

Three-wire Serial EEPROM

Features

- Three-wire Serial Interface
- Low-voltage and Standard-voltage Operation 1.7V ~ 5.5V
- 2MHz (2.5V) and 1MHz (1.7V) Compatibility
- Dual organization: by word (x16) or byte (x8)
- Sequential read operation
- Programming instructions that work on: byte, word or entire memory
- Self-timed Write Cycle (5 ms max)
- READY/ BUSY signal during programming
- High Reliability
- –Endurance: 1 Million Write Cycles
- _Data Retention: 40 Years
- DIP-8, (RoHS Compliant)
- SOP-8, MSOP-8, DFN-8, SOT-23-6 Packages (RoHS Compliant and Halogen-free)

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
HG93C46AN	DIP-8	93C46A	TUBE	2000pcs/box
HG93C56AN	DIP-8	93C56A	TUBE	2000pcs/box
HG93C66AN	DIP-8	93C66A	TUBE	2000pcs/box
HG93C46AM/TR	SOP-8	93C46A	REEL	2500pcs/Reel
HG93C56AM/TR	SOP-8	93C56A	REEL	2500pcs/Reel
HG93C66AM/TR	SOP-8	93C66A	REEL	2500pcs/Reel
HG93C46AMM/TR	MSOP-8	C46A	REEL	3000pcs/Reel
HG93C56AMM/TR	MSOP-8	C56A	REEL	3000pcs/Reel
HG93C66AMM/TR	MSOP-8	C66A	REEL	3000pcs/Reel
HG93C46ADQ/TR	DFN-8	C46A	REEL	2500pcs/Reel
HG93C56ADQ/TR	DFN-8	C56A	REEL	2500pcs/Reel
HG93C66ADQ/TR	DFN-8	C66A	REEL	2500pcs/Reel
HG93C66AM6/TR	SOT-23-6	C46A	REEL	3000pcs/Reel
HG93C66AM6/TR	SOT-23-6	C56A	REEL	3000pcs/Reel
HG93C66AM6/TR	SOT-23-6	C66A	REEL	3000pcs/Reel

Description

HG93C46A/56A/66A provides 1k/2k/4k bits of serial electrically erasable programmable read-only memory (EEPROM), organized as 64/128/256 words of 16 bits each (when the ORG pin is connected to VCC), and 128/256/512 words of 8bits each (when the ORG pin is connected to ground).

The HG93C46A/56A/66A is enabled through the Chip Select pin (CS) and accessed via a three-wire serial interface consisting of Data Input (DI), Data Output (DO), and Serial Clock (SK). Upon receiving a read instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO. The write cycle is completely self-timed and no separate erase cycle is required before write. The write cycle is only enabled when the part is in the Erase/Write Enable State. When CS is brought "high" following the initiation of a write cycle, The DO pin outputs the Ready/ Busy status of the part.

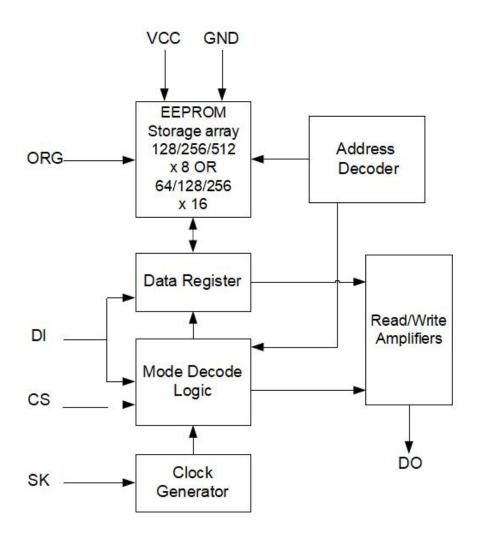
The device is the best choice for use in many industrial and commercial applications where low-power and low-voltage operations are essential.


Absolute Maximum Ratings

Parameter	Limits
Operating Temperature	-40 °C ~ +85 °C
Storage Temperature	-65 °C ~ +150 °C
Voltage on Any Pin with Respect to Ground	-1.0 V ~ +7.0 V
Maximum Operating Voltage	6.25 V
DC output current	5.0 mA
Lead Temperature (Soldering, 10 seconds)	245°C

Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Assignment



Pin Description

Pin Name	Function			
CS	Chip Select			
SK	Serial Clock			
DI	Serial Data Input			
DO	Serial Data Output			
GND	Ground			
ORG	Organization Select			
NC	No connect			
VCC	Power Supply			

Figure 1Block Diagram

Memory Organization

The HG93C46A/56A/66A memory is organized either as bytes (x8) or as words (x16). If Organization Select (ORG) is left unconnected (or connected to VCC) the x16 organization is selected; when Organization Select (ORG) is connected to Ground (VSS) the x8 organization is selected. When the HG93C46A/56A/66A is in Standby mode, Organization Select (ORG) should be set either to VSS or VCC for minimum power consumption. Any voltage between VSS and VCC applied to Organization Select (ORG) may increase the Standby current.

Memory size versus organization

<u> </u>	<u> </u>			
Device	Number of bits	Number of 16-bit words		
HG93C66A	4096	512	256	
HG93C56A	2048	256	128	
HG93C46A	1024	128	64	

Instruction Set

The instruction set of the HG93C46A/56A/66A devices contains seven instructions, as summarized in the table below.

- Each instruction is preceded by a rising edge on Chip Select Input (CS) with Serial Clock (SK) being held low.
- A start bit, which is the first "1" read on Serial Data Input (DI) during the rising edge of Serial Clock (SK).
- Two op-code bits, read on Serial Data Input (DI) during the rising edge of Serial Clock (SK). (Some
 instructions also use the first two bits of the address to define the op-code).
- The address bits of the byte or word that is to be accessed. For the HG93C46A, the address is made up of 6 bits for the x16 organization or 7 bits for the x8 organization. For the HG93C56A and HG93C66A, the address is made up of 8 bits for the x16 organization or 9 bits for the x8 organization.

	la made up or			Add			ata	
Instruction	Device Type	SB	Op Code	x8	x16	0	x16	Comments
			Code	(1) (2)	(1) (3)	x8	XIO	
	HG93C46A	1	10	A6-A0 A8-A0	A5-A0 A7-A0			
READ	HG93C56A	1	10	A8-A0	A7-A0			Read Address AN-A0
	HG93C66A	1	10	Αυ-Αυ	A1-A0			
	HG93C46A	1	00	11XXXXX	11XXXX			
EWEN	HG93C56A	1	00	11XXXXXXXX	11XXXXXX			Write Enable
	HG93C66A	1	00	11XXXXXXXX	11XXXXXX			
	HG93C46A	1 11		A6-A0	A5-A0			
ERASE	HG93C56A	1	11	A8-A0 A8-A0	A7-A0 A7-A0			Clear Address AN-A0
	HG93C66A	1	11	A0-A0 A0-A0	A1-A0 A1-A0			
	HG93C46A	1	01	A6-A0 A8-A0	A5-A0 A7-A0	D7-D0	D15-D0	
WRITE	HG93C56A	1	01			D7-D0	D15-D0	Write Address AN-A0
	HG93C66A	1	01	A8-A0	A7-A0	D7-D0	D15-D0	
	HG93C46A	1	00	10XXXXX	10XXXX			
ERAL	HG93C56A	1	00	10XXXXXXX	10XXXXXX			Clear All Addresses
	HG93C66A	1	00	10XXXXXXX	10XXXXXX			
	HG93C46A	1	00	01XXXXX	01XXXX	D7-D0	D15-D0	
WRAL	HG93C56A	1	00	01XXXXXXX	01XXXXXX	D7-D0	D15-D0	Write All Addresses
	HG93C66A	1	00	01XXXXXXX	01XXXXXX	D7-D0	D15-D0	
	HG93C46A	1	00	00XXXXX	00XXXX			
EWDS	HG93C56A	1	00	00XXXXXXX	00XXXXXX			Write Disable
	HG93C66A	1	00	00XXXXXXX	00XXXXXX			

Note:

- 1. X = Don't Care bit.
- 2. Address bit A8 is not decoded by the HG93C56A.
- 3. Address bit A7 is not decoded by the HG93C56A.

Functional Description

The HG93C46A/56A/66A is accessed via a simple and versatile three-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. A valid instruction starts with a rising edge of CS and consists of a start bit (logic "1") followed by the appropriate op code and the desired memory address location.

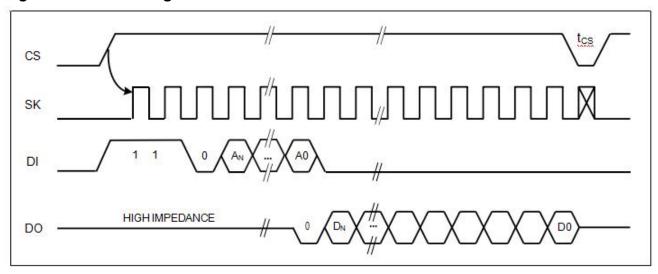
READ (READ): The Read (READ) instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock (SK).. It should be noted that a dummy bit (logic "0") precedes the 8- or 16-bit data output string.

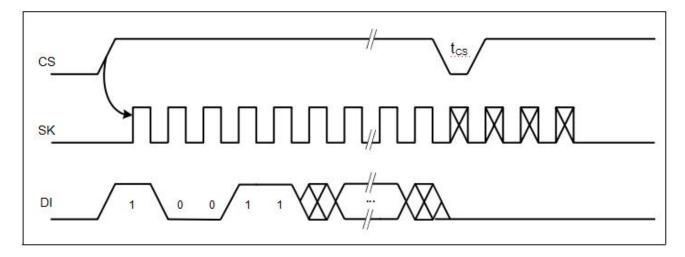
ERASE/WRITE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the EWEN state, programming remains enabled until an EWDS instruction is executed or VCC power is removed from the part.

ERASE (ERASE): The Erase (ERASE) instruction programs all bits in the specified memory location to the logical "1" state. The self-timed erase cycle starts once the ERASE instruction and address are decoded. The DO pin outputs the Ready/ Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (tcs). A logic "1" at pin DO indicates that the selected memory location has been erased, and the part is ready for another instruction.

WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle, t_{WP}, starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the Ready/ Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). A logic "0" at DO indicates that programming is still in progress. A logic "1" indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A Ready/ Busy status cannot be obtained if the CS is brought high after the end of the selftimed programming cycle, t_{WP}.

ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic "1" state and is primarily used for testing purposes. The DO pin outputs the Ready/ Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). The ERAL instruction is valid only at $V_{CS} = 2.5V \sim 5.5V$


WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/ Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (tcs). The WRAL instruction is valid only at Vcc = 2.5V ~5.5V. ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturb, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the Read instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.


READY/ BUSY status: While the Write or Erase cycle is underway, for a WRITE, ERASE, WRAL or ERAL instruction, the Busy signal (DO=0) is returned whenever Chip Select input (CS) is driven high. (Please note, though, that there is an initial delay, of tCS, before this status information becomes available). In this state, the HG93C46A/56A/66A ignores any data on the bus. When the Write cycle is completed, and Chip Select Input (CS) is driven high, the Ready signal (DO=1) indicates that the HG93C46A/56A/66A is ready to receive the next instruction. Serial Data Output (DO) remains set to 1 until the Chip Select Input (CS) is brought low or until a new start bit is decoded.

Timing Diagrams

Figure 2 READ Timing

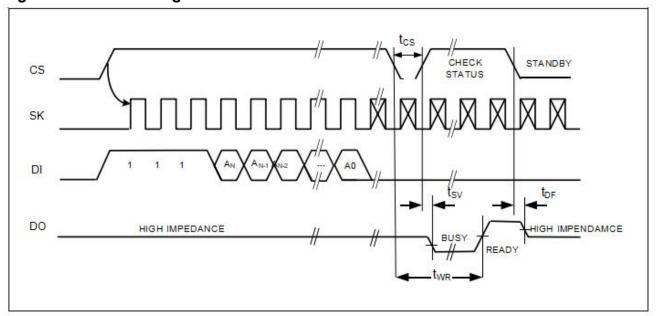


Figure 3 EWEN Timing

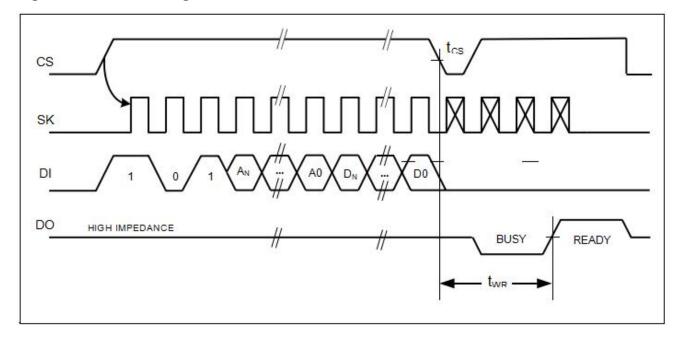


Figure 4 ERASE Timing

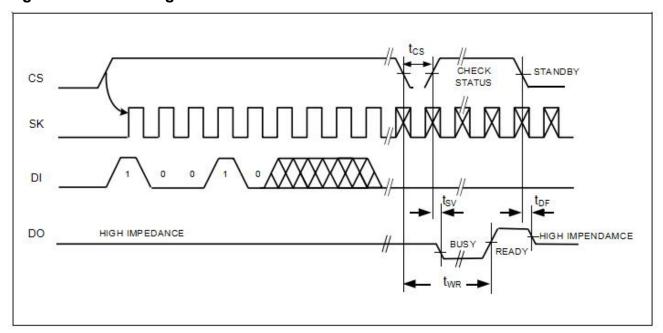


Figure 5 WRITE Timing

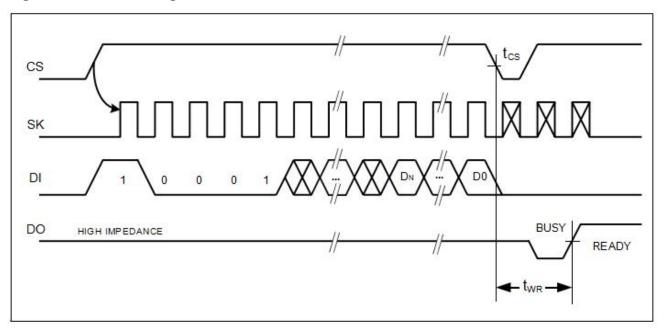


Figure 6 ERAL Timing

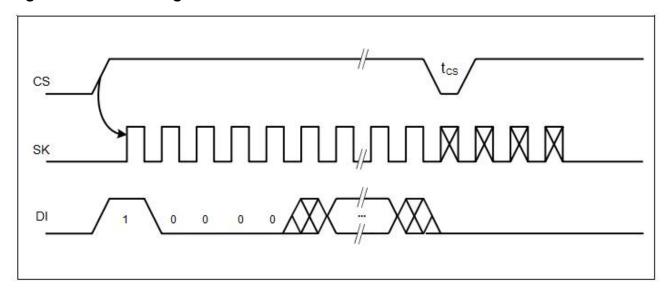


Figure 7 WRAL Timing

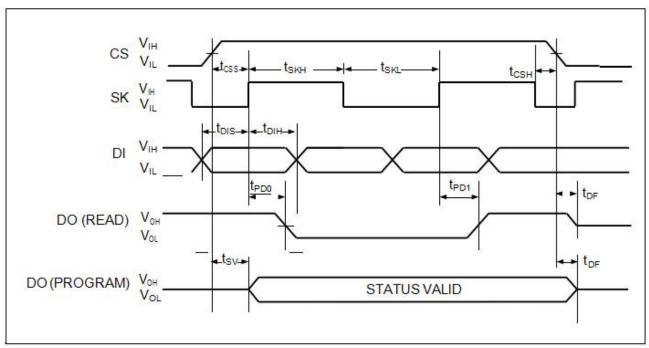


Figure 8 EWDS Timing

Figure 9 BUS Timing

Pin Capacitance

Symbol	Parameter	Test Condition	Max	Units
CIN (1)	Input Capacitance	VIN = 0V, f = 1 MHz	6	рF
COUT (1)	Output Capacitance	VOUT = 0V, f = 1 MHz	8	pF

Note: 1. This parameter is characterized and is not 100% tested.

DC Characteristics

Applicable over recommended operating range from: $TA = -40^{\circ}C$ to $+85^{\circ}C$, VCC = +1.7V to +5.5V, (unless otherwise noted).

Symbol	Parameter	Test Condition	1	Min	Max	Units
VCC	Supply Voltage			1.7	5.5	V
ICC	Supply	VCC = 5.0V, fsk = 2.0 MHz	CS = VIH,		2.0	mA
100	Supply	VCC = 1.7V, fsk = 1.0 MHz	DO =open		1.0	mA
ISB	Standby Current	VCC=5V	CS = SK = GND,		15.0	μΑ
ISB	Standby Current	VCC = 1.7V	ORG = VCC/GND		2.0	μΑ
ILI	Input Leakage	0V ≤ VIN ≤ Vcc		-1.0	1.0	μΑ
ILO	Output Leakage	0V ≤ VOUT ≤ Vcc ; DO = Hi-Z		-1.0	1.0	μΑ
VIL (1)	Input Low Voltage			-0.45	0.2Vcc	٧
VIH (1)	Input High Voltage			0.8VCC	VCC+0.5	V
VOL	Output Low Voltage	VCC = 5V	IOL = 2.1 mA		0.4	V
VOL	Output Low Voltage	VCC = 1.7V	IOL = 100 μA		0.2	V
VOH	Output High Voltage	VCC = 5V	IOH = -400 μA	0.8Vcc		V
VOH	Output High Voltage	VCC = 1.7V	IOH = -100 μA	VCC-0.2		V

Note: 1. VIL min and VIH max are reference only and are not tested.

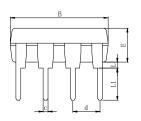
AC Characteristics

Applicable over recommended operating range from: TA = -40°C to +85°C, VCC = 1.7V to 5.5V, CL = 100pF (unless otherwise noted). Test conditions are listed in Note 2.

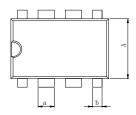
0 11 1	B	1.7V ≤ V	cc ≤ 2.5V	2.5V < V	cc ≤ 5.5V	11.24		
Symbol	Parameter	Min	Max	Min	Max	Units		
f _{SK}	SK Clock Frequency		1		2	MHz		
t _{SKL}	SK Low Time	250		200		ns		
t _{skH}	SK High Time	250		200		ns		
t _{CS}	Minimum CS Low	250		200		ns		
t _{CSS}	CS Setup Time	50		50		ns		
t _{сsн}	CS Hold Time	0		0		ns		
t _{DIS}	DI Setup Time	100		50		ns		
t _{DIH}	DI Hold Time	100		50		ns		
t _{PD1}	Output Delay to "1"		400		200	ns		
t _{PD0}	Output Delay to "0"		400		200	ns		
t _{sv}	CS to Status Valid		400		200	ns		
t _{DF}	CS to DO in High		200		100	ns		
t _{WR}	Write Cycle		5		5	ms		
Endurance (1)	2.21/.25°C		1,000,000					
Eliquiance	3.3V, 25°C		1,00	0,000		Cycles		

Notes: 1. This parameter is characterized and is not 100% tested.

2. AC measurement conditions:

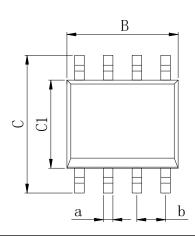

Input pulse voltages: 0.2 V_{CC} to 0.8 V_{CC} Input rise and fall times: $\leq 50 \text{ns}$

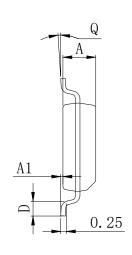
Input and output timing reference voltages: 0.3 $V_{\text{CC}} \sim 0.7 \ V_{\text{CC}}$



Physical Dimensions

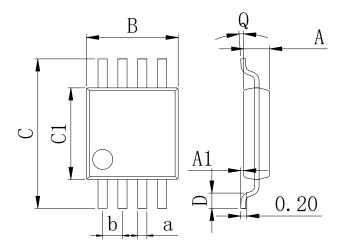
DIP-8



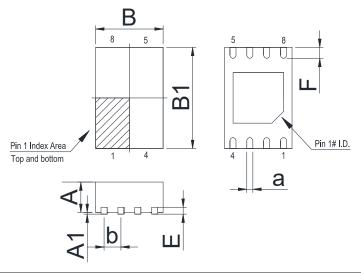


Dimensions In Millimeters(DIP-8)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	9.00	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	9.50	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.04 BSC

 $SOP-8_{(150mil)}$



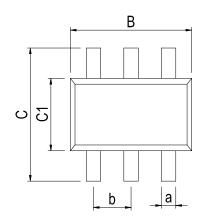
Dimensions In Millimeters(SOP8)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 BSC	

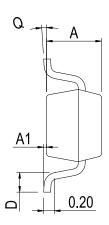

Physical Dimensions

MSOP-8

Dimensions In Millimeters(MSOP8)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC	
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.00 650	

DFN-8 2*3




Dimensions In Millimeters(DFN-8 2*3)										
Symbol:	Α	A1	В	B1	Е	F	а	р		
Min:	0.85	0	1.90	2.90	0.15	0.25	0.20	0.50TYP		
Max:	0.95	0.05	2.10	3.10	0.25	0.35	0.30	0.5011P		

Physical Dimensions

SOT-23-6

Dimensions In Millimeters(SOT-23-6)										
Symbol:	А	A1	В	С	C1	D	Q	а	Ф	
Min:	1.05	0.00	2.82	2.65	1.50	0.30	0°	0.30	- 0.95 BSC	
Max:	1.15	0.15	3.02	2.95	1.70	0.60	8°	0.40		

Revision History

DATE	REVISION	PAGE
2020-3-16	New	1-17
2023-8-30	Update encapsulation type、Update Lead Temperature、Updated DIP-8 dimension	1、2、13

HG93C46A/56A/66A

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for EEPROM category:

Click to view products by HGSEMI manufacturer:

Other Similar products are found below:

718278CB M24C64-WMN6 AT28C256-15PU-ND 444358RB 444362FB BR93C46-WMN7TP EEROMH AT24C256BY7-YH-T
CAT25320YIGT-KK LE2464DXATBG CAS93C66VP2I-GT3 M95320-DFDW6TP CAT24S128C4UTR S-93S66A0S-J8T2UD
N21C21ASNDT3G NV24M01MUW3VTBG S-93A66BD0A-K8T2U3 NV24C32UVLT2G BR25H128NUX-5ACTR BR24G512FVT-5AE2
BR25H256FJ-5ACE2 CAT24C512C8UTR BR24G1MFVT-5AE2 GT24C04A-2ZLI-TR M95160-DWDW4TP/K CAT24C16WE-GT3
CAT24C512XI CAT25M01YE-GT3 GX2431G HG24C08CMM/TR AT24C08CMM/TR HG24C08CM/TR HG24LC64M/TR
AT24C08CM/TR FT24C512A-TSR-T AT24C128AN AT24C128AM/TR FT93C66A-USR-T FT24C128A-EDR-B FT24C04A-KTR-T
FT24C64A-EDR-B FT24C16A-EPR-T FT24C04A-TLR-T FT93C46A-UTR-T FT24C16A-KSG-T FT24C128A-TSR-B FT24C64A-TTR-T
FT93C46A-USR-T FT24C1024A-TTR-T GX2505