

PROFITEST MASTER IQ Series PROFITEST MTECH+, MPRO, MXTRA, SECULIFE IP DIN VDE 0100/IEC 60364-6 Testers

3-447-043-03 2/7.19

Testing of residual current devices (RCCBs)

- Measurement of contact voltage without tripping the RCCB. Contact voltage is measured with reference to nominal residual current using 1/3 of the nominal residual current value.
- Testing for N-PE reversal
- Tripping test with nominal residual current, trip time measurement
- Testing of equipment and RCCBs with rising residual current including indication of tripping current and contact voltage
- Testing of RCCBs with nominal current of $\frac{1}{2} \bullet I_{\Delta N}$, $1 \bullet I_{\Delta N}$, $2 \bullet I_{\Delta N}$, $(5 \bullet I_{\Delta N} \text{ to } 300 \text{ mA: Mpro/Mxtra/SECULIFE IP to } 100 \text{ mA: Mtech+})$
- Intelligent ramp (**PROFITEST MXTRA** only): simultaneous measurement of breaking current $I_{\Delta N}$ and breaking time t_A
- Testing of selective S SRCDs, PRCDs (SCHUKOMAT, SIDOS or comparable), type G/R, type AC, type A, F; type B, B+ and type EV (exept MPRO)
- Testing of RCCBs which are suitable for pulsating residual direct current; testing is conducted with positive or negative half-waves.
- Creation of test sequences (IZYTRONIQ)
- Intelligent data transmission Bidirectional interface to DDS-CAD for electrical planning
- Simulation of operating states of electric vehicles at electric charging stations of different manufacturers (MTECH+ and MXTRA only)

Large Voltage and Frequency Ranges

A broad-range measuring device allows for use of the test instrument in all alternating and 3-phase electrical systems with voltages from 65 to 500 V and frequencies of 16 to 400 Hz.

Loop and Line Impedance Measurement

Measurement of loop and line impedance can be performed in the 65 to 500 V range. Conversion to short-circuit current is based on the respective nominal line voltage, insofar as the measured line voltage is within the specified range. **PROFITEST MASTER** measuring error is also taken into account for conversion. Outside of this range, short-circuit current is calculated on the basis of momentary line voltage and measured impedance.

Measurement of Insulation Resistance Using Nominal Voltage, with Variable or Rising Test Voltage

Insulation resistance is usually measured with a nominal voltages of 500, 250 or 100 V. A test voltage which deviates from nominal voltage, and lies within a range of 20/50 to 1000 V, can be selected for measurements at sensitive components, as well as systems with voltage limiting devices.

Measurement can be performed with a constantly rising test voltage in order to detect weak points in the insulation and determine tripping voltage for voltage limiting devices.

Voltage at the device under test and any triggering/breakdown voltage appear at the test instrument's display.

Standing-Surface Insulation Measurement

Standing-surface insulation measurement is performed with momentary line frequency and line voltage.

Low-Resistance Measurement

Bonding conductor resistance and protective conductor resistance can be measured with a test current of \geq 200 mA DC, automatic polarity reversal of the test voltage and selectable direction of current flow. If the adjustable limit value is exceeded, an LED lights up.

Earthing Resistance Measurement

In addition to measurement of the overall resistance of an earthing system, selective measurement of the earthing resistance of an individual earth electrode is also possible, without having to disconnect it from the earthing system. A current clamp sensor available as an accessory is utilized to this end.

Furthermore, the **PROFITEST MPRO** and the **PROFITEST MXTRA** allow for battery powered earthing resistance measurements: 3/4-pole and earth loop resistance measurements.

Universal Connector System

The interchangeable plug inserts and 2-pole plug-in adapter – which can be expanded to 3-poles for phase sequence testing – allows for use of the test instrument all over the world.

Special Features

- · Display of approved fuse types for electrical systems
- Energy meter start-up testing
- Measurement of biasing, leakage and circulating current of up to 1 A, as well as working current of up to 1000 A with current clamp sensor (available as an accessory)
- Phase sequence measurement (including highest line-to-line voltage)
- Optional connection of a Bluetooth keyboard (Logitech) and a Bluetooth barcode reader in preparation

Display with Selectable Language

The LCD panel consists of a backlit dot matrix at which menus, setting options, measurement results, tables, instructions and error messages, as well schematic diagrams appear.

The display can be set to the desired language depending on the country in which the test instrument is used: D, GB, I, F, E, P, NL, S, N, FIN, CZ or PL

Operation

Device functions are selected directly with the help of a rotary selector knob. Softkeys allow for convenient selection of subfunctions and parameter settings. Unavailable functions and parameters are automatically prevented from appearing at the display.

The start and RCD tripping functions included directly on the instrument are identical to the functions of the two keys located on the test plug, allowing for easy measurement at difficult to access locations.

Schematic diagrams, measuring ranges and help texts cab be displayed for all basic functions and sub-functions.

Phase Tester

Protective conductor potential is tested after starting a test sequence and touching the contact surface for finger contact. The PE symbol appears at the display if a potential difference of more than 25 V is detected between the contact surface and the protective contact at the mains plug.

Error Indication

- The instrument automatically detects instrument-to-system con-• nection errors, which are indicated in a connection pictograph.
- Errors within the electrical system (no mains or phase voltage, tripped RCD) are indicated at 3 LEDs and by means of popup windows at the tilting LCD panel.

Battery Monitoring and Self-Test

Battery monitoring is conducted while the instrument is subjected to an electrical load. Results are displayed both numerically and with a symbol. Test images can be called up one after the other, and LEDs can be tested during the self-test. The instrument is shut down automatically when the rechargeable batteries are discharged. A microprocessor controlled charging circuit is used to assure safe charging of rechargeable NiMH or NiCd batteries.

Data Entry at the RS 232 Port

Data can be read in via a barcode or RFID scanner connected to the RS 232 port, and comments can be entered with the help of the softkeys.

IZYTRONIQ User Software for PC

IZYTRONIQ is a test software developed from scratch. It enables the user to visualize and manage the entire testing procedure for all our test instruments and to document it in an audit-proof manner. For the first time, it is thus possible to combine the test and measurement data from a great variety of test instruments and multimeters in one test and generate one report report thereof. The intuitive user guidance and modern design provide for quick access to all functions.

The software is available in different sizes and versions for trades, industry and vocational training purposes.

Overview of Features Included with PROFITEST MASTER & SECULIEE IP Device Variants

SECULIFE IP Device Variants				
PROFITEST	_	-	-	E L
(Article Number)	Mpro (M535C)	Mtech+ (M535B)	MXTRA (M535D)	seculife (M535e)
	N5 3	12 12 12 12	12 22	153 153
	25	25	25	S €
Testing of residual current devices (RCDs)	-	-		
U _B measurement without tripping RCD	1	1	1	1
Tripping time measurement	1	1	1	✓
Measurement of tripping current I _F	1	1	1	1
Selective, SRCDs, PRCDs, type G/R	1	1	1	1
AC/DC sensitive RCDs, type B, B+	—	1	1	✓
Testing of IMDs	—	—	 Image: A start of the start of	✓
Testing of RCMs			1	
Testing for N-PE reversal	1	1	1	1
Measurement of loop impedance 7. $/7$.				
Measurement of loop impedance Z _{L-PE} / Z _{L-}		1	1	1
Fuse table for systems without RCDs	1		1	
Without tripping the RCD, fuse table	_	<i>\</i>	<i>✓</i>	√
With 15 mA test current ¹⁾ without tripping the RCD	1	1	1	1
Earthing resistance R _E (mains operation)				
I-U measuring method (2/3-wire measuring method	1	1	~	~
via measuring adapter: 2-wire/2-wire + probe)				
Earthing resistance R _E (battery operation)	1		1	_
3 or 4-wire measurement via PRO-RE adapter				
Soil resistivity ρ_{E} (battery operation)	1		1	—
(4-wire measurement via PRO-RE adapter)				
Selective earthing resistance R _E (mains opera-				
tion) with 2-pole adapter, probe, earth electrode and	1	1	~	~
current clamp sensor (3-wire measuring method)				
Selective earthing resistance R _E (battery operation)				
with probe, earth electrode and current clamp	1		1	—
sensor (4-wire measuring method via PRO-RE				
adapter and current clamp sensor)				
Earth loop resistance R _{ELOOP} (battery operation) with 2 clamps (current clamp sensor direct	1		1	
and current clamp transformer via PRO-RE/2 adapter)	~		•	_
Measurement of equipotential bonding R_{LO} ,				
automatic polarity reversal	1	1	1	1
Insulation resistance R _{ISO} ,			-	
variable or rising test voltage (ramp)	1	1	1	1
Voltage U_{L-N} / U_{L-PE} / U_{N-PE} / f	1	1	1	1
	v	v	v	V
Special measurements	1			
Leakage current (with clamp) I _L , I _{AMP}	1	1	1	1
Phase sequence	1	1	1	✓
Earth leakage resistance R _{E(ISO)}	1	1	1	1
Voltage drop (AU)	1	1	1	1
Standing-surface insulation Z _{ST}	1	1	1	1
Meter start-up (kWh-Test)	1	1	1	
Leakage current with PRO-AB adapter (IL)			1	1
Residual voltage test (Ures)			1	
Intelligent ramp (ta $+ \Delta I$)		_	· ·	_
Electric vehicles at charging stations (IEC 61851)		1	· ·	
Report generation of fault simulations on		•	v	
PRCDs with PROFITEST PRCD adapter		—	1	—
Features	1			
Selectable user interface language ²	1	1	1	1
Memory (database for up to 50,000 objects)	1	1	1	1
Automatic test sequence function	1	1	1	1
RS 232 port for RFID/barcode scanner	1	1	1	1
USB port for data transmission	1	1	1	1
Interface for <i>Bluetooth</i> ®		1	1	1
IZYTRONIQ BUSINESS Starter				
database and report software for PC	1	1	1	1
Measuring category: CAT III 600 V / CAT IV 300 V	1	1	1	1
DAkkS calibration	· ·	· ·	· ·	· /
	•	-		

¹ So-called live measurement is only advisable if there is no bias current within the system. Only suitable for motor circuit breaker with low nominal current. ² Currently available languages: D, GB, I, F, E, P, NL, S, N, FIN, CZ, PL

Data Interface

Measurement data are transmitted to a PC via the integrated USB port, at which they can be printed in report form and archived.

Software update

The test instrument is always kept current thanks to firmware which can be updated via the USB port. Software is updated during the course of recalibration by our service department, or directly by the customer.

Sample Displays

PROFITEST MASTER and SECULIFE IP Test Instruments

Softkeys allow for convenient selection of sub-functions and parameter settings. Unavailable sub-functions and parameters are automatically prevented from appearing at the display.

Loop Resistance Measurement

PE BAT 🔊

Low-Resistance Measurement

20

RLO

Roffset

ват 🚳 - 🖽 <1,00Ω

S

0,11Ω

Ø→PB

.imits

Roffset ON OFF

Earthing Resistance Measurement

	- 🖾 RANGE - ΞΞΞ - 10Ω
Re(38)	
RE(38,) — — —	Ω^{Limits}
0 ∋≕:1000r	VZA mains ~
JV f·	Hz

Insulation Measurement

Voltano	Magguramant

The above sample displays are taken from the **PROFITEST MTECH+** instruments.

Applicable Regulations and Standards

IEC 61010-1 / EN 61010-1/ VDE 0411-1 IEC 61557/ EN 61557/	surement, control and laboratory use Part 1: General requirements (IEC 61010-1:2010 + Cor. :2011) Part 31: Safety requirements for hand-held probe as- semblies for electrical measurement and test (IEC 61010-031:2002 + A1:2008) Part1: General requirements (IEC 61557-1:2007)
VDE 0413	 Part 2: Insulation resistance (IEC 61557-2:2007) Part 3: Loop impedance (IEC 61557-3:2007) Part 4: Resistance of earth connection and equipotential bonding (IEC 61557-4:2007) Part 5: Resistance to earth (IEC 61557-5:2007) Part 6: Effectiveness of residual current devices (RCD) in TT, TN and IT systems (IEC 61557-6:2007) Part 7: Phase sequence (IEC 61557-7:2007) Part 10:Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC – Equipment for testing, measuring or monitoring of protective measures (IEC 61557-10:2000) Part 11:Effectiveness of residual current monitors (RCMs) type A and type B in TT, TN and IT systems (IEC 61557-11:2009) (PROFITEST MXTRA only)
EN 60529 VDE 0470, part 1	Test instruments and test procedures Degrees of protection provided by enclosures (IP code)
DIN EN 61 326-1 VDE 0843-20-1	Electrical equipment for measurement, control and labo- ratory use – EMC requirements – Part 1: General requirements
IEC 60364-6-61 VDE 0100, part 600	Low-voltage electrical installations – Part 6: Tests
IEC 60364-6-62 EN 50110-1 VDE 0105, part 100	Operation of electrical installations – Part 100: General requirements
IEC 60364-7-710 VDE 0100, part 710	Erection of low-voltage installations – Requirements for special installations or locations – Part 710: Medical locations
IEC 61851-1 Din en 61851-1	Electric vehicle conductive charging system – Part 1: General requirements

Characteristic Values

Nominal Ranges of Use

Voltage U_N

	230 V (196 253 V)
	400 V (340 440 V)
Frequency f _N	16 ² / ₃ Hz (15.4 18 Hz)
	50 Hz (49.5 50.5 Hz)
	60 Hz (59.4 60.6 Hz)
	200 Hz (190 210 Hz)
	400 Hz (380 420 Hz)
Overall voltage range	65 550 V
Overall frequency range	15.4 420 Hz
Waveform	sine
Temperature range	0° C + 40° C
Battery voltage	8 12 V
Line impedance angle	Corresponds to $\cos \varphi = 1 \dots 0.95$
Probe resistance	< 50 kΩ

120 V

(108 ... 132 V)

Characteristic Values PROFITEST MTECH+

				Innut							Con	necti	ons		
Func- tion	Measured Quantity	Display Range	Reso- lution	Input Impedance/ Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert 1	2-Pole Adapter	3-Pole Adapter	Probe	WZ12C	ClampS Z3512A	
	U _{L-PE}	0 99.9 V	0.1 V		0.3 600 V ¹⁾		±(2% rdg.+5d)	±(1% rdg.+5d)							1000
	U _{N-PE}	100 600 V	1 V		0.3 600 V 7		±(2% rdg.+1d)	±(1% rdg.+1d)							
	f	15.0 99.9 Hz	0.1 Hz		DC 15,4 420 Hz	$U_{\rm N} = 120/230/$	$\pm (0.2\% \text{ rdg.} + 1d)$	$\pm (0.1\% \text{ rdg.} + 1d)$	-						
	-	100 999 Hz	1 Hz			400/500 V									
U	U _{3~}	0 99.9 V 100 600 V	0.1 V 1 V	$5 M\Omega$	0.3 600 V	_	±(3% rdg.+5d) ±(3% rdg.+1d)	\pm (2% rdg.+5d) \pm (2% rdg.+1d)							
		0 99.9 V	0.1 V			$f_N = 16^2 / _3 / 50 /$	$\pm (3\% \text{ rdg.} + 10)$ $\pm (2\% \text{ rdg.} + 5d)$	$\pm (1\% \text{ rdg.} + 5d)$	-			-			
	U _{PROBE}	100 600 V	1 V		1.0 600 V	60/200/400 Hz	$\pm (2\% \text{ rdg.}+1\text{d})$	$\pm(1\% rdg.+1d)$							
		0 99.9 V	0.1 V		4.0		$\pm(3\% \text{ rdg.}+5d)$	$\pm (2\% \text{ rdg.}+5d)$		-					
	U _{L-N}	100 600 V	1 V		1.0 600 V ¹		±(3% rdg.+1d)	±(2% rdg.+1d)							
	UIAN	0 70.0 V	0.1 V	0.3 · I _{AN}	5 70 V		+10% rdg.+1d	+1% rdg1d +9% rdg.+1d							
		10 Ω 999 Ω	1Ω					+9%10y.+10	-						
		1.00 kΩ 6.51 kΩ	0.01 kΩ	$I_{\Delta N} = 10 \text{ mA} \cdot 1,05$											
		3 Ω 999 Ω				U _N = 120 V									
		1 kΩ 2.17 kΩ	0.01 kΩ	$I_{\Delta N} = 30 \text{ mA} \cdot 1,05$		230 V									
	R _E	1Ω 651 Ω	1Ω	I _{ΔN} =100 mA · 1,05		400 V ²									
		0.3 Ω 99.9 Ω	0.1 Ω	I _{AN} =300 mA · 1,05	U _{IAN} / I _{AN}										
		100 Ω 217 Ω	1Ω	· <u>ˈ</u>]	-	f _N = 50/60 Hz									
$I_{\Delta N}$		0.2 Ω 9.9 Ω 10 Ω 130 Ω	0.1 Ω 1 Ω	I _{ΔN} =500 mA · 1,05											
	$I_F (I_{\Delta N} = 6 \text{ mA})$	1.8 7.8 mA	1 32	1.8 7.8 mA	1.8 7.8 mA	U _L = 25/50 V						optio			
I _E	$I_F (I_{\Delta N} = 0 \text{ mA})$	3.0 13.0 mA	0,1 mA	3.0 13.0 mA	3.0 13.0 mA	I _{AN} =						nal			
	$I_{\rm F} (I_{\Delta \rm N} = 30 \text{ mA})$	9.0 39.0 mA	0,1	9.0 39.0 mA	9.0 39.0 mA	6 mA									
	$I_{\rm F} (I_{\rm AN} = 100 \text{ mA})$	30 130 mA	1 mA	30 130 mA	30 130 mA	10 mA	±(5% rdg.+1d)	±(3.5% rdg.+2d)							
	$I_{\rm F} (I_{\rm AN} = 300 \text{ mA})$	90 390 mA	1 mA	90 390 mA	90 390 mA	30 mA									
	$I_F (I_{\Delta N} = 500 \text{ mA})$	150 650 mA	1 mA	150 650 mA	150 650 mA	100 mA									
	$U_{L\Delta} / U_L = 25 V$	0 25.0 V	0.1 V	wie I _A	0 25.0 V	300 mA	+10% rdg.+1d	+1% rdg1d							
	$U_{L\Delta} / U_L = 50 V$	0 50.0 V		_	0 50.0 V	500 mA ²	110/0100.110	+9% rdg.+1 d							
	$t_A (I_{\Delta N} \cdot 1)$	0 1000 ms	1 ms	6 500 mA	0 1000 ms										
	$t_A (I_{\Delta N} \cdot 2)$	0 1000 ms 0 40 ms	1 ms	2 · 6 2 · 500 mA 5 · 6 5 · 300 mA			±4 ms	±3 ms							
	t _A (I _{∆N} · 5)	0 40 1115	1 1115	5 · 0 5 · 300 IIIA	0 40 ms 0.15 0.49 Ω	11 = 120/230 V	±(10% rdg.+ 30d)	$\pm (5\% rda \pm 30d)$							
	$Z_{L-PE} () $	$0 \dots 999 \ m\Omega$			$0.10 \dots 0.49 \Omega$ $0.50 \dots 0.99 \Omega$		$\pm(10\% \text{ rdg.}+30\text{d})$ $\pm(10\% \text{ rdg.}+30\text{d})$								
	Z _{L-N}	$1.00 \dots 9.99 \Omega$	$1 \text{ m}\Omega$		1.00 9.99 Ω	f _N =16 ² /3 ⁸ /50/60Hz	±(5% rdg.+ 3d)	±(3% rdg.+3d)							
	7	$0 999 \text{m} \Omega$	- 0.01 Ω 0.1 Ω		0.25 0.99 Ω		±(18% rdg.+30d)		-						
	Z _{L-PE}	$1.00 \dots 9.99 \Omega$	0.1 32	1.3 3.7 A AC	$1.00 \dots 9.99 \Omega$	$f_N = \frac{120}{230}$ V		$\pm (4\% \text{ rdg.}+300)$							
		10.0 29.9 Ω	0.1.1	0.5/1.25 A DC		-IN	_(_(_						
Z _{L-PE}	I _K (Z _{L-PE} ▲,	0 9.9 A 10 999 A	0,1 A 1 A		120 (108 132) V 230 (196 253) V										
		1.00 9.99 kA	10 A		400 (340 440) V		calculated val	ue from Z _{L-PE}							
Z _{L-N}	$Z_{L-PE} - DC$	10.0 50.0 kA	100 A		500 (450 550) V					Z _{L-PE}					
		$0.5 \dots 9.99 \ \Omega$	0.01 Ω			only display range	9		-						
	Z _{L-PE} (15 mA)	$10.0 \dots 99.9 \Omega$	0.1 Ω		10 100 Ω		±(10% rdg.+10D)	±(2% rdg.+2D)							
		100 999 Ω	1Ω			$U_N = 120/230 V$	±(8% rdg.+2D)	±(1% rdg.+1D)							
	L (15 mA)	100 999 mA	1 mA	15 mA AC	calcul. value depends	$f_N = 16^2 / \frac{8}{3} / 50 / 60 \text{ Hz}$	calculated value fr	om Z _{I -PF} (15 mA):							
	I _K (15 mA)	0.00 9.99 A 10.0 99.9 A	0.01 A 0.1 A		on U_N and Z_{L-PE} : $I_K = U_N / 101000 \Omega$	00 HZ	$I_{\rm K} = U_{\rm N}/Z_{\rm L}$	_{PE} (15 mA)							
	<u> </u>			1.3 3.7 A AC	$0.15 \Omega \dots 0.49 \Omega$		±(10% rdg.+30d)	±(5% rdg.+30d)	1						
	R _E (with probe)	0999 mΩ	1 11152	1.3 3.7 A AC	$0.50~\Omega$ $0.99~\Omega$	II 120/220 V	±(10% rdg.+30d)								
	,	1.00 9.99 Ω 10.0 99.9 Ω	0,01 Ω 0,1 Ω	1.3 3.7 A AC	1.0 Ω9.99 Ω	$U_{N} = 120/230 \text{ V}$ $U_{N} = 400 \text{ V}^{-1}$	±(5% rdg.+3d)	±(3% rdg.+3d)							
	[R _E (without probe)	100 999 Ω	1Ω	400 mA AC	10 Ω99.9 Ω	$f_N = 50/60 \text{ Hz}$	$\pm(10\% \text{ rdg.}+3d)$	±(3% rdg.+3d)							
R _E	values as Z _{L-PE}]	1 kΩ 9.99 kΩ	0.01 kΩ	40 mA AC 4 mA AC	100 Ω999 Ω 1 kΩ9.99 kΩ	IN .	$\pm(10\% \text{ rdg.}+3d)$	\pm (3% rdg.+3d)							
-		0 999 mΩ	1 mΩ				±(10% rdg.+3d)	±(3% rdg.+3d)	-						
	R _E DC+	$1.00 \dots 9.99 \Omega$	0.01 Ω	1.3 3.7 A AC	0.25 0.99 Ω		±(18% rdg.+ 30d)	±(6% rdg.+50D)							
		10.0 29.9 Ω	0.1 Ω	0.5/1.25 A DC	1.00 9.99 Ω	f _N = 50/60 Hz	±(10% rdg. + 3d)	±(4% rdg.+3D)							
	U _E	0 253 V	1 V	—	calculated value										
	R _E	0 999 Ω	1 mΩ			see R⊧	±(20% rdg.+ 20 d)	±(15% rad.+ 20 d)							
R _E Sel	· · E		1Ω 1mΩ	1.3 3.7 A AC	0.25 300 Ω ⁵⁾	-	((-					-	
clip	R _E DC+	$0 \dots 999 \Omega$	1 mΩ 1 Ω	0.5/1.25 A DC		$U_{N} = 120/230 \text{ V}$ $f_{N} = 50/60 \text{ Hz}$	±(22% rdg.+20 d)	±(15% rdg.+ 20 d)							
	~	10 kΩ 199 kΩ			10 kΩ 199 kΩ	-N - 30/00 112	+(20% y M + 2D)	±(10% v.M.+3D)	1						
EX-	7	200 k Ω 999 k Ω	1 kΩ	0.0 m/ k=: 000 \	200 kΩ 999 kΩ		()	(
TRA	Z _{ST}	$1.00~\text{M}\Omega \dots 9.99~\text{M}\Omega$	0.01 MΩ	2.3 mA bei 230 V	$1.00~\text{M}\Omega \dots 9.99~\text{M}\Omega$	$U_0=U_{L\text{-}N}$	±(10% v.M.+2D)	±(5% v.M.+3D)							
		$10.0 \text{ M}\Omega \dots 30.0 \text{ M}\Omega$			$10.0 \text{ M}\Omega \dots 30.0 \text{ M}\Omega$			1	1						

									Connections							
Func- tion	Measured Quantity	Display Range	Reso- lution	Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert 1	2-Pole Adapter	3-Pole Adapter	WZ12C		mpS MFLEX P300	CP1100	
		1 999 kΩ 1.00 9.99 MΩ 10.0 49.9 MΩ	1 kΩ 10 kΩ 100 kΩ		50 999 kΩ 1.00 49.9 MΩ	$U_N = 50 V$ $I_N = 1 mA$		kΩ range ±(3% rdg.+10d) MΩ range ±(3% rdg.+1d)								
		1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ	1 kΩ 10 kΩ 100 kΩ		50 999 kΩ 1.00 99.9 MΩ	$\begin{array}{l} U_N = 100 \text{ V} \\ I_N = 1 \text{ mA} \end{array}$	kΩ range ±(5% rdg.+10d) MΩ range ±(5% rdg.+1d)									
R _{INS}	R _{INS} . R _{E INS}	1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ 100 200 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ	I _K = 1.5 mA	50 999 kΩ 1.00 200 MΩ	$U_{N} = 250 \text{ V}$ $I_{N} = 1 \text{ mA}$			•	•						
		1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ 100 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ		50 999 kΩ 1.00 499 MΩ	$\begin{array}{c} U_{N} = 325 \ V \\ U_{N} = 500 \ V \\ U_{N} = 1000 \ V \\ I_{N} = 1 \ mA \end{array}$										
	U	10 999 V– 1.00 1.19 kV	1 V 10 V		10 1.19 kV	14	±(3% rdg.+1d)	±(1.5% rdg.+1d)	-							
R _{LO}	R _{LO}	0.00 Ω 9.99 Ω 10.0 Ω 99.9 Ω			0.1 Ω 5.99 Ω 6.0 Ω 100 Ω	$U_0 = 4.5 V$	±(4% rdg.+2d)	±(2% rdg.+2d)								
				Transforma- tion ratio ³			5	5								
		0.0 99.9 mA	0.1 mA				±(13% rdg.+5d)	±(5% rdg.+4d)								
		100 999 mA	1 mA	1 V/A	5 15 A				-			I 15A				
	=	1.00 9.99 A	0.01 A	I V/A	0 10 A		±(13% rdg.+1d)	±(5% rdg.+1d)				TIJA				
		10.0 15.0 A	0.1 A			f _N = 50/60 Hz										
		1.00 9.99 A	0.01 A				±(11% rdg.+4d)	±(4% rdg.+3d)								
		10.0 99.9 A	0.1 A	1 mV/A	5 150 A		±(11% rdg.+1d)	±(4% rdg.+1d)				II 150A				
		100 150 A	1 A				,	,								
		0.0 99.9 mA	0.1 mA	1 V/A	5 1000 mA		±(7% rdg.+2 d)	,					1 A			
		100 999 mA	1 mA				±(7% rdg.+1 d)	,						-		
		0.00 9.99 A	0.01 A	100 mV/A	0.05 10 A	fu =	±(3.4% rdg.+2 d)	(0)					10 A			
		0.00 9.99 A	0.01 A	10 mV/A	0.5 100 A	f _N = 16.7/50/60/	±(3.1% rdg.+2 d)						100 A			
SEN-		10.0 99.9 A	0.1 A			200/400 Hz	±(3.1% rdg.+1 d)	,						-		
SOR	1	0.00 9.99 A	0.01 A	1	E 1000 A		$\pm (3.1\% \text{ rdg.} + 1 \text{ d})$		_				10004			
6	I _{L/Amp}	10.0 99.9 A 100 999 A	0.1 A 1 A	1 mV/A	5 1000 A		$\pm (3.1\% \text{ rdg.} + 2 \text{ d})$		_				1000A			
7		0.0 99.9 mA	0.1 mA				$\pm (3.1\% \text{ rdg.} + 1 \text{ d})$,						0.02		
				1 V/A	30 1000 mA		±(27% rdg.+100 d)		_					0.03	_	
		100 999 mA	1 mA			-	±(27% rdg.+11 d)							3	_	
		0.00 9.99 A	0.01 A 0.01 A	100 mV/A	0.3 10 A	$f_{\text{N}} = 50/60 \text{ Hz}$	±(27% rdg.+12 d) ±(27% rdg.+11 d)		-					0.3 30	-	
		0.00 9.99 A	0.01 A	10 m///	3 100 A	-	±(27% rdg.+100 d)	±(3% rdg.+100 d)	-					3	1	
		10.0 99.9 A	0.1 A	10 mV/A	э IUU А		±(27% rdg.+11 d)	±(3% rdg.+11 d)	1					300	1	
		0.00 9.99 A	0.01 A	10	0.5 100.4		±(5% rdg.+12 d)	±(3% rdg.+12 d)							100A	
		10.0 99.9 A	0.1 A	10 mV/A	0.5 100 A	f _N =	±(5% rdg.+2 d)	±(3% rdg.+2 d)	1						~	
		0.00 9.99 A	0.01 A			f _N = DC/16.7/50/60/	±(5% rdg.+50 d)								10004	
		10.0 99.9 A	0.1 A	1 mV/A	5 1000 A	200 Hz	±(5% rdg.+7 d)	$\pm(3\% \text{ rdg.}+7 \text{ d})$	1						1000A	
		100 999 A	1 A		[±(5% rdg.+2 d)	±(3% rdg.+2 d)	1						~	

 1 U > 253 V, with 2 or 3-pole adapter only

2

 4 at R_{Eselekti}/R_{Egesamt} < 100 5 the indicated measuring and intrinsic uncertainties already include the uncertainties of the respective current clamp.

Measuring range of the signal input at the test instrument U_E: 0 ... 1.0 V_{eff} (0 ... 1.4 Vpeak) AC/DC 6

 7 Input impedance of signal input at the test instrument: 800 k Ω 8 for $f_N <$ 45 Hz => U_N < 253 V 7

Key: D = digits, rdg. = measured value (reading)

Characteristic Values PROFITEST MPRO, MXTRA & SECULIFE IP

Func	Mocoured		Deer	Input	Mocouring	Nominal	Mocouring	Intrinci-			Con	nectior			
Func- tion	Measured Quantity	Display Range	Reso- lution	Impedance / Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert ¹	2-Pole Adapter	3-Pole Adapter	Probe		Clamp Z3512A	
	U _{L-PE}	0 99.9 V	0.1 V		0.3 600 V ¹		±(2% rdg.+5d)	±(1% rdg.+5d)							
	U _{N-PE}	100 600 V 15.0 99.9 Hz	1 V 0.1 Hz		0.0 000 v	U _N = 120 V	±(2% rdg. + 1 d)	±(1% rdg. + 1 d)			\bullet				
	f	100 999 Hz	1 Hz		DC 15.4 420 Hz	230 V	±(0.2% rdg. + 1 d)	$\pm (0.1\% \text{ rdg.} + 1 \text{ d})$							
U	U _{3~}	0 99.9 V	0.1 V	5 MΩ	0.3 600 V	400 V	±(3% rdg.+5d)	±(2% rdg.+5d)							
Ŭ	°3~	100 600 V 0 99.9 V	1 V 0.1 V	0 1122	0.0 000 1	500 V		$\pm (2\% \text{ rdg.} + 1 \text{ d})$			-				
	UProbe	100 99.9 V	1 V		1.0 600 V	f _N = 16 ² / ₃ /50/	\pm (2% rdg.+5d) \pm (2% rdg. + 1 d)	±(1% rdg.+5d) ±(1% rdg.+1d)				\bullet			
	U _{L-N}	0 99.9 V	0.1 V		1.0 600 V ¹	60/200/400 Hz	±(3% rdg.+5d)	±(2% rdg.+5d)		-	•		-		
	UL-N	100 600 V	1 V		1.0 000 V		±(3% rdg. + 1 d)	$\pm (2\% \text{ rdg.} + 1 \text{ d})$	-		•				
	U _{IAN}	0 70.0 V	0.1 V	0.3 · Ι _{ΔΝ}	5 70 V	U _N = 120 V	+10% rdg. + 1 d	+1% rdg1d +9% rdg. + 1 d							
		10 Ω 999 Ω	1Ω	$I_{\Delta N} = 10 \text{ mA} \cdot 1.05$		230 V			-						
		1.00 kΩ 6.51 kΩ	0.01 kΩ			400 V									
		3 Ω 999 Ω 1 kΩ 2.17 kΩ	1Ω 0.01 kO	$I_{\Delta N} = 30 \text{ mA} \cdot 1.05$	calculated value	f 50/60 Hz									
	R _E	1Ω 651 Ω	1Ω	I _{AN} =100 mA · 1.05	Off	f _N = 50/60 Hz									
	L	0.3Ω 99.9Ω	0.1 Ω	I _{∆N} =300 mA · 1.05	$R_E = U_{I\DeltaN} / I_{\DeltaN}$	$U_{L} = 25/50 V$									
		100 Ω 217 Ω	1Ω												
$I_{\Delta N}$		0.2 Ω 9.9 Ω 10 Ω 130 Ω	0.1 Ω 1 Ω	$I_{\Delta N}$ =500 mA \cdot 1.05		I _{ΔN} = 6 mA			-	-		•			
.	$I_F (I_{\Delta N} = 6 \text{ mA})$	1.8 7.8 mA		1.8 7.8 mA	1.8 7.8 mA	10 mA						Option			
۴⊿∣	$I_F (I_{\Delta N} = 10 \text{ mA})$	3.0 13.0 mA	0,1 mA	3.0 13.0 mA	3.0 13.0 mA	30 mA									
	$I_F (I_{\Delta N} = 30 \text{ mA})$ $I_F (I_{\Delta N} = 100 \text{ mA})$	9.0 39.0 mA 30 130 mA	1 mA	9.0 39.0 mA 30 130 mA	9.0 39.0 mA 30 130 mA	100 mA 300 mA	±(5% rdg. + 1 d)	$\pm(3.5\% \text{ rdg.} + 2)$							
	$I_{E} (I_{AN} = 300 \text{ mA})$	90 390 mA	1 mA	90 390 mA	90 390 mA	500 mA ²	_(0,0 iug. + i u)	d)							
	$I_F (I_{\Delta N} = 500 \text{ mA})$	150 650 mA	1 mA	150 650 mA	150 650 mA										
	$U_{I\Delta}/U_L = 25 V$	0 25.0 V	0.1 V	Same as I_{Λ}	0 25.0 V 0 50.0 V	U _N ≤230 V	+10% rdg. + 1 d	+1% rdg1d							
	$\frac{U_{I\Delta} / U_L = 50 \text{ V}}{t_A (I_{\Delta N} \cdot 1)}$	0 50.0 V 0 1000 ms	1 ms	6 500 mA	0 1000 ms	011 = 200 1	-	+9% rdg.+ 1d	-						
	$t_A (I_{\Delta N} \cdot 2)$	0 1000 ms		2 · 6 2 · 500 mA	0 1000 ms	U _N ≤ 230 V	±4 ms	±3 ms							
	$t_A (I_{\Delta N} \cdot 5)$	0 40 ms	1 ms	5 · 6 5 · 300 mA	0 40 ms										
	$Z_{L-PE}(\frown)$	$0 \dots 999 \ \text{m}\Omega$		3.7 4.7 A AC	0.10 0.49 Ω 0.50 0.99 Ω	U _N = 120/230 V 400/500 V ¹	±(10% rdg.+20d) ±(10% rdg.+20d)	±(5% rdg.+20d) ±(4% rdg.+20d)							
	Z _{L-N}	$1.00 \dots 9.99 \Omega$	1 mΩ		$1.00 \dots 9.99 \Omega$		$\pm(5\% \text{ rdg.}+3d)$	$\pm(3\% \text{ rdg.}+3d)$							
	Z _{L-PE}	0999 mΩ	0.01 Ω 0.1 Ω	3.7 4.7 A AC	0.25 0.99 Ω		±(18% rdg.+30d)	±(6% rdg.+50d)							
	+ DC	1.00 9.99 Ω	0.1. ==	0.5/1.25 A DC	1.00 9.99 Ω	$f_N = 50/60 \text{ Hz}$	$\pm(10\% \text{ rdg.}+3\text{d})$	\pm (4% rdg.+3d)							
,		10.0 29.9 Ω 0 9.9 A	0,1 A		120 (108 132) V										
Z _{L-PE}	$I_{K}(Z_{L-PE} \blacktriangle,$	10 999 A	1 A		230 (196 253) V		Value calculat	ted from Z _{I-PF}		\bullet					
ZI _N	$Z_{L-PE} - DC)$	1.00 9.99 kA 10.0 50.0 kA	10 A 100 A		400 (340 440) V		Value Galedia	Controlling 20-PE	•	Z _{L-PE}					
- "		0.5 99.9 Ω	0.1 Ω		500 (450 550) V 10 100 Ω		±(10% rdg.+10d)	±(2% rda. + 2 d)	-						
	Z _{L-PE} (15 mA)	100 999 Ω	1Ω		$100 \dots 1000 \Omega$	U _N = 120/230 V		$\pm(1\% \text{ rdg.} + 1 \text{ d})$							
		0.10 9.99 A	0.01 A	15 mA AC	100 mA 12 A	$f_N = 16^2 / \frac{8}{3} / 50 /$		ulated from							
	l _K (15 mA)	10.0 99.9 A	0.1 A		(U _N = 120 V) 200 mA 25 A	60 Hz	$I_{\rm K} = U_{\rm N}/Z_{\rm I}$	ulated from							
		100 999 A ¹⁴⁾	1 A		(U _N = 230 V)		·K -W-L-	PE (
	D (with a st	0999 mΩ	$1 \text{ m}\Omega$	3.7 4.7 A AC	0.10 Ω 0.49 Ω		±(10% rdg.+20d)								
	R _{E.sl} (without probe)	$1.00 \dots 9.99 \Omega$	0.01 Ω	3.7 4.7 A AC	0.50 Ω 0.99 Ω 1.0 Ω9.99 Ω	U _N same as U	±(10% rdg.+20d) ±(5% rdg.+3d)	\pm (4% rdg.+200) \pm (3% rdg.+3d)							
	p ,	10.0 99.9 Ω 100 999 Ω	0.1 Ω 1 Ω	400 mA AC 40 mA AC	10 Ω99.9 Ω	function ¹ $f_N = 50/60 \text{ Hz}$	$\pm(10\% \text{ rdg.}+3d)$	±(3% rdg.+3d)							
	R _E (with probe)	1 kΩ 9.99 kΩ	0.01 kΩ	4 mA AC	100 Ω999 Ω	IN = 50/00 Hz	$\pm(10\% \text{ rdg.}+3d)$	\pm (3% rdg.+3d)							
_	R _{E (15 mA)}	0.5 99.9 Ω	0.1 Ω		1 kΩ 9.99 kΩ 10 Ω99.9 Ω	U _N = 120/230 V	±(10% rdg.+3d) ±(10% rdg.+10d)	\pm (3% rdg.+3d) \pm (2% rdg. + 2 d)				•			
R _E	(without/with probe)	100 999 Ω	1Ω	15 mA AC	100 Ω999 Ω	$f_N = 50/60 \text{ Hz}$	±(8% rdg. + 2 d)	$\pm (1\% \text{ rdg.} + 1 \text{ d})$				•			
	R _{E.sl} (without	$0 999 \ m\Omega$	$1 \text{ m}\Omega$	07 47 4 40	0.25 0.00 0	11 100/000 11	1/100/ rda - 00-"	1/60/ rda - 50-"							
	probe) — + DC R _{E.sl} (with probe)	$1.00 \dots 9.99 \Omega$	0.01 Ω	3.7 4.7 A AC 0.5/1.25 A DC	0.25 0.99 Ω 1.00 9.99 Ω	$U_N = 120/230 \text{ V}$ $f_N = 50/60 \text{ Hz}$	\pm (18% rdg.+30d) \pm (10% rdg.+3d)	±(6% rdg.+50d) ±(4% rdg.+3d)							
	+ DC	$10.0 \dots 29.9 \Omega$	0.1 Ω	3.0/ 1.20 A DU	1.00 0.00 22	- 00/00 HZ	_(10 /0 lug.+00)	<u>-</u> (1/0 rug.⊤0u)							
	U _E	0 253 V	1 V	3.7 4.7 A AC	$R_{E} = 0.10 9.99 \Omega$	$U_N = 120/230 \text{ V}$ $f_N = 50/60 \text{ Hz}$	Calculated U _F	$= U_N \cdot R_E/R_{E.sl}$	1						
		$0 999 \ m\Omega$	1 mΩ	2.1 A AC		IN - 30/00 HZ									
	R _{E.sel}	$1.00 \dots 9.99 \Omega$	0.01 Ω	2.1 A AC	$0.25 \dots 300 \Omega^4$	U _N = 120/230 V	±(20% rdg.+20 d)	+(15% rdn ⊥20 d\						•	
R _E	(only with probe)	10.0 99.9 Ω	0.1 Ω 1 Ω	400 mA AC	5.20 000 22	$f_{N} = 50/60 \text{ Hz}$	_(_0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	_(10/010g.⊤20 d)							
Sel	,	100 999 Ω 0 999 mΩ	1Ω 1mΩ	40 mA AC											\bullet
Clamp	R _{E.sel} + DC	$1.00 \dots 9.99 \Omega$	0.01 Ω	3.7 4.7 A AC	0.25 300 Ω	U _N = 120/230 V	±(22% rdg.+20 d)	+(15% rda + 20 d							
	(only with probe)	10.0 99.9 Ω	0.1 Ω	0.5/1.25 A DC	$R_{E.tot}$ < 10 Ω ⁴	f _N = 50/60 Hz	±1/22 /0 109.+20 0)								
		100 999 Ω 10 kΩ 199 kΩ	1 Ω 1 kΩ		10 kΩ 199 kΩ		+(20% v M +2D)	±(10% v.M.+3D)							
extra	7.	200 kΩ 999 kΩ	1 kΩ	2.3 mA bei 230 V	200 kΩ 999 kΩ	11. – 11	_(20/0 V.WI. 1 2D)	_(10/0 %.141.10D)				•			
LAINA	Z _{ST}	1.00 MΩ 9.99 MΩ	$0.01~\text{M}\Omega$	2.3 IIA DEI 230 V	$1.00~\text{M}\Omega \ldots 9.99~\text{M}\Omega$	$U_0 = U_{L-N}$	±(10% v.M.+2D)	±(5% v.M.+3D)	-			•			
		10.0 MΩ 30.0 MΩ	0.1 MΩ		10.0 MΩ 30.0 MΩ	IT system nomi-									
		00 04010	110	IT for a second second	20 kΩ 199 kΩ	nal voltages	±7%	±5%							
extra	IMD test	20 648 kΩ 2.51 MΩ	1 kΩ 0.01 MΩ	IT line voltage U.it = 90 550 V	200 k Ω 648 k Ω	UN.it =	±12%	±10%	•		•				
					2.51 MΩ	120/230/400/500 V fu = 50/60 Hz	±3%	±2%							
			1			f _N = 50/60 Hz			L				1		

											Con	nectio	ns		
Func-	Measured	Display Range	Reso-	Test Current	Measuring	Nominal	Measuring	Intrinsic	Diug	0 Dol-	0 Dele		Cla		
tion	Quantity	Display hallye	lution	lest ourrent	Range	Values	Uncertainty	Uncertainty	Plug Insert 1	2-Pole Adapter	3-Pole Adapter	W712C	73512A	MFLEX	CP1100
		1 999 kΩ	1 kΩ											P300	
		1.00 9.99 MΩ	10 kΩ		$50 \dots 999 \ \text{k}\Omega$	$U_N = 50 V$									
		10.0 49.9 MΩ	100 kΩ		$1.00 \dots 49.9 \ \text{M}\Omega$	$I_N = 1 \text{ mA}$									
		1 999 kΩ	1 kΩ				-								
		1.00 9.99 MΩ	10 kΩ		$50 \dots 999 \ k\Omega$	$U_{N} = 100 V$	$k\Omega$ range								
		10.0 99.9 MΩ	100 kΩ		$1.00 \dots 99.9 \ \text{M}\Omega$	$I_N = 1 \text{ mA}$		$k\Omega$ range							
		1 999 kΩ	1 kΩ				±(5% rdg.+10D)	±(3% rdg.+10d)							
	R _{ISO} , R _{E ISO}	1.00 9.99 MΩ	10 kΩ	I _K = 1.5 mA	$50\ldots999~\mathrm{k}\Omega$	$U_{N} = 250 V$			•	-					
R _{ISO}		10.0 99.9 MΩ	100 kΩ		1.00 200 MΩ	$I_N = 1 \text{ mA}$	M Ω range	M Ω range	•	•					
		100 200 MΩ	1 MΩ			-14	±(5% rdg. + 1 d)	±(3% rdg. + 1 d)							
		1 999 kΩ	1 kΩ			U _N = 325 V	-								
		1.00 9.99 MΩ	10 kΩ		$50 \dots 999 \mathrm{k}\Omega$	$U_{N} = 500 V$									
		10.0 99.9 MΩ	100 kΩ		1.00 499 MΩ	$U_{\rm N} = 1000 \rm V$									
		100 500 MΩ	1 MΩ			$I_N = 1 \text{ mA}$									
		10 999 V-	1 V		10 11011	IN .	1/00/ 1 4 1								
	U	1.00 1.19 kV	10 V		10 1.19 kV		$\pm (3\% \text{ rdg.} + 1 \text{ d})$	±(1.5% rdg. + 1 d)							
R _{LO}	R _{LO}	$0.00 \ \Omega \dots 9.99 \ \Omega$	$10 \text{ m}\Omega$	I _m ≥ 200 mA	$0.1 \ \Omega \dots 5.99 \ \Omega$	$U_0 = 4.5 V$	+(4% rda + 2 d)	$\pm(2\% \text{ rdg.} + 2 \text{ d})$							
	110	10.0 Ω 199.9 Ω	100 m Ω		6.0 Ω 100 Ω	00	=(1701031120)	=(= /0 / dg: / = d)		•					
				Transforma- tion ratio ³			5	5							
		0.0 99.9 mA	0.1 mA	uonnauo			$\pm(13\% rdg.+5d)$	±(5% rdg.+4d)							
		100 999 mA	1 mA	1 V/A	5 15 A		((111-15-17				I 15A			
		1.00 9.99 A	0.01 A	I V/A	J IJ A		±(13% rdg.+1d)	±(5% rdg.+1d)				ACTT			
		10.0 15.0 A	0.1 A			f _N = 50/60 Hz									
		1.00 9.99 A	0.01 A				±(11% rdg.+4d)	±(4% rdg.+3d)							
		10.0 99.9 A	0.1 A	1 mV/A	5 150 A		±(11% rdg.+1d)	±(4% rdg.+1d)				II 150A			
		100 150 A	1 A					,							
		0.0 99.9 mA	0.1 mA	1 V/A	5 1000 mA		$\pm (7\% \text{ rdg.} + 2 \text{ d})$		-				1 A		
		100 999 mA	1 mA			_	±(7% rdg.+1 d)								
		0.00 9.99 A	0.01 A	100 mV/A	0.05 10 A	f _N =	±(3.4% rdg.+2 d)						10 A		
SEN-		0.00 9.99 A 10.0 99.9 A	0.01 A 0.1 A	10 mV/A	0.5 100 A	16.7/50/60/200/	±(3.1% rdg.+2 d)						100 A		
SOR		0.00 9.99 A	0.1 A			400 Hz	$\pm (3.1\% \text{ rdg.}+1 \text{ d})$ $\pm (3.1\% \text{ rdg.}+1 \text{ d})$								
JUN	L	10.0 99.9 A	0.01 A	1 mV/A	5 1000 A		$\pm (3.1\% \text{ rdg.}+2 \text{ d})$ $\pm (3.1\% \text{ rdg.}+2 \text{ d})$		-				1000A		
6	I _{L/Amp}	100 999 A	1 A	1 1110/73	0 1000 A		$\pm (3.1\% \text{ rdg.}+1 \text{ d})$						10004		
7		0.0 99.9 mA	0.1 mA				$\pm (27\% \text{ rdg.}+100 \text{ d})$							0.03	
		100 999 mA	1 mA	1 V/A	30 1000 mA			$\pm (3\% \text{ rdg.}+11 \text{ d})$						3	-
			0.01 A			_		$\pm(3\%$ rdg.+11 d) $\pm(3\%$ rdg.+12 d)	-					0.3	-
		0.00 9.99 A	0.01 A	100 mV/A	0.3 10 A	f _N = 50/60 Hz		$\pm (3\% \text{ rdg.} + 12 \text{ d})$ $\pm (3\% \text{ rdg.} + 11 \text{ d})$						30	-
		0.00 9.99 A	0.01 A			-		±(3% rdg.+100 d)	-					3	-
		10.0 99.9 A	0.1 A	10 mV/A	3 100 A			$\pm(3\% \text{ rdg.}+11 \text{ d})$	-					300	1
		0.00 9.99 A	0.01 A					±(3% rdg.+12 d)							100A
		10.0 99.9 A	0.1 A	10 mV/A	0.5 100 A	f _N =	$\pm(5\% \text{ rdg.}+2 \text{ d})$	$\pm(3\% \text{ rdg.}+2 \text{ d})$	1						~
		0.00 9.99 A	0.01 A			DC/16.7/50/60/		$\pm(3\% \text{ rdg.}+50 \text{ d})$							
		10.0 99.9 A	0.01 A	1 mV/A	5 1000 A	200 Hz	$\pm (5\% \text{ rdg.} + 7 \text{ d})$	$\pm(3\% \text{ rdg.}+7 \text{ d})$	-						1000A
		100 999 A	1 A	1 1110/73	0 1000 A	200112	$\pm (5\% \text{ rdg.}+2 \text{ d})$		-						~
1		3-pole adapter only		1		5		g and intrinsic un		1	1	1	1		1

3-pc adapter 2

1/2 :LM > 300 mA and 5 :UN > 500 mA and If > 300 mA only up to U_N \leq 230 V ! The transformation ratio selected at the clamp (1 ... 1000 mV/A) must be set in the "Type" menu with the rotary switch in the "SENSOR" position. З

4 Where R_{Eselective}/R_{Etotal} < 100

Special Function PROFITEST MPRO, MXTRA

measuring and intrinsic uncertainties already include the uncertainties of the respective current clamp.

Measuring range of the signal input at the test instrument U_E: 0 ... 1.0 V_{eff} (0 ... 1.4 Vpeak) AC/DC Input impedance of signal input at the test instrument: 800 kΩ for f_N < 45 Hz => U_N < 253 V 6

7

8

Func-	Measured		Reso-	Test Current/		Measuring	Intrinsic		Conne		
tion	Quantity	Display Range	lution	Signal Frequency ⁵	Measuring Range	Uncertainty	Uncertainty		or Test Plug PRO-RE/2		Clamps Z591B
	-	0.00 0.00 0	0.01.0		1000 1000	-		FNU-NL	FNU-NL/Z	23312A	23910
	RE, 3-pole	0.00 9.99 Ω	0.01 Ω	16 mA/128 Hz	1.00 Ω 19.9 Ω	±(10% rdg.+10D)	±(3% rdg.+5D)				
	· ·	10.0 99.9 Ω	0.1 Ω	1.6 mA/128 Hz	5.0 Ω 199 Ω	+1Ω	$+0,5 \Omega$	6			
	55.4	100 999 Ω		0.16 mA/128 Hz	$50 \ \Omega \dots 1.99 \ k\Omega$			0			
	RE, 4-pole	$1.00 \dots 9.99 \ \mathrm{k}\Omega$		0.16 mA/128 Hz	$0.50 \mathrm{k}\Omega \dots 19.9 \mathrm{k}\Omega$	±(10% rdg.+10d)	$\pm(3\% \text{ rdg.}+5d)$				
		$10.0 \dots 50.0 \ \text{k}\Omega$		0.16 mA/128 Hz	0.50 k $\Omega \dots 49.9$ k Ω						
		$0.00 9.99 \Omega$	0.01 Ω	16 mA/128 Hz							
	RE, 4-pole	10.0 99.9 Ω	0.1 Ω	16 mA/128 Hz							
	Selective	$100 999 \Omega$	1Ω	1.6 mA/128 Hz	$1.00~\Omega$ $9.99~\Omega$	±(15% rdg.+10d)		6		9	
	With clamp meter	1.00 9.99 kΩ		0.16 mA/128 Hz	$10.0 \ \Omega \dots 200 \ \Omega$	±(20% rdg.+10d)	±(15% rdg.+10d)				
		10.0 19.9 kΩ ¹⁵	0.1 kΩ	0.16 mA/128 Hz		10					
RE _{BAT}		10.0 49.9 k Ω ¹⁶	0.1 kΩ	0.16mA/128 Hz	10						
				16 mA/128 Hz	100 Ωm 9.99 kΩm 12						
	Soil resistivity	0.0 9.9 Ω m	0.1 Ωm	1.6 mA/128 Hz	500 Ωm 9.99 kΩm ¹²	±(20% rdg.+10d)	±(12% rdg + 10d)				
		$100 \dots 999 \Omega$ m	1 Ωm	0.16 mA/128 Hz	5.00 k Ω m 9.99 k Ω m 13	11	11 ±(12 % 100.+100)	6			
	(p)	1.00 9.99 kΩm	0.01 kΩm	0.16 mA/128 Hz	5.00 k Ω m 9.99 k Ω m 13						
				0.16mA/128 Hz	5.00 k Ω m 9.99 k Ω m 13						
	Probe distance d (p)	0.1 999 m									
		$0.00 \dots 9.99 \Omega$	0.01Ω								
	RE, 2 clamps	$10.0 \dots 99.9 \Omega$	0.1 Ω	30 V / 128 Hz	0.10 9.99 Ω	±(10% rdg.+5d)	±(5% rdg.+5d)		7	9	8
	n∟, ∠ uamps	$100 999 \Omega$	1Ω	JU V / 120 HZ	$10.0 \dots 99.9 \ \Omega$	±(20% rdg.+5d)	±(12% rdg.+5d)				
		$1.00 \dots 1.99$ k Ω	0.01 kΩ								

5 6

Signal frequency without interference signal PRO-RE (Z501S) adapter cable for test plug, for connecting earth probes (E-Set 3/4)

7 PRO-RE/2 (Z5021) adapter cable for test plug, for connecting the generator clamp (E-CLIP2) Generator clamp: E-CLIP2 (Z591B) ⁹ Clamp meter: Z3512A (Z225A)

8

¹⁰ Where RE.sel/RE < 10 or clamp current > 500 μ A

 11 Where RE.H/RE \leq 100 and RE.E/RE \leq 100 12 Where d = 20 m 13 Where d = 2 m

 14 Where Z_{L-PE} < 0,5 $\Omega,$ I_k > U_N/0,5 Ω is indicated 15 Only where RANGE = 20 k Ω

¹⁶ Only where RANGE = 50 k Ω or AUTO

PROFITEST MASTER Characteristic Values

Reference Conditions

Line voltage

Line frequency

Probe resistance

Relative humidity

Standing surface insulation

Finger contact

Supply power

230 V ± 0.1 % 50 Hz ± 0.1 % Meas. quantity frequency 45 Hz ... 65 Hz Measured qty. waveform Sine (deviation between effective and rectified value ≤ 0.1 %) Line impedance angle $\cos \phi = 1$ $\leq 10 \ \Omega$ $12 V \pm 0.5 V$ + 23° C ± 2 K Ambient temperature 40% to 60% For testing potential difference to ground potential Purely ohmic

R_{LO}

Electronic protection prevents switching on if interference voltage is present

fuse protection

Fine-wire

FF 3.15 A 10 s, fuses blow at > 5 A

Electrical Safety

Protection class II per IEC 61010-1/EN 61010-1/ VDE 0411-1 Nominal voltage 230/400 V (300/500 V) 3.7 kV 50 Hz Test voltage Measuring category CAT III 500 V or CAT IV 300 V Pollution degree 2 Fusing, L and N terminals 1 cartridge fuse-link ea. FF 3.15/500G 6.3 x 32 mm

Electromagnetic Compatibility (EMC)

		Interference emission	
Power Supply		EN 55022	
Dooborgooblo bottorioo	$9 \operatorname{coop} AA = 5 V$	Interference immunity	Test Value
Rechargeable batteries	8 each AA 1.5 V, we recommend only using the battery	EN 61000-4-2	Contact/atmos
	pack included in the standard equip-	EN 61000-4-3	10 V/m
	ment (pack of rechargeable batteries	EN 61000-4-4	Mains connection
	article no. Z502H)	EN 61000-4-5	Mains connection
Number of measuremen	nts (standard setup with illumination)	EN 61000-4-6	Mains connection
– For R _{ISO}	1 measurement – 25 s pause: Approx. 1100 measurements	EN 61000-4-11	0.5 period / 100%
– For R _{LO}	Automatic polarity reversal / 1 Ω (1 measuring cycle) – 25 s pause: Approx. 1000 measurements	Ambient Condition	ons
Battery test	Symbolic display of battery voltage	Accuracy	0 to + 40
	BAT	Operation	-5 to + 5
Battery saver circuit	Display illumination can be switched off. The test instrument is switched off	Storage	-20 to + batteries
	automatically after the last key opera-	Relative humidity	Max. 75%
	tion. The user can select the desired on-time.	Elevation	Max. 200
Safety shutdown	If supply voltage is too low, the instru-		
	ment is switched off, or cannot be switched on.	Mechanical Desi	gn
Recharging socket	Installed rechargeable batteries can be recharged directly by connecting a	Display	Multiple 128 x 12
	charger to the recharging socket:	Dimensions	W x L x I
Charging time	charger Z502R	Weight	approx. 2
Charging time	Charger Z502R: Approx. 2 hours *		with rech
* Movimum oborging time with	Approx. 2 hours	Protection	Housing:

Maximum charging time with fully depleted rechargeable batteries. A timer in the charger limits charging time to no more than 4 hours.

Overload Capacity

R _{ISO} U _{L-PE} , U _{L-N}	1200 V continuous 600 V continuous
RCD, R _E , R _F	440 V continuous
Z _{L-PE} , Z _{L-N}	550 V (Limits the number of measure- ments and pause duration. If overload occurs, the instrument is switched off by means of a thermostatic switch.)

Product standard	EN 61326-1:2013	
Interference emission		Class
EN 55022		A
Interference immunity	Test Value	Feature
EN 61000-4-2	Contact/atmos 4 kV/8 kV	
EN 61000-4-3	10 V/m	
EN 61000-4-4	Mains connection – 2 kV	
EN 61000-4-5	Mains connection – 1 kV	
EN 61000-4-6	Mains connection – 3 V	
EN 61000-4-11	0.5 period / 100%	

Accuracy	0 to + 40 °C
Operation	–5 to + 50 °C
Storage	-20 to +60 °C (without rechargeable batteries)
Relative humidity	Max. 75%, no condensation allowed
Elevation	Max. 2000 m

Display	Multiple display with dot matrix, 128 x 128 pixels
Dimensions	W x L x D: 260 x 330 x 90 mm
Weight	approx. 2.7 kg with rechargeable batteries
Protection	Housing: IP 40, test probe: IP 40 per EN 60529/DIN VDE 0470, part 1

Data Interfaces

Туре	USB slave for PC connection
Туре	RS 232 for barcode and RFID scanners
Туре	Bluetooth [®] for connection to PC
ıre-	(PROFITEST MTECH+/MXTRA/SECULIFE IP
her	only)

Scope of delivery:

- 1 Test instrument
- 1 Earthing contact plug insert (country-specific)
- 1 2-pole measuring adapter and 1 cable for expansion into a 3-pole adapter (PRO-A3-II)
- 2 Alligator clips
- 1 Shoulder strap
- 1 Set of rechargeable batteries (Z502H)
- 1 Battery charger Z502R
- 1 USB cable
- 1 DAkkS calibration certificate
- 1 Supplement Safety Information
- 1 Condensed operating instructions*
- * Detailed operating instructions for download from our website at www.gossenmetrawatt.com
- 1 Card with registration key for software

Special Functions with PROFITEST MPRO and PROFITEST MXTRA

(Rechargeable) Battery Powered Earthing Resistance Measurements

Earthing Resistance R_E

3-wire measuring method, probes and earth electrodes connected via PRO-RE adapter

4-wire measuring method, probes and earth electrodes connected via PRO-RE adapter

Selective Earthing Resistance R_E

(4-wire measuring method) Current clamp sensor connected directly, probes and earth electrodes connected via PRO-RE adapter

Earth Loop Resistance R_{Eloop}

2-clamp measurement:

Current clamp sensor connected directly, current clamp transformer connected via PRO-RE/2 adapter

Soil Resistivity Rho

Probes connected via PRO-RE adapter

IZYTRON

Special Functions with PROFITEST MTECH+/MXTRA and SECULIFE IP

Tripping Test for Type B, AC/DC Sensitive RCDs 🖂 ≕ with Rising DC Residual Current and Measurement of Tripping Current

With the selector switch in the I_F → position, slowly rising current flows via N and PE. The momentary measured current value is continuously displayed. When the RCCB is

tripped, the last measured current value is displayed. A greatly reduced rate of increase is used for delayed RCCBs (type $[\underline{s}]$).

Tripping Test for Type B, AC/DC Sensitive RCDs \fbox = with Constant DC Residual Current and Measurement of Tripping Time

With the selector switch set to the respective nominal residual current, twice the selected nominal current flows via N and PE. Time to trip is measured for the RCCB and displayed.

Loop Resistance Measurement with Suppression of RCD Tripping

The test instruments make it possible to measure loop impedance in TN systems with type A, F \cong and type AC \cong RCCBs (10, 30, 100, 300, 500 mA nominal residual current).

The respective test instrument generates a DC residual current to this end, which saturates the RCCB's magnetic circuit. The test instrument then superimposes a measuring current which only demonstrates half-waves of like polarity. The RCCB is no longer

capable of detecting this measuring current, and is consequently not tripped during measurement.

Selective Earthing Resistance Measurement (mains powered)

Special Functions

Voltage Drop Measurement (at Z_{LN}) – ΔU Function

According to DIN VDE 100, part 600, voltage drop from the intersection of the distribution network and the consumer system to the point of connection of an electrical power consumer (electrical outlet or device connector terminals) should not exceed 4% of nominal line voltage.

Voltage drop calculation:

 $\Delta U = Z_{L-N} \bullet \text{ rated fuse current}$ $\Delta U \text{ as } \% = \Delta U / U_{L-N}$

Special Functions PROFITEST MXTRA

Leakage Current Measurement with PRO-AB Adapter (PROFITEST MXTRA only)

рит

Ο

Contacting

of exposed

metal surface

<u>Measurement of</u>

<u>leakage current</u>

Measurement of continuous leakage and patient auxiliary current per IEC 62353 (VDE 0750, part 1) / IEC 601-1 / EN 60 601-1:2006 (Medical electrical equipment – General requirements for basic safety) is possible with the help of the PRO-AB leakage current measuring adapter used as an accessory with the **PROFITEST MXTRA** test instrument.

As specified in the standards listed above, current values of up

to 10 mA may be measured with this measuring adapter.

In order to be able to fully cover this measuring range using the measurement input provided on the test instrument (2-pole current clamp input), the measuring instrument is equipped with range switching between transformation ratios of 10:1 and 1:1.

L1.N.PE

2502S

Ъ

OPEN

TEST

ON DEE

Measurement of the Impedance of Insulating Floors and Walls (standing surface insulation impedance) – Z_{ST} Function

The instrument measures the impedance between a weighted metal plate and earth. Line voltage available at the measuring site is used as an alternating voltage source. The Z_{ST} equivalent circuit is considered a parallel circuit.

230U fn 50,0Hz

Uм

wooden board

Testing of Insulation Monitoring Devices (IMDs) (PROFITEST MXTRA and SECULIFE IP only)

Insulation monitors are used in power supplies for which a single-pole earth fault may not result in failure of the power supply, for example in operating rooms or photovoltaic systems.

Insulation monitors can be tested with the help of this special function. After pressing the start button, an adjustable insulation resistance is activated between one of the two phases of the IT system to be monitored and ground to

resistance between external conductor and earth in the IT mains

Start/Stop: press **Stuffish**

this end. This resistance can be changed in the manual sequence mode with the help of the softkeys, and it can be varied automatically from R_{max} to R_{min} in the automatic operating mode.

Time, during which the momentary resistance value prevails at the system until the next change in value, is displayed. The IMD's display and response characteristics can be subsequently evaluated and documented with the help of the softkeys.

Special Functions PROFITEST MXTRA

Determining Residual Voltage / Detecting Mains Fluctuations (PROFITEST MXTRA only)

The EN 60204 standard specifies that after switching supply power off, residual voltage between L and PE must drop to a value of 60 V or less within 5 seconds at all accessible, active components of a machine to which a voltage of greater that 60 V is applied during operation.

With the PROFITEST MXTRA, testing for the absence of voltage is performed as follows by means of a voltage measurement which involves measuring discharge time tu:

In the case of voltage dips of greater than 5% of momentary line voltage (within 0.7 seconds), the stopwatch is started and momentary undervoltage is displayed as Ures after 5 seconds and indicated by the red UL/RL diode.

ta[I_] > ta[I_N[100%]]

10,30,100,300,500 & 😫 [mA]

300ms

35%

Ian

TAN:

[[ms]

Ia [mA]

Special Functions PROFITEST MXTRA

Testing Residual Current Monitoring Devices (RCMs) (PROFITEST MXTRA only)

RCMs (residual current monitors) monitor residual current in electrical systems and display it continuously. As is also the case with residual current devices, external switching devices can be controlled in order to shut down supply power in the event that a specified residual current value is exceeded. However, the advantage of an RCM is that the user is informed of fault current within the system before shutdown takes place.

As opposed to individual mea-

ment results must be evaluated

the combination must be tested

manually in this case.

as if it were an RCD.

Testing the Operating States of Electric Vehicles at Charging Stations per IEC 61851 (PROFITEST MTECH+ & PROFITEST MXTRA only)

A charging station is an equipment designed for the charging of electric vehicles per

IEC 61851 which essentially consists of a plug connector, a cable protection, a residual current device (RCD), as well as a circuit breaker and a security communication system (PWM).

Depending on the place of installation and application, further functional features such as mains connection and meter may be included.

(State A - E)

The MENNEKES test box only serves the purpose of simulating different operating states of an electric vehicle fictitiously connected with a charging station.

Simulation of operating states per IEC 61851 with the MENNEKES test box

Intelligent Ramp (PROFITEST MXTRA only)

The advantage of this measuring function in contrast to individual measurement of $I_{\Delta N}$ and t_A is the simultaneous measurement of breaking time and breaking current by means of a test current which is increased in steps. during which the RCD is tripped only once.

The intelligent ramp is subdivided into time segments of 300 ms each between the initial current value (35% $I_{\Delta N})$ and the final cur-

rent value (130% $I_{\Lambda N}$). This results in a gradation for which each step corresponds to a constant test current which is applied for no longer than 300 ms, assuming that tripping does not occur.

And thus both tripping current and tripping time are measured and displayed.

GMC-I Messtechnik GmbH

Special Functions PROFITEST MXTRA

Test Sequences for Report Generation of Fault Simulations on PRCDs type S and K with PROFITEST PRCD (PROFITEST MXTRA only):

- Three test sequences are preconfigured:
- PRCD-S (single phase/3-pole)
- PRCD-K (single phase/3-pole)
- PRCD-S (three-phase/5-pole)
- The test instrument guides you through all test steps in a semi-automatic fashion:

Single phase PRCDs: PRCD PRCD 3-phase PRCDs: PRCD

PRCD-S: 11 test steps PRCD-K: 4 test steps PRCD-S: 18 test steps

- Each test step is assessed and evaluated by the user (OK/not OK) for subsequent report generation purposes.
- Measurement of protective conductor resistance of the PRCD by means of function R_{LO} at the test instrument.
- Measurement of insulation resistance of the PRCD by means of function R_{ISO} at the test instrument.
- Trip test with nominal fault current by means of function I_F
 i at the test instrument.
- Measurement of tripping time by means of function ${\rm I}_{\Delta N}$ at the test instrument.
- Varistor test with PRCD-K: measurement via ISO ramp.

Further information is included in the data sheet for the PROFITEST PRCD.

Automatic Test Sequence Function

If the same order of tests with subsequent report generation is to be performed repeatedly, as is, for example, specified by certain standards, we recommend using test sequences.

With the help of test sequences it is possible to compile automatic test procedures on the basis of the manual individual measurements. A test sequence consists of up to 200 individual test steps which have to be processed one after the other.

The test sequences are created at a PC by means of the ETC software and are then transferred to the **PROFITEST MPRO** or **PROF-ITEST MXTRA** test instruments.

The measurement parameters are also configured at a PC. However, they can still be modified at the test instrument during the test procedure before the respective measurement is launched.

Interface (PROFITEST MTECH+/MXTRA/SECULIFE IP only)

If your PC is equipped with a *Bluetooth*[®] interface, wireless communication is possible between the test instrument and ETC user software for the transfer of data and test structures.

Furthermore, it is possible to connect a Bluetooth keyboard (Logitech).

Selecting the PRCD under Test

Example Simulation Interruption

IZYTRONIQ

Database Software for Complete Management and Documentation of Testing

	≣ 🏠 .	ب					D	Ş	⊡ , Q , − €	2 =	— C	א נ
E-TREE ⊿ ≣							i			FT0002)	- - -	
								۵ ۵	EG (EBENE0001)			×
E Bohrmasz	hine (GERAETOO21)			(/ \2	44	/			EEGO1 (RAUMODOT)			*
DEVICE ID	GERAET0020	TECHN		SERIAL NUMBER	TEST SEQU	JENCE			ж			Ē
				DEPARTMENT				COST CENTER				Ð
LAST TEST LAST TEST RESULT				INTERVAL (MONTHS) DEADLINE STATUS				NEXT TEST			•	. D
COMMENT		XXX III										5
		ID	TYPE					CUSTONIS		INITED IAL (M		
		GERAET0020		Bohrhammer	SERIAL	GM	OK	Bosch	KUNDE0001	INTERVAL (M		
											Count=1	
	E-TREE		E-TREE	E-TREE	E-TREE	E-TREE	E-TREE	E-TREE	E-TREE LOCATIO A B Active (GRAFTOD) Comment of GRAFTOD) DEVICE TECHNICAL DATA TEST SEQUENCE TESTS D GRAFTODO SERVA NUMER ALL STATUS D GRAFTODO SERVA NUMER ALL STATUS COSTOMER DESCRIPTION Rown DEVICE TECHNICAL DATA TEST SEQUENCE TESTS D GRAFTODO SERVA NUMER ALL STATUS COST CONTENT D COST CONTENT LAST TEST LAST TEST L	E-TREE	E-TREE	E-TREE

IZYTRONIQ allows for the management and documentation of measured values for the following test instruments of the **PROFITEST MASTER** series:

PROFITEST MPRO, PROFITEST MTECH+, PROFITEST MXTRA, SECULIFE IP; as from firmware version 3.1.0 in each case.

Basic Modules

IZYTRONIQ is broken down into modules in a clear-cut fashion:

- Portable objects (devices and medical devices) Testing, acquisition and management of portable devices
- Stationary objects (machines and systems)
 Testing, acquisition and management of stationary devices
- User administration Enter and manage users
- Test instrument management
 Enter and manage test instruments

For further information on the application software please refer to the internet at www.izytron.com

Report Generation Accessories

See following page and separate ID systems data sheet regarding barcode scanners and printers, as well as RFID readers.

Scope of Functions of the BUSINESS Starter Variant

- Stationary objects (machinery & facilities)
- Portable objects (devices & medical devices)
- Test device management
- User management
- Push/print function
- Sequence management + sequence editor
- Catalog management and editing
- Tree structure for machinery and facilities
- Tree structure for devices and medical devices
- Tree structure for locations (facilities, buildings, levels & rooms)
- Simple universal report as a PDF
- Simple list generator (PDF, Excel)
- Red/green test analysis

Main communication features

- Import of memory structure, catalogs, sequences and measurements from the test device
- Export of memory structure, catalogs and sequences to the test device
- Data import of memory structure, catalogs, sequences and measurements from an XML file
- Data export of memory structure, catalogs, sequences and measurements to an XML file
- Data import of master data for portable objects from a CSV file

Barcode scanner for connection to RS 232 port at tester – Z502F

Barcode and label printer for USB connection to a PC - Z721E

Barcode/label printer for connection to a PC, for self-adhesive, smudge-proof barcode labels, for identifying devices and system components. Devices and system components can be logged by our test instruments, and acquired measured values can be allocated to them with the scanner.

SCANBASE RFID reader for connection to RS 232 port at tester - Z751G

The Z751G RFID reader is preprogrammed to scan the following RFD tags.

Order No.	Frequency	Standard	Туре	Quantity per Package
Z751R	13.56 MHz	ISO 15693	approx. 22 mm dia., self-adhesive	500 pieces
Z751S	13.56 MHz	ISO 15693	approx. 30 x 2 mm dia. with 3 mm hole	500 pieces
Z751T	13.56 MHz	ISO 15693	Pigeon ring, approx. 10mm dia.	250 pieces

Power Supply Accessories

Accessory Plug Inserts and Adapters

Country specific Plug Inserts

PRO-Schuko

Country specific Plug Insert PRO-GB-USA (Z503B) Test Probes (L 68 mm, \emptyset 2,3 mm) Set-Probes (Z503F)

PRO-W

Flat test clip for contacting on busbars PRO-PE Clip (Z503G)

Magnetic measuring contacts (patent) with magnetic strain relief (Z502Z)

3-Phase Current Adapters 5-pole

A3-16, A3-32 and A3-63 3-phase adapters are used for trouble-free connection of test instruments to 5pole CEE outlets. The three variants differ with regard to plug size, which corresponds respectively to 5-pole CEE outlets with current ratings of 16, 32 and 63 A. Phase sequence is indicated with lamps at all three variants. Testing the effectiveness of safety

measures is conducted via five 4 mm contact protected sockets.

3-Phase Current Adapter 7-pole

A3-16 Shielded and A3-32 Shielded 3-phase adapters are used for trouble-free connection of test instruments to 7-pole CEE outlets. The two variants differ with regard to plug size, which corresponds respectively to 7-pole CEE outlets with current ratings of 16 and 32 A. Testing the effectiveness of safety measures is conducted via seven 4 mm sockets with touch protection.

Variable Plug Adapter Set

Three self-retaining, contact protected test probes for the connection of measurement cables with 4 mm banana plugs, or with contact protected plugs for sockets with an opening of 3.5 mm to 12 mm, e.g. CEE, Perilex sockets etc. For example, jacks on Perilex sockets.

the test probes also fit the square PE jacks on Perilex sockets. Maximum allowable operating voltage: 600 V per IEC 61010.

PRO-AB Leakage Current Measuring Adapter for PROFITEST MXTRA and SECULIFE IP

ISO Calibrator 1

Calibration adapter for rapid, efficient testing of the accuracy of measuring instruments for insulation resistance and low-value resistors

KS24 Cable Set

TELEARM 120 Telescoping Rod

RM 120 Telesconing Rod

The KS24 cable set includes a 4 m long extension cable with a permanently attached test probe at one end and a contact protected socket at the other end, as well as an alligator clip which can be plugged onto the test probe.

Case TELEARM

Floor Probe

The 1081 floor probe makes it possible to measure the resistance of insulating floors in accordance with DIN VDE 0100, part 600, and EN 1081.

WZ12C (Z219C)

Current clamp sensor for leakage current, selectable measuring ranges: 1 mA to 15 A, 3% and 1 A to 150 A, 2% Transformation ratios: 1 mV/mA, 1 mV/A

METRAFLEX P300 (Z502E)

Flexible current clamp sensor for selective earthing resistance measurement 3/30/300 A, 1 V/100 mV/10 mV/A

Earthing Resistance Measurement Accessories

PRO-RE/2 Clamp Adapter (Z502T)

Adapter which is mounted to the test plug allowing for connection of the E-Clip 2 generator clamp for 2clamp or ground-loop earthing resistance measurement. 2-clamp or ground loop measurement is thus made possible.

PRO-RE Adapter (Z501S)

Earth electrodes, auxiliary earth electrodes, probe and auxiliary probe are connected to the tester via the banana plug sockets, and thus via the adapter which is mounted to the test plug.

E-Clip 2 Clamp Generator (Z591B)

Output signal: 0.2 mA to 1.2 A Equipped with laboratory safety plug inputs

Z3512A AC Current Sensor Clamp

Measuring range:

Measuring category:

Transformation ratio:

Max. cable dia.: 52 mm

0.2 A to 1200 A

600 V CAT III

1000 A/1A Frequency range:

40 Hz to 5 kHz

Switchable measuring ranges: 1 mA to 1/100/1000 A~ Transformation ratios: 1 V/A, 100mV/A, 10 mV/A, 1 mV/A

TR25II Cable reel (Z503X)

TR50II Cable reel (Z503Y)

SP500Earth Drill (Z503Z)

coiled onto a plastic drum. Connection to the inside end of the cable is made possible with two sockets integrated into the drum. The other end is equipped with a banana plug.

25 m measurement cable

Cable resistance can be compensated for with the rotary selector switch in the R_{LO} position.

50 m measurement cable coiled onto a plastic drum. Connection to the inside end of the cable is made possible with two sockets integrated into the drum. The other end is equipped with a banana , plug.

Cable resistance can be compensated for with the rotary selector switch in the R_{LO} position.

E-SET PROFESSIONAL (Z592A)

Accessory Cases and Trolleys

SORTIMO L-BOXX GM (Z503D)

Foam insert for SORTIMO L-BOXX GM (Z503E)

Plastic system case Outside dimensions: W x H x D 450 x 255 x 355 mm Foam insert Z503E for tester and accessories, has to be ordered seperately, see below.

E-CHECK Case (Z502M)

Outside dimensions: H x W x D 390 x 590 x 230 mm

F2000 Universal Carrying Pouch (Z700D)

Outside dimensions: W x H x D $380 \times 310 \times 200 \text{ mm}$ (without buckles, handle and carrying strap)

Profi-Case (Z502W)

Outside dimensions: H x W x D 390 x 590 x 230 mm

F2020 Large Universal Carrying Pouch (Z700F)

Outside dimensions: W x H x D 430 x 310 x 300 mm (without buckles, handle and carrying strap)

Trolley for Profi-Case (Z502B) and E-CHECK Case (Z502N) Folded-up dimensions: 395 x 150 x 375 mm

Ever-ready case for PROFITEST MASTER (Z502X)

E-Mobility Accessories

PRO-TYP I (Z525B)

PRO-TYP II (Z525A)

Indication of Phase Voltages via LEDs

Depending on the charging station, either one or three phases can be active.

Testing of electrical charging stations with permanently connected charging cable due to extended CP test pin

Order Information

Designation	Туре	Article Number
PROFITEST MASTER Instrument Va	riants	
Universal protective measures test instrument per EN 61557, sections 1, 2, 3, 4, 5, 6, 7 and 10 with inte- grated memory and insulation mea- surement up to 1000 V as well as selective earth measurement with current clamps as optional accesso- ries, with DAkkS calibration certifi- cate and IZYTRONIQ BUSINESS Starter	PROFITEST MPRO IC) M535C

Vehicle Simulation (CP)

Vehicle states A through E are selected with a rotary switch. Cable Simulation (PP)

via permanently wired cable coding

Fault Simulation

Simulation of a shortcircuit between CP and PE by means of a rotary switch Indication of Phase Voltages via LEDs

Vehicle Simulation (CP)

Vehicle states A through E are selected with a rotary switch. Cable Simulation (PP)

The various codings for charging cables with 13, 20, 32 and 63 A, as well as "no cable connected", can be simulated with the help of a rotary switch.

Fault Simulation

Simulation of a shortcircuit between CP and PE by means of a rotary switch

Designation	Туре	Article Number	Designation	Туре	Article Number
Universal protective measures test			Flat test clip for fast and safe contact-		
instrument per EN 61557, sections			ing on busbars. Powerful contacting on		
1, 2, 3, 4, 5, 6, 7 and 10 with inte- grated memory and insulation mea-			the front and rear of the busbars by means of established Multilam. Fixed		
surement up to 1000 V as well as			Ø 4 mm socket in the pressure grip		
additional tripping test for AC/DC			handle section, to fit spring-loaded Ø 4		
sensitive RCDs and loop impedance			mm plugs with rigid insulating sleeve.		
measurement without tripping the			1000 V CAT IV/32 A	PRO-PE Clip	Z503G
RCD, e-mobility test, Bluetooth inter-			2 magnetic measurement contacts		
face, DAkkS calibration certifi-			with contact protection - Set with		
cate and IZYTRONIQ BUSINESS	PROFITEST MTECH+		magnetic holder, measurement con-		
Starter	IQ	M535B	tacts 5,5 mm in diameter insulated,		
Universal protective measures test			CAT III 1.000 V / 4 A, temperature		
instrument per EN 61557, sections			between -10 °C and 60 °C, under		
1, 2, 3, 4, 5, 6, 7 and 10 with inte- grated memory and insulation mea-			standard conditions and flat-head screws holding force 1.200 g vertical		
surement up to 1000 V as well as			to contact area; measuring instrument	Set 3 – Magn. Measuring	
additional tripping test for AC/DC			connector: 4 mm sockets for PRO-A3-II	Tips	Z502Z
sensitive RCDs, loop impedance			With 10 m cable based on 2-wire mea-	npo	LUULL
measurement without tripping the			suring technology for PE and similar		
RCD, selective earth measurement			measurements, 300 V / 16 A CAT IV	PRO-RLO-II	Z501P
with current clamps as optional ac-			With 3 connector cables for any connec-		
cessories, testing of IMDs and			tion standards, 300 V / 16 A, CAT IV	PRO-UNI-II	Z501R
RCMs, Bluetooth interface, DAkkS			5-pole 3-phase adapter for 16 A		
calibration certificate and IZYTRO-	DEALTERT MUTEA IA	MEDER	CEE outlets	A3-16	GTZ3602000R0001
NIQ BUSINESS Starter	PROFITEST MXTRA IQ	M535D	5-pole 3-phase adapter for 32 A		
Universal protective measures test			CEE outlets	A3-32	GTZ3603000R0001
instrument per EN 61557, sections			5-pole 3-phase adapter for 63 A		
1, 2, 3, 4, 5, 6, 7 and 10 with inte- grated memory and insulation mea-			CEE outlets	A3-63	GTZ3604000R0001
surement up to 1000 V as well as			Three-phase adapter shielded,		
additional tripping test for AC/DC			7-pin for CEE socket outlets 16 A,		
sensitive RCDs and loop impedance			CAT III 300 V - 10 A	A3-16 Shielded	Z513A
measurement, testing of IMDs, Blue-			Three-phase adapter shielded,		
tooth interface, DAkkS calibration			7-pin for CEE socket outlets 32 A,		
certificate and IZYTRONIQ BUSI-			CAT III 300 V – 10 A	A3-32 Shielded	Z513B
NESS Starter	SECULIFE IP IQ	M535E	Variable Plug Adapter Set	Z500A	Z500A
			Calibration adapter for testing of the accu-		
Test Instrument Power Supply Acc	essories		racy of measuring instruments for insula-		
8 LSD NiMH rechargeable batteries			tion resistance and low-value resistors	ISO Calibrator 1	M662A
with reduced self-discharging (AA),		75001	Leakage current measuring adapter for	222.12	75000
with sealed cells	MASTER Battery Set	Z502H	PROFITEST MXTRA and SECULIFE IP	PRO-AB	Z502S
Broad-range charger for charging					
batteries included in the PROFITEST MTECH+ , MPRO, MXTRA and			Accessories		
SECULIFE IP			Extension cable, 4 m	KS24	GTZ3201000R0001
Input: 100 to 240 V AC	PROFITEST MASTER		Telescoping rod for RLO and RISO	TELEARM 120 D	Z505C
Output: 16.5 V DC, 1 A	Charger	Z502R	measurement, CAT III 600 V / CAT IV		
	onargoi	2002.1	300 V, 1 A, retracted/extended 53,3		
Accessory Plug Inserts and Adapt	ers		cm/120 cm, 190 g	TELEADER	75050
Earth contact plug insert (Schuko):			Telescoping rod for RLO and RISO	TELEARM 180 D	Z505D
D, A, NL, F etc.	PRO-Schuko	GTZ3228000R0001	measurement, CAT III 600 V / CAT IV		
same as PRO-Schuko, however with		5.202200010001	300 V, 1 A, retracted/extended 73,5		
angled earth-contact plug	PRO-W	Z503A	cm/180 cm, 250 g		75055
Plug insert per SEV: CH	PRO-CH	GTZ3225000R0001	Case TELEARM for Telearm 120/ 180, 920 x 170 mm	Case TELEARM	Z505E
Plug insert with adapters for GB & USA		Z503B	Triangular probe for floor measure-		
	PRO-GB/USA-Set PRO-RSA	Z501A	ments in accordance with EN 1081		
Plug insert for South Africa	r กบ-กงA	LJUIA	and DIN VDE 0100	1081 Probe	GTZ3196000R0001
2/3-pole measuring adapter for 3- phase and rotating-field systems,			Current clamp sensor for leakage	100111000	G1201000010001
300 V/1 A CAT IV with safety cap			current, switchable: 1 mA to 15 A,		
600 V/1 A CAT III with safety cap			3% and 1 A to 150 A, 2%	WZ12C D	Z219C
600 V/16 A CAT II without safety cap	PRO-A3-II	Z5010	Flexible AC current sensor, 3, 30,		
same as PRO-A3-II, however with			300 A, 1 V, 100 mV, 10 mV / A, with		
straight cables of 10m each instead			batteries, probe length: 45 cm	METRAFLEX P300	Z502E
of coil cables	PRO-A3-II ncc	Z503C		1	1
Set-Probes CAT III / 600 V, 1 A,			Accessory Cases and Trolleys		
working range of the probes 68 mm			Ever-ready case with bags for acces-	Ever-ready Case	
– diameter 2,3 mm	Set-Probes	Z503F	sories	PROFITEST MASTER	Z502X
Safety Clip red and blue with hock,			Aluminum case for test instrument		
1 kV CAT IV, 20 A	Safety Clip	Z503W	and accessories	E-CHECK Case	Z502M
I KV GALIV, ZU A					
T KV GAT IV, ZU A			The E-CHECK case can be mounted	Trolley for	

Designation	Туре	Article Number	Designation	Туре	Article Number
Universal carrying pouch	F2000 D	Z700D	Starter Packages		
Large universal carrying pouch	F2020	Z700F	consisting of PROFITEST MTECH+		
Plastic system case	SORTIMO L-BOXX GM	Z503D	IQ, Vario-Plug-Set, SORTIMO L-		
Foam insert for SORTIMO L-BOXX GM	Foam SORTIMO		BOXX, Foam SORTIMO L-BOXX, Set-		
with divider for PROFITEST MASTER	L-BOXX Profitest M	Z503E	Probes, Battery Pack Master and		
Profi-hardcase with imprint and dev-			charger plus IZYTRONIQ BUSINESS	Starter package TECH-	115001
iders for sets with Profitest Master			ADVANCED	plus IQ	M536A
and accessories incl. trolleyholder	Profi-Case	Z502W	consisting of PROFITEST MTECH+ IQ ,		
			Vario-Plug-Set, SP350 Earth Drill,		
Earthing Resistance Measurement	t Accessories		Drum TR50, PRO W, PRO-RLO II, Set- Probes, Profi-Case, Battery Pack Mas-		
Measuring adapter for connecting a			ter and charger plus IZYTRONIQ BU-	Master package TECH-	
second clamp (generator clamp), al-			SINESS PROFESSIONAL	plus IQ	M536B
lows for 2-clamp measuring method			Consisting of PROFITEST MXTRA IQ ,	P	
(ground loop measurement)	PRO-RE-2	Z502T	VARIO-STECKER-Set, plastic system		
Connection adapter for earthing ac-			case SORTIMO L-BOXX GM with foam in-		
cessories for 3/4-wire measure-			sert, MASTER Battery Set and MPRO		
ment and selective earthing resis-			MXTRA Charger, set of test probes plus	XTRA Starter Package	
tance measurement	PRO-RE	Z501S	IZYTRONIQ BUSINESS ADVANCED	IQ	M536C
Generator clamp for 2-clamp mea-			Consisting of PROFITEST MXTRA IQ,		
suring method (ground loop mea-			VARIO-STECKER-Set, Profi Case, PRO-		
surement), transformation ratio:			W plug insert, PRO-RLO-II, MASTER		
1000 A / 1 A, current measuring			Battery Set and MPRO MXTRA Char-		
range: 0.2 A to 1200 A, output sig- nal: 0.2 mA to 1.2 A	E-CLIP 2	Z591B	ger, set of test probes plus IZYTRONIQ	•	MEDED
Current clamp sensor for selective		20010	BUSINESS PROFESSIONAL	IQ	M536D
earth measurement and as clamp			Consisting of PROFITEST MXTRA IQ ,		
meter for 2-clamp measuring			VARIO-STECKER-Set, Profi Case, leak- age current measuring adapter PRO-AB,		
method (ground loop measure-			MASTER Battery Set and MPRO MXTRA		
ment), switchable measuring			Charger, set of test probes plus IZYTRO-		
ranges: 0 to 1 / 100 / 1000 A~ AV~			NIQ BUSINESS ADVANCED	XTRA MED Package IQ	M536E
± (0.7% to 0.2%)	Z3512A ^D	Z225A	Consisting of PROFITEST MXTRA	,	
Cable reel for low-resistance and			IQ, VARIO-STECKER-Set, Profi Case,		
earth-resistance measurement, 25 m	TR25II	Z503X	PRO-W plug insert, generator clamp		
Cable reel for low-resistance and			E-Clip 2 and Current clamp sensor		
earth-resistance measurement, 50 m	TR50II	Z503Y	for earth measurement Z3512A,		
Earth Drill 500 mm	SP500	Z503Z	measuring adapter for connecting a		
Accessories for earthing measurement			second clamp PRO-RE-2, MASTER		
consisting of 1 x carrier bag, 4 earth			Battery Set and MPRO MXTRA Char-		
spikes 500 mm, 1 x measuring lead			ger, set of test probes plus IZYTRO -	VTDA Drofi Doolyogo IO	MEDGE
40 m blue on cable drum with hand			NIQ BUSINESS PROFESSIONAL	XTRA Profi Package IQ	M536F
strap, 1 x measuring lead 20 m red					
on cable drum with hand strap, 1 x			E-Mobility Accessories		75050
neasuring lead 5 m black, 1 x meas- uring lead 5 m green, 1 x test clamp			Single phase test adapter	PRO-TYP I ^D	Z525B
with black 4 mm socket, 1 x test			with type 1 plug		75054
clamp with green 4 mm socket, 1 x			Single and 3-phase test adapter	PRO-TYP II D	Z525A
hammer, 1 x roller tape measure, 1 x			with type 2 plug		75050
duster, 1 x writing pad with pen	E-SET PROFESSIONAL	Z592A	Single and 3-phase test adapter with type 2 plug; Version with swiss	PRO-TYP II-CH	Z525D
Earth testing set:			 With type 2 plug; version with swiss type socket 		
1 drum with 25 m measurement cable			Report Generating Accessories		
2 drums with 50 m measurement				arding baranda aconcered	printoro and DFID road
cable each, 4 measurement cables,			See separate ID systems data sheet reg		printers and KFID reade
3 x 0.5 m long, 1 x 2 m long, 1 test			Barcode scanner for RS 232 con-	RS 232 Profiscanner	75005
clamp, 4 earth drills, each 350 mm			nection with roughly 1 m coil cable	for Barcodes	Z502F
long, 1 dust cloth, 2 pads of earth	E Cot E	75000	RFID reader/writer	SCANBASE RFID	Z751G
esting measurement data forms	E-Set 5	Z590B	Data sheet available		
Test adapter for testing portable					
safety switches (types PRCD-K and			For additional information re	aardina accessoria	os nlease refer tr
PRCD-S) with the help of the PROFITEST MXTRA test instrument			Measuring Instruments and		
(not included)	PROFITEST PRCD D	M512R	Measuring mounterits and	resters catalog	
inochioludouj	THORITEOTTHOD	1101211	1		

Edited in Germany • Subject to change without notice • PDF version available on the Internet

GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg • Germany Phone: +49 911 8602-111 Fax: +49 911 8602-777 E-mail: info@gossenmetrawatt.com www.gossenmetrawatt.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Multimeters category:

Click to view products by Gossen Metrawatt manufacturer:

Other Similar products are found below :

 6111-517
 FS881
 40705X
 C.A 6133
 LAUNCH KIT
 P 1020
 A
 SEFRAM7303
 BS K-CLIP
 19290
 DM285-FLEX-KIT
 IBT6K
 1000-219

 1001-613
 1006-969
 1008-221
 1012-597
 1013-099
 30XR
 34XR
 35XP
 TESTO 745
 0590
 760-2
 0590
 7602
 TESTO 760-3

 0590
 7603
 440012
 AX-155
 AX-174
 AX-178
 AX-18B
 AX-190A
 AX-503
 AX-507B
 AX-594
 AX-LCR42A
 AX-MS811
 AX-MS8250
 AX

 PDM01
 AX-T520
 AX-T901
 AX-T903
 BAT-250-EUR
 BM5255
 BM8055
 BM8075
 BM8175
 BM8275
 BM8295
 BM8595

 BM867S
 BM907S
 33XR
 33XR
 BM5255
 BM8055
 BM8075
 BM8275
 BM8295
 BM8595