge required to raise V_{GS} to the programmed PVCC value ($Q_{OD} = Q_G - Q_{SW} - Q_{G(TH)}$).

It is also possible to skip the pre-charge period TDRIVE1 by setting TDRIVE1 = Ons. This is used in REF_48V_270W_EBIKE due to relatively small MOSFETs, in order to cope easier with the tolerances of the consequently small gate charges. The pre-charge is also omitted at turn OFF.

Turn OFF

A similar process takes place during the switch-off of the MOSFET, in which the parameters T_{DRIVE3} and T_{DRIVE4} determine the periods for which the corresponding programmed discharge currents (I_{PRE_SNK}, I_{HS_SNK}, and I_{LS_SNK}) are applied, as indicated in Figure 48. After the T_{DRIVE4} the gate driver applies the full discharge current (1.5 A) to fully discharge the gate and prevent an unwanted induced turn ON that could occur during turn ON of the complementary MOSFET.

Table 5 shows the default settings used in REF_48V_270W_EBIKE. The settings have been adapted to the requirements of EMC standard CISPR 14, used to measure radiated electromagnetic emissions of the board without the final enclosure (bike frame).

Parameter	Description	Value	Unit
T _{ON}	Turn ON time	275	ns
T _{off}	Turn OFF time	190	ns
I _{PRE_SRC}	Pre-charge current value for switching ON both high- and low- side	Not used	
I _{HS_SRC}	Source current value for switching ON high-side MOSFETs	40	mA
I _{LS_SRC}	Current value for switching ON low-side MOSFETs	40	mA
T _{DRIVE1}	Amount of time that IPRE_SRC is applied. Shared configuration between high and low.	0	ns
T _{DRIVE2}	Amount of time that IHS_SRC and ILS_SRC are applied. Shared configuration between high-side and low-side drivers.		ns
I _{PRE_SNK}	Pre-charge current value for switching OFF both high- and low-side	Not used	
Hs_snk	Sink current value for switching OFF high-side MOSFETs	60	mA
I _{LS_SNK}	Current value for switching OFF low-side MOSFETs	60	mA
T _{drive3}	Amount of time that IPRE_SNK is applied. Shared configuration between high- and low-side drivers.		ns
T _{DRIVE4}	Amount of time that IHS_SINK and ILS_SINK and are applied. Shared configuration between high-side and low-side drivers.		ns
T_{DT_rising}	Dead time at turn ON	840	ns
$T_{DT_{falling}}$	Dead time at turn OFF	840	ns

Table 5 REF_48V_270W_EBIKE gate driver settings

The resulting gate charge and discharge waveforms are shown in Figure 49, Figure 51, Figure 51, and Figure 52, at phase currents of 5 A and 10 A. The difference in turn-on and turn-off times with regard to phase current is negligible, as can be seen in the comparison of the 5 A vs 10 A waveforms. The deadtime was selected in accordance with the switching waveforms.

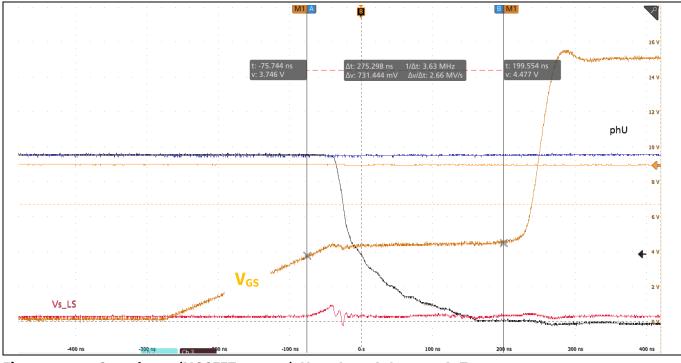


Figure 49 Gate charge (MOSFET turn-on), V_{GS} at $I_U = 5 A$, $I_G = 40 \text{ mA}$, $T_{ON} = 275 \text{ ns}$

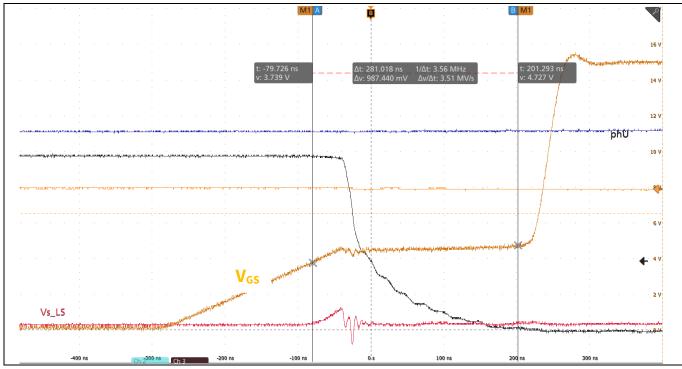


Figure 50 Gate charge (MOSFET turn-on), V_{GS} at $I_U = 10 \text{ A}$, 40 mA, $T_{ON} = 281 \text{ ns}$

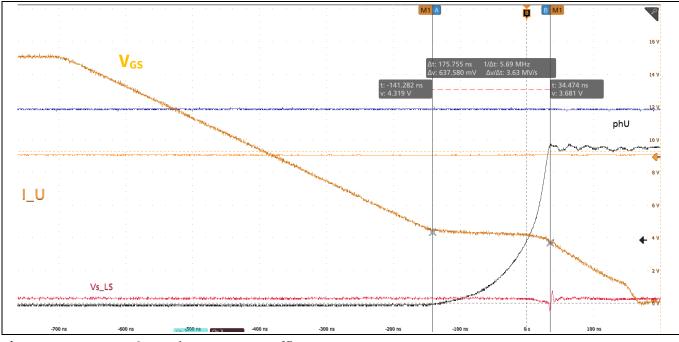


Figure 51 Gate charge (MOSFET turn-off), V_{GS} at $I_U = 5 A$, 60 mA, $T_{OFF} = 175 ns$



Figure 52 Gate charge (MOSFET turn-off), V_{GS} at $I_U = 10 A$, 60 mA, $T_{OFF} = 175 ns$

Figure 53 shows the resulting EMI measurement according to CISPR 14 with the corresponding limit line marked in the graph. As mentioned, the gate drive settings had been set so to pass the standard. All performance tests in this document have been performed with the gate driver settings defined in Table 5.

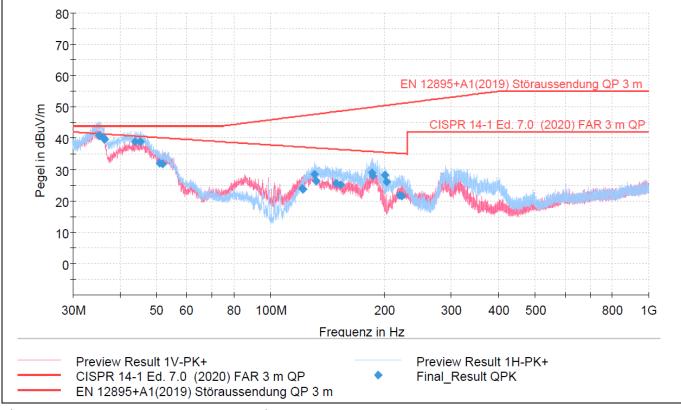


Figure 53 EMC measurement according to CISPR 14

4.1.5 Current sense amplifiers

The current is sensed via three shunt resistors in the lower leg of the half-bridge and amplified via 6EDL7151 integrated current sense amplifiers. The resistors used are 5 m Ω shunt resistors: BVT-I-R005-1.0. Therefore, the triple shunt mode is used, which means all three current sense amplifiers are enabled.

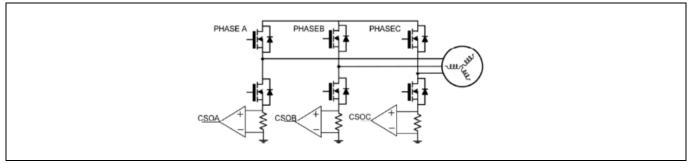


Figure 54 Triple shunt current sensing configuration

When current is sampled via leg shunts, the voltage in the shunt that needs to be amplified appears only when the low side MOSFET is turned on. Amplifier timing mode "GL ON" sets the amplifier functionality so that the CSOx pin is connected to the amplifier only when the same leg or phase GLx signal is active.

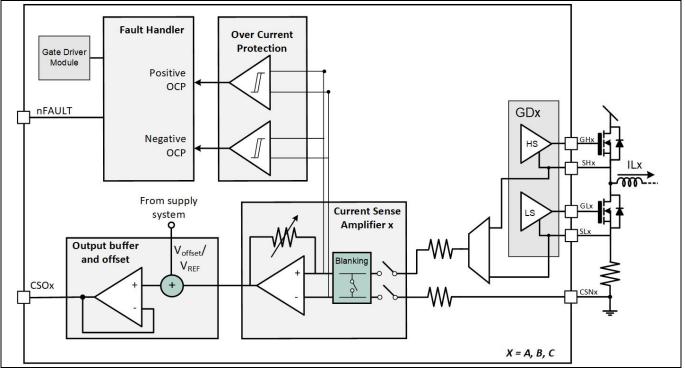


Figure 55 Current sense amplifier – simplified block diagram (source: 6EDL7151 datasheet)

Current sense amplifier gain selection

The closed loop gain G_{CS} of the internal amplifiers is configured either via resistor R109 (i.e. R_{CS_GAIN} in the datasheet), or SPI.

Considering the range of measured output currents, the gain $G_{cs} = 64$ is set by default. The resistor R109 = 11 k Ω , is provided in order to set the default gain at the initiation of the IC. The setting might typically be overridden via SPI settings in order to adapt to the specific system requirements according to the motor being used.

Output buffer offset voltage

The output buffer allows adding a variable-offset voltage to the sense amplifier output. The offset amount can be set to four different values by programming the internally generated level. With this implementation, the negative current in current shunts can be measured.

4.2 Microcontroller XMC1404

The XMC1400 series devices are optimized for motor control, power conversion, and LED Lighting applications and human machine interface (HMI).

Figure 56 PG-VQFN-64 package

The XMC1404-Q064X0200 AA in the PG-VQFN-64 package is a 32-bit Microcontroller with Arm[®] Cortex[®]-M0 with a focus on low-cost embedded control applications.

The microcontroller is used to interpret the incoming control and feedback signals and provide the 3-phase PWM signals to 6EDL7151 gate driver, as well as to provide the interface for 6EDL7151 parameter settings programmed via the SPI connection, by connecting to the PC via the XMC[™] Link programmer/debugger.

Connected device/peripheral	Signal name	PCB – signal name	Signal type (XMC™ side)	XMC™ peripheral unit	Channel of XMC™ peripheral	XMC1404 port/PIN
Debugger	DBG0	SWDIO/TMS	D_I/O	-	-	P0.14
	DBG1	SWDCLK/TCK	D_I	-	-	P0.15
6EDL7151/GD	GD_UH	INHA	D_O	CCU80	CCU80.OUT10	P3.3
digital control	GD_UL	INLA	D_O	CCU80	CCU80.OUT11	P3.2
	GD_VH	INHB	D_O	CCU80	CCU80.OUT20	P3.1
	GD_VL	INLB	D_O	CCU80	CCU80.OUT21	P3.0
	GD_WH	INHC	D_O	CCU80	CCU80.OUT00	P1.0
	GD_WL	INLC	D_O	CCU80	CCU80.OUT01	P1.1
6EDL7151/SPI	SDI	MOSI	D_O	USIC	-	P0.0
	SDO	MISO	D_I	USIC	-	P0.1
	SCLK	SCLK	D_O	USIC	-	P0.3
	SCS_N	NSCS	D_O	USIC	-	P0.4
6EDL7151/current sense amplifiers output	V_ADC(I_u)	A_CSOA	A_I	VADC0	VADC0.G0CH4	P2.11
	V_ADC(I_v)	A_CSOB	A_I	VADC0	VADC0.G0CH3	P2.10
	V_ADC(I_w)	A_CSOC	A_I	VADC0	VADC0.G0CH2	P2.9

Table 6	Microcontroller pinout and peripheral usage in REF_48V_270W_EBIKE
---------	---

Connected device/peripheral	Signal name	PCB – signal name	Signal type (XMC™ side)	XMC™ peripheral unit	Channel of XMC™ peripheral	XMC1404 port/PIN
6EDL7151/current sense amplifier gain / Auto-Zero	CS_GAIN/AZ	XMC_CS_GAI N	D_0	GPIO	P1.2	P1.2
6EDL7151/driver	DRV_EN_1	XMC_EN_DRV	D_O	GPIO	P0.7	P0.7
enable	DRV_EN_2	XMC_EN_DRV _CLK	D_O	GPIO (Or CCU41)	P4.6 (or CCU41.OUT2)	P4.6
6EDL7151/nBRAK E	VSENSE/ nBRAKE	XMC_nBRAKE	D_O	GPIO	P1.3	P1.3
nFAULT - CTRAP0	nFAULT	nFAULT	D_I	ERU		P0.12
Hall sensors	Hall A	Hall_0	D_I	POSIF1	POSIF1.IN0B	P4.1
	Hall B	Hall_1	D_I	POSIF1	POSIF1.IN1B	P4.2
	Hall C	Hall_2	D_I	POSIF1	POSIF1.IN2B	P4.3
CAN transceiver	RXD	D_CANRX	D_I	CAN1	RXDC	P4.8
	TXD	D_CANTX	D_O	CAN1	TXD(C)	P4.9
	NEN	D_NEN	D_O	GPIO	P4.10	P4.10
	NRM	D_NRM	D_O	GPIO	P4.11	P4.11
Analog inputs - Control	V_throttle pot.	A_THROT	A_I	VADC	G1CH7	P2.5
	V_brake switch	A_BRAKE	A_I	VADC	G0CH0	P2.6
Analog inputs -	T_MOTOR	A_TMOTOR	A_I	VADC	G0CH7	P2.2
Sensors	T_HB1	A_THB1	A_I	VADC	G1CH6	P2.4
	V_DC_link	A_VDC	A_I	VADC0.G1CH5	G1CH5	P2.3

The X401 header provides the interface to the XMC[™] Link programmer/debugger.



Figure 57 XMC1404 microcontroller debug interface

Figure 58 XMC[™] Link connection

4.3 **Power output stage**

The topology of each of the 3-phase power outputs is a half bridge consisting of a high-side and a low-side power MOSFET, and a current sensing shunt resistor in the leg of the half-bridge (the low-side MOSFET source node) as shown in Figure 59.

The triple-shunt current sensing configuration is implemented in the REF_48V_270W_EBIKE, meaning that shunts are provided and used for current measurements at all three half-bridges.

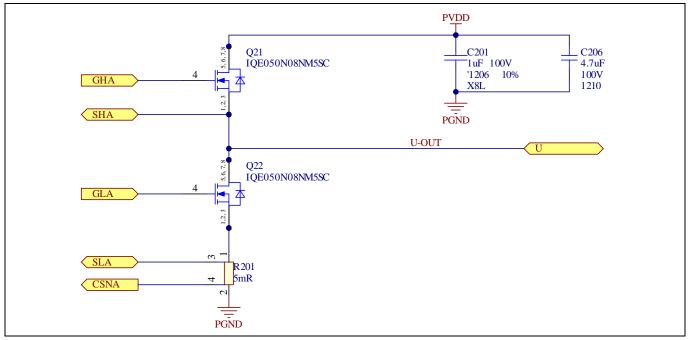


Figure 59 Power half-bridge - phase U

Kelvin connections are implemented for sensing the shunt voltage, as is supported by 6EDL7151. At the same time the gate driver connection to the low side MOSFET source, and the source node kelvin connection of the shunt, share the same PCB trace since the same IC pin is used. This method is made possible by the principle of sampling current only at the middle of the PWM cycles, so that the measurement is not affected by the interfering signals introduced during MOSFET switching.

4.3.1 Power MOSFET – IQE050N08NM5SC

MOSFET features:

- N-channel, normal level
- OptiMOS[™] 5 Power MOSFET
- V_{(BR)DSS} = 80 V
- R_{DS(on),max} = 5.0 mΩ
- PQFN 3.3x3.3 / PG-WHSON-8 top-side cooled package

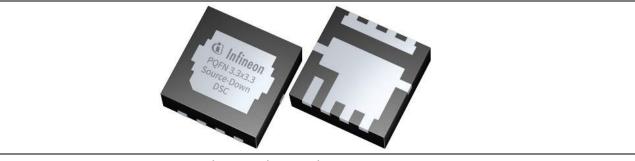


Figure 60 PQFN 3.3x3.3 package with top-side cooling

The IQE050N08NM5SC is a normal level N-channel power MOSFET, in a small 3.3 mm x 3.3 mm package. The package has a source down connection and a thermal tab making it suitable for top-side cooling.

The $R_{DS(on),max}$ of 5 m Ω is a maximum rated value at conditions of: $V_{GS} = 10 \text{ V}$, $I_D = 20 \text{ A}$. However, the V_{GS} can be further increased since it is rated up to 20 V. The REF_48V_270W_EBIKE uses $V_{GS} = 15 \text{ V}$ to drive the MOSFET gates. This V_{GS} further reduces the $R_{DS(on)}$ (see Figure 61) and thus reduces the conduction losses during operation.

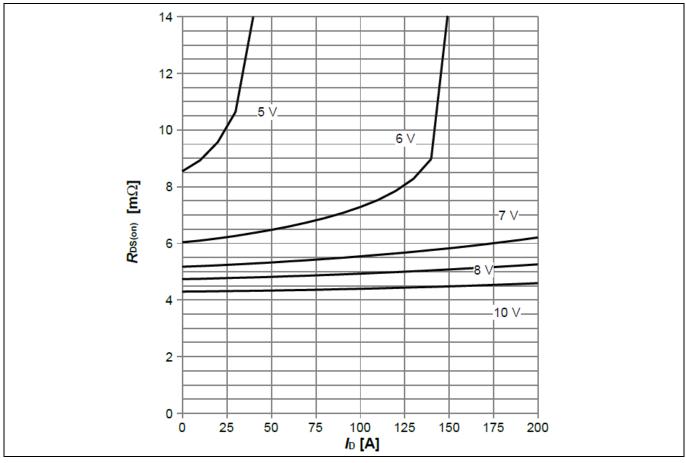


Figure 61 Typical drain-source on resistance of IQE050N08NM5SC

4.3.2 Layout

Top-side cooling is utilized by populating the MOSFETs on the bottom side of the PCB, facing the heatsink. The MOSFETs are pressed against the heatsink with the addition of a thermal interface material (TIM) pad which ensures a good thermal transfer and also provides the electrical insulation between the thermal pad and the heatsink.

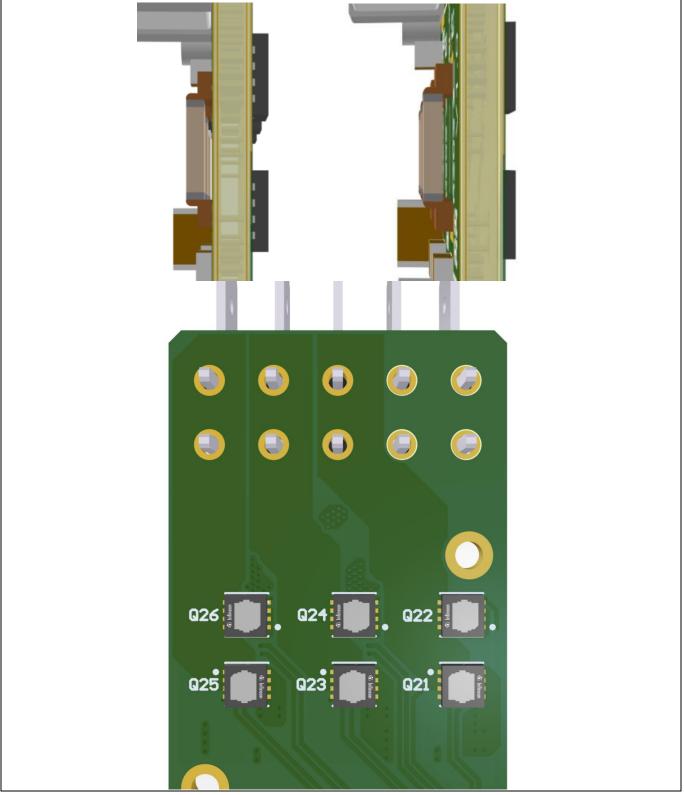


Figure 62 Layout of the power half-bridges

The power half-bridges are constructed in a way that the two MOSFETs are located on the opposite side of the board from the shunt resistors as can be seen in Figure 62 This way the loop inductance of the half bridge can be kept to a minimum, which reduces overshoots during switching. Reduced overshoot behavior leads to

further performance improvements in EMI behavior and may also reduce the necessary overhead of the MOSFET breakdown voltage, so that lower $R_{DS(on)}$ can be used.

4.4 Interconnections

Power and small signal connections are located on the opposite sides of the REF_48V_270W_EBIKE PCB. In Figure 63, the power connections – X02 are visible on the right and the small signal connector X01 is on the left side of the board. This section explains the connections necessary for operation.

Figure 63 REF_48V_270W_EBIKE with X01 and X02 harnesses connected

- Attention: When connecting a laboratory power supply, it is necessary to make the connections before powering up the supply unit in order to utilize the power supply's soft start, thus preventing excessive inrush current that can damage the onboard capacitors or cause destructive overshoots.
- Attention: When connecting to a battery, it is necessary to establish the connection using a pre-charge circuit (e.g., resistor, thus preventing excessive inrush current that can damage the onboard capacitors or cause destructive overshoots.

4.4.1 **Power connection**

X02 is a 5-pin blade connector used for the power/high current connections. This connector provides the connection (pin 5 and pin 4) for the main DC power supply or battery used to power the board. Pins 1, 2, and 3 connect to the motor phases U, V, and W.

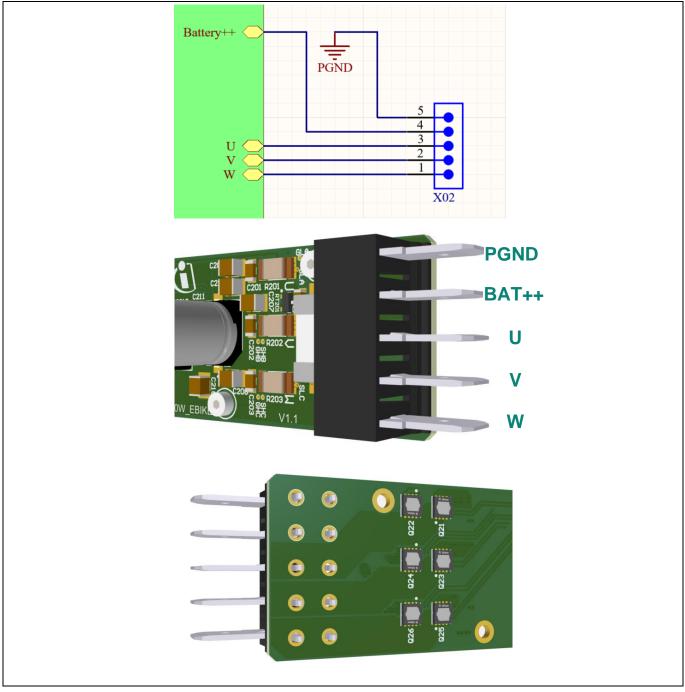
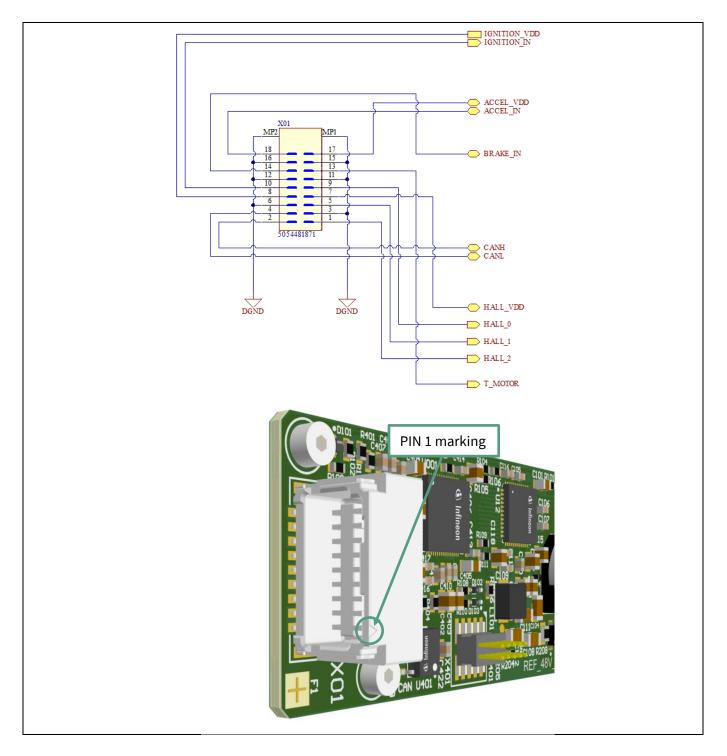


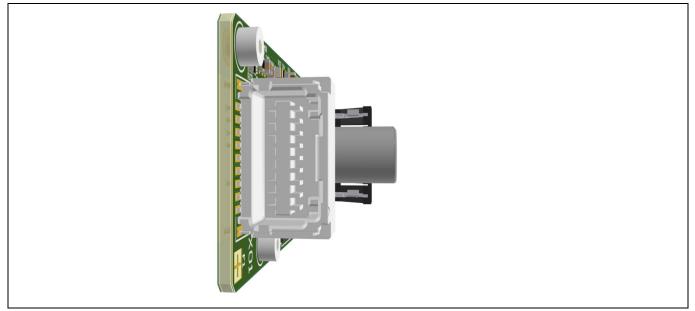
Table 7 shows the pinout as is indicated in Figure 64.

Table 7	X02 – power connections
---------	-------------------------

Signal name	Pin number	Description
PGND	5	Power supply GND or battery "-" power connection
Battery ++	4	Power supply or battery "+" power connection
Motor Phase U	3	Motor phase "U" power connection
Motor Phase V	2	Motor phase "V" power connection



Signal name	Pin number	Description
Motor Phase W	1	Motor phase "W" power connection


4.4.2 Small signal and interface connection

The small signal connector X01 (Molex 505448-1871) with its cable harness counterpart (Molex 505432-1801) provides the necessary motor feedback and system interface connections. The pinout pattern in the schematics represents the physical orientation of the pins as seen from the board front indicated in Figure 65 (the triangle notch indicates pin 1).

The pinout is described in Table 8. The GND connections on the board are connected to a single ground copper plane, however their functionality is assigned accordingly in Table 8, since the individual signals will typically fan out to various locations on the e-Bike.

Signal name	Pin number	Description	
IGNITION_VDD	8	Connect to IGNITION_IN to power up the board	
IGNITION_IN	10	Chip enable of 6EDL7151 – connect to IGNITION_VDD to power up board	
ACCEL_VDD	17	Supply for accelerator control (potentiometer or a pedaling torque sensor/strain gauge)	
ACCEL_IN	18	Accelerator control analog input	
ACCEL_GND	16	GND for accelerator control	
BRAKE_IN	14	Brake sensor analog input	
BRAKE_GND	12	GND for brake sensor	
T_MOTOR	13	Motor temperature sensor analog input with internal pull-up resistor	
T_MOTOR_GND	11	GND for motor temperature sensor	
HALL_VDD	7	Supply for motor hall position sensors	
HALL_0	9	Motor hall position sensor "0" input	
HALL_1	5	Motor hall position sensor "1" input	
HALL_2	1	Motor hall position sensor "2" input	
HALL_GND	3	GND for motor hall position sensors	
CANH	2	CAN-High line	
CANL	4	CAN-Low line	
CAN_GND	6	GND reference for CAN bus	

Table 8	X01 - small signal connector
---------	------------------------------

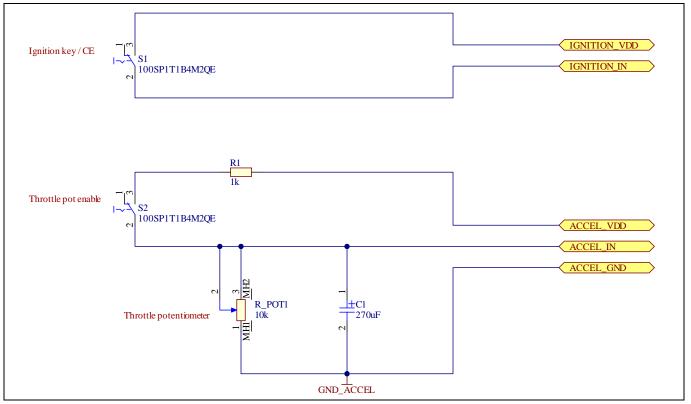


Figure 66 Example of a test setup control board

A minimal test board required to power up and run the REF_48V_270W_EBIKE board is shown in Figure 66. The connections on the right side of the schematic indicate the signals of the REF_48V_270W_EBIKE X01 connector.

After connecting the battery or power supply, switch S1 enables 6EDL7151 IC by connecting the "ignition" pins. The S2 switch activates the accelerator potentiometer by connecting it to the peripheral 5 V supply. When disconnected by S2, the accelerator potentiometer pulls the "ACCEL_IN" signal to 0 V. The C1 capacitor is provided to slow down the switching transitions.

4.4.3 Connection of the XMC[™] Link programmer/debugger

In order to flash the firmware, or connect the board to the PC to use the GUI for REF_48V_270W_EBIKE, the XMC[™] Link programmer/debugger connects to the header X401.

The smaller ribbon header with a 50mil pitch header connector is used. The red wire indicates a pin 1 polarity of the cable as shown in Figure 67.

Figure 67 Connection of the XMC[™] Link to X401

4.5 Heatsink and M2 screw threading

The REF_48V_270W_EBIKE is provided with a semi-cylindrical heatsink, adapted to the proposed implementation inside a bicycle frame tube as shown in Figure 71.

The heatsink is made from anodized aluminum, and accommodates a tube with an inner diameter of 30 mm. For a different tube installation, the heatsink dimensions would need to be adjusted. The dimensions of the threaded holes are indicated in Figure 68 and Figure 69.

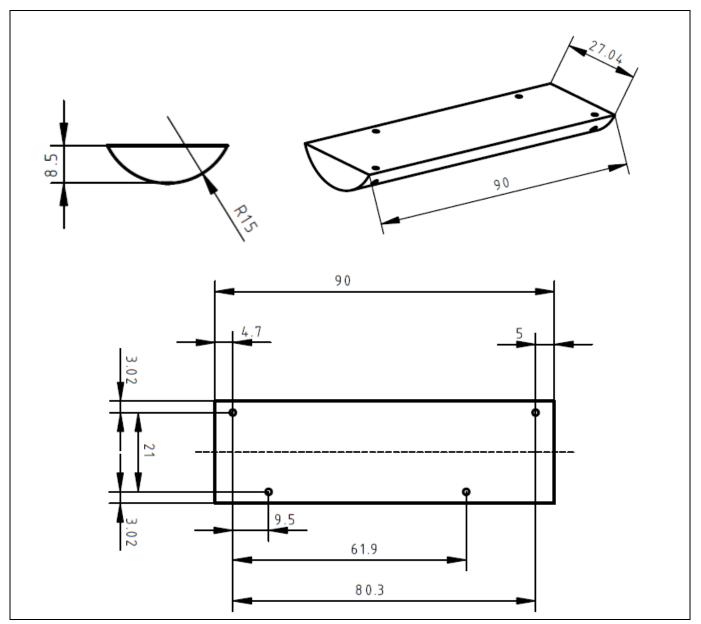


Figure 68 Heatsink drawing with M2 threaded holes indicated

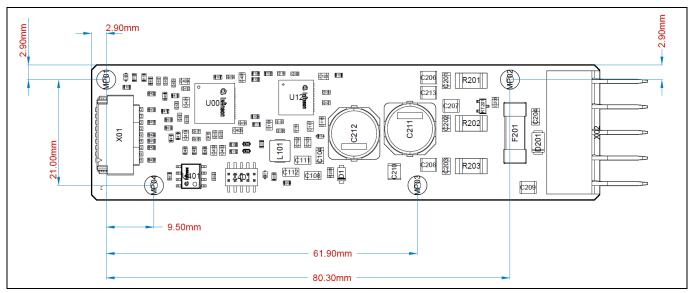


Figure 69 PCB mounting screws pattern drawing (M2 threading)

In order to accommodate for the MOSFET package thickness and the thermal pad thickness, the board standoff from the heatsink is achieved by 1 mm thick spacers (nylon washers), thus achieving the correct compression of the TIM pad.

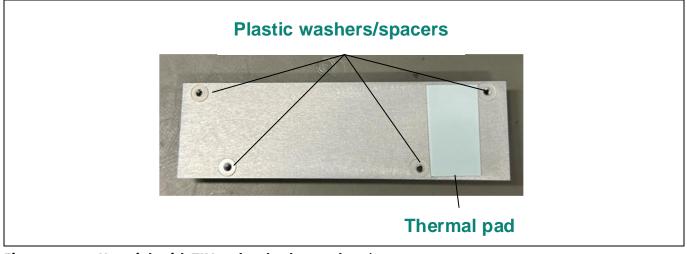


Figure 70Heatsink with TIM pad and nylon washers/spacers

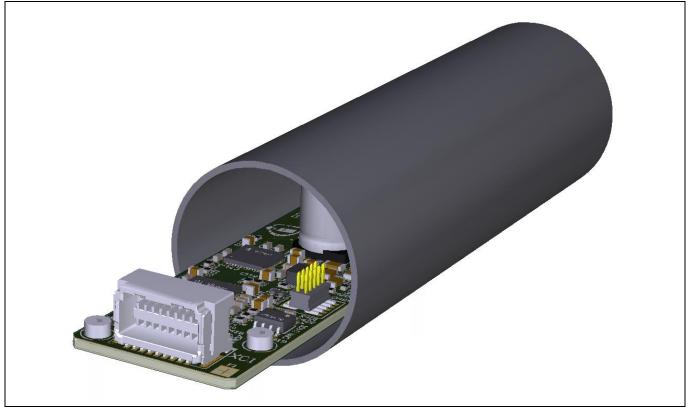


Figure 71 Example implementation inside a cylinder/tube (internal diameter = 30 mm)

5 Test results

The following tests have been conducted on various setups and various operating conditions as described.

5.1 Phase current sine wave

The initial test aims to show the general shape of the phase currents at a considerable load. The conditions are listed in Table 9.

Condition	Description	Value
Motor	Motor used	QBL5704-116-04-042
V_DC	Supply Voltage	48 V
v_m	Motor rotational speed	2570 RPM
f_el	Electrical frequency of the motor	171 Hz
P_IN	DC supply power/input power of the board	265 W
P_OUT	AC output power of the board	255 W
I_OUT	Phase output current	9.76 A _{RMS}

Table 9Conditions - phase currents sine wave

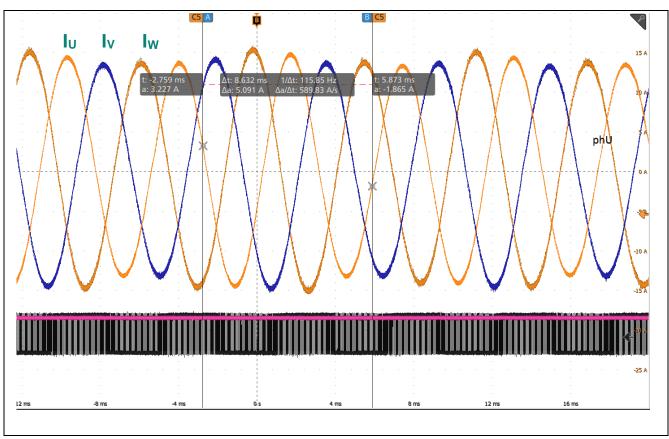


Figure 72 Three phase currents I_{U} , I_{V} , I_{W} , and $U_{PWM_{-U}}$

5.2 Continuous power

In the continuous power test, the main observation is focused on the temperature of individual parts of the system while driving the system at the rated output power. In particular the main focus is the temperature of the power MOSFETs and the shunt resistors, since these components are primarily exhibiting increased power dissipation corresponding to increase of output power. The graph in Figure 73 shows the temperature plots of two of the half bridge temperatures T_{HBU} and T_{HBW} settling near 80°C after 20 mins of operation in the operating point described in Table 10. The temperatures of half bridges are measured via thermocouple sensors placed between the high-side and low-side MOSFET of an individual half-bridge on the bottom side of the PCB. Figure 74 shows the thermal image of the maximum temperatures of the top of the PCB, right before the power cut-off at 20 mins of operation.

Condition	Description	Value
Motor	Motor used	MY1020D
V_DC	Supply Voltage	48 V
T_a	Ambient temperature	25°C
v_m	Motor rotational speed	2650 RPM
τ_m	Motor load torque	0.66 Nm
f_el	Electrical frequency of the motor	133 Hz
P_IN	DC supply power / input power of the board	284 W
I_IN	DC supply current	6 A
P_OUT	AC output power of the board	257 W
I_OUT	Phase output current	11 A _{RMS}

Table 10Conditions - continuous power

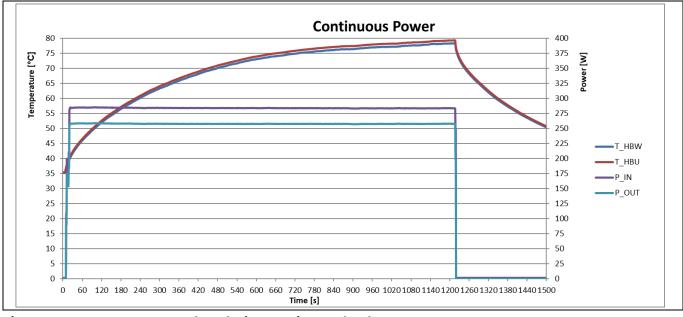


Figure 73 Temperature plots during continuous load

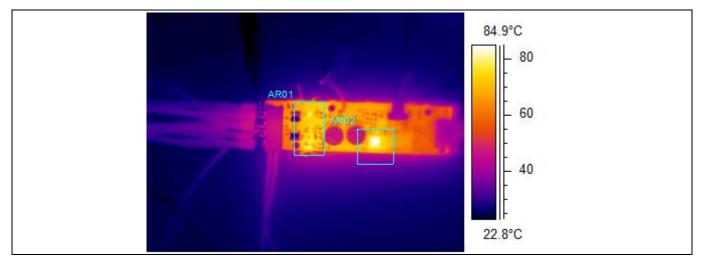


Figure 74 Thermal image of the board top-side – AR01: Shunt resistors; AR02: 6EDL7151

5.3 Peak power

A similar test is performed to check for the maximum/peak power or output current condition that the board can withstand for a limited period of time. The conditions are shown in Table 11. The input and output current waveforms are shown in Figure 76.

Condition	Description	Value MY1020D	
Motor	Motor used		
V_DC	Supply Voltage	48 V	
T_a	Ambient temperature	25°C	
v_m	Motor rotational speed	3120 RPM	
τ_m	Motor load torque	2.87 Nm	
f_el	Electrical frequency of the motor	156 Hz	
P_IN	DC supply power / input power of the board	1100 W	
I_IN	DC supply current	23 A	
I_OUT	Phase output current 29 A _{RMS}		
P_m	Mechanical output power of the motor 939 W		
t_duration	Duration of applied peak power 2.5 min		

Table 11 Conditions – peak	power
----------------------------	-------

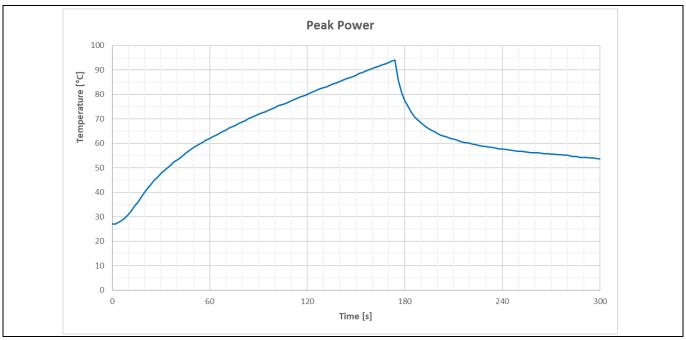


Figure 75 Half-bridge temperature plot at 1 kW

Figure 76 Supply current I_VDC and phase currents, I_U and I_V during peak power

5.4 Efficiency

The efficiency was measured with a load proportional to the motor speed. The result is shown in Figure 77.

Table 12Conditions - continuous

Condition	Description	Value
Motor Motor used QBL5704-116-04		QBL5704-116-04-042
Load	Motor used as break with resistive load	QBL5704-116-04-042
V_DC	Supply Voltage 48 V	
T_a	Ambient temperature 25°C	

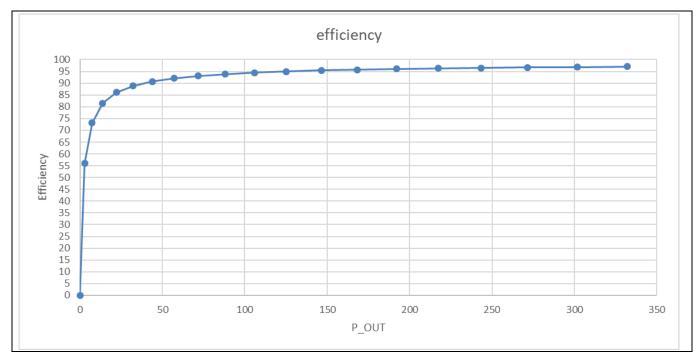


Figure 77 Efficiency vs. output power

5.5 Power limiting

As described in section 2.4.3, the output power can be limited and the limit is configurable. Figure 78 shows an example where the output limit is set to 200 W in Vq mode. Above the set limit, the throttle input no longer affects output power.

REF_48V_270W_EBIKE: Compact motor drive inverter for e-Bikes

Test results

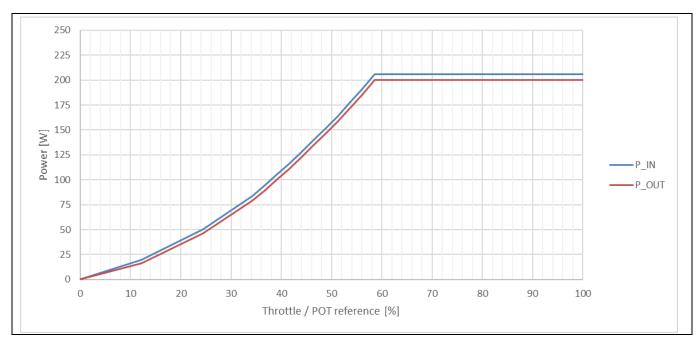


Figure 78 Output power limitation of 200 W

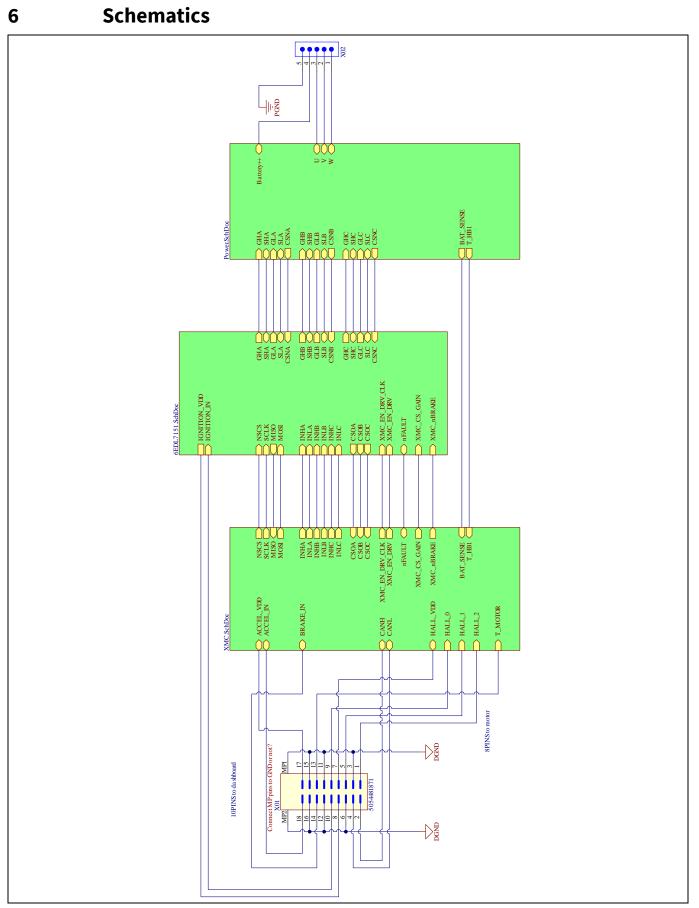
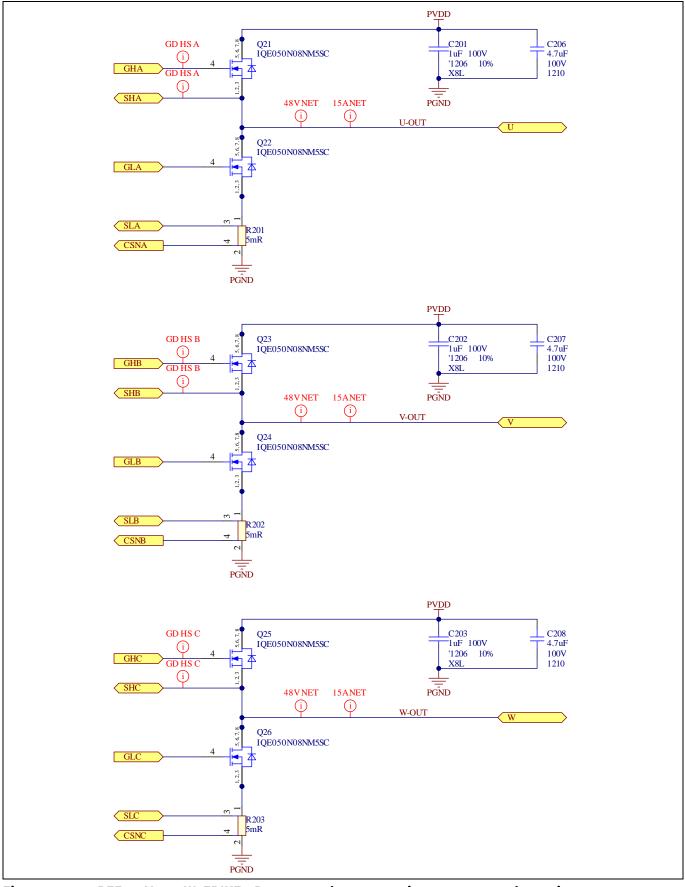



Figure 79 REF_48V_270W_EBIKE - Top-level schematic User guide 68

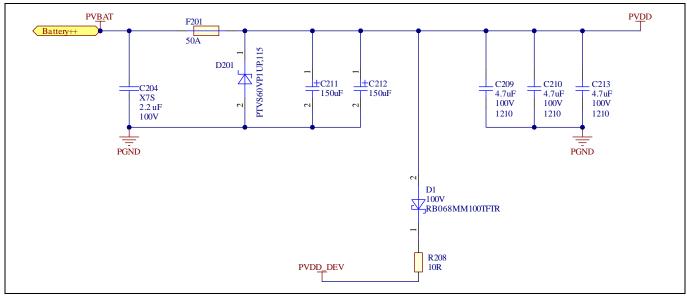
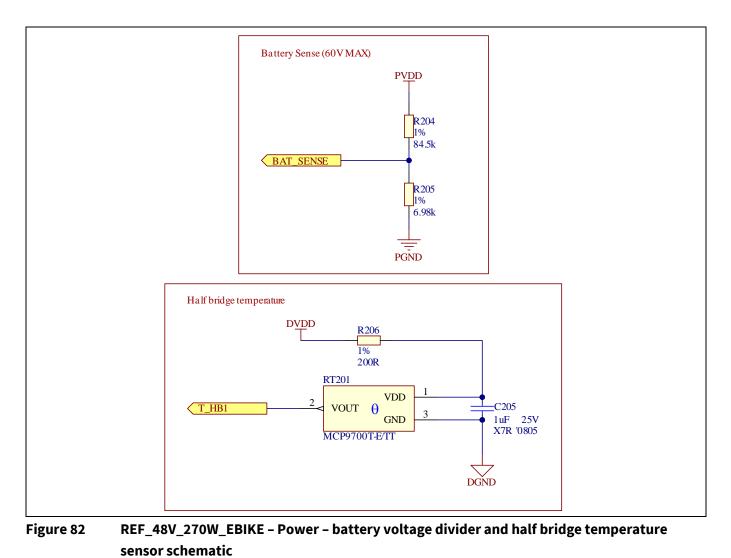
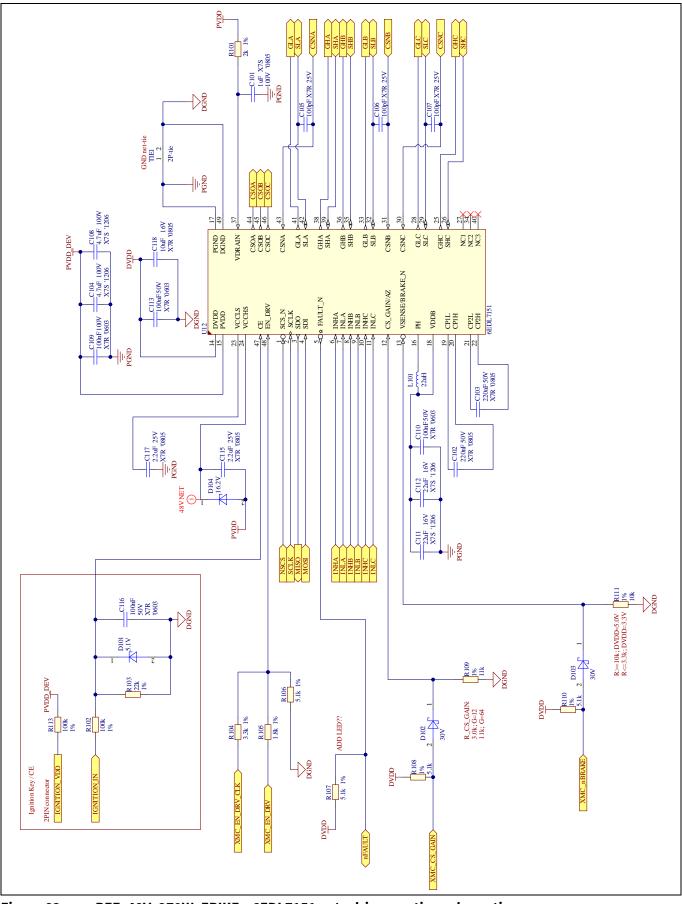




Figure 81 REF_48V_270W_EBIKE - Power - DC input section schematic

REF_48V_270W_EBIKE: Compact motor drive inverter for e-Bikes

Schematics

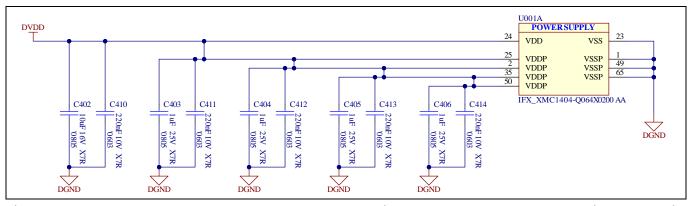


Figure 84

REF_48V_270W_EBIKE – XMC[™] – XMC1404 microcontroller power supply section schematic

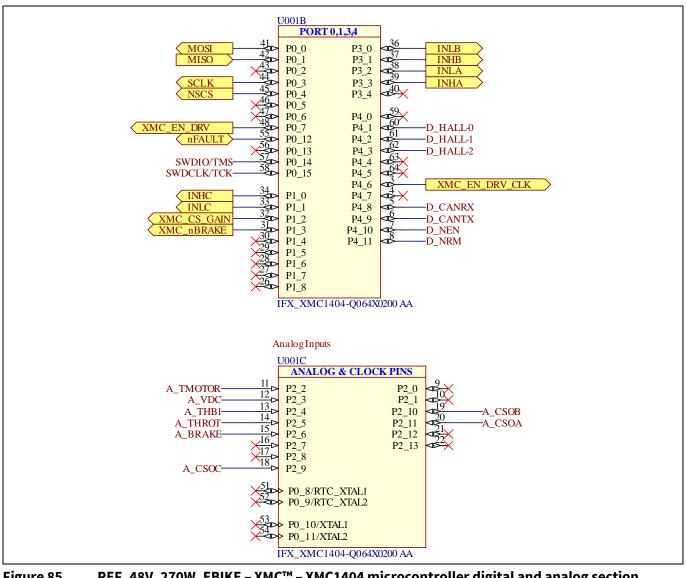


Figure 85 REF_48V_270W_EBIKE – XMC[™] – XMC1404 microcontroller digital and analog section schematic

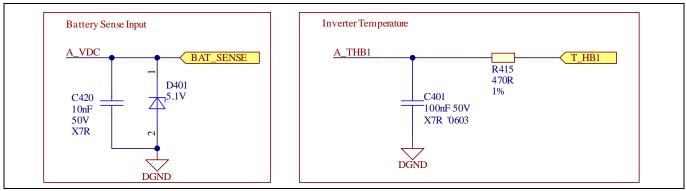


Figure 86

REF_48V_270W_EBIKE – XMC[™] – battery voltage and inverter temperature analog input protection and filtering schematic

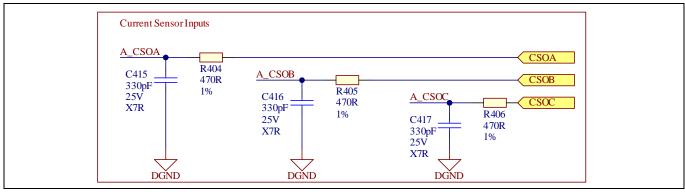
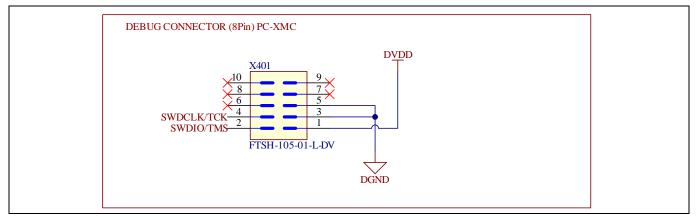
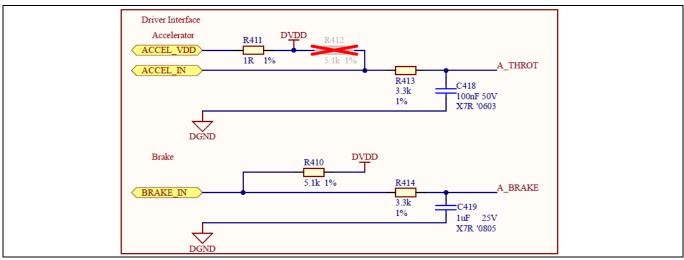




Figure 87 REF_48V_270W_EBIKE – XMC[™] – current sense input filtering schematic

e 89 REF_48V_270W_EBIKE – XMC[™] – throttle and brake analog input interface schematic

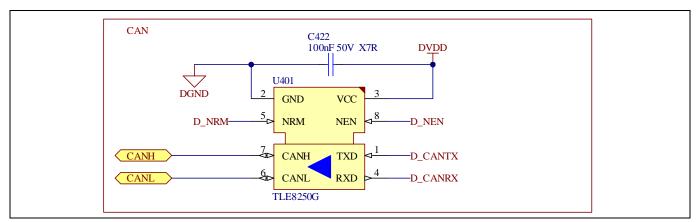


Figure 90 REF_48V_270W_EBIKE – XMC[™] – CAN transceiver TLE8250G schematic

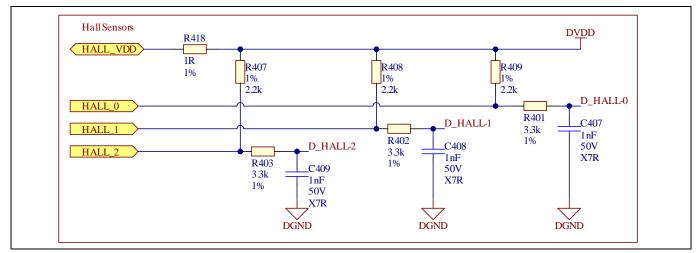


Figure 91 REF_48V_270W_EBIKE - XMC[™] - Hall sensor interface schematic

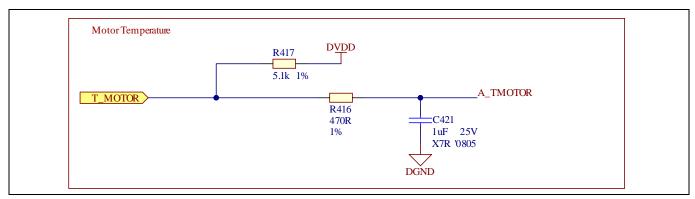


Figure 92 REF_48V_270W_EBIKE – XMC[™] – motor temperature sensor interface schematic

Bill of materials

7 Bill of materials

Table 13	Bill of materials - REF_	48V 270W EBIKE

Reference	Qty	Value/Rating	Manufacturer	Part number
C101	1	1 uF, 100 V, 10%, X7S, '0805	Murata	GCM21BC72A105 KE36L
C102, C103	2	220 nF, 50 V, 10%, X7R, '0805	KEMET	C0805C224K5RAC AUTO
C104, C108	2	4.7 uF, 100 V, 10%, X7S, '1206	Murata	GRM31CC72A475 KE11L
C105, C106, C107	3	100 pF, 25 V, 10%, X7R, '0603	KEMET	C0603C101K3GAC 7867
C109	1	100 nF, 100 V, 10%, X7R, '0603	Samsung Electro- Mechanics	CL10B104KC8NN NC
C110, C113, C116, C401, C418, C422	6	100 nF, 50 V, 10%, X7R, '0603	KYOCERA AVX	KAM15AR71H104 KM
C111, C112	2	22 uF, 16 V, 20%, X7S, '1206	Murata	GCM31CC71C226 ME36L
C115, C117	2	2.2 uF, 25 V, 10%, X7R, '0805	Samsung Electro- Mechanics	CL21B225KAFNN NG
C118, C402	2	10 uF, 16 V, 10%, X7R, '0805	TAIYO YUDEN	EMK212BB7106K G-T
C201, C202, C203	3	1 uF, 100 V, 10%, X8L, '1206	Murata	GCJ31CL8EL105K A07L
C204	1	2.2 uF, 100 V, 10%, X7S, C_1206_HD	TDK Corporation	C3216X7S2A225K 160AE
C205, C403, C404, C405, C406, C419, C421	7	1 uF, 25 V, 10%, X7R, '0805	Samsung Electro- Mechanics	CL21B105KAFNN NE
C206, C207, C208, C209, C210, C213	6	4.7 uF, 100 V, 10%, X8L, 1210	Murata	GCM32DL8EL475 KE07L
C211, C212	2	150 uF, 63 V, 20%, Aluminum electrolytic, 10.30 mm L X 10.30 mm W X 16.80 mm H	Panasonic	EEHZS1J151P
C407, C408, C409	3	1 nF, 50 V, 10%, X7R, '0603	KYOCERA AVX	KGM15AR71H102 KM
C410, C411, C412, C413, C414	5	220 nF, 10 V, 10%, X7R, '0603	KYOCERA AVX	0603ZC224KAT2A
C415, C416, C417	3	330 pF, 25 V, 10%, X7R, '0603	KYOCERA AVX	KGM15AR71E331 KT
C420	1	10 nF, 50 V, 10%, X7R, '0603	KYOCERA AVX	KGM15AR71H103 KT
D1	1	Schottky Diode, 100 V, 2 A	ROHM Semiconductors	RB068MM100TFT R
D101, D401	2	Zener Diode, 5.1 V, 500 mW	ON Semiconductor	MM5Z5V1T1G
D102, D103	2	Schottky Diode, 30 V	Infineon	BAS3005A-02V

Bill of materials

Reference	Qty Value/Rating		Manufacturer	Part number	
D104	1	Zener Diode, 16.2 V ON Semicondu		MM5Z16VT1G	
D201	1	TVS, 60 V Nexperia		PTVS60VP1UP,11 5	
F201	1	Fuse, SMD, 50 A	Littelfuse	0456050.DRSD	
L101	1	22 uH, 1.2 A, 20%, 500 mR	Bourns	SRP4020TA-220M	
Q21, Q22, Q23, Q24, Q25, Q26	6	80 V, 5 mΩ, 3.3x3.3 package	Infineon	IQE050N08NM5S C	
R101	1	2 kΩ, 1%, '0603	Yageo	RC0603FR-072KL	
R102, R113	2	100 kΩ, 1%, '0603	Yageo	RC0603FR- 07100KL	
R103	1	22 kΩ, 1%, '0603	Yageo	RC0603FR- 0722KL	
R104, R401, R402, R403, R413, R414	6	3.3 kΩ, 1%, '0603	Yageo	RC0603FR- 073K3L	
R105	1	1.8 kΩ, 1%, '0603	Yageo	RC0603FR- 071K8L	
R106, R107, R108, R110, R410, R417	6	5.1 kΩ, 1%, '0603	Yageo	RC0603FR- 075K1L	
R109	1	11 kΩ, 1%, '0603	Yageo	RC0603FR- 0711KL	
R111	1 10 kΩ, 1%, '0603		Yageo	RC0603FR- 0710KL	
R201, R202, R203	₀₃ 3 5 mΩ, 3 W, 1%, 50 ppm/K, 2512(6332		Isabellenhuette	BVT-I-R005-1.0	
R204	1	84.5 kΩ, 1%, '0603	Yageo	RC0603FR- 0784K5L	
R205	1	6.98 kΩ, 1%, '0603	Yageo	RC0603FR- 076K98L	
R206	1	200 Ω, 1%, '0603	Yageo	RC0603FR- 07200RL	
R208	1	10 Ω, 500 mW, 5%, 0805	Vishay	CRCW080510R0J NEAHP	
R404, R405, R406, R415, R416	5	470 Ω, 1%, '0603	Yageo	RC0603FR- 07470RL	
R407, R408, R409	3	2.2 kΩ, 1%, '0603	Yageo	RC0603FR- 072K2L	
R411, R418	2	1 Ω, 1%, '0603	Yageo	RC0603FR-071RL	
R419	1	120 Ω, 1%, '0603	Yageo	RC0603FR- 07120RL	
RT201	1			MCP9700T-E/TT	
U001	1	1 XMC1400 AA-Step, ARM [®] Cortex [®] -M0 Infineon XMC1404-		XMC1404- Q064X0200 AA	
U12	1	3-phase gate driver IC	Infineon	6EDL7151	
U401	1	CAN-Transceiver	Infineon	TLE8250G	

Bill of materials

Reference	Qty	Value/Rating	Manufacturer	Part number
X01	1	Connector, 18 Pin, 1.25 mm Pitch	Molex	505448-1871
X02	1	WR-FAST THT Male Header Angled Blade, pitch 5.08 mm	Würth Elektronik	638263122005
X401	1	SMT Micro Header, 1.27 mm Pitch, 10 Pin	Samtec	FTSH-105-01-L- DV

Conclusion

8 Conclusion

The REF_48V_270W_EBIKE reference board has been designed as a motor drive inverter for low-power e-Bikes or pedelecs. It is optimized for use with 48 V batteries like 12S to 14S Li-ion battery packs. The objective of designing a layout that is adapted for implementation inside a typical tube of a bicycle frame has been successfully met. The semi-cylindrical heatsink provided with REF_48V_270W_EBIKE accommodates installation of the board into a 30 mm inner diameter tube. Accurate fitting in alternative tube dimensions can be achieved with some adaptation of the heatsink shape.

The accompanying firmware uses sensor-based field-oriented or vector control utilizing three hall sensors, and measures phase currents in the low side source connection of each half bridge. The user can control the board via external analog signals controlling throttle and brake, or can alternatively control the board via PC connecting via the XMC[™] Link debugger using the dedicated GUI. The PC connection also provides the user to set the various configuration parameters necessary to adapt the system to the properties of the motor and vehicle to be used.

The board has been successfully tested in various cases. Firstly, the gate driver switching properties had been set according to radiated emissions measurements (EMI). The corresponding performance tests were then carried out using the established parameters meeting the EMI criteria.

It is important to note that the EMI measurements should also be performed in the final system when the board is implemented inside the bicycle frame. At that point the configuration parameters can be reevaluated and adapted to the final design.

The 3.3 mm x 3.3 mm package of the IQE050N08NM5SC power MOSFET, has been proven to perform very successfully in the application. The board has been successfully tested for a continuous rating at loads up to 270 W at 11 A_{RMS} for up to 20 minutes while monitoring the maximum settling temperatures in order to assure performance requirements are met. The tests were performed without any forced convection, with the heatsink being placed on a flat surface of the bench, so to represent worst case heat extraction. It is expected that the moving e-Bike will further contribute to the heat dissipation efficiency, thus improving the performance even further.

References

References

- [1] Infineon Technologies, 6EDL7151 datasheet
- [2] Infineon Technologies, 6EDL7141 datasheet, Available online
- [3] Infineon Technologies, EVAL_6EDL7141_TRAP_1SH 18 V brushless DC motor drive board application note, Available online
- [4] Infineon Technologies, Battery-powered BLDC motor drive design using the 6EDL71x1 series design guide, Available online
- [5] EU standard: EN 15194:2017

Revision history

Revision history

Document revision	Date	Description of changes
V 1.0	2024-11-12	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-11-12 Published by

Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference UG111355

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

EVB-EP5348UI ISLUSBI2CKITIZ ISL8002AEVALIZ ISL91108IIA-EVZ NCP10671B05GEVB AP62250WU-EVM SAMPLEBOXILD8150TOBO1 AP62300Z6-EVM BTS7030-2EPA LTC3308AIV#WTRPBF TLT807B0EPV BTS71033-6ESA EV13N91A EV55W64A Si8285_86v2-KIT AP33772S-EVB TDINV3000W50B-KIT NCP1681CCM1KWGEVB APEK89303KET-01-T NCP1681MM500WGEVB SI83401BAA-KIT SI83402BAA-KIT SI83411BAA-KIT SI83412BAA-KIT MIKROE-5294 MIKROE-5451 MIKROE-5374 APEK49406GES-01-T MIKROE-5019 BTG70902EPLDAUGHBRDTOBO1 5650 TAB-48017 APEK89307KET-01-T MIKROE-5510 64010 EVAL6EDL041065PRTOBO1 LT8648SJV#WPBF LT8648SEV#WPBF EVB81340-100W RTKA489EPRDK0010BU DC3107A EVL4248-QV-00A EVQ4371-V-1000-00A EVL28167-B-Q-00A NEVB-NID1100UL EVL1608C-TL-00A EVAL-LTPA-KIT EVALKITTLE9189QUWTOBO1 EVALKITTLE9189QVWTOBO1 EVINVHPD2SICFS0108TOBO2