

LoRa 无线收发模块规格书

产品型号: DL-LLCC68-S

文件版本: V1.0

DL-LLCC68-S 433MHz

DL-LLCC68-S 868/915MHz

文件制定/修订/废止履历表

日期	软件版本	制定/修订内容	制定	
2021-1-01	V1. 0	DL-LLCC68-S 标准模块	Fagan	

免责声明:

本规格书仅作为使用指导,具体请以实测为为准。本规格书中的所有陈述和建议不构成任何明示或 暗示的担保。若由于使用者操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。

版权所有 © 深圳市骏晔科技有限公司,保留一切权利。

Copyright © Shenzhen DreamLnk Technology Co., Ltd

一.模块介绍

1.1 产品概述

DL-LLCC68-S 是基于 Semtech 公司的射频芯片 LLCC68 设计的无线射频模块。主要采用新一代 LoRa™ 调制技术,用于超长距离扩频通信。该模块具有体积小、超低的接收功耗、抗干扰能力强、 传输距离比传统调制方式更远等特点,可广泛应用于物联网各类无线通信领域。

DL-LLCC68-S 具有-129dBm@LoRa 的高灵敏度,超低接收电流和休眠电流,发射功率大小可通过 软件配置,最大功率可达+22dBm。相对传统调制技术,LoRa™ 调制技术在抗阻塞和选择方面具有明 显优势,解决了传统设计方案无法同时兼顾距离、抗干扰和功耗的问题。

1.2 产品特性

- 支持(G)FSK、LoRa™等调制方式;
- 芯片支持频段范围 150~960MHz;
- 推荐频率: 433/470MHz——433M 模块; 868/915MHz——868/915M 模块;
- 工作电压 3.3V, 最大输出发射功率 +22dBm, 最大工作电流 130mA;
- 接收状态下具有低功耗特性,接收电流最低 4.5mA,待机电流 0.6mA;
- 高灵敏度 -129dBm@LoRa;
- 支持快速自动信道检测(CAD);
- 支持扩频因子: SF5/SF6/SF7/SF8/SF9/SF10/SF11;
- 支持的带宽: 125kHz 250kHz 500kHz

注意: BW = 125kHz 支持 SF5 - SF9

BW = 250kHz 支持 SF5 - SF10

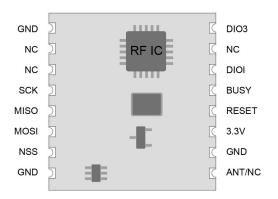
BW = 500kHz 支持 SF5 - SF11 (具体见下表 4)

1.3 典型应用

- 无线自动抄表 (水表、电表、气表)
- 超远距离数据通讯
- 智能家居系统
- 智能安防监控
- 智能楼宇自动化

- 工业控制器、传感器
 - 农业自动化解决方案
 - 智能停车系统
 - 汽车行业应用
 - 供应链物流

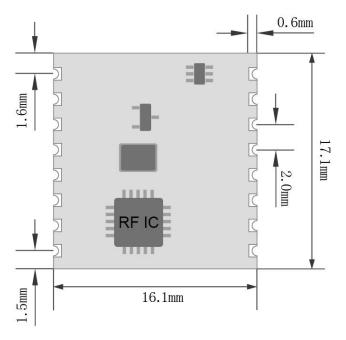
二. 技术参数


参数	最小	典型	最大	单位	备注		
运行条件							
工作电压和 I0 电压范围	1.8	3.3	3.7	V	如需保证芯片功率最大化,		
工作电压和 10 电压框图	1.0	3.3	3. 1	, v	稳定电压≥3.1V		
工作温度范围	-40	25	85	°C			
电流消耗							
接收电流		4. 5		mA	软件采用 CAD 工作模式 可有效减低整体的工作电流		
发射电流		110 70 45		mA	@433MHz @DCDC +22dBm +20dBm +17dbm		
交别 电 机		122 105 98		mA	@868MHz @915MHz @DCDC +22dBm +20dBm +17dbm		
休眠电流		0.6		uA	寄存器保存		
			射频参	数			
	300	433	510	MHz	@433MHz		
推荐频率范围 (保证性能最大化)	800	868	915	MHz	@868MHz		
())	868	915	960	MHz	@915MHz		
发射功率范围	-9	22	22	dBm	见数据手册 Table 13-40: SetTxParams SPI Transaction		
LoRa 接收灵敏度		-129		dBm	@BW =250KH, SF=10, CR =4/5		
FSK 接收灵敏度		-125		dBm	@BR_F = 0.6 kb/s, FDA = 0.8 kHz, BW_F = 4 kHz		
FSK 速率范围	0.6		300	Kb/s			
LoRa 速率范围	1. 76		62.5	Kb/s	Min. for SF9, BW_L = 125 kHz Max. for SF5, BW_L = 500 kHz		

(表1)

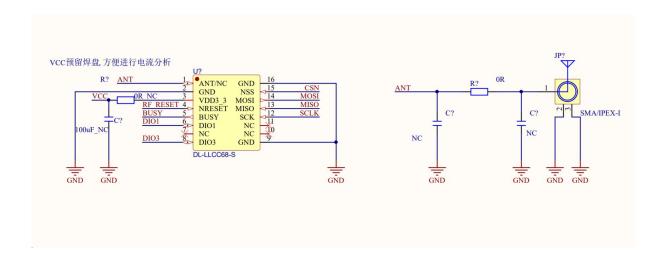
三 . 引脚定义

引脚示意图


引脚功能定义表

序号	引脚定义	类型	功能说明	
1	GND	PWR	可靠的接地	
2	NC		悬空即可	
3	NC		悬空即可	
4	SCK	I	SPI 时钟输入	
5	MISO	0	SPI 数据输出	
6	MOSI	Ι	SPI 数据输入	
7	NSS	I	SPI 片选输入	
8	GND	PWR	可靠的接地	
9	DI03	10	数字 103 可通过软件配置	
10	NC		悬空即可	
11	DIO1	10	数字 I01 可通过软件配置	
12	BUSY	0	芯片内部状态指示引脚,需要连接到主控 MCU 的 GPIO	
13	RESET	I	复位初始化芯片,可增加稳定性,低电平复位	
14	3. 3V	PWR	如需保证芯片功能最大化,稳定电压为 3.3V	
15	GND	PWR	可靠的接地	
16	ANT/NC	AI/AO	天线接口, 走线阻抗 50 Ω, 铺地加过孔	

(表2)



四. 模块尺寸

DL-LLCC68-S 尺寸图

五、基本电路

六、电路设计

6.1 电源设计

- 请注意器件供电电压, 超出推荐电压范围会导致模块功能异常及永久损坏;
- 尽量使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,且需要考虑发射最大功率时的电源负载;
- 模块需要可靠接地,做好铺地可以更好的性能输出并可以减少 RF 对其他灵敏器件的影响。

6.2 射频走线设计

- 模块远离高频电路变压器 RF 等于扰源, 禁止在模块下层直接走线, 否则可能会影响接收灵敏度:
- 使用板载天线时天线需要两面净空,铺地同时不能距离天线太近,否则会吸收辐射的能量;
- 走线 50 Ω 阻抗线, 铺地并多打地孔;
- PCBA 空间允许下预留π型匹配网络,先通过 OR 电阻连接,否则天线开路。

6.3 天线相关

- 天线的种类很多,根据需求选择合适的天线;
- 天线的安置需要根据极性选择合适的安置位置,建议垂直向上;
- 天线辐射路径上不能有金属物体,否则传输距离会收到影响(如封闭的金属外壳)。

6.4 LLCC68 IO 设计

- 设计硬件时,对于数据包模式(SPI 传输)至少需要引出通用 SPI 及 RST, BUSY, DIO1 到单片机的 GPIO 上:
- 软件上 DI01、DI03 可以用来映射芯片的中断事件,并通过函数查询到中断源,但并不是每个模式都通用,具体参考:芯片手册: 13.3 DIO and IRQ Control Functions

芯片手册: Table 13-29: IRQ Registers(中断源)

• 关于收发模式的电子开关切换

芯片 DIO2 被硬件设计为天线切换的开关控制(因此无相关的 TXEN RXEN 引脚,方便软硬件设计),为了方便和简化软件控制,模块内部通过电路将芯片的 DIO2 用于自动控制开关管切换,所以软件在编写时注意需要使用 SetDIO2AsRfSwitchCtrl 来使能自动控制即可。

七、软件调试流程

- 7.1 移植 HAL 接口(SPI 接口,及特别要注意验证复位的功能正常);
- 7.2 熟悉芯片寄存器表及相关 API (数据手册位置: 12.1 Register Table);
- 7.3 使能 DIO2 用于内部自动电子开关控制 SetDIO2AsRfSwitchCtrl;
- 7.4 根据例程,利用两个验证板完成收发通讯验证;
- 7.5 建议使用 LoRa 调制, 通讯正常后, 需要对调制参数进行优化, 根据自己的需求来更改扩频因子, 带宽等来参数来控制发码时长(符号时间有关) 及通讯距离;
- 7.6 可以通过 SetModulationParams 函数设置,常用的调试参数如下:

调制带宽(BW_L)	BW 越高,调制速率越快,但是信号带宽大,会降低接收机的灵敏度				
扩频因子 (SF)	SF 越高可以增加解调的灵敏度,提升距离,缺点就是会大大增加传输时间				
अने राग केंद्र (CD)	在干扰严重情况下,能增加抗干扰性,缺点就是会编码效率减低,波特率变				
编码率(CR)	慢,正常情况下使用默认的 CR = 4/5 即可.				
低速率优化 (LDRO)	速率优化 (LDRO) 当单个符号时间等于或大于 16.38 ms , 需要开启低速率优化				

(表 3)

- 7.7 发射功率最大可以 +22dbm, 以提供最大的链路预算;
- 7.8 如果需要低功耗,可以在软件上采用 CAD 工作模式(睡眠-检测信号-睡眠)来实现低功耗数据手册: 6.1.5 LoRa® Channel Activity Detection (CAD);
- 7.9 LoRa 模式下扩频因子,发送的符号时间与实际有效负载的比特率对应表:

DW	125		25	50	500	
SF BW	Symbol tim (ms)	rate (kbps)	Symbol tim (ms)	rate (kbps)	Symbol tim (ms)	rate (kbps)
5	0.26	15. 63	0. 13	31. 25	0.06	62. 50
6	0.51	9. 38	0. 26	18. 75	0. 13	37. 5
7	1.02	5. 47	0. 51	10.94	0. 26	21. 88
8	2.05	3. 13	1.02	6. 25	0. 51	12. 5
9	4. 10	1. 76	2. 05	3. 52	1. 02	7. 03
10	不支持		4. 10	1. 95	2. 05	3. 91
11	不支持		不支持		4. 10	2. 15

(表4)

注:有效负载数据 指的是你实际传输的数据,但是实际的传输时间不仅仅包含有效负载,还包含前导码,报头,及其编码率,和有效负载的校验位。

集体参考: 6.1.3 LoRa® Frame

八.注意事项

- (1) 本模块属于静电敏感产品,安装测试时请在防静电工作台上进行操作;
- (2) 安装模块时, 附近的物体应保证跟模块保持足够的安全距离, 以防短路损坏;
- (3) 绝不允许任何液体物质接触到本模块,本模块应在干爽的环境中使用;
- (4) 使用独立的稳压电路给本模块供电,避免与其他电路共用,供电电压的误差不应大于5%;
- (5) 本模块各项指标符合常用的国际认证,客户应用本模块的产品如需通过某些特殊认证,我司会 根据客户的需求对某些指标进行调整。

九. 联系方式

深圳市骏晔科技有限公司 Shenzhen DreamLnk Technology Co., Ltd

★ 数据采集、智能家居、物联网应用、无线遥控技术、远距离有源 RFID、天线研发★

【商务合作】sales@dreamlnk.com

【电话】0755-29369047

【技术支持】support@dreamlnk.com

【网址】www.dreamlnk.com

【公司地址】广东省 深圳市 宝安区 新湖路华美居 A 区 C 座 603

【工厂地址】广东省 东莞市塘厦镇 138 工业区裕华街 7 号华智创新谷 B 栋 5 楼

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Sub-GHz Modules category:

Click to view products by DreamLNK manufacturer:

Other Similar products are found below:

 nRF24L01P-MODULE-SMA
 V640-A90
 SM1231E868
 SM-MN-00-HF-RC
 WISE-4610-S672NA
 CS-EASYSWITCH-25
 Ra-01SC-I

 VGdd79T433N0M2
 VGdd79S433X0M1
 VG2373S915N0S1
 CMD-HHCP-418-MD
 CMD-HHLR-418-MD
 CMD-HHCP-315-MD
 TRM-315

 LT
 HUM-900-PRO
 MICRF620Z TR
 ATZB-X0-256-4-0-CN
 MTSMC-EV2-GP-N2-SP
 MTSMC-EV2-MI-GP-N2-SP
 MTSMC-G-F4-IP.R1

 MTSMC-EV2-MI-GP-N3-SP
 MTSMC-G-F4-IP-ED.R1
 ZETAPLUS-868-D
 FOBBER-8T1
 FOBBER-8T2
 FOBBER-8T4
 FOBBER-8T6

 FOBBER-8T8
 ERA-LORA
 ACR1252U
 FOBLOQF-4S1
 ZPT-8RD
 2917052
 LAMBDA62-8S
 LAMBDA80-24S
 LAMBDA80-24D
 HUM-A-900-PRO-CAS
 HUM-A-900-PRO-UFL
 2095000000200
 eRIC-LoRa
 AFZE-5003
 AFZE-5004
 SM-MN-00-HF-RCSPI
 HUM-868-PRC-CAS
 CAS
 HUM-868-PRC
 OTX-868-HH-LR8-PRC