

Anti-parallel silicon RF Schottky diode pair

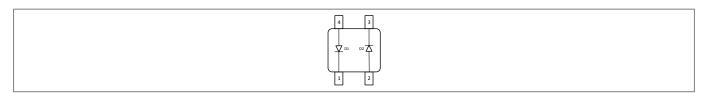
Product description

These Infineon RF Schottky diodes are silicon low barrier N-type devices with an integrated guard ring on-chip for over-voltage protection. Their low barrier height, low forward voltage and low junction capacitance make BAT15-099 a suitable choice for mixer and detector functions in applications which frequencies are as high as 12 GHz.

Feature list

- Low inductance L_S = 2 nH (typical)
- Low capacitance C = 0.29 pF (typical) at 1 MHz
- Industry standard SOT143 package (2.9 mm x 2.4 mm x 1 mm)
- · Pb-free (RoHS compliant) and halogen-free

Product validation


Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Potential applications

For mixers and detectors in:

- Wearables
- Smart metering
- Telematic systems
- Set top boxes

Device information

Table 1 Part information

Product name / Ordering code	Package	Pin configuration	Marking	Pieces / Reel
BAT15-099 / BAT15099E6327HTSA1	SOT143	Anti-parallel pair	S5s	3 k
BAT15-099 / BAT15099E6433HTMA1				10 k

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions!

Anti-parallel silicon RF Schottky diode pair

Table of contents

Table of contents

	Product description	1
	Feature list	1
	Product validation	1
	Potential applications	1
	Device information	1
	Table of contents	2
1	Absolute maximum ratings	2
2	Electrical performance in test fixture	3
2.1	Electrical characteristics	3
2.2	Characteristic curves	4
3	Thermal characteristics	6
4	Package information SOT143	8
	Revision history	9
	Disclaimer	10

1 Absolute maximum ratings

Table 2 Absolute maximum ratings at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values		Unit	Note or test condition
		Min.	Max.		
Diode reverse voltage	V_{R}	_	4	V	
Forward current	I _F	_	110	mA	
Total power dissipation	P _{TOT}	_	100	mW	$T_{\rm S} \le 48 ^{\circ}{\rm C}^{1}$
Junction temperature	TJ	_	150	°C	
Operating temperature	T_{OP}	-55	150		
Storage temperature	T_{STG}	-55	150		

Attention: Stresses above the maximum values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding only one of these values may cause irreversible damage to the component.

2

 $T_{\rm S}$ is the soldering point temperature.

Anti-parallel silicon RF Schottky diode pair

Electrical performance in test fixture

Electrical performance in test fixture 2

Electrical characteristics 2.1

Table 3 Electrical characteristics at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Breakdown voltage	V_{BR}	4	-	-	V	/ _R = 100 μA
Reverse current	I_{R}	_	_	5	μΑ	V _R = 1 V
Forward voltage	V_{F}	0.16	0.25	0.32	V	I _F = 1 mA
		0.25	0.35	0.41		/ _F = 10 mA
Forward voltage matching	ΔV_{F}	_	_	20	mV	/ _F = 10 mA ¹⁾
Differential forward resistance	R_{F}	-	5.8	_	Ω	$I_{\rm F} = 10 \text{mA} / 50 \text{mA}^{2}$
Capacitance	С	_	0.29	0.35	pF	$V_{R} = 0 \text{ V}, f = 1 \text{ MHz}$
Inductance	L _S	_	2	_	nH	

 $[\]Delta V_{\rm F}$ is the difference between lowest and highest $V_{\rm F}$ in a multiple diode component. $R_F = \frac{V_F^{(50~{\rm mA}) - V_F^{(10~{\rm mA})}}}{50~{\rm mA} - 10~{\rm mA}}$ 1

Electrical performance in test fixture

2.2 Characteristic curves

At T_A = 25 °C, unless otherwise specified

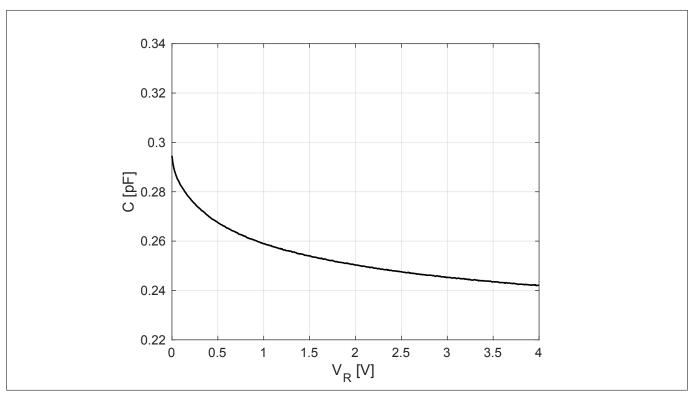


Figure 1 Diode capacitance C vs. reverse voltage V_R at frequency f = 1 MHz

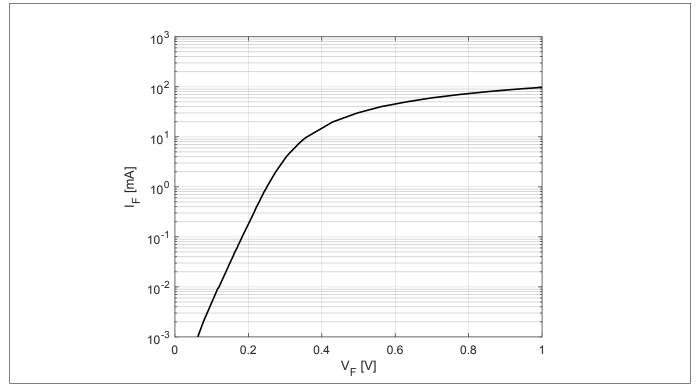


Figure 2 Forward current I_F vs. forward voltage V_F

Anti-parallel silicon RF Schottky diode pair

infineon

Electrical performance in test fixture

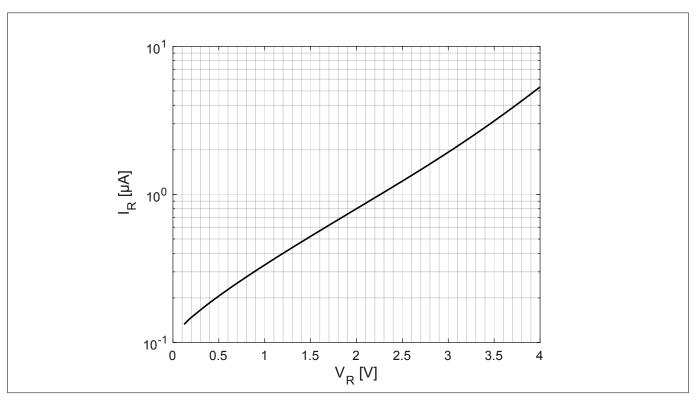


Figure 3 Reverse current I_R vs. reverse voltage V_R

Note: The curves shown in this chapter have been generated using typical devices but shall not be understood as a guarantee that all devices have identical characteristic curves.

Thermal characteristics

3 Thermal characteristics

Table 4 Thermal resistance

Parameter	Sym	Values			Unit	Note or test condition
	bol	Min.	Тур.	Мах.		
Thermal resistance	R _{thJS}	_	1020	_	K/W	T _S = 48 °C 1)
(junction - soldering point)						

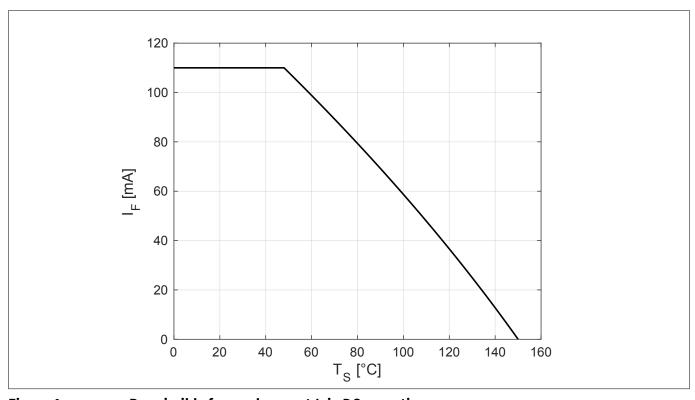


Figure 4 Permissible forward current I_F in DC operation

v1.0

 $^{^{1}~~{\}rm For}\,R_{\rm thJS}$ in other conditions refer to the curves in this chapter.

Anti-parallel silicon RF Schottky diode pair

Thermal characteristics

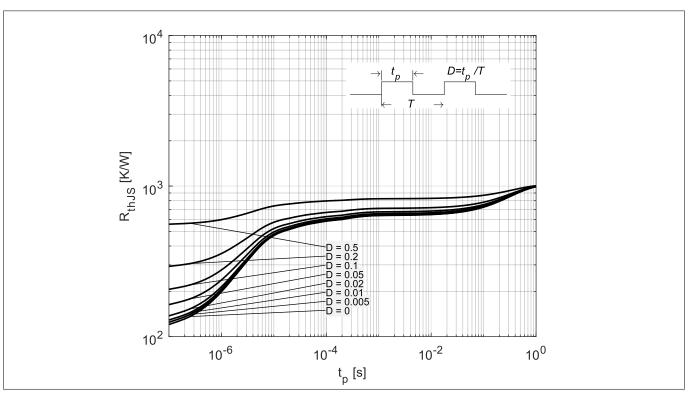


Figure 5 Thermal resistance R_{thJS} in pulse operation



Figure 6 Permissible forward current ratio I_{Fmax}/I_{DC} in pulse operation

Package information SOT143

4 Package information SOT143

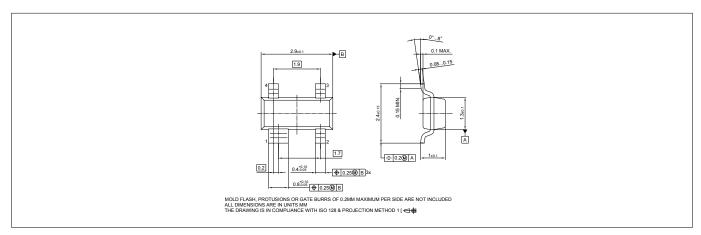


Figure 7 Package outline

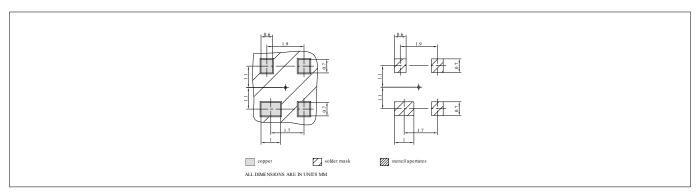


Figure 8 Foot print

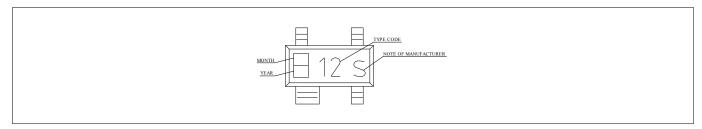


Figure 9 Marking layout example

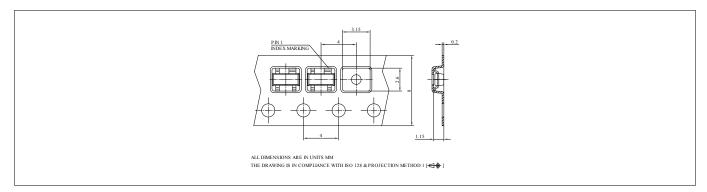


Figure 10 Tape dimensions

Anti-parallel silicon RF Schottky diode pair

Revision history

Revision history

Document version	Date of release	Description of changes						
1.0	2018-09-07	 Change from series datasheet to individual one Initial release of datasheet Typical values and curves updated to the values of the production (No product or process change behind) Typical values added Typical curves removed 						

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-06-30 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-xyk1515503563265

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

MA4E2039 D1FH3-5063 MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30 BAS16E6433HTMA1 BAT
54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T SK32A-LTP SK34B-TP
SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP SK33B-TP
SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF
ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP
MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573 NTE6081 SB560 PMAD1108-LF SD103ATW-TP