

60V N-CHANNEL SELF PROTECTED ENHANCEMENT MODE INTELLIFET MOSFET

Product Summary

Continuous Drain Source Voltage: VDS = 60V

On-State Resistance: 500mΩ

Nominal Load Current (V_{IN} = 5V): 1.3A

Clamping Energy: 480mJ

Description

The ZXMS6004SGQ is a self protected low side IntelliFETTM MOSFET with logic level input. It integrates over-temperature, over-current, over-voltage (active clamp) and ESD protected logic level functionality. The ZXMS6004SGQ is ideal as a general purpose switch driven from 3.3V or 5V microcontrollers in harsh environments where standard MOSFETs are not rugged enough.

Applications

- Especially Suited for Loads with a High In-Rush Current such as Lamps and Motors
- All Types of Resistive, Inductive and Capacitive Loads in Switching Applications
- μC Compatible Power Switch for 12V and 24V DC Applications
- Automotive Rated
- Replaces Electromechanical Relays and Discrete Circuits
- Linear Mode Capability the current-limiting protection circuitry is
 designed to de-activate at low VDS to minimize on state power
 dissipation. The maximum DC operating current is therefore
 determined by the thermal capability of the package/board
 combination, rather than by the protection circuitry. This does not
 compromise the product's ability to self-protect at low VDS.

Features and Benefits

- Compact High Power Dissipation Package
- Low Input Current
- Logic Level Input (3.3V and 5V)
- Short Circuit Protection with Auto Restart
- Over Voltage Protection (Active Clamp)
- Thermal Shutdown with Auto Restart
- Over-Current Protection
- Input Protection (ESD)
- High Continuous Current Rating
- Lead-Free Finish; RoHS Compliant (Note 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- The ZXMS6004SGQ is suitable for automotive applications requiring specific change control; this part is AEC-Q101 qualified, PPAP capable, and manufactured in IATF 16949 certified facilities.

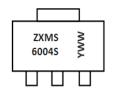
https://www.diodes.com/quality/product-definitions/

Mechanical Data

- Case: SOT223
- Case Material: Molded Plastic, "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Matte Tin Finish @3
- Weight: 0.112 grams (Approximate)

SOT223(Type DN)

Top View

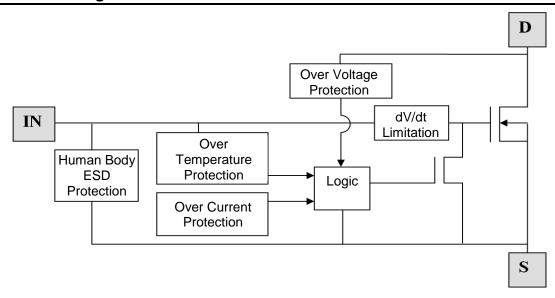

Ordering Information (Note 4)

Product	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
ZXMS6004SGQTA	ZXMS6004S	7	12	1,000 Units
ZXMS6004SGQ-13	ZXMS6004S	13	12	2,500 Units

Notes:

- 1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information



ZXMS6004S = Product Type Marking Code YWW = Date Code Marking Y or \overline{Y} = Last Digit of Year (ex: 0 = 2020) WW or \overline{WW} = Week Code (01 to 53) S

IN

Functional Block Diagram

Absolute Maximum Ratings (@TA = +25°C, unless otherwise stated.)

Characteristic	Symbol	Value	Unit
Continuous Drain-Source Voltage	V _D s	60	V
Drain-Source Voltage for Short Circuit Protection	V _{DS(SC)}	36	V
Continuous Input Voltage	Vin	-0.5 +6	V
Continuous Input Current @-0.2V \leq V _{IN} \leq 6V Continuous Input Current @V _{IN} $<$ -0.2V or V _{IN} $>$ 6V	lin	No Limit I _{IN} ≤2	mA
Pulsed Drain Current @V _{IN} = 3.3V	I _{DM}	2	А
Pulsed Drain Current @V _{IN} = 5V	I _{DM}	2.5	А
Continuous Source Current (Body Diode) (Note 5)	Is	1	Α
Pulsed Source Current (Body Diode)	I _{SM}	5	Α
Unclamped Single Pulse Inductive Energy, T _J = +25°C, I _D = 0.5A, V _{DD} = 24V	Eas	480	mJ
Electrostatic Discharge (Human Body Model)	Vesd	4000	V
Charged Device Model	Vcdм	1000	V

Thermal Characteristics (@TA = +25°C, unless otherwise stated.)

Characteristic	Symbol	Value	Unit
Power Dissipation at T _A = +25°C (Note 5) Linear Derating Factor	P _D	1.0 8.0	W mW/°C
Power Dissipation at T _A = +25°C (Note 6) Linear Derating Factor	PD	1.6 12.8	W mW/°C
Thermal Resistance, Junction to Ambient (Note 5)	R _θ JA	125	°C/W
Thermal Resistance, Junction to Ambient (Note 6)	Reja	83	°C/W
Thermal Resistance, Junction to Case (Note 7)	Rejc	39	°C/W
Operating Temperature Range	TJ	-40 to +150	°C
Storage Temperature Range	Tstg	-55 to +150	°C

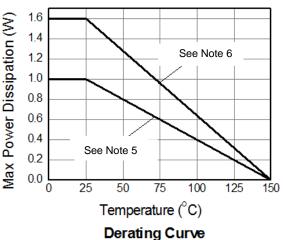
Notes:

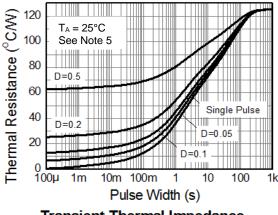
^{5.} For a device surface mounted on 15mm x 15mm single sided 1oz weight copper on 1.6mm FR-4 board, in still air conditions. Sink split drain 80% and source 20% to isolate connections.

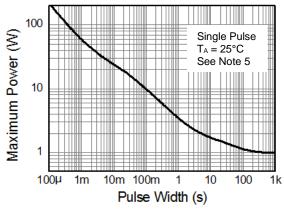
source 20% to isolate connections.

6. For a device surface mounted on 50mm x 50mm single sided 2oz weight copper on 1.6mm FR-4 board, in still air conditions. Sink split drain 80% and source 20% to isolate connections.

^{7.} Thermal resistance between junction and the mounting surfaces of drain and source pins.


Recommended Operating Conditions


The ZXMS6004SGQ is optimized for use with μC operating from 3.3V and 5V supplies.

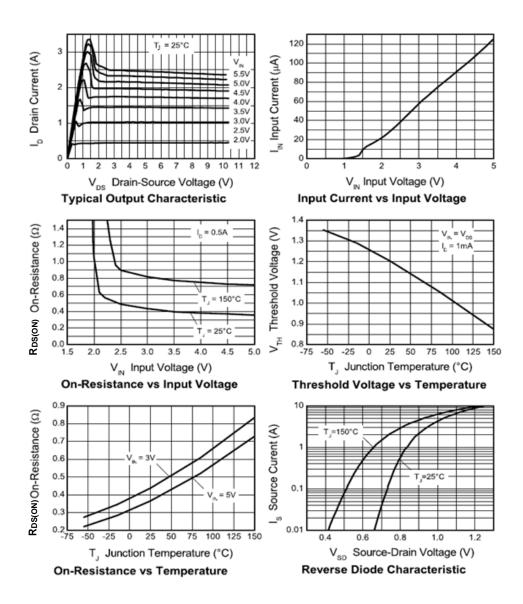

Characteristic	Symbol	Min	Max	Unit
Input Voltage Range	VIN	0	5.5	V
Ambient Temperature Range	T _A	-40	+125	°C
High Level Input Voltage for MOSFET to Be On	V _{IH}	3	5.5	V
Low Level Input Voltage for MOSFET to Be Off	VIL	0	0.7	V
Peripheral Supply Voltage (Voltage to Which Load is Referred)	VP	0	36	V

Thermal Characteristics

Transient Thermal Impedance

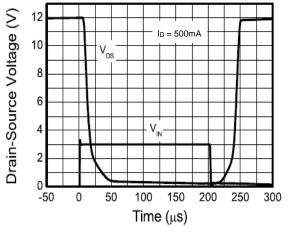
Pulse Power Dissipation

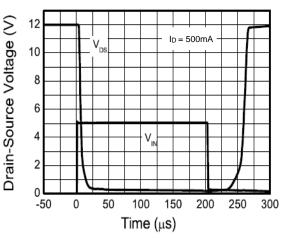
Electrical Characteristics (@TA = +25°C, unless otherwise stated.)

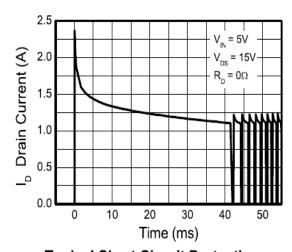

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Static Characteristics						
Drain-Source Clamp Voltage	V _{DS} (AZ)	60	65	70	V	I _D = 10mA
Off State Drain Current		1	_	0.5	μΑ	$V_{DS} = 12V, V_{IN} = 0V$
Oil State Drain Current	IDSS	_	_	1		V _{DS} = 36V, V _{IN} = 0V
Input Threshold Voltage	VIN(TH)	0.7	1.2	1.5	V	V _{DS} = V _{GS} , I _D = 1mA
Input Current	l	ı	60	100		VIN = 3V
Input Current	l _{IN}	ı	120	200	μΑ	VIN = 5V
Input Current While Over Temperature Active	_	ı	_	400	μA	VIN = 5V
Static Drain-Source On-State Resistance	Process	ı	400	600	mΩ	$V_{IN} = 3V, I_D = 0.5A$
Static Drain-Source On-State Resistance	RDS(ON)	ı	350	500	11177	$V_{IN} = 5V, I_D = 0.5A$
Continuous Drain Current (Note 5)		0.9	_	_		V _{IN} = 3V; T _A = +25°C
Continuous Diairi Current (Note 3)	- I _D	1	_	_	Α	V _{IN} = 5V; T _A = +25°C
Continuous Drain Current (Note 6)		1.2	_	_		$V_{IN} = 3V; T_A = +25^{\circ}C$
Continuous Diairi Current (Note 6)		1.3	_	_		$V_{IN} = 5V$; $T_A = +25$ °C
Current Limit (Note 8)	loa no	0.7	1.7	_	A	VIN = 3V
Current Limit (Note 6)	ID(LIM)	1	2.2	-		$V_{IN} = 5V$
Dynamic Characteristics						
Turn On Delay Time	tD(ON)	-	5	_		$V_{DD} = 12V$, $I_D = 0.5A$, $V_{GS} = 5V$
Rise Time	t _R	ı	10	_		
Turn Off Delay Time	tD(OFF)	ı	45	_	μs	
Fall Time	tF	-	15	-		
Over-Temperature Protection						
Thermal Overload Trip Temperature (Note 9)	T _{JT}	+150	+175	-	°C	_
Thermal Hysteresis (Note 9)	_	_	+10	_	°C	_

Notes:

- 5. For a device surface mounted on 15mm x 15mm single sided 1oz weight copper on 1.6mm FR-4 board, in still air conditions. Sink split drain 80% and
- source 20% to isolate connections.
 6. For a device surface mounted on 50mm x 50mm single sided 2oz weight copper on 1.6mm FR-4 board, in still air conditions. Sink split drain 80% and source 20% to isolate connections.
- 7. Thermal resistance between junction and the mounting surfaces of drain and source pins.
- 8. The drain current is restricted only when the device is in saturation (see graph 'typical output characteristic'). This allows the device to be used in the fully on state without interference from the current limit. The device is fully protected at all drain currents, as the low power dissipation generated outside saturation makes current limit unnecessary.
- 9. Over-temperature protection is designed to prevent device destruction under fault conditions. Fault conditions are considered as "outside" normal operating range, so this part is not designed to withstand over-temperature for extended periods.

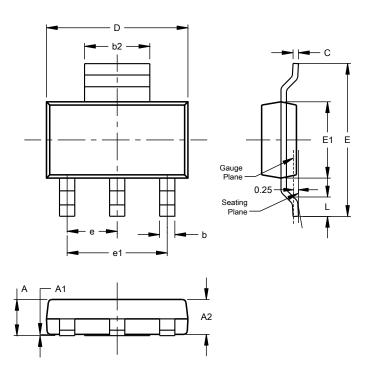



Typical Characteristics


Typical Characteristics (continued)

Switching Speed

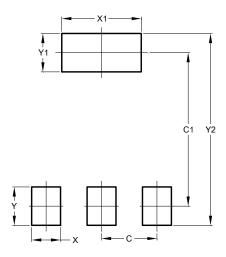
Switching Speed


Typical Short Circuit Protection

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT223 (Type DN)



SOT223 (Type DN)				
Dim	Min	Max	Тур	
Α		1.70		
A1	0.01	0.15		
A2	1.50	1.68	1.60	
b	0.60	0.80	0.70	
b2	2.90	3.10		
C	0.20	0.32		
D	6.30	6.70		
Е	6.70	7.30		
E1	3.30	3.70		
е			2.30	
e1			4.60	
L	0.85			
All Dimensions in mm				

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT223 (Type DN)

Dimensions	Value (in mm)		
C	2.30		
C1	6.40		
Х	1.20		
X1	3.30		
Y	1.60		
Y1	1.60		
Y2	8.00		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFETs category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

MCH3443-TL-E MCH6422-TL-E PMV32UP215 NTNS3A92PZT5G IRFD120 2SK2464-TL-E 2SK3818-DL-E 2SJ277-DL-E MIC4420CM-TR IRFS350 IPS70R2K0CEAKMA1 AON6932A TS19452CS RL 2SK2614(TE16L1,Q) EFC2J004NUZTDG DMN1053UCP4-7 NTE2384 2N7000TA 743-9 US6M2GTR STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN13M9UCA6-7 STU7N60DM2 2N7002W-G MCAC30N06Y-TP IPB45P03P4L11ATMA2 BXP4N65F BXP2N20L BXP2N65D SLF10N65ABV2 CJAC130SN06L HSBA6054 HSBB6054 HSBB0210 HSBA6901 BSC004NE2LS5 BSZ075N08NS5 LBSS138DW1T1G AP0903G SSM10N954L,EFF(S 2SK3878(STA1,E,S) TPN6R303NC,LQ(S AP3N5R0MT AP6NA3R2MT AP3C023AMT AP6242 HSBB3909 HSBA3204