
Rev 1.1 (November 2012) 1 © DLP Design, Inc.

991155MMHHzz DDAATTAA RRAADDIIOO
PRELIMINARY DOCUMENT-SUBJECT TO CHANGE

FEATURES:

• 31-Channel FHSS
• +17dBm Output Power
• Up to 1-Mile Range
• u.fl Antenna Connector
• On-Board Chip Antenna
• FCC/IC/CE Modular Approvals in Place
• Permanent, Unique Serial Number Built In
• Single 2.4- to 3.6-Volt Supply
• Development Kit Available

APPLICATION AREAS:

• Real-Time Security
• Body-Worn Medical Telemetry
• Battery-Powered Home Automation
• Electric/Water/Gas Automated Meter Reading
• Industrial Monitoring and Control
• Active RFID
• Long Range, Battery-Powered, Multi-Hop Sensor Networks

1.0 INTRODUCTION

The DLP-RFS1231 is a low-cost module for transmitting and receiving digital data via radio frequency.
All of the DLP-RFS1231’s electronics (including an antenna) reside on a single PCB, and all
operational power is derived from a single supply voltage.

The transceiver design is made up of a Renesas RL78 low-power microcontroller (R5F100EEANA), a
Semtech SX1231 low-power, integrated UHF transceiver and an antenna switch for selecting between
the on-board antenna and an optional external antenna. The hardware is designed for maximum
range and optimum battery life.

 DDLLPP--

RRFFSS11223311
LEAD FREE

Rev 1.1 (November 2012) 2 © DLP Design, Inc.

2.0 ELECTRICAL SPECIFICATIONS

Supply Voltage 2.4-3.6V
Reader Frequency 902-928MHz
Output Power 50mW (17dBm) MAX
Range Up to 1 Mile (depends upon the antenna used)
Protocol Frequency Hopping; Spread Spectrum
Communications Interface TTL Serial – 38KBPS
Operational Power – Transmit Depends on Setup
Operational Power – Receive ~35mA
Operational Power – Sleep 5uA
Antenna Connector u.fl*
Operating Temperature 0-70°C

 *Please see the Antenna Section for important regulatory details.

2.1 SERIAL NUMBER

Each DLP-RFS1231 contains a unique, 48-bit, hard-coded serial number that cannot be altered by
any means. The serial number can be read via the microcontroller and used to identify the
transceiver in the transmitted packets.

2.2 HOST CONNECTION

RFS1231HOST A RFS1231 HOST B

UART TX

UART RX

UART TX

UART RX

RXD1

TXD1 TXD1

RXD1

2.3 QUICK-START GUIDE

This Quick-Start Guide is designed to work with our DLP-RFS1231 transceiver and DLP-RFS-BATT
battery board Development Kit. (The part number for this kit is DLP-RFS-DK.) The kit contains two
DLP-RFS1231 transceivers, two DLP-RFS-BATT battery boards and a Tag-Connect adapter for use
with the Renesas E1 debugger (purchased separately).

Rev 1.1 (November 2012) 3 © DLP Design, Inc.

DLP-RFS-DK

2.3.1 Mount the two transceiver modules to the battery boards via either the pin headers supplied
with the transceiver or by surface-mount soldering.

2.3.2 Place two jumpers on J5 and J6. J5 connects the battery pack to the voltage regulator on the
DLP-RFS-BATT. J6 connects regulated voltage to the transceiver module. If you want to measure
current consumption into the transceiver module, simply remove J6 and connect a current meter to
the two pins of J6. Doing so will place the meter in series only with the current flowing into the
transceiver.

2.3.3 The sample application that is provided will perform one of two functions based upon a switch
setting on the battery board. A Logic 1 on Switch 1 of the dip switch means that the node will be a
sensor node. If it is a sensor node, the app will read the MAC ID chip and set the MAC ID to the value
read from the MAC ID chip. The sensors (temperature sensor, light sensor and battery voltage) are
read via the ADC. The result is inserted into a fixed-length message and transmitted to the
gateway/master for display.

2.3.4 A Logic 0 on Switch 1 of the dip switch means that the node will be a gateway or master node.
The gateway or master node will set the radio for reception. When a valid packet is received, the
packet is output to the USB port, the buzzer is sounded and the green LED on the battery board is
flashed.

Rev 1.1 (November 2012) 4 © DLP Design, Inc.

2.4 PIN SIGNALS

J2 Tag-Connect Pins

1 RESET#
2 VBAT
3 No Connect
4 Ground
5 TOOL0
6 No Connect

E1 Debugger Connection

1 No Connect
2 Ground
3 No Connect
4 No Connect
5 TOOL0
6 No Connect
7 No Connect
8 VBAT
9 VBAT

10 RESET#
11 No Connect
12 Ground
13 RESET#
14 Ground

DLP-RFS1231 Module IO Pins

1 Ground
2 TXD1
3 RXD1
4 P20 / ANI0
5 P61
6 P51 / INTP2 / SO11
7 P30 / INTP3 / SCK11
8 P60
9 P120 / ANI19

12J2 E1

1
2

1

13 14

26

Rev 1.1 (November 2012) 5 © DLP Design, Inc.

10 P72 / ANI19
11 P31 / INTP4 / PCLBUZ0
12 Ground
13 VBAT
14 VBAT
15 Ground
16 SPIMOSI / TXD0
17 P22 / ANI2
18 SPIMISO/RXD0
19 SPICLK
20 P24 / ANI4
21 P71 / SI21
22 P26 / ANI6
23 P73
24 P23 / ANI3
25 P21 / ANI1
26 Ground

2.5 PROGRAM / DEBUG INTERFACE

The Renesas E1 Device Programmer is required for programming and debugging the DLP-RFS1231
module. The E1 can be connected to the module via either the Tag-Connect interface or the standard
14-pin header. [Note that a male header (purchased separately) will need to be soldered to the PCB
if the 14-pin header is to be used.]

The E1 can be purchased from one of several distributors. One easy way to determine who has stock
is to search for Part Number R0E000010KCE00 on www.findchips.com:

 http://www.findchips.com/avail?part=R0E000010KCE00+

2.6 C COMPILER

A free C compiler is available for download from IAR to help the user get started in firmware
development:

http://www.iar.com/en/Products/IAR-Embedded-Workbench/Renesas-RL78/

The downloads available through this location offer either a Kickstart version or a 30-day evaluation
version. It is best to select the Kickstart version since it carries no time limit and allows for up to 16K
of object code.

Rev 1.1 (November 2012) 6 © DLP Design, Inc.

3.0 MECHANICAL

3.1 MECHANICAL DRAWING (Overall dimensions: 1.5 x 2.0 x 1.53 Inches)

Note: thou = mils or 0.001 inches.

3.2 MOUNTING OPTIONS

The DLP-RFS1231 module can be either surface mounted to a printed circuit board or connected
using 0.1-inch spaced headers (0.025 sq-inch posts).

Rev 1.1 (November 2012) 7 © DLP Design, Inc.

4.0 APPLICATION DEVELOPMENT – SimpleRF™

A software library is available for free download upon purchase of the DLP-RFS1231 that
demonstrates reading the serial number, transmitting and receiving data packets and setting up
simple point-to-point and star networks.

The software design is divided into task-specific “managers” and a hardware-specific API. A manager
provides specific functions related to the operation of the radio protocol. The overall design consists
of layers that interact through callback functions. There is no RTOS, although the software can be
configured to accommodate a small RTOS if desired.

4.1 RF PROTOCOL STACK OVERVIEW

The SimpleRF™ RF Protocol Stack is divided up into three layers. The lowest-level layer is the PHY
layer. An application could only use the PHY layer to provide point-to-multipoint (broadcast) RF
communications, or it might use the PHY layer in conjunction with the MAC layer to provide
higher-level message delivery services. Details of the operation of the various layers are outlined
below:

4.1.1 RF MESSAGE MANAGER

The RF Message Manager is responsible for constructing messages. The RF Message Manager
decouples message management from protocol components. It builds a message as a reverse linked
list of pointers to buffers. The RF Message Manager operates on messages using unique message
handles. All message storage is external; this manager does not store message data locally.

4.1.2 PHY MANAGER

The PHY Manager (layer) provides control of the physical RFIC and the low-level protocol for basic
packet transceiver services. The PHY Manager can operate in single-channel DTS mode or in
26-channel FHSS mode.

4.1.3 MAC MANAGER

The MAC Manager (layer) is responsible for sending and receiving packets using the PHY. The MAC
Manager is analogous to the MAC layer in the OSI standard 7-layer stack. It provides the ability to
send messages to specifically addressed nodes and, optionally, to receive acknowledgements for
those messages. If an acknowledgement is expected and not received, the MAC layer will retry the
message.

The MAC Manager supports three packet types:

1. kMACUniAck - Acknowledged Packet

2. kMACUniNoAck - Unacknowledged Packet

3. kMACMulti - Multicast Packet

Rev 1.1 (November 2012) 8 © DLP Design, Inc.

4.1.4 EVENT MANAGER

The Event Manager is used to notify the application layer of events that occur inside the PHY and
MAC layers. This mechanism can be used to either drive the application layer or for diagnostic
purposes. The following are valid events:

4.1.5 APPLICATION LAYER

The application layer is user defined, but it typically does the following:

- Initializes the hardware and software managers,
- Initializes application-layer variables and data structures,
- Reads the MAC ID chip and sets the MAC ID of the system,
- Passes the address of the application layer master loop; and
- Calls the MAC layer main loop (if a MAC-layer application).

The MAC layer main loop will run to completion then call the application layer main loop ad infinitum.
The application layer main loop is completely user defined. A typical sensor node application will set
a timer and periodically read sensors and transmit the sensor data to another node using MAC-layer
function calls. The application layer may also listen for messages from other nodes. The MAC
Manager will notify the application layer via the Event Manager when packet transmissions are
complete, packet reception has occurred or some type of error event occurs.

The sample application that is provided will do one of two functions based upon a switch setting on
the battery board. A Logic 1 on Switch 1 of the dip switch means that the node will be a sensor node.
A Logic 0 means that the node will be a gateway or master node. If it is a sensor node, the app reads
the MAC ID chip and sets the MAC ID to the value read from the MAC ID chip. If it is a
gateway/master node, then the MAC ID is set to 0.

The gateway or master node will set the radio for reception. When a valid packet is received, the
packet is output to the USB port on the battery board, the buzzer is sounded and the green LED on
the battery board is flashed.

The sensor node sets a timer event using the Timer Manager. When a timer event occurs, the Timer
Manager will call the application callback which, in turn, causes the start of a sensor read. The
sensors (temperature, light and battery voltage) are read via the ADC. The result is inserted into a
fixed-length message and transmitted to the gateway/master through a MAC Manager function call.

This is only one example of how to implement a wireless sensor application. The potential
applications are limitless. Most of the resources of the RL78 MCU are available for the application to
use.

4.1.6 MICROCONTROLLER API

The various managers communicate with the hardware through an abstraction layer called the
Microcontroller API. Functions that are specific to the microcontroller are contained in this API.
Those functions include firmware for initializing MCU hardware such as timers, communication ports,
IO ports, interrupt handlers, etc. The API also has code for controlling these MCU devices during
operation such as handling timer interrupts, sending and receiving data over the communication ports

Rev 1.1 (November 2012) 9 © DLP Design, Inc.

(UARTS, SPI) and facilities for implementing callback functions for the higher-level managers. The
design philosophy of this API is to provide the ability to move across the various MCU devices that
Renesas has to offer without significantly changing the high-level managers and application software.
The microcontroller API maintains a data structure called ucPrivateData that stores the addresses for
all Microcontroller API callback functions as well as timer and IO port “shadow” registers (used to
accommodate the fact that IO port control registers on the H8 38076 are write only). For details on
the API function calls, refer to Section 5.0.

4.1.7 UART MANAGER

The UART Manager provides an interrupt-driven, circular-buffered, transmit-and-receive interface for
UART0. The UART Manager API provides functions to configure the UART and to access the
transmit and receive buffers.

The transmit buffer is 255 bytes. To send a byte to the UART, call uartSendByte(). That byte is put
into the transmit buffer, and the transmit interrupt is enabled. The UART0 ISR will then remove that
byte from the transmit buffer and send it to the UART. To send a null-terminated string, call
uartSendString().

The receive buffer is 32 bytes. When the UART0 ISR receives a byte, it puts that byte into the receive
buffer. To determine if there are bytes in the buffer, call uartKBHit(). To retrieve the next byte in the
buffer, call uartGetByte().

Like all managers, the UART Manager has an initialization function that must be called at reset to put
the manager in a default state.

4.1.8 TIMER MANAGER

The Timer Manager provides the application and other managers with timer functionality by providing
a method of establishing timer events and registering callbacks when those events reach their
terminal count. The Timer Manager provides 500-microsecond resolution (although this resolution is
configurable via the Microcontroller API). The Timer Manager uses a single timer unit on the MCU.
The Timer manager is capable of registering 16 event timers. Each event timer is 16 bits for a
maximum of 32,768 seconds. An event timer can either be a continuous timer or a single-shot timer.
A continuous timer event is started by “registering” the event using a function call. The function call
provides the timer count and a callback function that is called when the event reaches the terminal
count. The function returns a timer “handle” which is used to refer to the timer event and remove the
timer event. Similar functions exist to register single-shot and elapsed-time events. For details on the
Timer Manager functions, refer to Section 5.0.10.

4.1.9 INTERRUPT MANAGER

The Interrupt Manager is used to control the enabling and disabling of interrupts, and it ensures that
interrupts cannot be inadvertently enabled in nested function calls.

Rev 1.1 (November 2012) 10 © DLP Design, Inc.

4.1.10 RADIO MANAGER

The radio abstraction API provides low-level access to the XE1231 radio IC. Generally, these
functions would be used by the protocol stack to control the radio. The application would not likely
need to call these functions directly, except for the case of automated testing in the manufacturing
stage.

5.0 RF PROTOCOL STACK DETAILS

The following sections document the details of the protocol stack.

5.0.1 APPLICATION LAYER

Detailed Description:

The Application Layer is user defined, but it typically does the following:

- Initializes the hardware and software managers
- Initializes Application-Layer variables and data structures
- Reads the MAC ID chip and sets the MAC ID of the system
- Passes the address of the Application Layer master loop to MacMain:
 Do Forever MacMain() PhyMain() AppMain() End Do

The MAC Layer main loop will run to completion then call the Application Layer main loop ad infinitum.
The Application Layer main loop is completely user defined. A typical sensor node application will set
a timer and periodically read sensors and transmit the sensor data to another node using MAC-Layer
function calls. The Application Layer may also listen for messages from other nodes. The MAC
Manager will notify the Application Layer via the Event Manager when packet transmissions are
complete, packet reception has occurred or some type of error event occurs.

The sample application that is provided will do one of two functions based upon a switch setting on
the battery board. A Logic 1 on Switch 1 of the dip switch means that the node will be a sensor node.
A Logic 0 means that the node will be a gateway or master node. If it is a sensor node, the app reads
the MAC ID chip and sets the MAC ID to the value read from the MAC ID chip. If it is a gateway/
master node, the MAC ID is set to 0.

The gateway or master node will set the radio for reception. When a valid packet is received, the
packet is output to the USB port on the battery board, the buzzer is sounded and the green LED on
the battery board is flashed.

The sensor node sets a timer event using the Timer Manager. When a timer event occurs, the Timer
Manager will call the application callback which, in turn, causes the start of a sensor read. The
sensors (temperature, light and battery voltage) are read via the ADC. The result is inserted into a
fixed -length message and transmitted to the gateway/master through a MAC Manager function call.

This is only one example of how to implement a wireless sensor application. The potential applica-
tions are limitless. Most of the resources of the RL78 MCU are available for the application to use.

Rev 1.1 (November 2012) 11 © DLP Design, Inc.

Macros:

#define ADC_ARRAY_SIZE 4
#define ADC_READ_ITERATIONS 20
#define ADC_ARRAY_INDEX_MASK 0x03
#define ADC_MULTIPLIER 3.0/256

Enumerations:

Enum
 { AppActionNone, AppActionTransmit, AppActionReceive, AppActionProcessReceiver }

Functions:

void updateLCD (void)
double calcADCVoltage (uint16_t rawADCReading)
void extractFractionalFromFloat (double adcVoltage, uint16_t *integerPart, uint16_t
 *fractionalPart)
void intToDecString (unsigned int val, char *stringOut, char decPlaces, char isSigned)
void AppPacketSniff (void)
void AppException (TException e)
void AppEvent (TEventType event)
void AppTransmitPacket (void)
void AppAdcRead (void)
void AppMain (void)
void AppInitialize (void)
void main (void)

Variables:

__root const uint8_t opbyte0 = 0xEFU
__root const uint8_t opbyte1 = 0x7FU
__root const uint8_t opbyte2 = 0xE8U
__root const uint8_t opbyte3 = 0x04U
uint8_t appMessageNumber
TMessageComponent appMessageComponent
uint8_t appMessage [64]
uint8_t incomingMessageBuffer [64]
enum { ... } appAction
uint8_t sniffPackets
uint16_t txPacketCount
uint16_t rxPacketCount
uint8_t adcValsIndex
uint8_t adcCount
uint8_t adcConversionCount
uint8_t adcIndexMask
uint8_t adcComplete
uint16_t adcVals [ADC_ARRAY_SIZE]

Rev 1.1 (November 2012) 12 © DLP Design, Inc.

5.0.2 MESSAGE MANAGER API

Detailed Description:

The Message Manager is responsible for assembling messages for the different components of the
protocol, including the application. Generally, the function that owns the message would request a
message ID from the Message Manager, and that ID would be passed to subordinate layers which
would use that ID to add additional information to the message.

Data Structures:

struct node
Defines the nodes for a linked list of data buffers.

Typedefs:

typedef struct node TMessageComponent
Type definition for buffer list item for the Message Manager.

Enumerations:

enum TMessageComponentType
 {
 kMACMessageComponent = 0,
 kNETMessageComponent = 1,
 kAppMessageComponent = 2
}
Defines the types of message components. This enumeration can be expanded to support
user-defined types.

Functions:

void msgClear (uint8_t msgNo)
Clears the message list by setting the list head to NULL.
void msgAdd (TMessageComponent *node, uint8_t msgNo)
Adds a new item to the beginning of the message list.
TMessageComponent * msgGetHead (uint8_t msgNo)
Gets the address to the head of the message list.
TMessageComponent * msgGetNext (TMessageComponent *currentNode)
Gets the address of the next message in the list (front to back).
uint8_t msgGetCount (uint8_t msgNo)
Gets the total number of bytes to send.
void msgInitialize (void)
Initializes the Message Manager.
void msgRelease (uint8_t msgNo)
Releases a managed message.
uint8_t msgGetNew (void)
Gets the handle to a new message.

Function Documentation:

void msgAdd (TMessageComponent * node, uint8_t msgNo)
Adds a new item to the beginning of the message list.

Rev 1.1 (November 2012) 13 © DLP Design, Inc.

Parameters:

Node A pointer to the TMessageComponent to be added
msgNo Indicates which managed message to perform the operation on

This function is called to add a list item to the head of the list. The caller is responsible for providing
storage for the list item. The Message Manager only stores a pointer to the list item.

void msgClear (uint8_t msgNo)
Clears the message list by setting the list head to NULL.

Parameters:

msgNo Indicates which managed message to perform the operation on

This function is called to clear the message list.
uint8_t msgGetCount (uint8_t msgNo)
Gets the total number of bytes to send.

Parameters:

msgNo Indicates which managed message to perform the operation on

This function traverses the message tree and calculates the size of the entire message as it is
currently configured.

TMessageComponent* msgGetHead (uint8_t msgNo)
Gets the address to the head of the message list.

Parameters:

msgNo Indicates which managed message to perform the operation on

This function is called to get the head of the message list.

uint8_t msgGetNew (void)
Gets the handle to a new message.

This function is called to allocate one of the managed messages to the caller. A very simple
management system is used that allows the caller to call ReleaseMessage to free the message up for
another use. If all messages are being used, this function returns 0xFF. A return value of 0 is a valid
message handle.

NOTE: TESTS FOR FAILURE MUST TEST AGAINST A RETURN VALUE OF 0xFF.

TMessageComponent* msgGetNext (TMessageComponent * currentNode)
Gets the address of the next message in the list (front to back).

Parameters:

currentNode Current node to use as a reference to get the next node

Rev 1.1 (November 2012) 14 © DLP Design, Inc.

Return Values:

Pointer to the next node in the list (NULL if at list end).

This function is called to get the address of the next message in the list. Typically, this is used in
conjunction with MessageGetHead() to traverse the message list. First MessageGetHead is called to
get the pointer to the head of the list. Then MessageGetNext is called in a loop to get the next node
based upon the last one returned by either MessageGetNext or MessageGetHead. When
MessageGetNext() returns a NULL, the end of the list is reached.

void msgInitialize (void)
Initializes the Message Manager.

This should be called before any calls to the Message Manager component are made. Otherwise, the
internal data structures are not initialized, and their values are not guaranteed.

void msgRelease (uint8_t msgNo)
Releases a managed message.

Parameters:

msgNo Indicates which managed message to perform the operation on

This function is called to release one of the managed messages.

5.0.3 MAC LAYER MANAGER API

Detailed Description:

The MAC Manager (layer) is responsible for sending and receiving packets using the PHY. The MAC
Manager is analogous to the MAC layer in the OSI standard 7-layer stack. It provides the ability to
send messages to addressed nodes and to optionally receive acknowledgements for those
messages. If an acknowledgement is expected and not received, the MAC layer will retry the
message.

Data Structures:

struct TMACMsgObject
Defines the internal properties of a TMACMsg. union TMACMsg.
Defines a MAC-layer message.

Typedefs:

typedef uint32_t TMACAddress
Defines the MAC-layer address type.

Enumerations:

enum TMACPacketType { kMACUniAck = 0, kMACUniNoAck = 1, kMACMulti = 2, kMACACK =
3 }
Defines the MAC-layer message types.

Rev 1.1 (November 2012) 15 © DLP Design, Inc.

enum TMACCallbackType { kMACRxDoneCallback, kMACTxDoneCallback, kMACErrorCallback
}
Defines the callback functions that can be assigned.
enum TMACErrorType { kMACErrorNone, kMACErrorTX, kMACErrorPHY, kMACErrorNoAck }
Defines the MAC error types.
enum TMACAction { kMACActionNone, kMACActionSendACK, kMACActionReceiveACK,
kMACActionReceivePacket, kMACActionSendPacket }
Defines the MAC action types.
enum TMACPacketState { kMACPacketIdle, kMACPacketTxWait, kMACPacketRxWait,
kMACPacketSendingACK, kMACPacketAckWait }
Defines the MAC packet engine status types.

Functions:

void macRegisterErrorCB (TErrorCallback func)
Error callback.

Configuration Functions:

void macRegisterCB (TMACCallbackType cbno, TCallback func)
Registers a MAC-layer callback function.
TCallback macInitialize (TCallback appfunc)
Initializes the MAC layer.
void macGetAddress (TMACAddress *addr)
Gets the local MAC address.
void macSetAddress (TMACAddress addr)
Sets the local MAC address.
TMACPacketState macGetEngineStatus (void)
Gets the internal packet engine status.
void macPacketMgrAckTimeout (void)
Callback function for ACK timeout.
void macPacketMgrRxDone (void)
Callback function for received packet.
void macPacketMgrTxDone (void)
Callback function for packet sent.
void macPacketMgrError (TEventType error)
Callback function for error generated by PHY layer.
void macMain (void)
macMain

Packet Functions:

uint8_t macSendPacket (TMessageComponent *node, TMACPacketType pkttype,
TMACAddress destaddr, uint16_t ackTimeout, uint8_t ackRetries, uint8_t msgNo, TTxMode
mode)
Sends a generic packet using the MAC layer.
void macSendAppPacket (uint8_t *payloadBuffer, TMACPacketType pktType, TMACAddress
destAddress, uint16_t ackTimeout, uint8_t ackRetries, TTxMode mode)
Sends an application packet using the MAC layer.
void macReceivePacket (unsigned char *pkt, uint8_t bufferLength, TRxMode mode)
Puts the MAC layer into receive mode.
uint8_t macGetRXBufferIndex (void)
Returns an index to the next byte in the receive buffer after the MAC bytes.

Rev 1.1 (November 2012) 16 © DLP Design, Inc.

uint8_t macIsReadyToTransmit (void)
Returns a 1 if it is OK to transmit; a 0 if not.
uint8_t macIsReadyToReceive (void)
Returns a 1 if it is OK to receive; a 0 if not.

The MAC Manager supports three valid packet types:

 -# kMACUniAck - Acknowledged Packet
 -# kMACUniNoAck - Unacknowledged Packet
 -# kMACMulti - Multicast Packet

Function Documentation:

TCallback macInitialize (TCallback appfunc)
Initializes the MAC layer.

Parameters:

Appfunc Pointer to the appMain() function

This function is called to initialize the MAC layer. It stores the appfunc pointer in
PrivateData.appMain, which is called in the macMain function.

This function returns a pointer to macMain. When the application layer has finished initialization on
reset, it transfers control to that function. In this way, we provide loose coupling.

void macReceivePacket (unsigned char * pkt, uint8_t bufferLength, TRxMode mode)
Puts the MAC layer into receive mode.

Parameters:

*pkt Pointer to the packet structure that contains the packet info
bufferLength Length of the receive buffer mode–specifies frequency hopping or single-channel
 receive mode

This function initiates the MAC layer packet reception machine. It is a non-blocking call. When it
returns, the SX1231 will be in receive mode, scanning channels looking for a transmission. The MAC
layer state will be kMACPacketRxWait. The protocol and radio will continue in this state until one of
the following termination events occurs:

Termination Events:

1. Valid Packet Received - The registered callback function for a received packet is called, and the
radio is set to IDLE.

2. Packet Error - A packet start was detected, but the packet failed CRC. The registered callback for
exceptions is called, and the radio is set to IDLE.

3. Transmission - If macSendPacket or macSendAppPacket is called, the reception is terminated.

Once reception is terminated, macReceivePacket must be called again to restart reception. If you are
using the NET layer, macReceivePacket() is called automatically when you call netReceivePacket().

Rev 1.1 (November 2012) 17 © DLP Design, Inc.

void macRegisterCB (TMACCallbackType cbno, TCallback func)
Registers a MAC-layer callback function.

Parameters:

cbno Identifies which event callback is being provided
*func Pointer to the actual callback function

This function registers a callback function for the MAC layer. Callback functions are identified by
(cbno) and point to the function (*func). These callback functions are used to notify other layers/
classes that an event has happened in the PHY layer/class.

void macSendAppPacket (uint8_t * payloadBuffer, TMACPacketType pktType, TMACAddress
destAddress, uint16_t ackTimeout, uint8_t ackRetries, TTxMode mode)
Sends an application packet using the MAC layer.

Parameters:

*payloadBuffer Pointer to the buffer containing app data
pktType Packet type (see description)
destAddress Destination address for the packet
ackTimeout The amount of time to wait for an acknowledgement
ackRetries The maximum number of times to retry an ACK packet
mode Specifies frequency hopping or single-channel receive mode

This function is called to send an application packet using the MAC layer. The main difference
between this function and macSendPacket() is that the message number and message component
are not provided. Internally, the MAC layer reserves a component and number for application
messages. This greatly simplifies sending packets from the application because now the application
does not need to make any calls to the Message Manager. In fact, the Message Manager operation
is completely hidden from the application now.

The MAC layer provides point-to-point connectivity with other nodes in the network using a unique
32-bit address.

The local MAC message is configured based on the information passed to the function. Then the
PHY is called to transmit the complete packet. When the PHY is done, macPacketMgrRxDone() is
called by the PHY to notify the MAC that the packet is sent. At that point, the packet engine will take
over and manage the rest of the MAC's responsibility regarding the packet. If the packet requires an
ACK; a timer is started, and automatic retransmissions will be attempted when the timer expires. If no
ACK is required or the ACK is received, the MAC will call maccbPacketTxDone() to notify the
registered subscriber that the packet was successfully sent.

Valid pktType values:

 # kMACUniAck - Acknowledged Packet
 # kMACUniNoAck - Unacknowledged Packet
 # kMACMulti - Multicast Packet

The function is blocking and will maintain control of the processor until the packet transmission is
complete.

Rev 1.1 (November 2012) 18 © DLP Design, Inc.

uint8_t macSendPacket (TMessageComponent * node, TMACPacketType pkttype,
TMACAddress destaddr, uint16_t ackTimeout, uint8_t ackRetries, uint8_t msgNo, TTxMode
mode)
Sends a generic packet using the MAC layer.

Parameters:

node Caller maintained entry for the message list
pkttype Packet type (see description)
destaddr Destination address for the packet
ackTimeout The amount of time to wait for an acknowledgement
ackRetries The maximum number of times to retry an ACK packet
msgNo The managed message that is being sent
mode Specifies frequency hopping or single-channel receive mode

Return Values:

Always returns 1 in current revision.

This function is called to send a packet using the MAC layer. The MAC layer provides point-to-point
connectivity with other nodes in the network using a unique 32-bit address.

The local MAC message is configured based on the information passed to the function. Then, the
PHY is called to transmit the complete packet. When the PHY is done, macPacketMgrRxDone() is
called by the PHY to notify the MAC that the packet is sent. At that point, the packet engine will take
over and manage the rest of the MAC's responsibility regarding the packet. If the packet requires an
ACK; a timer is started, and automatic retransmissions will be attempted when the timer expires. If no
ACK is required or the ACK is received, the MAC will generate a packet sent event.

Valid pktType values:

 # kMACUniAck - Acknowledged Packet
 # kMACUniNoAck - Unacknowledged Packet
 # kMACMulti - Multicast Packet

The function is blocking and will maintain control of the processor until the packet transmission is
complete.

5.0.4 PHY LAYER MANAGER API

Detailed Description:

The PHY layer is responsible for sending and receiving packets using the radio. It is analogous to the
PHY layer in the OSI 7-layer protocol reference stack. It does not provide assured delivery. It can be
used directly by the application when a very simple protocol is being built or when the application has
legacy requirements that aren't filled by the higher protocol stack elements.

The current distribution contains a receiver-synchronized, 26-channel FHSS algorithm that can be
used in addition to a single-frequency DTS mode of operation.

Rev 1.1 (November 2012) 19 © DLP Design, Inc.

Macros:

#define SYNC_PACKET_ID 0x10
#define RENDEZVOUS_PACKET_ID 0x11
#define SYNC_COMMAND_TIMEOUT 400

Typedefs:

typedef uint8_t PHYAPI
PHYAPI calls return uint8_t

Enumerations:

enum TPHYPacketState { pesRXWAIT, pesSYNCSTART, pesRXSTART, pesTXSTART, pesOFF }
Packet engine states.
enum TSyncMode { SYNC_MODE_STAR_NETWORK, SYNC_MODE_POINT_TO_POINT,
SYNC_MODE_SLEEPER_CELL }
Frequency hopping synchronization method.
enum TSyncState { SYNC_NOT_IN_SYNC, SYNC_IN_SYNC }
enum TPreambleType { preSHORT, preLONG }
RF Preamble types.
enum TRxMode { rxmFHSS, rxmDTS }
Receive modes (FHSS = Frequency Hopping, DTS = Single Channel)
enum TTxMode { txmFHSS, txmDTS }
Transmit mode (FHSS = Frequency Hopping, DTS = Single Channel)
enum TPHYCallbackType { kPHYRxDoneCallback, kPHYTxDoneCallback }
Defines the callback functions that can be assigned.
enum TTxPower { kTxPower0dBm, kTxPower5dBm, kTxPower10dBm, kTxPower13dBm,
kTxPower17dBm }
Defines available transmit powers.

Configuration Functions:

Functions used to configure the PHY layer:

PHYAPI phyIdle (void)
This function sets the radio mode to idle.
void phyRegisterCB (TPHYCallbackType cbno, TCallback func)
This function registers the phyTxDone and phyRxDone callbacks.
PHYAPI phySleep (void)
This function sets the radio mode to sleep.
PHYAPI phyOff (void)
This function sets the radio mode to off.
PHYAPI phyWake (void)
This function wakes the radio from an off state.
PHYAPI phyInitialize (void)
This function initializes the PHY layer.
PHYAPI phySetTxChannel (uint8_t channel)
Sets the radio transmit channel.
PHYAPI phySetRxChannel (uint8_t channel)
Sets the radio receive channel.
void phySetHopTable (uint8_t tableIndex)
Selects one of 256 possible hop tables.

Rev 1.1 (November 2012) 20 © DLP Design, Inc.

void phySelectRadioPattern (uint8_t patternNo)
Sets the radio DTS pattern to one of four (0-3) preset byte sequences.
void phyDefineRadioPattern (uint8_t patternNo, uint8_t *bytes, uint8_t length)
Defines a custom DTS pattern in one of the four available slots.
void phySetTransmitPower (TTxPower power)
Sets the radio power.
uint8_t phyReadDIPSwitch (void)
Reads the DIP switches on the evaluation board.
void phySetManufID (uint32_t ID)
Sets the manufacturer ID.
void phyDisableMIDFiltering (void)
Disables manufacturer ID filtering.
void phyEnableMIDFiltering (void)
Enables manufacturer ID filtering.

Send/Receive Functions:

Functions used to send and receive packets, and to obtain information about the packet engine are as
follows:

uint8_t * phyGetRxBuffer (void)
Gets a pointer to the receive buffer.
uint8_t * phyGetSniffBuffer (void)
Gets a pointer to the buffer containing the sniffed packet.
uint8_t phyGetSniffCount (void)
Returns current sniff count.
PHYAPI phySendPacket (TMessageComponent *node, uint8_t msgNo, uint8_t encryptionOn)
Sends a packet over the radio.
PHYAPI phyReSendPacket (uint8_t msgNo, uint8_t encryptionOn)
Sends the last packet over the network.
PHYAPI phyReceivePacket (uint8_t *PacketSDU, uint8_t bufferLength)
Begins listening for a packet on the network.
TPHYPacketState phyGetPktState (void)
Gets the current packet engine state.
uint8_t phyGetRxPacketLen (void)
Gets the packet length of a received packet.
uint8_t phyGetRxBufferIndex (void)
Returns an index to the next byte in the receive buffer after the PHY bytes.
uint8_t phyGetRxChannel (void)
Gets the current receive channel number.
uint8_t phyGetTxChannel (void)
Gets the current transmit channel number.
uint8_t phyIsReadyToTransmit (void)
Identifies if the PHY is ready to send a message.
uint8_t phyIsReadyToReceive (void)
Identifies if the PHY is ready to receive a message.

Function Documentation:

uint8_t* phyGetRxBuffer (void)
Gets a pointer to the receive buffer.

Rev 1.1 (November 2012) 21 © DLP Design, Inc.

Return Values:

Pointer to Receiver Buffer -This routine is called to retrieve a pointer to the buffer that the PHY uses to
store a received packet. Using this pointer together with index offsets achieved from the individual
layer managers themselves, the caller can access the context-specific application in the buffer. (See
also: phyGetRXBufferIndex.)

uint8_t* phyGetSniffBuffer (void)
Gets a pointer to the buffer containing the sniffed packet.

Pointer to Buffer - This routine is called to retrieve a pointer to the buffer that the PHY uses to store a
transmitted or received packet. Using this pointer and index offsets achieved from the individual layer
managers themselves, the caller can access the context-specific application in the buffer.

PHYAPI phyIdle (void)
This function sets the radio mode to IDLE.

In this mode, the radio is off, but the oscillator is still running. The ISR packet machine is disabled.

PHYAPI phyInitialize (void)
This function initializes the PHY layer.

All pointers are set to NULL. The packet engine state is set to pesOFF. Local callback functions are
registered with the ucAPI layer.

PHYAPI phyReceivePacket (uint8_t * PacketSDU, uint8_t bufferLength)
Begins listening for a packet on the network.

Parameters:

*PacketSDU Pointer to the buffer that holds the payload data
bufferLength Length of the buffer; used to prevent buffer overwrites

Return Values:

Returns a 0 if there was a problem starting the receiver and a 1 if the receiver started successfully.

This function is called to receive a packet. It puts the radio in receive mode, and enables the pattern
interrupt and the ISR-driven RX packet machine. The packet is received, and the SDU is decoded
and CRC verified. Once a valid packet is received by the packet machine, cbMACRXDone() is called.

PacketSDU is a variable that is maintained in the MAC layer. Pointers to those variables are passed
in this function so that the packet machine can populate them when the packet is complete and valid.

The way that the receiver works depends upon the preamble type. If the preamble type is short, then
the receiver is operated in DTS (single-channel) mode. If the preamble type is long, then the receiver
is operated in FHSS mode.

In DTS mode, the receiver will operate on a single channel. When this function returns to the caller,
the receiver will be programmed to look for a preamble of 4 bytes. When that preamble is detected,
an interrupt will occur. In the pattern ISR, the radio will be reprogrammed to look for the actual start of
packet sequence, and then the ISR will go into a hard loop looking for the start sequence. If the start
sequence is found, a packet is received. If it is not found within the preset period of time, the radio is

Rev 1.1 (November 2012) 22 © DLP Design, Inc.

reprogrammed to look for the preamble, and the ISR returns.

In FHSS mode, the receiver will operate the same as in DTS mode except that an additional interrupt
will be occurring every 1.5mS to force the radio to scan a new channel. The application programmer
should keep in mind that the pattern ISR will keep control of the processor once a preamble is
detected until either a fixed time has elapsed with no start-of-packet detection or a packet is fully
received. During this time, no other interrupt functions will work, including event timers. [See also:
phySendPacket() and phyReSendPacket()]

void phyRegisterCB (TPHYCallbackType cbno, TCallback func)
This function registers the phyTxDone and phyRxDone callbacks.

Parameters:

cbno Determines the type of callback to be registered
func Pointer to the callback function

This function is called by the higher-level protocol to register callbacks for phyTxDone and
phyRxdone.

PHYAPI phyReSendPacket (uint8_t msgNo, uint8_t encryptionOn)
Sends the last packet over the network.

Parameters:

msgNo Indicates which managed message we are sending
uint8_t encryptionOn indicates the use of AES encryption

This function is called to resend the last packet sent by the PHY layer. Calls to this function are only
valid after phySendPacket() has been called at least once. The preamble type determines how the
packet is sent. A short preamble will cause the packet to be sent in DTS (single-channel) mode. A
long preamble will cause the packet to be sent in FHSS mode. [See also: phyReceivePacket() and
phySendPacket()]

PHYAPI phySendPacket (TMessageComponent * node, uint8_t msgNo, uint8_t encryptionOn)
Sends a packet over the radio.

Parameters:

node Caller-maintained entry for the message list
msgNo Indicates which managed message we are sending
uint8_t encryptionOn indicates the use of AES encryption

When called, this function will initiate the transmission of a complete packet which is comprised of
message fragments coordinated by the Message Manager. The preamble type determines how the
packet is sent. A short preamble will cause the packet to be sent in DTS (single-channel) mode. A
long preamble will cause the packet to be sent in FHSS mode. [See also: phyReceivePacket()]

void phySetHopTable (uint8_t tableIndex)
Selects one of 256 possible hop tables.

Rev 1.1 (November 2012) 23 © DLP Design, Inc.

Parameters:

tableIndex Indicates which hop table to use

Hop tables are generated procedurally at runtime using a linear feedback shift register. Our algorithm
allows up 256 different tables to be generated with minimal cross-correlation.

PHYAPI phySetRxChannel (uint8_t channel)
Sets the radio receive channel.

Parameters:

channel Determines the receive channel of the radio

Returns:

1 if successful; 0 if the channel is not valid. This function sets the radio channel. Valid channels
depend upon the operating band. (For the US band, valid channels are 0-31. For the European
band, valid channels are 0-35.)

PHYAPI phySetTxChannel (uint8_t channel)
Sets the radio transmit channel.

Parameters:

channel Determines the transmit channel of the radio

Returns:

1 if successful; 0 if the channel is not valid. This function sets the radio transmit channel. Valid
channels depend on the operating band. (For the US band, valid channels are 0-31. For the
European band, valid channels are 0-35.)

PHYAPI phySleep (void)
This function sets the radio mode to sleep.

In this mode, the radio is off—including the oscillator. The ISR packet machine is disabled.

5.0.5 RADIO ABSTRACTION API

Detailed Description:

This manager is provided in library form. The radio abstraction API provides low-level access to the
SX1231 radio IC. Generally, these functions would be used by the protocol stack to control the radio.
The application would likely not need to call these functions directly, except in the case of automated
testing in the manufacturing stage.

Data Structures:

struct freq_t

Rev 1.1 (November 2012) 24 © DLP Design, Inc.

Macros:

#define NUM_CHANNELS 32

Enumerations:

enum TRFRate { xer9_6K, xer19_2K, xer38_4K }
Defines all possible data rates for the radio.
enum TRFTxPower { kRFTxPower0dBm, kRFTxPower5dBm, kRFTxPower10dBm,
kRFTxPower15dBm }
Defines possible transmit power settings available.

RF Configuration Functions:

These functions are used to initialize and configure the radio:

void rfSetMode (uint8_t mode)
Sets the operating mode off.
void rfInitialize (void)
Initializes the SX1231.
void rfSetTXDeviation (unsigned char dev)
Sets the SX1231 deviation.
void rfSetDataRate (TRFRate rate)
Sets the SX1231 data rate.
TRFRate rfGetDataRate (void)
Gets the SX1231 data rate.
void rfSetupRx (unsigned char channel)
Sets the RX channel operating parameters. Now it is just the channel.
void rfSetChannel (uint8_t channel)
Sets the receiver channel and bandwidth.
uint8_t rfSetTxChannel (uint8_t channel)
Sets the receiver channel and transmitter deviation.
void rfSetupTx (uint8_t channel, TRFTxPower pwr)
Sets the TX channel operating parameters. For now, they are channel and power.
void rfSetTxPower (sint8_t power)
void rfSetPA (uint8_t onOff)
Turns the power amp on and off.
void rfUseAlternatePins (void)
Forces RadioAPI to use P6.1-P6.2 instead of P9.1 and P9.2.
void rfUseNormalPins (void)
Forces RadioAPI to use P9.1-P9.2 instead of P6.1 and P6.2.
void rfDoNotUsePowerPins (void)
Forces RadioAPI not to use P7.0, P7.1, and P9.3. Disables power control. Do not use with PA.
void rfUsePowerPins (void)
Forces RadioAPI to use P7.0, P7.1, and P9.3 for power control.
freq_t rfGetChannelFreq (uint8_t channel)
Gets the channel frequency in Hz.
void rfSetDataPattern (uint8_t patternCount, uint8_t *patternBuffer)
Sets up the pattern used for detection by the SX1231 receiver.
void rfSendDataByte (unsigned char byte2send)
Sends a data byte over the SX1231 radio.

Rev 1.1 (November 2012) 25 © DLP Design, Inc.

Register Access Functions:

void rfWriteRegister (uint8_t reg, uint8_t regdata)
Writes a SX1231 register.
unsigned char rfReadRegister (unsigned char reg)
Reads a SX1231 register.
uint8_t rfGetMode (void)
Gets the operating mode of the SX1231.

Function Documentation:

uint8_t rfGetMode (void)
Gets the operating mode of the SX1231.

Valid modes are:

 # xeSLEEP - SX1231 is in Sleep Mode
 # xeIDLE - SX1231 is in IDLE Mode
 # xeTX - SX1231 is in TX Mode
 # xeTXNOMOD - SX1231 is in TX Mode with no modulation (used for testing)
 # xeRX - SX1231 is in RX Mode

void rfInitialize (void)
Initializes the SX1231.

This function initializes the registers in the SX1231 that are always the same, regardless of the
function of the design. This function also configures the IO interface of the radio and initializes it to an
inactive state.

unsigned char rfReadRegister (unsigned char reg)
Reads a SX1231 register.

Parameters:

reg Register to be programmed

This function reads a register in the SX1231. No checking is done on "reg" or "regdata", so it is
imperative that the programmer ensures that these variables are valid. The value of the register is
returned by the function.

void rfSetChannel (uint8_t channel)
Sets the receiver channel and bandwidth.

Parameters:

channel Receiver channel; this is an indexed channel of 0-35

Rev 1.1 (November 2012) 26 © DLP Design, Inc.

Return Values:

1=success, 0=bad Channel specified

This function sets the receiver channel and configures the receiver bandwidth based upon the
channel and band. If the channel is not valid for the band, then the function returns a 0; otherwise it
returns a 1.

void rfSetDataPattern (uint8_t patternCount, uint8_t * patternBuffer)
Sets up the pattern used for detection by the SX1231 receiver.

Parameters:

patternCount The number of pattern bytes to use (valid values are 1-4)
*patternBuffer Pointer to the buffer that holds the pattern bytes

This function sets the pattern byte count and the pattern bytes in the XE1203.

void rfSetDataRate (TRFRate rate)
Sets the SX1231 data rate.

Parameters:

rate RF data rate for the SX1231 (type is xeRATE).

This function sets the data rate of the radio. To do this, both the SX1231 and the SPI port have to be
configured. The following data rates are supported:

 # xer9_6K
 # xer19_2K
 # xer38_4K

void rfSetMode (uint8_t mode)
Sets the operating mode of the SX1231.

Parameters:

mode SX1231 operating mode (type is TRFMode)

This function sets the operating mode of the radio. Valid modes are:

 # xeSLEEP - SX1231 is in Sleep Mode
 # xeIDLE - SX1231 is in IDLE Mode
 # xeTX - SX1231 is in TX Mode
 # xeTXNOMOD - SX1231 is in TX Mode with no modulation (used for testing)
 # xeRX - SX1231 is in RX Mode

void rfSetPA (uint8_t onOff)
Turns the power amp on and off.

Rev 1.1 (November 2012) 27 © DLP Design, Inc.

Parameters:

onOff 0=Power Amp Off; 1= Power Amp On

This function will set the power state of the power amp.

void rfSetTXDeviation (unsigned char dev)
Sets the SX1231 deviation.

Parameters:

dev Deviation in 1kHz steps

This function sets the transmit deviation of the radio. Deviation is determined as follows:

deviation(khz) = dev * 1kHz

void rfSetTxPower (sint8_t power)
Sets the transmitter power level from -18 to + 17db in 1db steps.
void rfWriteRegister (uint8_t reg, uint8_t regdata)
Writes a SX1231 register.

Parameters:

reg Register to be programmed
regdata Data to be programmed

This function writes a register in the SX1231. No checking is done on "reg" or "regdata", so it is
imperative that the programmer ensures that these variables are valid.

5.0.6 EVENT MANAGER

Detailed Description:

This manager is provided in source code form. This very simple manager provides a service
container that allows an application to receive event notifications from the various API’s by registering
a callback function via evtRegisterGlobalEventCallback(). An application may also fire events using
evtEvent().

If a callback has not been registered, events will be ignored. This very simple manager provides a
service container that allows an application to receive event notifications from the various API’s by
registering a callback function via evtRegisterGlobalEventCallback(). An application may also fire
events using evtEvent().

If a callback has not been registered, events will be ignored.

Enumeration Type Documentation:

enum TEventType

Event Types - Not all events will propagate up to the application level. Many of the PHY Rx events
are handled internally by the protocol stack.

Rev 1.1 (November 2012) 28 © DLP Design, Inc.

Enumerator:

kEventPacketSent - A packet was successfully sent.
kEventPacketReceived - A packet was successfully received.
kEventNETMultiPacketReceived - A multicast packet was successfully received.
kEventNETFormationPingReceived - A formation ping was received.
kEventNETErrorRxNETType - A packet was received with an invalid NET message type.
kEventNETErrorRouteUnavailable - A packet cannot be sent because no up-tree route is available.
kEventMACMultiPacketReceived - A multicast packet was successfully received.
kEventMACErrorNoAck - No ACK was received for a previously sent packet which requested an ACK.
kEventPHYBeginReceive - Receiver is set up and about to begin receiving.
kEventPHYEndReceive - Receiver finished receiving (does not imply packet was received).
kEventPHYBeginTransmit - A packet transmission is about to begin.
kEventPHYEndTransmit - A packet transmission has ended (does not imply packet was sent).
kEventPHYRxPacketSniff - A packet has been received at the PHY level.
kEventPHYTxPacketSniff - A packet has been sent at the PHY level.
kEventPHYErrorRxTimeout - Receive timeout occurred while waiting for bytes.
kEventPHYErrorRxBadCRC - A packet was received with an invalid CRC.
kEventPHYErrorRxBadLength - A packet was received with an invalid Length.
kEventPHYErrorRxBadMID - A packet was received with a non-matching Manufacturer ID.
kEventPHYErrorTxTimeout - Transmit timeout occurred during a packet send.
kEventUser - Starting value for user-defined events.
kEventPacketSent - A packet was successfully sent.
kEventPacketReceived - A packet was successfully received.
kEventNETMultiPacketReceived - A multicast packet was successfully received.
kEventNETFormationPingReceived - A formation ping was received.
kEventNETErrorRxNETType - A packet was received with an invalid NET message type.
kEventNETErrorRouteUnavailable - A packet cannot be sent because no up-tree route is available.
kEventMACMultiPacketReceived - A multicast packet was successfully received.
kEventMACErrorNoAck - No ACK was received for a previously sent packet which requested an ACK.
kEventPHYBeginReceive - Receiver is set up and about to begin receiving.
kEventPHYEndReceive - Receiver finished receiving (does not imply packet was received).
kEventPHYBeginTransmit - A packet transmission is about to begin.
kEventPHYEndTransmit - A packet transmission has ended (does not imply packet was sent).
kEventPHYRxPacketSniff - A packet has been received at the PHY level.
kEventPHYTxPacketSniff - A packet has been sent at the PHY level.
kEventPHYErrorRxTimeout - Receive timeout occurred while waiting for bytes.
kEventPHYErrorRxBadCRC - A packet was received with an invalid CRC.
kEventPHYErrorRxBadLength - A packet was received with an invalid Length.
kEventPHYErrorRxBadMID - A packet was received with a non-matching Manufacturer ID.
kEventPHYErrorTxTimeout - Transmit timeout occurred during a packet send.
kEventUser - Starting value for user-defined events.

5.0.7 MICROCONTROLLER ABSTRACTION API

Detailed Description:

The microcontroller API encompasses all functions necessary to interface with the managed
microcontroller resources that are available to the application. This API provides low-level access to
the interrupts, SPI, UART and timer. For the most part, these functions are used by other managers
to provide higher-level control.

Rev 1.1 (November 2012) 29 © DLP Design, Inc.

The UART Manager, for example, provides buffered and interrupt-driven transmit and receive
services. (Generally, there should not be a need for the application to call these functions directly.)

Enumerations:

enum TInterrupt { intPATTERN, intUART0_TX, intUART0_RX, intUART1_TX, intUART1_RX,
intSPIALL, intSPITX, intSPIRX, intTMRF, intTMRFH, intINTP0, intINTP5 }
Defines all possible interrupts that are managed by the API.
enum { spidr9_6K, spidr19_2K, spidr38_4K }
Defines all possible data rates for the SPI.
enum { spimOFF, spimMASTER, spimSLAVE }
Defines all possible modes of the SPI port.
enum TBaudRate { br300, br1200, br2400, br4800, br9600, br19200, br38400 }
Defines all possible data rates of the UART.
enum INTERRUPT_PRIORITIES { PRIORITY_LEVEL_0, PRIORITY_LEVEL_1,
PRIORITY_LEVEL_2, PRIORITY_LEVEL_3 }
enum TADCMode { ADC_MODE_SINGLE_ONE_SHOT, ADC_MODE_SINGLE_CONTINUOUS,
ADC_MODE_SCAN_ONE_SHOT, ADC_MODE_SCAN_CONTINUOUS }

Interrupt Functions:

These functions are used to manage the interrupts of the microcontroller:

UCAPI ucDisableInterrupt (TInterrupt intno)
Disables hardware interrupt.
UCAPI ucEnableInterrupt (TInterrupt intno)
Enables hardware interrupt.
UCAPI ucINTP0RegisterCallback (TCallback callback)
Registers callback function for INTP0.
UCAPI ucINTP5RegisterCallback (TCallback callback)
Registers callback function for INTP5.
void ucConfigureINTP0 (uint8_t pedge, uint8_t nedge, uint8_t priority)
Configures INTP0 as an interrupt.
void ucConfigureINTP5 (uint8_t pedge, uint8_t nedge, uint8_t priority)
Configures INTP5 as an interrupt.

Function Documentation:

void ucConfigureINTP0 (uint8_t pedge, uint8_t nedge, uint8_t priority)
Configures INTP0 as an interrupt.

Parameters:

edge 1=Rising Edge; 0=Falling Edge
priority Priority level of interrupt (valid values are 0,1,2)

This function is called to configure INTP0 as an interrupt with the desired edge and priority settings.
To enable this interrupt, call ucEnableInterrupt(intINTP0). To disable this interrupt, call
ucDisableInterrupt(intINTP1).

void ucConfigureINTP5 (uint8_t pedge, uint8_t nedge, uint8_t priority)
Configures INTP5 as an interrupt.

Rev 1.1 (November 2012) 30 © DLP Design, Inc.

Parameters:

edge 1=Rising Edge; 0=Falling Edge
priority Priority level of interrupt (valid values are 0,1,2)

This function is called to configure INTP5 as an interrupt with the desired edge and priority settings.
To enable this interrupt, call ucEnableInterrupt(intINTP1). To disable this interrupt, call
ucDisableInterrupt(INTP5).

UCAPI ucDisableInterrupt (TInterrupt intno)
Disables hardware interrupt.

Parameters:

intno Specifies the interrupt that is to be disabled (type is TInterrupt)

This function is called to disable a microcontroller interrupt.

 -Valid intno values:

 # intUART_TX - UART data transmit interrupt
 # intUART_RX - UART data receive interrupt
 # intSPI - Used by the SX1231 for data transfer
 # intTMRF - TimerF overflow low-byte interrupt

UCAPI ucEnableInterrupt (TInterrupt intno)
Enables hardware interrupt.

Parameters:

intno Specifies the interrupt that is to be enabled (type is TInterrupt)

This function is called to enable a microcontroller interrupt:

 -Valid intno values:

 # intUART_TX - UART data transmit interrupt
 # intUART_RX - UART data receive interrupt
 # intSPI - Used by the SX1231 for data transfer
 # intTMRF - TimerF overflow low-byte interrupt

UCAPI ucINTP0RegisterCallback (TCallback callback)
Registers callback function for INTP0.

Parameters:

callback Pointer to function to be called when the IRQ0 fires

This function is called by an external module to subscribe to the IRQ0 event. The caller provides a
pointer to an internal function that will handle the event.

UCAPI ucINTP5RegisterCallback (TCallback callback)
Registers callback function for the INTP5.

Rev 1.1 (November 2012) 31 © DLP Design, Inc.

Parameters:

callback Pointer to function to be called when the IRQ3 fires

This function is called by an external module to subscribe to the IRQ3 event. The caller provides a
pointer to an internal function that will handle the event.

5.0.8 DEBUG MANAGER API

Detailed Description

This manager is provided in source code form. This manager provides a very simple interface by
managing the main interrupt mask using a counting semaphore. This allows individual components to
enable and disable interrupts at will without having to synchronize to other modules. By using this
manager, we always ensure that interrupts are never enabled inadvertently by properly operating
code. The semaphore is incremented when interrupts are disabled and decremented when interrupts
are enabled. If the semaphore reaches zero in EnableInterrupts(), the global interrupt mask is cleared.

To understand how the interrupt semaphore works, consider the following example:

Typedefs:

typedef void(* ExceptionCallback)(TException)
Exception callback function definition.

Enumerations:

enum TException { kExMessageListClear, kExMessageListAdd, kExMessageGetCount,
kExGetNewMessage, kExReleaseMessage, kExPHYTxBufferOverflow, kExPHYRegisterCBInvalid,
kExPHYInvalidRadioPattern, kExPHYInvalidTxPower, kExPHYTxInvalidPacketState,
kExPHYTxMessageTooLong, kExPHYInvalidPatternLength, kExPHYInvalidTXChannel,
kExPHYInvalidRXChannel, kExPHYHoppingNotSupported, kExMACRegisterCBInvalid,
kExMACInvalidMACTypeReceived, kExMACPacketEngineStatus, kExMACInvalidAction,
kExMACAckTimeoutInvalidState, kExNETPacketEngineStatus, kExNETInvalidAction,
kExNETInvalidErrorFromMAC, kExNETInvalidErrorFromPHY, kExUARTRxBufferOverflow,
kExUARTTxBufferOverflow, kExUARTTxPacketBufferOverflow, kExEnableInterruptsInvalid,
kExDisableInterruptsInvalid, kExInterruptsAlreadyEnabled, kExUnhandledInterrupt,
kExRadioInvalidTxPower, kExSPIConfiguration, kExReleasedInvalidTimer, kExNoFreeTimerEvents,
kExNoFreeElapsedTimers, kExInvalidElapsedTimer, kExUser }

Exception Types:

Functions

void dbgThrowException (TException ex)
Throws an exception.
void dbgRegisterExceptionCallback (ExceptionCallback func)
Registers a callback function to receive notification of exceptions.

Rev 1.1 (November 2012) 32 © DLP Design, Inc.

Detailed Description:

This manager is provided in source code form. This very simple manager provides a service
container that allows an application to receive notifications of API exceptions by registering a callback
function via dbgRegisterExceptionCallback(). An application may also throw exceptions using
dbgThrowException().

If a callback has not been registered, exceptions will be ignored.

Enumeration Type Documentation:

enum TException
Exception types.

Enumerators:

kExMessageListClear - Message number exceeded maximum message count.
kExMessageListAdd - Message number exceeded maximum message count.
kExMessageGetCount - Message number exceeded maximum message count.
kExGetNewMessage - Maximum number of messages have been allocated.
kExReleaseMessage - Message number exceeded maximum message count.
kExPHYTxBufferOverflow - Message content overflowed transmit buffer.
kExPHYRegisterCBInvalid - Invalid callback type specified.
kExPHYInvalidRadioPattern - Invalid radio pattern number selected.
kExPHYInvalidTxPower - Invalid transmit power selected at the PHY level.
kExPHYTxInvalidPacketState - Invalid packet state during PHY transmit.
kExPHYTxMessageTooLong - Message being sent is too long.
kExPHYInvalidPatternLength - Pattern length does not match required value (4 by default).
kExPHYInvalidTXChannel - PhySetChannel was called with an invalid TX Channel.
kExPHYInvalidRXChannel - PhySetChannel was called with an invalid RX Channel.
kExPHYHoppingNotSupported - Frequency hopping not supported in the currently selected band.
kExMACRegisterCBInvalid - Invalid callback type specified.
kExMACInvalidMACTypeReceived - Invalid MAC packet type was received in a packet.
kExMACPacketEngineStatus - Invalid packet engine status detected.
kExMACInvalidAction - Invalid MAC action.
kExMACAckTimeoutInvalidState - ACK timeout fired but not waiting for ACK.
kExNETPacketEngineStatus - Invalid packet engine status detected.
kExNETInvalidAction - Invalid NET action.
kExNETInvalidErrorFromMAC - Invalid error sent up from MAC layer.
kExNETInvalidErrorFromPHY - Invalid error sent up from PHY layer.
kExUARTRxBufferOverflow - Receive buffer overflow reading byte from UART.
kExUARTTxBufferOverflow - Transmit buffer overflow sending byte to UART.
kExUARTTxPacketBufferOverflow - Transmit buffer overflow sending packet to UART.
kExEnableInterruptsInvalid - Attempted to enable interrupts within an active ISR.
kExDisableInterruptsInvalid - Attempted to disable interrupts within an active ISR.
kExInterruptsAlreadyEnabled - Attempted to enable interrupts when they are already enabled.
kExUnhandledInterrupt - An unhandled interrupt was triggered. Use call stack to determine which one.
kExRadioInvalidTxPower - Invalid raw radio transmit power selected.
kExSPIConfiguration - Internal error detected during SPI configuration.
kExReleasedInvalidTimer - An invalid timer handle was released.
kExNoFreeTimerEvents - No more timer event slots are available.
kExNoFreeElapsedTimers - No more elapsed timer slots are available.
kExInvalidElapsedTimer - Invalid elapsed timer handle specified or not in use.

Rev 1.1 (November 2012) 33 © DLP Design, Inc.

kExUser - Starting value for user-defined exceptions.

Function Documentation:

void dbgRegisterExceptionCallback (ExceptionCallback func)
Registers a callback function to receive notification of exceptions.

Parameters:

func Application callback function called when an exception occurs

During development it is highly recommended that you register an exception handler in your
application so that you can diagnose them if they appear. Exceptions are considered critical and are
usually not recoverable from software. They may result as a consequence of not using the API
functions as intended.

Your application exception callback should be defined as follows:

void AppException(TException ex)
{
 // set a breakpoint in here to inspect the exception
}

5.0.9 INTERRUPT MANAGER API

Functions:

void EnableInterrupts (void)
Globally enables interrupts.
void DisableInterrupts (void)
Globally disables interrupts.
uint16_t GetInterruptCount (void)
Gets the current count of nested interrupt disables.
void EnterISR (void)
Called on entry to an ISR. When in an ISR, the Interrupt Manager will not manipulate the semaphore.
void ExitISR (void)
Called on exit from an ISR. Allows the semaphore to behave normally.
uint8_t inISR (void)
Returns the flag indicating whether we are currently in an ISR.

void func1(void)
{
 DisableInterrupts();
 doSomething();
 EnableInterrupts();
}

void main(void)
{
 DisableInterrupts();
 func1();
 doSomethingElse();

Rev 1.1 (November 2012) 34 © DLP Design, Inc.

 EnableInterrupts();
}

Without the semaphore, func1() would leave interrupts enabled when it exits. Therefore, when
doSomethingElse() executes, interrupts are enabled—which is clearly not the intention.

Using a semaphore, let's look at what happens:

1. DisableInterrupts() is called in main(). Interrupts are disabled, and the semaphore is incremented
 to 1.
2. func1() is called, which calls DisableInterrupts() again. The semaphore is incremented to 2.
3. EnableInterrupts() is called at the end of func1(). The semaphore is decremented to 1, but
 interrupts are left disabled.
4. doSomethingElse() is called with interrupts disabled, which is the intent.
5. Now that it is zero, and interrupts are enabled, the last call to EnableInterrupts() decrements the
 semaphore again.

5.0.10 TIMER MANAGER API

Detailed Description:

This manager is provided in library form. The Timer Manager API provides the functions necessary to
interface with the built-in timer system. It allows other managers and the application to register cyclic
and one-time events that are to be triggered at a programmed delay.

The Timer Manager provides two types of timers: event timers and elapsed timers. The timer is
driven from TimerF and the 10MHz main clock. It generates a count every 500uSec. Event timers
are interrupt driven. These are used when a piece of code needs an asynchronous notification that a
period of time has expired. Event timers can be cyclic or one-time. Event timers can only be used
when interrupts are enabled at least part of the time. Elapsed timers are not interrupt driven. Their
value can be read using the API at any time. These timers are used to provide timeout functions for
code which can operate with interrupts disabled.

Functions:

void tmrInitialize (void)
Initializes the Timer Manager.
uint8_t tmrRegisterEvent (uint16_t ticks, TCallback TCallbackfunc)
Registers a repeating timer event.
uint8_t tmrRegisterOneTimeEvent (uint16_t ticks, TCallback TCallbackfunc)
Registers a one-time timer event.
void tmrReleaseEvent (uint8_t eventno)
Releases a previously registered event.
uint8_t tmrRegisterElapsedTimer (void)
Registers an elapsed timer.
uint16_t tmrGetElapsedTime (uint8_t handle)
Gets the elapsed time in milliseconds for the specified elapsed timer handle.
void tmrReleaseElapsedTimer (uint8_t handle)
Releases a previously registered elapsed timer.
void tmrWait (uint16_t milliseconds)
Waits a specified number of milliseconds.

Rev 1.1 (November 2012) 35 © DLP Design, Inc.

Function Documentation:

void tmrInitialize (void)
Initializes the Timer Manager.

This function initializes the Timer Manager; setting up the hardware timer and registering the local
callback function with the microcontroller layer.

uint8_t tmrRegisterElapsedTimer (void)
Registers an elapsed timer.

Return Values:

Handle Handle to the newly created elapsed timer (or 255 if no timers are available)

When an elapsed timer is created, it begins counting from 0. Successive calls to tmrGetElapsedTime
will return the amount of time in milliseconds which has elapsed since the elapsed timer was created.

uint8_t tmrRegisterEvent (uint16_t ticks, TCallback TCallbackfunc)
Registers a repeating timer event.

Parameters:

ticks The time in ticks between each event (each tick is 500us)
TCallbackfunc The function to be called when the timer event occurs

Return Values:

Handle Handle to the newly created elapsed timer (or 255 if no timers are available)

This function is called to register a repeating timer event. If there are no timer handles available, the
function will return 255. Otherwise, the function will return a handle to the newly registered timer
event.

Event timers will not work inside of callback functions or ISR’s because interrupts are generally not
enabled in either of those cases. If a timer is needed in a callback function or ISR, an elapsed timer
should be used instead. (See also: tmrRegisterElapsedTimer.)

uint8_t tmrRegisterOneTimeEvent (uint16_t ticks, TCallback TCallbackfunc)
Registers a one-time timer event.

Parameters:

ticks The time in ticks between each event (each tick is 500uS)
TCallbackfunc The function to be called when the timer event occurs

Return Values:

Handle Handle to the newly created elapsed timer (or 255 if no timers are available)

This function is called to register a one-time timer event. If there are no timer handles available, the
function will return 255. Otherwise, the function will return a handle to the newly registered timer
event.

Rev 1.1 (November 2012) 36 © DLP Design, Inc.

Event timers will not work inside of callback functions or ISR’s because interrupts are generally not
enabled in either of those cases. If a timer is needed in a callback function or ISR, an elapsed timer
should be used instead. (See also: tmrRegisterElapsedTimer.)

void tmrReleaseEvent (uint8_t eventno)
Releases a previously registered event.

Parameters:

eventno The handle assigned to the event by tmrRegisterEvent()

This function is called to release an event registered with tmrRegisterEvent().

5.0.11 UART MANAGER API

Detailed Description:

This manager is provided in source code form. The UART Manager provides an interrupt-driven,
circular-buffered transmit and receive interface for UART0. The UART Manager API provides
functions to configure the UART and to access the transmit and receive buffers.

The transmit buffer is 255 bytes. To send a byte to the UART, call uartSendByte(). That byte is put
into the transmit buffer, and the transmit interrupt is enabled. The UART0 ISR will then remove that
byte from the transmit buffer and send it to the UART. To send a null terminated string, call
uartSendString().

The receive buffer is 32 bytes. When the UART0 ISR receives a byte, it puts that byte into the receive
buffer. To determine if there are bytes in the buffer, call uartKBHit(). To retrieve the next byte in the
buffer, call uartGetByte().

Like all managers, the UART Manager has an initialization function that must be called at reset to put
the manager into a default state.

Functions:

void uart0SetBaud (TBaudRate br)
Sets the UART baud rate.
void uart1SetBaud (TBaudRate br)
uint8_t uart0SendByte (uint8_t data)
Sends a byte using the interrupt driven UART.
uint8_t uart1SendByte (uint8_t data)
void uart0StringOut (char *str)
Sends a null terminated string to the UART.
void uart1StringOut (char *str)
uint8_t uart0KBHit (void)
Determines if a byte has been received via the UART.
uint8_t uart1KBHit (void)
uint8_t uart0GetByte (void)
Gets a byte from the UART receive buffer.
uint8_t uart1GetByte (void)
void uart0Initialize (void)
Initializes the UART to a known state.

Rev 1.1 (November 2012) 37 © DLP Design, Inc.

void uart1Initialize (void)
uint8_t uart0PktOut (uint8_t *str, uint8_t len)
Special function to send a packet to the UART for packet sniffing.
uint8_t uart1PktOut (uint8_t *str, uint8_t len)
Special function to send a packet to the UART for packet sniffing.

Function Documentation:

void uart0Initialize (void)
Initializes the UART to a known state.

This function is called at the beginning of the application (and must be called before any other UART
functions) to initialize the UART to a known state. Currently, the UART is configured to the following
state by this routine:

Baud rate is 38.4 kbaud
Flow control is none

See also:

uartKBHit()
uartSendByte()
uartReceiveByte()
uartStringOut()

uint8_t uart0KBHit (void)
Determines if a byte has been received via the UART.

The UART receive interrupt service routine uses a ring buffer to store incoming bytes. This function is
called to determine if there are any new bytes in that buffer. It returns a 1 if there is at least one byte
in the buffer, and a 0 if there are no bytes in the buffer. uartGetByte can be used to retrieve a byte
once uartKBHit determines that a byte is available. [See also: uartGetByte()]

uint8_t uart0PktOut (uint8_t * str, uint8_t len)
Special function to send a packet to the UART for packet sniffing.

Parameters:

*str Pointer to data packet
len Length of packet in bytes

This function is designed to support packet-sniffing applications. The caller passes a pointer to a raw
packet buffer along with the packet length. In typical use, this packet buffer is retrieved from the PHY
API—along with its length—using phyGetSniffBuffer() and phyGetSniffCount().

This function will send a "start-of-packet" (0x02) byte, the entire contents of the packet and an
"end-of-packet" byte (0x03). The contents of the packet will be encoded to remove special marker
byte values (0x00-0x03). [See also: phyGetRxBuffer()]

uint8_t uart0SendByte (uint8_t data)
Sends a byte using the interrupt-driven UART.

Rev 1.1 (November 2012) 38 © DLP Design, Inc.

Parameters:

data Byte to send

This function is called to send a byte via the UART. The UART is interrupt driven, and it employs a
ring buffer to store data waiting to be sent. This function will place the data byte in the ring buffer. No
checks are made for overlap of the buffer, so the newest byte always overwrites the oldest. If the
oldest byte hasn't been sent yet, then it will be lost.

void uart0SetBaud (TBaudRate br)
Sets the UART baud rate.

Parameters:

br Baud rate (type is TBaudRate)

NOTE: See TBaudRate documentation for details.

This function should be called before the UART is used. It configures the baud rate of the UART.

void uart0StringOut (char * str)
Sends a null-terminated string to the UART.

Parameters:

*str Pointer to null-terminated string

This function is called to send a null-terminated (c-string) string to the UART. It waits for the buffer to
clear (i.e. head and tail pointers are the same), and then copies the string into the buffer. Because
the function waits for the buffer to clear, it is a blocking function. If, for some reason, the UART
interrupts become disabled before this function is called, it will hang waiting for the buffer to clear. No
checks are made to ensure that the string is smaller than the buffer size; therefore, the caller should
ensure that the string is less than 255 characters.

See also:

uartKBHit()
uartInitialize()
uartReceiveByte()
uartStringOut()

6.0 REGULATORY AGENCY CONSIDERATIONS

6.1 AGENCY IDENTIFICATION NUMBERS

Compliance with the appropriate regulatory agencies is essential in the deployment of all transceiver
devices. DLP Design has obtained modular approval for this RF product. As such, an OEM need
only meet a few basic requirements in order to utilize their end product under this approval.
Corresponding agency identification numbers are listed below:

Rev 1.1 (November 2012) 39 © DLP Design, Inc.

PART NUMBER US / FCC CANADA / IC

DLP-RFS1231 SX9RFS1 5675A-RFS1

6.2 EXTERNAL ANTENNAS

The DLP-RFS1231 is preapproved for use with both its on-board chip antenna and an external
antenna (Part No. 0600-00048 made by Laird Technologies). Connection to the external antenna is
made via a u.fl connector.

6.3 FCC/IC REQUIREMENTS FOR MODULAR APPROVAL

Any changes or modifications to the DLP-RFS1231’s printed circuit board, on-board antenna or
pre-approved external antenna could void the user’s authority to operate the equipment.

6.4 WARNINGS

Operation is subject to the following two conditions: (1) This device may not cause harmful
interference; and (2), this device must accept any interference received, including interference that
may cause undesirable operation.

This device is intended for use under the following conditions:

1. The transmitter module may not be co-located with any other transmitter or antenna; and,

2. The module will be approved using the FCC’s “unlicensed modular transmitter approval” method.

As long as these two conditions are met, further transmitter testing will not be required. However, the
OEM integrator is still responsible for testing their end product for any additional compliance
measures necessitated by the installation of this module (i.e. digital device emissions, PC peripheral
requirements, etc.).

Note: In the event that these conditions cannot be met (i.e. co-location with another transmitter), then
the FCC authorization is no longer valid, and the corresponding FCC ID may not be used on the final
product. Under these circumstances, the OEM integrator will be responsible for re-evaluating the end
product (including the transmitter) and obtaining a separate FCC authorization.

6.5 OEM PRODUCT LABELING

The final end product must be labeled in a visible area with the following text:

“Contains TX FCC ID: SX9RFS1”

Rev 1.1 (November 2012) 40 © DLP Design, Inc.

6.6 RF EXPOSURE

In order to comply with FCC RF exposure requirements, the antenna used for this transmitter must
not be co-located or operating in conjunction with any other antenna or transmitter.

6.7 ADDITIONAL INFORMATION FOR OEM INTEGRATORS

The end user should NOT be provided with any instructions on how to remove or install the
DLP-RFS1231. This device will be pre-certified to operate with the antenna models listed below:

• On-board Chip Antenna
• Laird Technologies P/N 0600-00048

7.0 DISCLAMER

© 2012 DLP Design, Inc. All rights reserved.

Neither the whole nor any part of the information contained herein nor the product described in this
datasheet may be adapted or reproduced in any material or electronic form without the prior written
consent of the copyright holder.

This product and its documentation are supplied on an as-is basis, and no warranty as to their
suitability for any particular purpose is either made or implied. DLP Design will not accept any claim
for damages whatsoever arising as a result of the use or failure of this product. Your statutory rights
are not affected.

This product or any variant of it is not intended for use in any medical appliance, device or system in
which the failure of the product might reasonably be expected to result in personal injury.

This document provides preliminary information that may be subject to change without notice.

8.0 CONTACT INFORMATION

DLP Design, Inc.
1605 Roma Lane
Allen, TX 75013

Phone: 469-964-8027
Fax: 415-901-4859
Email: support@dlpdesign.com
Internet: http://www.dlpdesign.com

55

44

33

22

11

D
D

C
C

B
B

A
A

D
L
P
-
R
F
S
1
2
3
1

V
1
.
4

D
L
P

D
e
s
i
g
n

R
L
7
8

M
A
C

/

s
e
r
i
a
l

#

R
X

T
x

R
X
T
X
:
1
=
T
X
,

0
=
R
X

V
C
O
N
T
:

0
=
O
U
T
2
,

1
=
O
U
T
1

1
0
0
u
A

1
0
0
u
A

2
0
m
W

O
u
t
put

ANT

u
.
f
l

c
h
i
p

123456789
1
0

1
1

1
2

1
3

1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6

a
n
t

M
a
t
c
h
i
ng

N
e
t
w
o
rk

M
a
t
c
h
i
n
g

N
e
t
w
o
r
k

M
a
t
c
h
i
ng

N
e
t
w
o
rk

S
i
m
p
l
i
f
i
e
d

S
c
h
e
m
atic

3V
0

VBAT

TXD
1

M
O

S
I

P
20/A

N
I0

S
C

LK

M
IS

O

VBAT

3V
0

VBAT

P
21/A

N
I1

P
22/A

N
I2

P
23/A

N
I3

P
120/A

N
I19

P
17

P
70/S

C
K

21

R
X

D
1

S
C

LK
M

IS
O

M
O

S
I

P
137/IN

TP
0

P
16/IN

TP
5

P
31/IN

TP
4/P

C
LB

U
Z0

P
30/IN

TP
3/S

C
K

11

P
60

P
61

R
X

TX

G
N

D

S
P

IC
LK

S
P

IM
IS

O
/R

X
D

0
S

P
IM

O
S

I/TX
D

0

P
24/A

N
I4

P
25/A

N
I5

P
26/A

N
I6

P
147/A

N
I18

P
71/S

I21

P
50/IN

TP
1/S

I11
P

51/IN
TP

2/S
O

11

P
73

P
72/S

O
21

R
X

TX

G
N

D
G

N
D

G
N

D
VBAT

3V
0

VBAT

VBAT

P
137/IN

TP
0

P
16/IN

TP
5

G
N

D

P
73

P
71/S

I21

P
70/S

C
K

21

P
50/IN

TP
1/S

I11

P
17

S
P

IM
O

S
I/TX

D
0

S
P

IM
IS

O
/R

X
D

0
S

P
IC

LK
P

24/A
N

I4

P
26/A

N
I6

P
25/A

N
I5

P
147/A

N
I18

P
147/A

N
I18

P
23/A

N
I3

P
22/A

N
I2

P
21/A

N
I1

TXD
1

P
61

P
120/A

N
I19

P
20/A

N
I0

P
31/IN

TP
4/P

C
LB

U
Z0

P
51/IN

TP
2/S

O
11

R
X

D
1

P
30/IN

TP
3/S

C
K

11

P
72/S

O
21

P
60

C
28

0.1uF

FB
7

H
Z0805 / 0805

u.FL
J1

1

2

Y
1

32M
H

Z

S
W

1
uP

G
2015TB

3

64

2 1

5

O
U

T2

V
D

D

V
C

O
N

T

G
N

D

O
U

T1

IN

R
2

10K

U
4A

Inverter

2
4

53

U
3

D
S

2411/S
O

T23 or 11A
A

02E
48

1
3 2

IO
G

N
D

V
C

C

C
25

0.47uF/0603

U
2

R
5F100E

E
A

N
A

12

3
4

5

6

7

8

9 10

111213141516 17181920212223

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
TO

O
L0

/R
E

S
E

T

P124/XT2
P123/XT1

P
137/IN

TP
0

P
122

P
121

R
E

G
C

VSS VDD

P
60

P
61

P
62

P
31/IN

TP
4/P

C
LB

U
Z0

P
73

P
72/S

O
21

P
71/S

I21
P

70/S
C

K
21

P
30/IN

TP
3/S

C
K

11
P

50/IN
TP

1/S
I11

P
51/IN

TP
2/S

O
11

P
17

P
16/IN

TP
5

P
15/S

C
K

20
P

14/S
I20

P
13/S

O
20

P
12/TxD

0/S
O

00
P

11/R
xD

0/S
I00

P
10/S

C
K

00
P

147/A
N

I18
P

26/A
N

I6
P

25/A
N

I5
P

24/A
N

I4
P

23/A
N

I3
P

22/A
N

I2
P

21/A
N

I1
P

20/A
N

I0
R

xD
1

TxD
1

P
120/A

N
I19

U
1

SX1231

18

24

23

22

1

2
3

4

5

6 789101112

13

14 15 1617

21

20

19

N
S

S

VR_PA

P
A

_B
O

O
S

T

G
N

D

VBAT1

VR_ANA
VR_DIG

XTA

XTB

R
E

S
E

T

D
IO

0
D

IO
1

D
IO

2
D

IO
3

D
IO

4
D

IO
5

VBAT2

G
N

D

S
C

K

M
IS

O
M

O
S

I

R
FIO

G
N

D

R
X

TX

R
1

1K

Y
2

32.768K
H

Z

J2
Tag-C

onnect

123456

R
E

S
E

T#
V

D
D

N
C

G
N

D
TO

O
L0

R
C

S
W

2
uP

G
2015TB

3

64

2 1

5

O
U

T2

V
D

D

V
C

O
N

T

G
N

D

O
U

T1

IN

E
1

H
E

A
D

E
R

 7X
2

2468101214

135791113

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by DLP Design manufacturer:

Other Similar products are found below :

MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC252AQS24 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL01-HMC1048LC3B

EVAL01-HMC661LC4B EVAL-ADF7020-1DBZ4 EVAL-ADF7020-1DBZ5 EVAL-ADF7020-1DBZ6 EVAL-ADF7021DB9Z EVAL-

ADF7021DBJZ EVAL-ADF7021DBZ2 EVAL-ADF7021DBZ6 EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z

 EVAL-ADF7023-JDB3Z EVAL-ADF70XXEKZ1 EVAL-ADF7241DB1Z EVAL-ADG919EBZ F0440EVBI F1423EVB-DI F1423EVB-SI

F1701EVBI F1751EVBI F2250EVBI MICRF219A-433 EV MICRF220-433 EV 122410-HMC686LP4E AD6679-500EBZ 126223-

HMC789ST89E ADL5363-EVALZ ADL5369-EVALZ 130437-HMC1010LP4E 131352-HMC1021LP4E 131372-HMC951LP4E 130436-

HMC1010LP4E EKIT01-HMC1197LP7F Si4705-D60-EVB SI4825-DEMO Si4835-Demo LMV228SDEVAL SKYA21001-EVB SMP1331-

08-EVB EV1HMC618ALP3 EV1HMC641ALC4 EV1HMC8410LP2F EVAL_PAN4555ETU EVAL01-HMC1041LC4

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/communication-development-tools/rf-wireless-development-tools/rf-development-tools
https://www.x-on.com.au/manufacturer/dlpdesign
https://www.x-on.com.au/mpn/macom/maap015036dieev2
https://www.x-on.com.au/mpn/analogdevices/ev1hmc1113lp5
https://www.x-on.com.au/mpn/analogdevices/ev1hmc252aqs24
https://www.x-on.com.au/mpn/analogdevices/ev1hmc6146blc5a
https://www.x-on.com.au/mpn/analogdevices/ev1hmc637alp5
https://www.x-on.com.au/mpn/analogdevices/eval01hmc1048lc3b
https://www.x-on.com.au/mpn/analogdevices/eval01hmc661lc4b
https://www.x-on.com.au/mpn/analogdevices/evaladf70201dbz4
https://www.x-on.com.au/mpn/analogdevices/evaladf70201dbz5
https://www.x-on.com.au/mpn/analogdevices/evaladf70201dbz6
https://www.x-on.com.au/mpn/analogdevices/evaladf7021db9z
https://www.x-on.com.au/mpn/analogdevices/evaladf7021dbjz
https://www.x-on.com.au/mpn/analogdevices/evaladf7021dbjz
https://www.x-on.com.au/mpn/analogdevices/evaladf7021dbz2
https://www.x-on.com.au/mpn/analogdevices/evaladf7021dbz6
https://www.x-on.com.au/mpn/analogdevices/evaladf7021ndbz2
https://www.x-on.com.au/mpn/analogdevices/evaladf7021vdb3z
https://www.x-on.com.au/mpn/analogdevices/evaladf7023db3z
https://www.x-on.com.au/mpn/analogdevices/evaladf7023jdb3z
https://www.x-on.com.au/mpn/analogdevices/evaladf70xxekz1
https://www.x-on.com.au/mpn/analogdevices/evaladf7241db1z
https://www.x-on.com.au/mpn/analogdevices/evaladg919ebz
https://www.x-on.com.au/mpn/idt/f0440evbi
https://www.x-on.com.au/mpn/idt/f1423evbdi
https://www.x-on.com.au/mpn/idt/f1423evbsi
https://www.x-on.com.au/mpn/idt/f1701evbi
https://www.x-on.com.au/mpn/idt/f1751evbi
https://www.x-on.com.au/mpn/idt/f2250evbi
https://www.x-on.com.au/mpn/micrel/micrf219a433ev
https://www.x-on.com.au/mpn/micrel/micrf220433ev
https://www.x-on.com.au/mpn/analogdevices/122410hmc686lp4e
https://www.x-on.com.au/mpn/analogdevices/ad6679500ebz
https://www.x-on.com.au/mpn/analogdevices/126223hmc789st89e
https://www.x-on.com.au/mpn/analogdevices/126223hmc789st89e
https://www.x-on.com.au/mpn/analogdevices/adl5363evalz
https://www.x-on.com.au/mpn/analogdevices/adl5369evalz
https://www.x-on.com.au/mpn/analogdevices/130437hmc1010lp4e
https://www.x-on.com.au/mpn/analogdevices/131352hmc1021lp4e
https://www.x-on.com.au/mpn/analogdevices/131372hmc951lp4e
https://www.x-on.com.au/mpn/analogdevices/130436hmc1010lp4e
https://www.x-on.com.au/mpn/analogdevices/130436hmc1010lp4e
https://www.x-on.com.au/mpn/analogdevices/ekit01hmc1197lp7f
https://www.x-on.com.au/mpn/siliconlabs/si4705d60evb
https://www.x-on.com.au/mpn/siliconlabs/si4825demo
https://www.x-on.com.au/mpn/siliconlabs/si4835demo
https://www.x-on.com.au/mpn/texasinstruments/lmv228sdeval
https://www.x-on.com.au/mpn/skyworks/skya21001evb
https://www.x-on.com.au/mpn/skyworks/smp133108evb
https://www.x-on.com.au/mpn/skyworks/smp133108evb
https://www.x-on.com.au/mpn/analogdevices/ev1hmc618alp3
https://www.x-on.com.au/mpn/analogdevices/ev1hmc641alc4
https://www.x-on.com.au/mpn/analogdevices/ev1hmc8410lp2f
https://www.x-on.com.au/mpn/panasonic/eval_pan4555etu
https://www.x-on.com.au/mpn/analogdevices/eval01hmc1041lc4

