
Silicon Carbide Schottky Diode

 V_{RRM} = 1200 V $I_{F(T_C = 165^{\circ}C)}$ = 2 A Q_C = 11 nC

Features

- Low V_F for High Temperature Operation
- Enhanced Surge and Avalanche Robustness
- Superior Figure of Merit Qc/IF
- Low Thermal Resistance
- Low Reverse Leakage Current
- Temperature Independent Fast Switching
- Positive Temperature Coefficient of V_F
- High dV/dt Ruggedness

Advantages

- Improved System Efficiency
- High System Reliability
- Optimal Price Performance
- Reduced Cooling Requirements
- Increased System Power Density
- Zero Reverse Recovery Current
- Easy to Parallel without Thermal Runaway
- Enables Extremely Fast Switching

Applications

- High Voltage Sensing
- Solar Inverters
- Electric Vehicles
- High Frequency Converters
- Battery Chargers
- AC/DC Power Supplies
- Anti-Parallel / Free-Wheeling Diode
- · LED and HID Lighting

Absolute Maximum Ratings (At T _C = 25°C Unless Otherwise Stated)								
Parameter	Symbol	Symbol Conditions		Unit	Note			
Repetitive Peak Reverse Voltage	V_{RRM}		1200	٧				
Continuous Forward Current	I _F	T _C = 100°C, D = 1	6					
		$T_C = 135^{\circ}C$, D = 1	5	Α	Fig. 4			
		$T_C = 165^{\circ}C$, D = 1	2					
Non-Repetitive Peak Forward Surge Current, Half Sine Wave	I _{F,SM}	T_C = 25°C, t_P = 10 ms	20	Α				
		T_C = 150°C, t_P = 10 ms	16					
Repetitive Peak Forward Surge Current, Half Sine Wave	I _{F,RM}	T_C = 25°C, t_P = 10 ms	12	Α				
		T_C = 150°C, t_P = 10 ms	8	А				
Non-Repetitive Peak Forward Surge Current	I _{F,MAX}	T_C = 25°C, t_P = 10 μ s	100	Α				
i ² t Value	∫i²dt	T_C = 25°C, t_P = 10 ms	2.0	A ² s				
Non-Repetitive Avalanche Energy	E _{AS}	L = 18.0 mH, I _{AS} = 2 A	36	mJ				
Diode Ruggedness	dV/dt	V _R = 0 ~ 960 V	200	V/ns				
Power Dissipation	Ртот	T _C = 25°C	58	W	Fig. 3			
Operating and Storage Temperature	T_j , T_{stg}		-55 to 175	°C				

Electrical Characteristics								
Parameter	Symbol	Conditions		Values			- Unit	Note
	Syllibol			Min.	Тур.	Max.	Ullit	Note
Diode Forward Voltage	V _F	$I_F = 2 A, T_j = 25^{\circ}C$			1.5	1.8	٧	Fig. 1
	۷F	$I_F = 2 A, T_j = 175^{\circ}C$			1.9		v	
Reverse Current	I_{R}	$V_R = 1200 \text{ V, } T_j = 25^{\circ}\text{C}$			1	5	μА	Fig. 2
	ik	$V_R = 1200 \text{ V, } T_j = 175^{\circ}\text{C}$			3			
Total Capacitive Charge	Qc		$V_{R} = 400 V$		7		nC	Fig. 7
	Q U	_ I _F ≤ I _{F,MAX}	V _R = 800 V		11		110	1 ig. 7
Switching Time	ts	$dI_F/dt = 200 A/\mu s$	$V_{R} = 400 V$		< 10		ns	
			$V_R = 800 V$		· 10		113	
Total Capacitance	С	$V_R = 1 V, f = 1MHz$			122		pF	Fig. 6
		V _R = 800 V, f = 1MHz			7			

Thermal/Package Characteristics								
Parameter	Symbol	Conditions		Values			Note	
		Conditions	Min.	Тур.	Max.	- Unit	Note	
Thermal Resistance, Junction - Case	RthJC			2.59		°C/W	Fig. 9	
Weight	W _T			0.3		g		

Figure 1: Typical Forward Characteristics

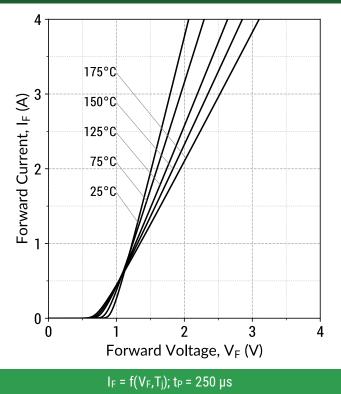
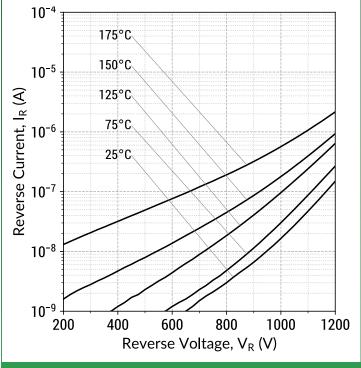
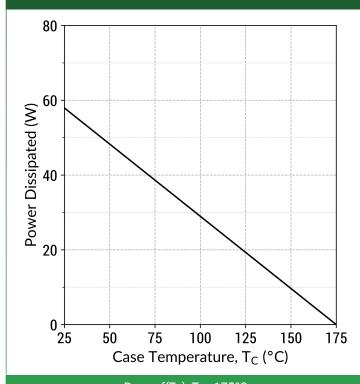
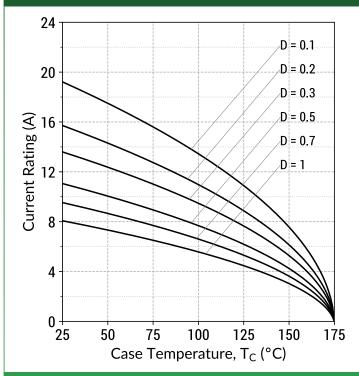




Figure 2: Typical Reverse Characteristics

 $I_R = f(V_R, T_j)$

Figure 3: Power Derating Curves

 $P_{TOT} = f(T_C); T_j = 175^{\circ}C$


Figure 4: Current Derating Curves (Typical V_F)

 $I_F = f(T_C)$; D = t_P/T ; $T_j \le 175$ °C; $f_{SW} > 10$ kHz

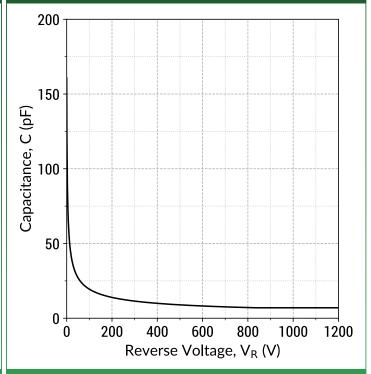


Figure 5: Current Derating Curves (Maximum V_F)

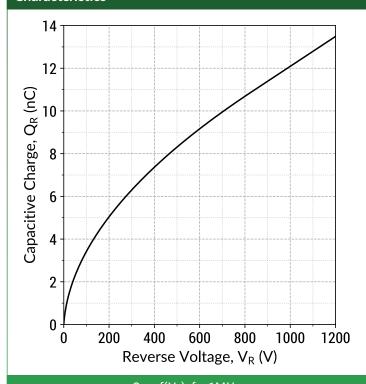

 $I_F = f(T_C)$; D = t_P/T ; $T_j \le 175$ °C; $f_{SW} > 10$ kHz

Figure 6: Typical Junction Capacitance vs Reverse Voltage Characteristics

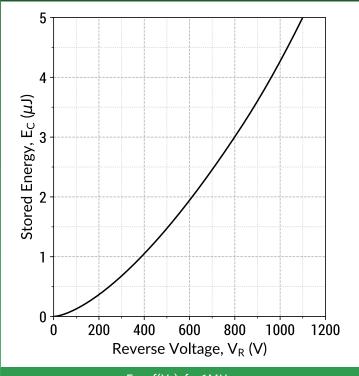
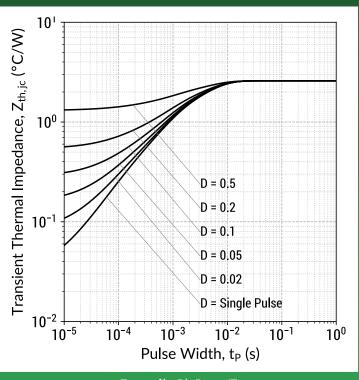

 $C = f(V_R)$; f = 1MHz

Figure 7: Typical Capacitive Charge vs Reverse Voltage Characteristics

 $Q_C = f(V_R)$; f = 1MHz


Figure 8: Typical Capacitive Energy vs Reverse Voltage Characteristics

 $E_C = f(V_R)$; f = 1MHz

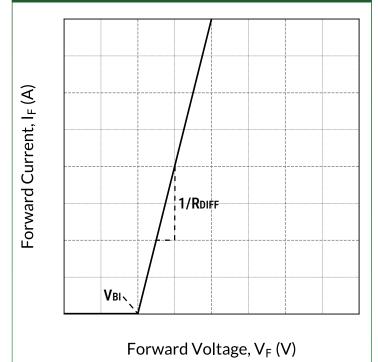


Figure 9: Transient Thermal Impedance

 $Z_{th,jc} = f(t_P,D); D = t_P/T$

Figure 10: Forward Curve Model

 $I_F = f(V_F, T_j)$

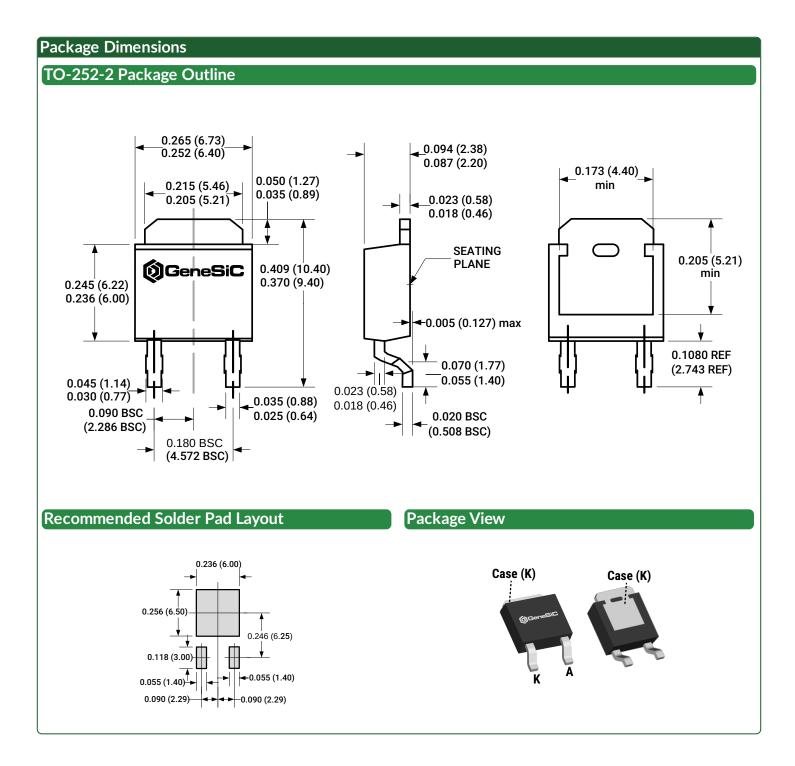
Forward Curve Model Equation:

 $I_F = (V_F - V_{BI})/R_{DIFF}(A)$

Built-In Voltage (V_{BI}):

$$V_{BI}(T_j) = m \times T_j + n (V)$$

 $m = -0.00123 (V/^{\circ}C)$
 $n = 0.995 (V)$


Differential Resistance (RDIFF):

$$R_{DIFF}(T_j) = a \times T_j^2 + b \times T_j + c (\Omega)$$

 $a = 5.96e-06 (\Omega/^{\circ}C^2)$
 $b = 0.000846 (\Omega/^{\circ}C)$
 $c = 0.251 (\Omega)$

Forward Power Loss Equation:

$$P_{LOSS} = V_{BI}(T_j) \times I_{AVG} + R_{DIFF}(T_j) \times I_{RMS}^2$$

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Related Links

SPICE Models: https://www.genesicsemi.com/sic-schottky-mps/GB02SLT12-252/GB02SLT12-252_SPICE.zip
 PLECS Models: https://www.genesicsemi.com/sic-schottky-mps/GB02SLT12-252/GB02SLT12-252_PLECS.zip
 CAD Models: https://www.genesicsemi.com/sic-schottky-mps/GB02SLT12-252/GB02SLT12-252_3D.zip

• Evaluation Boards: https://www.genesicsemi.com/technical-support

Reliability: https://www.genesicsemi.com/reliability
 Compliance: https://www.genesicsemi.com/compliance
 Quality Manual: https://www.genesicsemi.com/quality

Revision History

Rev 21/Jul: Updated with most recent test data
 Supersedes: Rev 19/Apr, Rev 20/Apr, Rev 20/Apr

www.genesicsemi.com/sic-schottky-mps/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by GeneSiC Semiconductor manufacturer:

Other Similar products are found below:

MA4E2039 D1FH3-5063 MBR0530L-TP MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30

BAS16E6433HTMA1 BAT 54-02LRH E6327 NSR05F40QNXT5G JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T SK32A
LTP SK34B-TP SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G SB007-03C-TB-E

SK32A-TP SK33B-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF

ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF ACDBA260LR-HF

ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G SB560 PMAD1108-LF

SD103ATW-TP 1N5819T-G PDS1040Q-13