SIPMOS® Small-Signal-Transistor #### **BSP320S** #### **Features** ### **Product Summary** - N channel - Enhancement mode - Avalanche rated | Drain source voltage | $V_{\rm DS}$ | 60 | ٧ | |----------------------------------|---------------------|------|---| | Drain-Source on-state resistance | R _{DS(on)} | 0.12 | Ω | | Continuous drain current | l _D | 2.9 | Α | - Pb-free lead plating; RoHS compliant - Qualified according to AEC Q101 - Halogen-free according to IEC61249-2-21 | Туре | Package | Tape and Reel | Packaging | |---------|-----------|------------------|-----------| | BSP320S | PG-SOT223 | H6327: 1000pcs/r | Non dry | | BSP320S | PG-SOT223 | H6433: 4000pcs/r | Non dry | Maximum Ratings, at Tj = 25 °C, unless otherwise specified | Parameter | Symbol | Value | Unit | |--|------------------------|-----------|-------| | Continuous drain current | I _D | 2.9 | Α | | Pulsed drain current | /Dpulse | 11.6 | | | $T_{A} = 25 ^{\circ}\text{C}$ | | | | | Avalanche energy, single pulse | E _{AS} | 60 | mJ | | $I_{D} = 2.9 \text{ A}, \ V_{DD} = 25 \text{ V}, \ R_{GS} = 25 \ \Omega$ | | | | | Avalanche current, periodic limited by T _{jmax} | / _{AR} | 2.9 | А | | Avalanche energy, periodic limited by T_{jmax} | E_{AR} | 0.18 | mJ | | Reverse diode d <i>v</i> /d <i>t</i> | d <i>v</i> /d <i>t</i> | 6 | kV/μs | | $I_{S} = 2.9 \text{ A}, \ V_{DS} = 20 \text{ V}, \ di/dt = 200 \text{ A/}\mu\text{s},$ | | | | | $T_{\text{jmax}} = 150 ^{\circ}\text{C}$ | | | | | Gate source voltage | V_{GS} | ±20 | V | | Power dissipation | P _{tot} | 1.8 | W | | $T_A = 25 ^{\circ}\text{C}$ | | | | | Operating temperature | $T_{\rm i}$ | -55 +150 | °C | | Storage temperature | T _{stg} | -55 +150 | | | IEC climatic category; DIN IEC 68-1 | | 55/150/56 | | #### **Electrical Characteristics** | Parameter | Symbol | Values | | | Unit | | | |--|---------------------|--------|------|------|------|--|--| | at $T_i = 25$ °C, unless otherwise specified | | min. | typ. | max. | | | | | Thermal Characteristics | | | | | | | | | Thermal resistance, junction - soldering point (Pin 4) | R_{thJS} | - | 17 | - | K/W | | | | SMD version, device on PCB: | R_{thJA} | | | | K/W | | | | @ min. footprint | | - | 110 | - | | | | | @ 6 cm ² cooling area ¹⁾ | | - | - | 70 | | | | ## **Static Characteristics** | Drain- source breakdown voltage | V _{(BR)DSS} | 60 | - | - | V | |---|----------------------|-----|------|------|----| | $V_{GS} = 0 \text{ V}, I_{D} = 0.25 \text{ mA}$ | | | | | | | Gate threshold voltage, $V_{GS} = V_{DS}$ | V _{GS(th)} | 2.1 | 3 | 4 | | | $I_{\rm D} = 20 \; \mu {\rm A}$ | | | | | | | Zero gate voltage drain current | l _{DSS} | | | | μΑ | | $V_{\rm DS}$ = 60 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 25 °C | | - | 0.1 | 1 | | | $V_{\rm DS}$ = 60 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 150 °C | | - | - | 100 | | | Gate-source leakage current | l _{GSS} | - | 10 | 100 | nA | | $V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$ | | | | | | | Drain-Source on-state resistance | R _{DS(on)} | - | 0.09 | 0.12 | Ω | | $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A | | | | | | Rev 2.5 2 2012-11-28 ¹ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. ### **Electrical Characteristics** | Parameter | Symbol | Values | | | Unit | |--|---------------------|--------|------|------|------| | at $T_i = 25$ °C, unless otherwise specified | | min. | typ. | max. | | | Dynamic Characteristics | • | • | • | - | | | Transconductance | g_{fs} | 2.5 | 5.8 | - | S | | $V_{\text{DS}} \ge 2^* I_{\text{D}}^* R_{\text{DS(on)max}}$, $I_{\text{D}} = 2.9 \text{ A}$ | | | | | | | Input capacitance | C_{iss} | - | 275 | 340 | pF | | $V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$ | | | | | | | Output capacitance | C_{oss} | - | 90 | 120 | | | $V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$ | | | | | | | Reverse transfer capacitance | C_{rss} | - | 50 | 65 | | | $V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$ | | | | | | | Turn-on delay time | t _{d(on)} | - | 11 | 17 | ns | | $V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A, | | | | | | | $R_{\rm G}$ = 33 Ω | | | | | | | Rise time | $t_{\rm r}$ | - | 25 | 40 | | | $V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A, | | | | | | | $R_{\rm G}$ = 33 Ω | | | | | | | Turn-off delay time | t _{d(off)} | - | 25 | 40 | | | $V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A, | | | | | | | $R_{\rm G}$ = 33 Ω | | | | | | | Fall time | t_{f} | - | 35 | 55 | | | $V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A, | | | | | | | $R_{\rm G}$ = 33 Ω | | | | | | ## **Electrical Characteristics** | Parameter | Symbol | Values | | Unit | | |--|------------------------|--------|------|------|----| | at $T_i = 25$ °C, unless otherwise specified | | min. | typ. | max. | | | Dynamic Characteristics | • | | | | • | | Gate charge at threshold | $Q_{G(th)}$ | - | 0.25 | 0.3 | nC | | $V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 0.1 A, $V_{\rm GS}$ = 1 V | | | | | | | Gate charge at V_{gs} =7V | $Q_{g(7)}$ | - | 7.4 | 9.3 | nC | | $V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 2.9 \text{ A}, V_{\rm GS} = 0 \text{ to } 7 \text{ V}$ | | | | | | | Gate charge total | Q_q | - | 9.7 | 12 | | | $V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 2.9 A, $V_{\rm GS}$ = 0 to 10 V | | | | | | | Gate plateau voltage | V _(plateau) | - | 4.7 | - | ٧ | | $V_{\rm DD} = 40 \text{ V}, I_{\rm D} = 2.9 \text{ A}$ | ., , | | | | | ### **Reverse Diode** | Inverse diode continuous forward current $T_A = 25 ^{\circ}\text{C}$ | Is | - | - | 2.9 | А | |---|-----------------|---|------|------|----| | Inverse diode direct current,pulsed TA = 25 °C | / _{SM} | - | - | 11.6 | | | Inverse diode forward voltage $V_{GS} = 0 \text{ V}, I_F = 5.8 \text{ A}$ | V _{SD} | - | 0.95 | 1.2 | V | | Reverse recovery time $V_R = 30 \text{ V}, I_F = I_S, \text{ d} i_F / \text{d} t = 100 \text{ A/}\mu\text{s}$ | t _{rr} | - | 45 | 56 | ns | | Reverse recovery charge $V_{\rm R}$ = 30 V, $I_{\rm F}$ = $I_{\rm S}$, $di_{\rm F}$ / dt = 100 A/ μ s | Q _{rr} | - | 0.08 | 0.12 | μС | ## **Power Dissipation** $$P_{\text{tot}} = f(\mathsf{T}_{\mathsf{A}})$$ ## Safe operating area $$I_{D} = f(V_{DS})$$ parameter : D = 0 , $T_A = 25$ °C ### **Drain current** $$I_{D} = f(T_{A})$$ ## Transient thermal impedance $$Z_{\text{thJA}} = f(t_{p})$$ parameter : $D = t_D/T$ ## Typ. output characteristics $$I_{\rm D} = f(V_{\rm DS})$$ parameter: $$t_p = 80 \mu s$$ #### **Drain-source on-resistance** $$R_{DS(on)} = f(T_j)$$ parameter : $$I_D$$ = 2.9 A, V_{GS} = 10 V # Typ. transfer characteristics $I_{\rm D}{=}~f(~V_{\rm GS})$ parameter: $t_p = 80 \mu s$ $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$ ## Typ. capacitances ## $C = f(V_{DS})$ Parameter: $V_{GS}=0$ V, f=1 MHz #### Gate threshold voltage $V_{GS(th)} = f(T_i)$ parameter : $V_{GS} = V_{DS}$, $I_D = 20 \mu A$ ### Forward characteristics of reverse diode $$I_{\mathsf{F}} = f(\mathsf{V}_{\mathsf{SD}})$$ parameter: T_i , tp = 80 μ s # Avalanche Energy $E_{AS} = f(T_j)$ parameter: $$I_D = 2.9 \text{ A}, V_{DD} = 25 \text{ V}$$ $$R_{\rm GS} = 25~\Omega$$ ## Typ. gate charge $$V_{\rm GS} = f(Q_{\rm Gate})$$ parameter: I_{D puls} =2.9A ## Drain-source breakdown voltage $$V_{(BR)DSS} = f(T_j)$$ Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. #### Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. #### Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). #### Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for MOSFET category: Click to view products by Infineon manufacturer: Other Similar products are found below: 614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E GROUP A 5962-8877003PA NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE6400A NTE2910 NTE2916 NTE2956 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7