| | | | | | | | | F | REVISI | ONS | | | | | | | | | | | |--|----------------|--------------------|------------------------------|---|--------------------|--------------------|---|------------------|--------------------------|---------------|--------|-------|-----------------|----------|--------|----|----------------|--------------------|---------|------| | LTR | | | | | [| DESCR | IPTIO | N | | | | | DATE (YR-MO-DA) | | | | APPROVED | | | | | А | Techr | nical ar | nd edito | orial ch | anges | through | nout. | | | | | | 92-04-17 | | | | M. L. Poelking | | | | | В | Chang
chara | ge boil
cteriza | erplate
tion. E | to add | I QML o | class V
es thro | criteria
oughou | a. Add
t. | ground | bound | e immi | unity | | 97-05-15 | | | T.M. Hess | | | | | С | Add F | RHA lin | nits - ja | k. | | | | | | | | | | 98-0 | 05-29 | | N | Monica L. Poelking | | | | D | Make | correc | tions to | o figure | 5. Up | date be | oilerpla | te jak | (| | | | | 00-0 | 08-16 | | N | Monica L. Poelking | | | | Е | Upda
Upda | ate the
ate rac | boiler | rplate
hardn | to curr
less as | ent M
ssuran | IL-PRI
ce red | F-3853
quirem | 35 reqi
ents | uireme
jak | ents. | | | 08-0 |)3-17 | | | Thoma | s M. He | ess | REV | SHEET | REV | Е | Е | Е | Е | Е | Е | | | | | | | | | | | | | | | | SHEET | 15 | 16 | 17 | 18 | 19 | 20 | | | | | | | | | | | | | | | | REV STATUS
OF SHEETS | | | | REV
SHE | | | E
1 | E 2 | E 3 | E 4 | 5 | E 6 | E 7 | E
8 | E
9 | 10 | 11 | 12 | 13 | E 14 | | PMIC N/A PREPARED BY James E. Nicklaus | | | | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | | | | | | | | | | | | | | | | | STANDARD MICROCIRCUIT DRAWING CHECKED BY Thomas J. Ricciuti | | | http://www.dscc.dla.mil | | | | | | | | | | | | | | | | | | | THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVA 90-10-0 REVISION LEVEL E | | | APPROVED BY Michael A. Frye | | | | MICROCIRCUIT, DIGITAL, ADVANCED
CMOS, OCTAL D-TYPE FLIP-FLOP WITH
RESET, TTL COMPATIBLE INPUTS, | | | | | | | | | | | | | | | | | | - | | | MONOLITHIC SILICON | | | | | | | | | | | | | | | | | | | REV | ISION I | EVEL | | | | SIZE CAGE CODE 5962-8973 | | '35 | | | | | | | | | | | SHEET 1 OF 20 | ## 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN. - 1.2 PIN. The PIN is as shown in the following examples: For device classes M and Q: For device class V: - 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows: | Device type | Generic number | Circuit function | |-------------|----------------|------------------------------------| | 01 | 54ACTQ273 | Octal D type flip-flop with reset, | 1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as listed below. Since the device class designator has been added after the original issuance of this drawing, device classes M and Q designators will not be included in the PIN and will not be marked on the device. | Device class | Device requirements documentation | |--------------|---| | М | Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A | | Q or V | Certification and qualification to MIL-PRF-38535 | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 2 | 1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|------------------------------| | R | GDIP1-T20 or CDIP2-T20 | 20 | Dual-in-line | | S | GDFP2-F20 or CDFP3-F20 | 20 | Flat pack | | 2 | CQCC1-N20 | 20 | Square leadless chip carrier | 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. # 1.3 Absolute maximum ratings. 1/2/3/ | Supply voltage range (V _{CC}) | | |--|---------------------------------| | DC output voltage range (V _{OUT}) | 0.5 V dc to V_{CC} + 0.5 V dc | | DC input diode current | ±20 mA | | DC output diode current (per output pin) | | | DC output source or sink current (per output pin) | ±50 mA | | DC V _{CC} or GND current | ±100 mA | | Storage temperature range | 65°C to +150°C | | Maximum power dissipation (P _D) | 500 mW | | Lead temperature (soldering, 10 seconds) | +300°C | | Thermal resistance, junction-to-case (Θ_{JC}) | See MIL-STD-1835 | | Junction temperature (T _J) | +175°C <u>4</u> / | ## 1.4 Recommended operating conditions. 2/3/ | Supply voltage range (V _{CC}) | +4.5 V dc to +5.5 V dc | |---|------------------------------| | Input voltage range (V _{IN}) | +0.0 V dc to V _{CC} | | Output voltage range (V _{OUT}) | +0.0 V dc to V _{CC} | | Case operating temperature range (T _C) | 55°C to +125°C | | Maximum Input rise or fall rate (Δt/Δv) | | | Minimum high level input voltage (I _{OH}) | | | Maximum low level output current (I _{OL}) | +24 mA | | Maximum frequency, (f _{max}): | | | $T_{C} = +25^{\circ}C$: | | | V _{CC} = 4.5 V to 5.5 V | 95 MHz | | $T_{C} = -55^{\circ}C, +125^{\circ}C$: | | | V _{CC} = 4.5 V to 5.5 V | 85 MHz | | Minimum setup time, Dn to CP (ts): | | | $T_C = +25$ °C: | | | V _{CC} = 4.5 V to 5.5 V | 5.0 ns | | $T_C = -55^{\circ}C, +125^{\circ}C$: | | | $V_{cc} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$ | 5.0 ns | STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-89735 | |------------------|---------------------|------------| | | REVISION LEVEL
E | SHEET 3 | | Maximum hold time, Dn to CP (t _h): | |---| | $T_{\rm C} = +25^{\circ}$: | | V _{CC} = 4.5 V to 5.5 V | | $T_{C} = -55^{\circ}C, +125^{\circ}C$: | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | | Maximum clock high, low pulse width (t _{w1}): | | $T_{C} = +25^{\circ}C$: | | V _{CC} = 4.5 V to 5.5 V | | $T_{C} = -55^{\circ}C, +125^{\circ}C$: | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \dots 5.0 \text{ ns}$ | | Maximum pulse width, \overline{MR} low (t_{w2}): | | $T_{C} = +25^{\circ}$: | | V _{CC} = 4.5 V to 5.5 V | | $T_{C} = -55^{\circ}C, +125^{\circ}C$: | | V _{CC} = 4.5 V to 5.5 <u>V</u> | | Maximum removal time, MR to clock (t _{rem}): | | $T_{\rm C} = +25^{\circ}$: | | V _{CC} = 4.5 V to 5.5 V | | $T_{\rm C} = -55^{\circ}{\rm C}$, +125°C: | | V _{CC} = 4.5 V to 5.5 V | ## 1.5 Radiation features. - 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. - 2/ Unless otherwise noted, all voltages are referenced to GND. - 3/ The limits for the parameters specified herein shall apply over the full specified V_{CC} range and case temperature range of -55°C to +125°C. - 4/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 4 | ### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. ### DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. ### DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines. ### DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization
Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 Non-Government <u>publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. ## **ELECTRONIC INDUSTRIES ALLIANCE (EIA)** JESD 78 - IC Latch-Up Test JEDEC Standard No. 20 - Standard for Description of 54/74ACXXXX and 54/74ACTXXXX Advanced High-Speed CMOS Devices. (Copies of this document is available online at www.eia.org or from the Electronics Industries Alliance, 2500 Wilson Boulevard, Arlington, VA 22201-3834). # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM F1192 - Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of semiconductor Devices. (Copies of these documents are available online at http://www.astm.org or from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA, 19428-2959). 2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. ## 3. REQUIREMENTS 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 5 | - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M. - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein. - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1. - 3.2.3 Truth table. The truth table shall be as specified on figure 2. - 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3. - 3.2.5 <u>Ground bounce load circuit and waveforms</u>. The ground bounce load circuit and waveforms shall be as specified on figure 4. - 3.2.6 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 5. - 3.2.7 Radiation exposure circuit. The radiation exposure circuit shall be as specified when available. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. - 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affect this drawing. - 3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device class M.</u> Device class M devices covered by this drawing shall be in microcircuit group number 38 (see MIL-PRF-38535, appendix A). STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-89735 | |------------------|---------------------|------------| | | REVISION LEVEL
E | SHEET 6 | | | | TABLE I. Elect | rical performanc | e characte | ristics. | | | | | |-------------------------------------|-----------------------|--|------------------|-----------------------|-----------------|-------------------|------|----------------|------| | Test and MIL-STD-883 test method 1/ | Symbol | Test conditions $2/3/$
-55°C \leq T _C \leq +125°C
+4.5 V \leq V _{CC} \leq +5.5 V | | Device
type
and | V _{CC} | Group A subgroups | Lim | its <u>4</u> / | Unit | | | | unless otherwise | e specified | Device
class | | | Min | Max | | | High level output voltage | V _{OH} | For all inputs affectin test, V _{IN} = 2.0 V or | | All
All | 4.5 V | 1, 2, 3 | 4.4 | | V | | 3006 | <u>5</u> / <u>6</u> / | For all other inputs,
$V_{IN} = V_{CC}$ or GND | | AII
AII | 5.5 V | 1, 2, 3 | 5.4 | | | | | | I _{OH} = -50 μA | M, D, P, L, R | AII
AII | 5.5 V | 1 | 5.4 | | | | | | For all inputs affectin test, V _{IN} = 2.0 V or | | AII
AII | 4.5 V | 1 | 3.86 | | | | | | For all other inputs, $V_{IN} = V_{CC}$ or GND | M, D, P, L, R | AII
AII | 4.5 V | 1 | 3.86 | | _ | | | | I _{OH} = -24 mA | | AII
AII | 4.5 V | 2, 3 | 3.7 | | _ | | | | | | AII
AII | 5.5 V | 1 | 4.86 | | | | | | | | All
All | 5.5 V | 2, 3 | 4.7 | | | | | | For all inputs affectin test, V _{IN} = 2.0 V or | 0.8 V | All
All | 5.5 V | 1, 2, 3 | 3.85 | | | | | | For all other inputs,
$V_{IN} = V_{CC}$ or GND
$I_{OH} = -50 \text{ mA}$ $7/$ | M, D, P, L, R | All
All | 5.5 V | 1 | 3.85 | | | | Low level output voltage | V _{OL} | For all inputs affectin test, V _{IN} = 2.0 V or | | All
All | 4.5 V | 1, 2, 3 | | 0.1 | V | | 3007 | <u>5</u> / <u>6</u> / | For all other inputs, $V_{IN} = V_{CC} \text{ or GND}$ | | All
All | 5.5 V | 1, 2, 3 | | 0.1 | | | | | I _{OL} = 50 μA | M, D, P, L, R | All
All | 5.5 V | 1 | | 0.1 | | | | | For all inputs affectin test, V _{IN} = 2.0 V or | | AII
AII | 4.5 V | 1 | | 0.36 | | | | | For all other inputs,
$V_{IN} = V_{CC}$ or GND | M, D, P, L, R | AII
AII | 4.5 V | 1 | | 0.36 | | | | | I _{OL} = 24 mA | | AII
AII | 4.5 V | 2, 3 | | 0.5 | | | | | | | AII
AII | 5.5 V | 1 | | 0.36 | _ | | | | | | All
All | 5.5 V | 2, 3 | | 0.5 | | | | | For all inputs affectin test, V _{IN} = 2.0 V or | 0.8 V | All
All | 5.5 V | 1, 2, 3 | | 1.65 | | | | | For all other inputs,
$V_{IN} = V_{CC}$ or GND
$I_{OL} = 50 \text{ mA} \frac{7}{2}$ | M, D, P, L, R | All
All | 5.5 V | 1 | | 1.65 | | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 7 | | | | TABLE I. Electrical pe | rformance char | acteristics | - Continu | ed. | | | | |-------------------------------------|-------------------------------------|--|----------------------|-----------------------|-----------------|-------------------|-----|----------------|---------| | Test and MIL-STD-883 test method 1/ | Symbol | Test conditions $\underline{2}/\underline{3}/$
-55°C \leq T _C \leq +125°C
+4.5 V \leq V _{CC} \leq +5.5 V | | Device
type
and | V _{CC} | Group A subgroups | Lim | its <u>4</u> / | Unit | | _ | | unless otherwise | | Device
class | | | Min | Max | | | Positive input clamp voltage |
V _{IC+} | For input under test, I ₁ | _N = 18 mA | All
V | 4.5 V | 1, 2, 3 | | 5.7 | V | | 3022 | <u>5</u> / <u>6</u> / | | M, D, P, L, R | All
V | 4.5 V | 1 | | 5.7 | | | Negative input clamp voltage | V _{IC} - | For input under test, I _I | | All
V | 4.5 V | 1, 2, 3 | | -1.2 | V | | 3022 | <u>5</u> / <u>6</u> / | | M, D, P, L, R | AII
V | 4.5 V | 1 | | -1.2 | | | Input leakage current high | I _{IH} | For input under test, V
For all other inputs, V _I | | AII
AII | 5.5 V | 1 | | 0.1 | μΑ | | 3010 | <u>5</u> / <u>6</u> | GND | M, D, P, L, R | All
All | 5.5 V | 1 | | 0.1 | | | | | | | AII
AII | 5.5 V | 2, 3 | | 1.0 | | | Input leakage current low | I _{IL} | For input under test, V
For all other inputs, V _I | $N = V_{CC}$ or | AII
AII | 5.5 V | 1 | | -0.1 | μΑ | | 3009 | <u>5</u> / <u>6</u> / | GND | M, D, P, L, R | AII
AII | 5.5 V | 1 | | -0.1 | | | | | | | AII
AII | 5.5 V | 2, 3 | | 1.0 | | | Input capacitance
3012 | C _{IN} | See 4.4.1c
T _C = +25°C | | All
All | GND | 4 | | 10 | pF | | Power dissipation capacitance | C _{PD} <u>8</u> / | See 4.4.1c
T _C = +25°C | | AII
AII | 5.0 V | 4 | | 55 | pF | | Quiescent supply current delta, | ΔI_{CC} | For input under test, $V_{IN} = V_{CC} - 2.1 \text{ V}$ | | AII
AII | 5.5 V | 1 | | 1.0 | mA | | TTL input level 3005 | <u>5</u> / <u>6</u> /
<u>9</u> / | For all other inputs, V _I GND | $_{N} = V_{CC}$ or | | | 2, 3 | | 1.6 | | | | | | M, D | All | 5.5 V | 1 | | 1.6 | | | Quiescent supply current, output | I _{CCH} | $V_{IN} = V_{CC}$ or GND
$I_{OUT} = 0.0 \text{ A}$ | P, L, R | AII
AII
AII | 5.5 V | 1 | | 3.5
4.0 | μΑ | | high
3005 | <u>5</u> / <u>6</u> / | 1001 | | | | 2, 3 | | 80.0 | | | | | | M | All | 5.5 V | 1 | | 100 | <u></u> | | | | | D
P, L, R | All | | | | 1.0
3.5 | mA | | Quiescent supply current, output | I _{CCL} | $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0.0 \text{ A}$ | , , | All
All | 5.5 V | 1 | | 4.0 | μА | | low
3005 | <u>5</u> / <u>6</u> / | | | | | 2, 3 | | 80.0 | | | | | | M
D | AII
AII | 5.5 V | 1 | | 100.0 | mA | | | | | | 7 (11 | 1 | | | 1.0 | 1 '''' | See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 SIZE A SP62-89735 SHEET 8 P, L, R 3.5 | | | TABLE I. Electrical performance cha | racteristics | - Continu | ed. | | | | |---|-----------------------|---|-----------------------|-----------|-------------------|-----|--------------------------|------| | Test and MIL-STD-883 test method <u>1</u> / | Symbol | Test conditions $2/3/$
-55°C \leq T _C \leq +125°C
+4.5 V \leq V _{CC} \leq +5.5 V | Device
type
and | Vcc | Group A subgroups | Lim | its <u>4</u> / | Unit | | | | unless otherwise specified | Device class | | | Min | Max | | | Low level ground bounce noise | V _{OLP} | $V_{IH} = 3.0 \text{ V}, V_{IL} = 0.0 \text{ V}$
$T_A = +25^{\circ}\text{C}$ | AII
AII | 5.0 V | 4 | | 1500 | mV | | | V _{OLV} 10/ | See 4.4.1d
See figure 4 | | | 4 | | -1200 | | | High level V _{CC} bounce noise | V _{OHP} 10/ | Jose Inguito 1 | | 5.0 V | 4 | | V _{OH}
+1200 | mV | | bounce noise | V _{OHV} | | | | 4 | | V _{OH} | | | Functional tests | <u>5</u> / <u>6</u> / | $V_{IH} = 2.0 \text{ V}, V_{IL} = 0.8 \text{ V}$ | All | 4.5 V | 7, 8 | L | -2200
H | | | 3014 | <u>11</u> / | See 4.4.1b Verify output M, D, P, L, R | All | | 7 | L | Н | | | | | V _{ОUТ} | All | 5.5 V | 7, 8 | L | Н | | | Latch-up | Icc | $t_w \ge 100 \ \mu s, \ t_{cool} \ge t_w$ | All
All | 5.5 V | 2 | | 200 | mA | | input/output | (O/V1) | 5 μ s \leq t _r \leq 5 ms
5 μ s \leq t _f \leq 5 ms | V | | | | | | | · · | 12/ | $V_{\text{test}} = 6.0 \text{ V}, V_{\text{CCQ}} = 5.5 \text{ V}$
$V_{\text{over}} = 10.5 \text{ V}$
See 4.4.1e | | | | | | | | Latch-up input/output | Icc | $t_w \geq 100~\mu\text{s},~t_{\text{cool}} \geq t_w$ | All
V | 5.5 V | 2 | | 200 | mA | | positive over-
current | (O/I1+) | $\begin{array}{l} 5 \ \mu s \leq t_r \leq 5 \ ms \\ 5 \ \mu s \leq t_f \leq 5 \ ms \end{array}$ | | | | | | | | current | <u>12</u> / | $ V_{\text{test}} = 6.0 \text{ V}, V_{\text{CCQ}} = 5.5 \text{ V} $ $I_{\text{trigger}} = +120 \text{ mA} $ $\text{See } 4.4.1e $ | | | | | | | | Latch-up input/output | Icc | $\begin{array}{l} t_w \geq 100~\mu s,~t_{cool} \geq t_w \\ 5~\mu s \leq t_r \leq 5~ms \end{array}$ | AII
V | 5.5 V | 2 | | 200 | mA | | negative over-
current | (O/I1-) | $5 \mu s \le t_f \le 5 ms$ | | | | | | | | Current | <u>12</u> / | $ \begin{aligned} &V_{test} = 6.0 \text{ V}, V_{CCQ} = 5.5 \text{ V} \\ &I_{trigger} = -120 \text{ mA} \\ &See \ 4.4.1e \end{aligned} $ | | | | | | | | Latch-up supply over-voltage | Icc | $\begin{aligned} t_w &\geq 100 \ \mu s, \ t_{cool} \geq t_w \\ 5 \ \mu s &\leq t_r \leq 5 \ ms \end{aligned}$ | AII
V | 5.5 V | 2 | | 100 | mA | | oro. Tollago | (O/V2) | $5 \mu s \le t_f \le 5 ms$ | | | | | | | | | <u>12</u> / | $V_{\text{test}} = 6.0 \text{ V}, V_{\text{CCQ}} = 5.5 \text{ V} $
$V_{\text{over}} = 9.0 \text{ V} $
See 4.4.1e | | | | | | | | Propagation delay time, CP to Qn | t _{PHL1} | $C_L = 50 \text{ pF minimum}$
$R_L = 500\Omega$ | All
All | 4.5 V | 9 | 1.0 | 9.0 | ns | | 3003 | <u>5</u> / <u>6</u> / | See figure 5 M, D, P, L, R | All
All | | 9 | 1.0 | 9.0 | 1 | | | <u>13</u> / | | All | | 10, 11 | 1.0 | 10.0 | 1 | | | 1 | i | All | I | I | l | | 1 | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 9 | TABLE I. Electrical performance characteristics - Continued. | Test and MIL-STD-883 test method 1/ | Symbol | Test conditions $\underline{2}/\underline{3}/$
-55°C \leq T _C \leq +125°C
+4.5 V \leq V _{CC} \leq +5.5 V | | Device
type
and | Vcc | Group A
subgroups | Limit | s <u>4</u> / | Unit | |-------------------------------------|--------------------------------------|--|----------------|-----------------------|-------|----------------------|-------|--------------|------| | | | unless otherv | vise specified | Device
class | | | Min | Max | | | Propagation delay time, CP to Qn | t _{PLH1} | $C_L = 50 \text{ pF minis}$
$R_L = 500\Omega$ | mum | AII
AII | 4.5 V | 9 | 1.0 | 9.0 | ns | | 3003 | <u>5</u> / <u>6</u> /
<u>13</u> / | See figure 5 | M, D, P, L, R | AII
AII | | 9 | 1.0 | 9.0 | | | | | | | All
All | | 10, 11 | 1.0 | 10.0 | | | Propagation delay time, MR to Qn | t _{PHL2} | $C_L = 50 \text{ pF minis}$
$R_L = 500\Omega$ | mum | AII
AII | 4.5 V | 9 | 1.0 | 9.5 | ns | | 3003 | <u>5</u> / <u>6</u> /
<u>13</u> / | See figure 5 | M, D, P, L, R | All
All | | 9 | 1.0 | 9.5 | | | | | | | All
All | | 10, 11 | 1.0 | 11.0 | | - 1/ For tests not listed in the referenced MIL-STD-883, (e.g. ΔI_{CC}), utilize the general test procedure under the conditions listed herein. All inputs and outputs shall be tested, as applicable, to the tests in table I herein. - 2/ Each input/output, as applicable, shall be tested at the specified temperature, for the specified limits. Output terminals not designated shall be high level logic, low level logic, or open, except for the I_{CC} and ΔI_{CC} tests, the output terminal shall be open. When performing the I_{CC} and ΔI_{CC} tests, the current meter shall be placed in the circuit such that all current flows through the meter. Additional detailed information on qualified devices (i.e. pin for pin conditions and testing sequence) is available from the qualifying activity (DCSS-VQC) upon request. - 3/ RHA parts supplied to this drawing are tested through all levels M, D, P, L, and R of irradiation. Pre and Post irradiation values are identical unless otherwise specified in table I. When performing post irradiation electrical measurements for any RHA level, T_A = +25°C. - 4/ For negative and positive voltage and current values, the sign designates the potential difference in reference to GND and the direction of current flow, respectively; and the absolute value of the magnitude, not the sign, is relative to the minimum and maximum limits, as applicable, listed herein. All devices shall meet or exceed the limits specified in table I, as applicable, at +4.5 V ≤ V_{CC} ≤ +5.5 V. - 5/ RHA samples do not have to be tested at -55°C and +125°C prior to irradiation. - 6/ When performing post irradiation electrical measurements for RHA level, $T_A = +25$ °C. Limits shown are guaranteed at $T_A = +25$ °C ± 5 °C. - \overline{Z} / Transmission driving tests are performed at V_{CC} = 5.5 V with a 2 ms duration maximum. This test may be performed using V_{IN} = V_{CC} or GND. When V_{IN} = V_{CC} or GND is used, the test is guaranteed for V_{IN} = 2.0 V or 0.8 V. - 8/ Power dissipation capacitance (C_{PD}) determines the no load power consumption, $P_D = (C_{PD} + C_L)$ ($V_{CC} \times V_{CC}$) f + ($I_{CC} \times V_{CC}$) + ($I_{CC} \times V_{CC}$) + ($I_{CC} \times V_{CC}$). The dynamic current consumption, $I_{S} = (C_{PD} + C_L) V_{CC} + I_{CC}$ - + ($n \times d \times \Delta I_{CC}$). For both P_D and I_S , n is the number of device inputs at TTL levels, f is the frequency of the input signal, d is the duty cycle of the input signal, and C_L is the output load capacitance. - 9/ This test may be performed either one input at a time (preferred method) or with all input pins simultaneously at V_{IN} = V_{CC} 2.1 V (alternate method).
When the test is performed using the alternate test method, the maximum limit is equal to the number of inputs at a high TTL input level times 1.6 mA; and the preferred method and limits are guaranteed. STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 SIZE A SP62-89735 REVISION LEVEL E 10 ### TABLE I. Electrical performance characteristics - Continued. This test is for qualification only. Ground and V_{CC} bounce tests are performed on a non-switching (quiescent) output and are used to measure the magnitude of induced noise caused by other simultaneously switching outputs. The test is performed on a low noise bench test fixture. For the device under test, all outputs shall be loaded with 500Ω of load resistance and a minimum of 50 pF of load capacitance (see figure 4). Only chip capacitors and resistors shall be used. The output load components shall be located as close as possible to the device outputs. It is suggested that, whenever possible, this distance be kept to less than 0.25 inches. Decoupling capacitors shall be placed in parallel from V_{CC} to ground. The values of these decoupling capacitors shall be determined by the device manufacturer. The low and high level ground and V_{CC} bounce noise is measured at the quiet output using a 1 GHz minimum bandwidth oscilloscope with a 50Ω input impedance. The device inputs shall be conditioned such that all outputs are at a high nominal V_{OH} level. The device inputs shall then be conditioned such that they switch simultaneously and the output under test remains at V_{OH} as all other outputs possible are switched from V_{OH} to V_{OH} . V_{OHV} and V_{OHP} are then measured from the nominal V_{OH} level to the largest negative and positive peaks, respectively (see figure 4). This is then repeated with the same outputs not under test switching from V_{OL} to V_{OH} . The device inputs shall be conditioned such that all outputs are at a low nominal V_{OL} level. The device inputs shall then be conditioned such that they switch simultaneously and the output under test remains at V_{OL} as all other outputs possible are switched from V_{OL} to V_{OH} . V_{OLP} and V_{OLV} are then measured from the nominal V_{OL} level to the largest positive and negative peaks, respectively (see figure 4). This is then repeated with the same outputs not under test switching from V_{OH} to V_{OL} . - Tests shall be performed in sequence, attributes data only. Functional tests shall include the truth table and other logic patterns used for fault detection. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2 herein. Functional tests shall be performed in sequence as approved by the qualifying activity on qualified devices. After incorporating allowable tolerances per MIL-STD-883, V_{IL} = 0.4 V and V_{IH} = 2.4 V. For outputs, L ≤ 0.8 V, H ≥ 2.0 V. - $\underline{12}$ / See JESD 17 for electrically induced latch-up test methods and procedures. The values listed for $V_{trigger}$, $I_{trigger}$ and V_{over} , are to be accurate within ± 5 percent. - $\underline{13}$ / AC limits at V_{CC} = 5.5 V are equal to limits at V_{CC} = 4.5 V and guaranteed by testing at V_{CC} = 4.5 V. Minimum AC limits for V_{CC} = 5.5 V are 1.0 ns and guaranteed by guardbanding the V_{CC} = 4.5 V minimum limits to 1.5 ns. For propagation delay tests, all paths must be tested. STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-89735 | |------------------|---------------------|-------------| | | REVISION LEVEL
E | SHEET
11 | | Device type | 01 | |---|--| | Case outlines | R, S, and 2 | | Terminal number | Terminal symbol | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | MR Q0 D0 D1 Q1 Q2 D2 D3 Q3 GND CP Q4 D4 D5 Q5 Q5 Q6 D6 D7 Q7 Vcc | | Pin description | | | | | | |-----------------|---------------------------------|--|--|--|--| | Terminal symbol | Description | | | | | | Dn (n = 0 to 7) | Data inputs | | | | | | Qn (n = 0 to 7) | Data outputs | | | | | | MR | Master reset input (active low) | | | | | | СР | Clock pulse input | | | | | FIGURE 1. Terminal connections. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|-----------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 12 | | Device type 01 | | | | | | | |----------------|------------|---------|----|--|--|--| | | Inputs | Outputs | | | | | | MR | СР | Dn | Qn | | | | | L | Х | X | L | | | | | Н | \uparrow | Н | Н | | | | | Н | \uparrow | L | L | | | | | Н | L | Х | Q0 | | | | High voltage levelLow voltage levelIrrelevant ↑ = Transition from low to high level Q0 = The level of Q before the indicated steady-state input conditions were established FIGURE 2. Truth table. FIGURE 3. Logic diagram. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 13 | ## NOTES: - C_L= includes a 47 pF chip capacitor (-0 percent, +20 percent) and at least 3 pF of equivalent capacitance from the test jig 1. - R_L = 450 Ω ± 1 percent, chip resistor in series with a 50 Ω termination. For monitored outputs, the 50 Ω termination shall be the 50Ω characteristic impedance of the coaxial connector to the oscilloscope. - 3. Input signal to the device under test: - $V_{IN} = 0.0 \text{ V}$ to 3.0 V; duty cycle = 50 percent; $f_{IN} \ge 1 \text{ MHz}$. t_r , $t_f = 3 \text{ ns} \pm 1.0 \text{ ns}$. For input signal generators incapable of maintaining these values of t_r and t_f , the 3.0 ns limit - may be increased up to 10 ns, as needed, maintaining the ±1.0 ns tolerance and guaranteeing the results at 3.0 ns ± 1.0 ns; skew between any two switching input signals (t_{sk}): ≤ 250 ps. FIGURE 4. Ground bounce load circuit and waveforms. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 14 | FIGURE 5. Switching waveforms and test circuit. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|-----------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 15 | ## NOTES: - 2. - $C_L=50~pF$ minimum or equivalent (includes test jig and probe capacitance). $R_T=50\Omega$ or equivalent, $R_L=500\Omega$ or equivalent. Input signal from pulse generator: $V_{IN}=0.0~V$ to 3.0~V; PRR $\leq 10~MHz$; $t_r\leq 3.0~ns$; $t_f\leq 3.0~ns$; t_r and t_f shall be measured from 0.3~V to 2.7~V and from 2.7~V to 0.3~V, respectively; duty cycle = 50 percent. Timing parameters shall be tested at a minimum input frequency of 1~MHz. The outputs are measured one at a time with one transition per measurement. - 4. - 5. FIGURE 5. Switching waveforms and test circuit - Continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43218-3990 | | E | 16 | ### 4. VERIFICATION - 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. - 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015. - (2) $T_A = +125^{\circ}C$, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein. - 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the
acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table II herein. - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. - 4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). | STANDARD | |---------------------------------------| | MICROCIRCUIT DRAWING | | DEFENSE SUPPLY CENTER COLUMBUS | | COLUMBUS, OHIO 43218-3990 | | SIZE
A | | 5962-89735 | |------------------|---------------------|-------------| | | REVISION LEVEL
E | SHEET
17 | TABLE II. Electrical test requirements. | Test requirements | Subgroups
(in accordance with
MIL-STD-883,
method 5005, table I) | (in acco | ogroups
ordance with
18535, table III) | |---|---|--------------------------------|--| | | Device
class M | Device
class Q | Device
class V | | Interim electrical parameters (see 4.2) | | 1 | 1 | | Final electrical parameters (see 4.2) | <u>1</u> / 1, 2, 3, 7,
8, 9 | 1/ 1, 2, 3, 7,
8, 9, 10, 11 | <u>2</u> / 1, 2, 3, 7,
8, 9, 10, 11 | | Group A test requirements (see 4.4) | 1, 2, 3, 4, 7,
8, 9, 10, 11 | 1, 2, 3, 4, 7,
8, 9, 10, 11 | 1, 2, 3, 4, 7,
8, 9, 10, 11 | | Group C end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3, 7, 8 | 1, 2, 3, 7, 8 | | Group D end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3, 7, 8 | 1, 2, 3, 7, 8 | | Group E end-point electrical parameters (see 4.4) | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | ^{1/} PDA applies to subgroup 1. ## 4.4.1 Group A inspection. - Tests shall be as specified in table II herein. - b. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2, herein. - c. C_{IN} and C_{PD} shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} shall be measured between the designated terminal and GND at a frequency of 1 MHz. For C_{IN} and C_{PD}, test all applicable pins on five devices with zero failures. - d. Ground and V_{CC} bounce tests are required for all device classes. These tests shall be performed only for initial qualification, after process or design changes which may affect the performance of the device, and any changes to the test fixture. V_{OLP}, V_{OLP}, V_{OHP}, and V_{OHV} shall be measured for the worst case outputs of the device. All other outputs shall be guaranteed, if not tested, to the limits established for the worst case outputs. The worst case outputs tested are to be determined by the manufacturer. Test 5 devices assembled in the worst case package type supplied to this document. All other package types shall be guaranteed, if not tested, to the limits established for the worst case package. The 5 devices to be tested shall be the worst case device type supplied to this drawing. All other device types shall be guaranteed, if not tested, to the limits established for the worst case device type. The package type and device type to be tested shall be determined by the manufacturer. The device manufacturer will submit to DSCC-VA data that shall include all measured peak values for each device tested and detailed oscilloscope plots for each V_{OLP}, V_{OLV}, V_{OHP}, and V_{OHV} from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test. Each device manufacturer shall test product on the fixtures they currently use. When a new fixture is used, the device manufacturer shall inform DSCC-VA of this change and test the 5 devices on both the new and old test fixtures. The device manufacturer shall then submit to DSCC-VA data from testing on both fixtures, that shall include all measured peak values for each device tested and detailed oscilloscope plots for each V_{OLP} , V_{OLP} , V_{OHP} , and V_{OHV} from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 18 | ^{2/} PDA applies to subgroups 1 and 7. For V_{OLP} , V_{OLP} , V_{OHP} , and V_{OHP} a device manufacturer may qualify devices by functional groups. A specific functional group shall be composed of function types, that by design, will yield the same test values when tested in accordance with table I, herein. The device manufacturer shall set a functional group limit for the V_{OLP} , V_{OLV} , V_{OHP} , and V_{OHV} tests. The device manufacturer may then test one device function from a functional group, to the limits and conditions specified herein. All other device functions in that particular functional group shall be guaranteed, if not tested, to the limits and conditions specified in table I, herein. The device manufacturers shall submit to DSCC-VA the device functions listed in each functional group and test results, along with the oscilloscope plots, for each device tested. - e. Latch-up tests are required for device class V. These tests shall be performed only for initial qualification and after process or design changes which may affect the performance of the device. Latch-up tests shall be considered destructive. Test all applicable pins on five devices with zero failures. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - b. $T_A = +125$ °C, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). - a. End-point electrical parameters shall be as specified in table II herein. - b. For device classes Q, and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein. - 4.4.4.1 <u>Total dose irradiation testing.</u> Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A and as specified herein. Prior to and during total dose irradiation characterization and testing, the devices for characterization shall be biased so that 50 percent are at inputs high and 50 percent are at inputs low, and the devices for testing shall be biased to the worst case condition established during characterization. Devices shall be biased as follows: - 1. Inputs tested high, V_{CC} = 5.5 V dc +5%, R_{CC} = 10 Ω \pm 20%, V_{IN} = 5.0 V dc +5%, R_{IN} = 1 k Ω \pm 20%, and all outputs are open. - 2. Inputs tested low, V_{CC} = 5.5 V dc +5%, R_{CC} = 10 Ω ±20%, V_{IN} = 0.0 V dc, R_{IN} = 1 k Ω ±20%, and all outputs are open. | STANDARD
MICROCIRCUIT
DRAWING | SIZE
A | | 5962-89735 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 19 | - 4.4.4.1.1 <u>Accelerated annealing test</u>. Accelerated annealing tests shall be performed on all devices requiring a RHA level greater than 5k rads (Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limit at 25°C ±5°C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device. - 4.5 Methods of inspection. Methods of inspection shall be specified as follows: - 4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal. - 5. PACKAGING - 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. - 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.1.2 Substitutability. Device class Q devices will replace device class M devices. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - 6.6 Sources of supply. - 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing. - 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA. | STANDARD | |---------------------------------------| | MICROCIRCUIT DRAWING | | DEFENSE SUPPLY CENTER COLUMBUS | | COLUMBUS, OHIO 43218-3990 | | SIZE
A | | 5962-89735 | |------------------|---------------------|------------| | | REVISION LEVEL
E | SHEET 20 | ### STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN DATE: 08-03-17 Approved sources of supply for SMD 5962-89735 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/. | Standard
microcircuit drawing
PIN <u>1</u> / | Vendor
CAGE
number | Vendor
similar
PIN <u>2</u> / | |--|--------------------------|-------------------------------------| | 5962-89735012A | 0C7V7 | 54ACTQ273LMQB | | 5962-8973501RA | 0C7V7 | 54ACTQ273DMQB | | 5962-8973501SA | 0C7V7 | 54ACTQ273FMQB | | 5962R8973501RA | <u>3</u> / | 54ACTQ273DMQB-R | | 5962R8973501SA | <u>3</u> / | 54ACTQ273FMQB-R | | 5962R89735012A | <u>3</u> / | 54ACTQ273LMQB-R | | 5962-8973501VRA | <u>3</u> / | | | 5962-8973501VSA | <u>3</u> / | | | 5962-8973501V2A | <u>3</u> / | | | 5962R8973501V2A | 27014 | 54ACTQ273ERQMLV | | 5962R8973501VRA | 27014 | 54ACTQ273JRQMLV | | 5962R8973501VSA | 27014 | 54ACTQ273WRQMLV | - 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability. - 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. - 3/ No longer available from an approved source of supply. Vendor CAGE Vendor name and address number 27014 National Semiconductor 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 5 Foden Road Point of contact: South Portland, ME 04106 0C7V7 QP Semiconductor 2945 Oakmead Village Court Santa Clara, CA 95051 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin. # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Flip Flops category: Click to view products by E2v manufacturer: Other Similar products are found below: 5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG