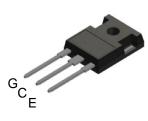


650V FIELD STOP IGBT IN TO-247

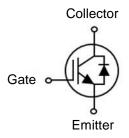
Description

The DGTD65T60S2PT is produced using advanced Field Stop Trench IGBT 2nd Generation Technology, which not only gives high-switching efficiency, but is also extremely rugged and excellent quality for applications where low conduction losses are essential.

Features


- High Speed Switching & Low Power Loss
- V_{CE(sat)} = 1.85V @ I_C = 60A
- High Input Impedance
- $t_{rr} = 110$ ns (typ) @ $di_F/dt = 500$ A/ μ s
- $E_{off} = 0.53 \text{mJ} @ T_{C} = 25 ^{\circ}\text{C}$
- Maximum Junction Temperature 175°C
- Lead-Free Finish; RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Applications


- UPS
- Welder
- Solar Inverter
- IH Cooker

Mechanical Data

- Case: TO-247 (Type MC)
- Case Material: Molded Plastic. "Green" Molding Compound.
- UL Flammability Classification Rating 94V-0
- Terminals: Finish Matte Tin Plated Leads.
 Solderable per MIL-STD-202, Method 208 (3)
- Weight: 5.6 grams (Approximate)

TO-247

Device Symbol

Ordering Information (Note 4)

Product	Marking	Quantity
DGTD65T60S2PT	DGTD65T60S2	450 per Box in Tubes (Note 5)

Notes:

- 1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.
- 5. 30 Devices per Tube.

Marking Information

);; = Manufacturer's Marking
DGTD65T60S2 = Product Type Marking Code
YY = Year (ex: 18 = 2018)
LLLLL = Lot Code
WW = Week (01 to 53)

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit	
Collector-Emitter Voltage	V_{CE}	650	V	
T _C = 25°C	1-	100	Α	
DC Collector Current, limited by T_{vjmax} $T_C = 100^{\circ}C$	Ic	60	Α	
Pulsed Collector Current, tp limited by Tvjmax	I _{Cpuls}	180	Α	
Turn Off Safe Operating Area V _{CE} ≤ 650V, T _{vj} = 175°C	-	180	Α	
Diada Farward Current limited by T		60	Α	
Diode Forward Current limited by T_{vjmax} $T_C = 100^{\circ}C$	l _F	30	Α	
Diode Pulsed Current, t _p limited by T _{vjmax}	I _{Fpuls}	200	Α	
Gate-Emitter Voltage	V_{GE}	±20	V	
Short Circuit Withstand Time		5	μs	
$V_{CC} \le 400V$, $R_{G}=7\Omega$, $V_{GE}=15V$, $T_{vj}=150^{\circ}C$	tsc			
Allowed Number of Short Circuits < 1000	isc			
Time Between Short Circuits ≥ 1.0s				

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit	
Power Dissipation Linear Derating Factor (Note 6) T _C = 25°C	Ć.	428	W	
T _C = 100°C	P _D	214	VV	
Thermal Resistance, Junction to Ambient (Note 6)	$R_{\theta JA}$	40	°C/W	
Thermal Resistance, Junction to Case for IBGT (Note 6)	$R_{ heta JC}$	0.35		
Thermal Resistance, Junction to Case for Diode (Note 6)	R _{0JC}	1.20		
Operating Temperature	T _{vi}	-40 to +175	°C	
Storage Temperature Range	T _{STG}	-55 to +150		

Note: 6. When mounted on a standard JEDEC 2-layer FR-4 board.

Electrical Characteristics (@T_{vj} = +25°C, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit	Condition	
STATIC CHARACTERISTICS		•		•		•	
Collector-Emitter Breakdown Voltage	BV _{CES}	650	-	_	V	$I_C = 2mA$, $V_{GE} = 0V$	
Collector-Emitter Saturation Voltage $T_{vj} = 25^{\circ}C$	M	_	1.85	2.40	V	1 004 1/ 451/	
Collector-Efflitter Saturation Voltage $T_{vj} = 175^{\circ}C$	V _{CE(sat)}	_	2.60	_	V	$I_C = 60A$, $V_{GE} = 15V$	
Diode Forward Voltage T _{vj} = 25°C		_	1.45	2.00	V)/ O)/ I O54	
Diode Forward Voltage $T_{vj} = 175^{\circ}C$	V _F	_	1.35	_	V	$V_{GE} = 0V$, $I_F = 25A$	
Gate-Emitter Threshold Voltage	$V_{GE(th)}$	4.0	5.0	6.0	V	$V_{CE} = V_{GE}$, $I_C = 0.5 mA$	
Zero Gate Voltage Collector Current	I _{CES}	_	-	40	μΑ	$V_{CE} = 650V, V_{GE} = 0V$	
Gate-Emitter Leakage Current	I _{GES}	_	-	±100	nA	$V_{GE} = 20V, V_{CE} = 0V$	
DYNAMIC CHARACTERISTICS						•	
Total Gate Charge	Q_g	_	95	_		V 520V I 60A	
Gate-Emitter Charge	Q_ge	_	19	_	nC	$V_{CE} = 520V, I_{C} = 60A,$ $V_{GE} = 15V$	
Gate-Collector Charge	Q_gc	_	47	_		VGE = 13V	
Input Capacitance	C _{ies}	-	2,327	-		\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Reverse Transfer Capacitance	Cres	-	55	_	pF	$V_{CE} = 25V, V_{GE} = 0V,$ f = 1MHz	
Output Capacitance	C _{oes}	-	270	-		I = IIVIIIZ	
Internal Emitter Inductance Measured 5mm (0.197") From Case		-	13	-	nΗ	-	
SWITCHING CHARACTERISTICS					I	-	
Turn-on Delay Time	t _{d(on)}	_	42	_			
Rise time	t _r	_	54	_			
Turn-off Delay Time	t _{d(off)}	_	142	_	ns	$V_{GE} = 15V, V_{CC} = 400V,$	
Fall Time	t _f	_	40	_		$I_C = 60A$, $R_G = 7\Omega$,	
Turn-on Switching Energy	Eon	_	0.92	_		Inductive Load, T _{vi} = 25°C	
Turn-off Switching Energy	E _{off}	_	0.53	_	mJ	1vj = 23 C	
Total Switching Energy	E _{ts}	_	1.45	_			
Reverse Recovery Time	t _{rr}	_	110	_	ns	I _F = 25A,	
Reverse Recovery Current	I _{rr}	_	18	_	Α	$di_F/dt = 500A/\mu s$,	
Reverse Recovery Charge	Q_{rr}	_	1.10	_	μC	T _{vj} = 25°C	
Turn-on Delay Time	t _{d(on)}	_	45	_			
Rise time	t _r	_	58	_			
Turn-off Delay Time	t _{d(off)}	_	152	_	ns	$V_{GE} = 15V, V_{CC} = 400V,$ $I_{C} = 60A, R_{G} = 7\Omega,$	
Fall Time	t _f	_	35	_			
Turn-on Switching Energy	Eon	-	1.43	_		Inductive Load, T _{vi} = 175°C	
Turn-off Switching Energy	E _{off}	_	0.53	_	mJ	1vj = 1/5 C	
Total Switching Energy	E _{ts}	_	1.96	_	1		
Reverse Recovery Time	t _{rr}	_	205	_	ns	I _F = 25A,	
Reverse Recovery Current	I _{rr}	-	25	_	Α	$di_F/dt = 500A/\mu s$,	
Reverse Recovery Charge	Q _{rr}	-	2.67	_	μC	T _{vj} = 175°C	

Typical Performance Characteristics (@TA = +25°C, unless otherwise specified.)

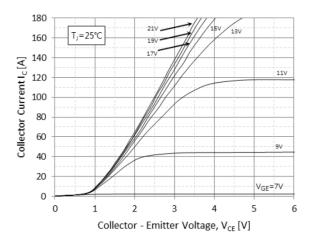


Fig.1 Typical Output Characteristics(T_J=25 °C)

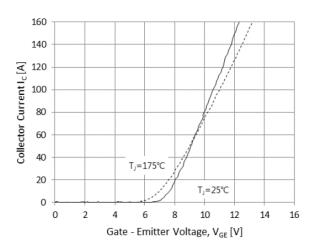


Fig.3 Typical Transfer Characteristics

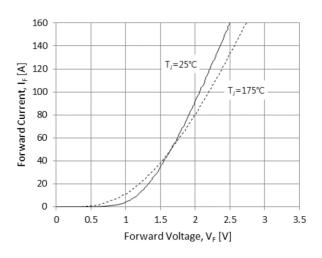


Fig.5 Diode Forward Characteristics

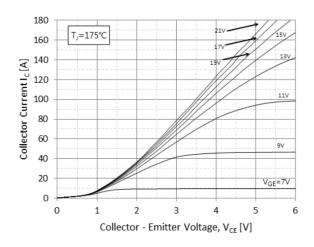


Fig.2 Typical Output Characteristics(T_J=175 °C)

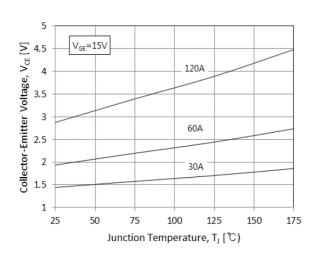


Fig.4 Typical Collector-Emitter Saturation Voltage
-Junction Temperature

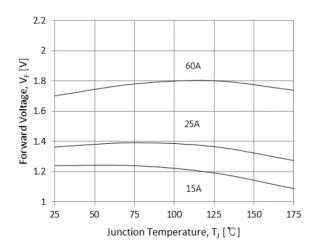


Fig.6 Diode Forward-Junction Temperature

Typical Performance Characteristics (continued)

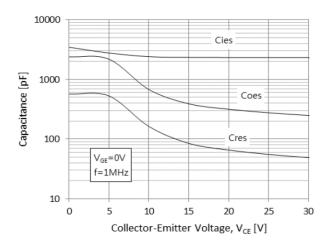


Fig.7 Typical Capacitance

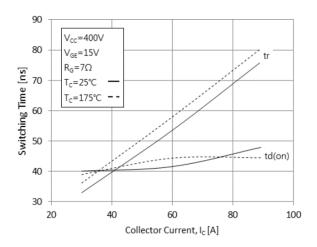


Fig.9 Typical Turn on-Collector Current

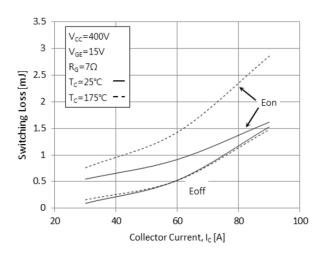


Fig.11 Switching Loss-Collector Current

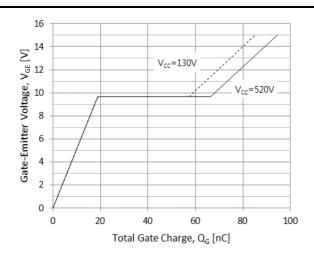


Fig.8 Typical Gate Charge

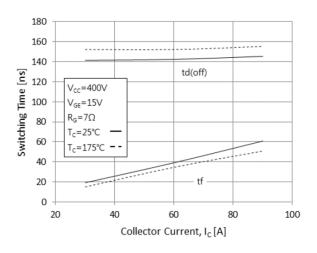


Fig.10 Typical Turn off-Collector Current

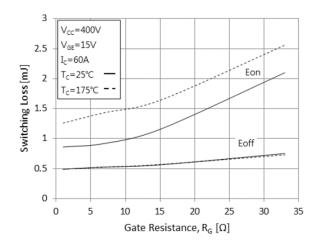
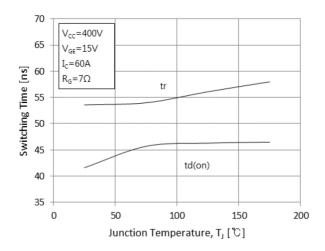



Fig.12 Switching Loss-Gate Resistance

Typical Performance Characteristics (cont.)

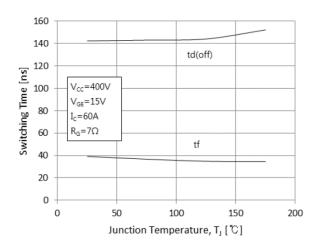


Fig.13 Turn on Characteristics-Junction Temperature

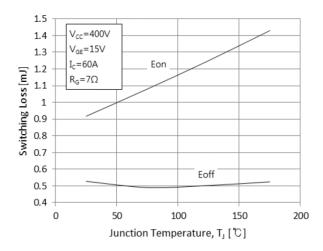


Fig.14 Turn off Characteristics-Junction Temperature

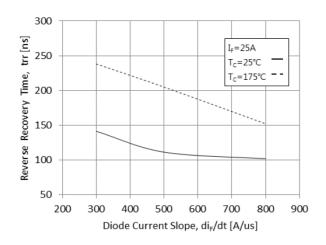


Fig.15 Switching Loss-Junction Temperature

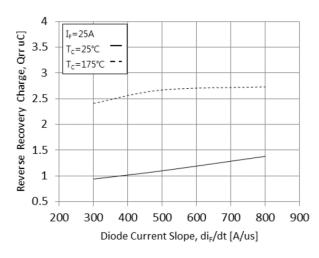


Fig.17 Reverse Recovery Charge
- Diode Current Slope

Fig.16 Reverse Recovery Time
- Diode Current Slope

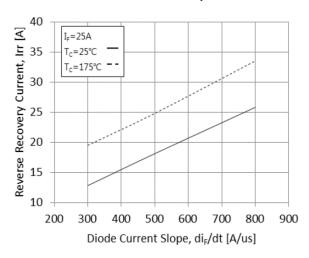
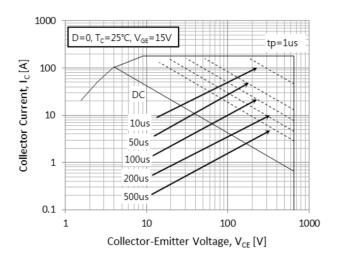



Fig.18 Reverse Recovery Current
- Diode Current Slope

Typical Performance Characteristics (cont.)

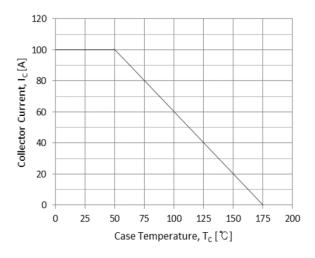


Fig.19 Forward Bias Safe Operating Area

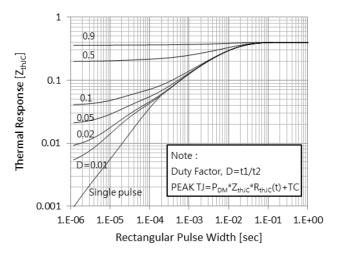


Fig.20 Case Temperature-Collector Current

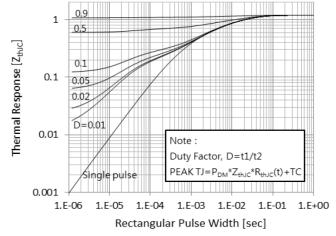
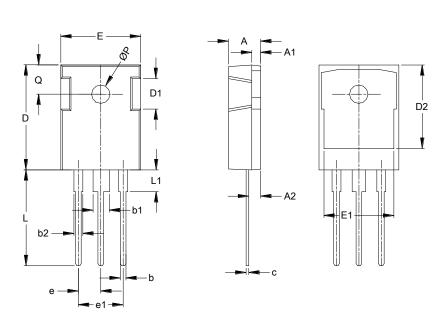


Fig.21 IGBT Transient Thermal Impedance


Fig.22 FRD Transient Thermal Impedance

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

TO247 (Type MC)

TO-247 (Type MC)						
Dim	Min	Max	Тур			
Α	4.700	5.310	-			
A1	1.500	2.490	-			
A2	2.200	2.600	-			
b	0.990	1.400	-			
b1	2.590	3.430	-			
b2	1.650	2.390	-			
С	0.380	0.890	-			
D	20.30	21.46	-			
D1	4.320	5.490	-			
D2	13.08	-	-			
Е	15.45	16.26	-			
E1	13.06	14.02	-			
е	5.450					
e1	10.90					
L	19.81	20.57	-			
L1	-	4.500	-			
Q	5.380	6.200	-			
øΡ	3.500	3.700	-			
All Dimensions in mm						

Note: For high-voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device Terminals and PCB tracking.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by Diodes Incorporated manufacturer:

Other Similar products are found below:

 748152A
 APT20GT60BRDQ1G
 APT50GT60BRG
 NGTB10N60FG
 STGFW20V60DF
 APT30GP60BG
 APT45GR65B2DU30

 GT50JR22(STA1ES)
 TIG058E8-TL-H
 IGW40N120H3FKSA1
 VS-CPV364M4KPBF
 NGTB25N120FL2WAG
 NGTG40N120FL2WG

 RJH60F3DPQ-A0#T0
 APT40GR120B2SCD10
 APT15GT120BRG
 APT20GT60BRG
 NGTB75N65FL2WAG
 NGTG15N120FL2WG

 APT70GR65B2DU40
 NTE3320
 FGD3440G2-F085
 APT70GR120J
 APT35GP120JDQ2
 XD15H120CX1
 XD25H120CX0

 XP15PJS120CL1B1
 IGW30N60H3FKSA1
 STGWA8M120DF3
 IGW08T120FKSA1
 IGW75N60H3FKSA1
 FGH60N60SMD_F085

 FGH75T65UPD
 STGWA15H120F2
 IKA10N60TXKSA1
 IHW20N120R5XKSA1
 RJH60D2DPP-M0#T2
 IKP20N60TXKSA1

 IHW20N65R5XKSA1
 APT70GR120JD60
 APT70GR120L
 STGWT60H65FB
 STGWT60H65DFB
 STGWT40V60DF
 STGWT20V60DF

 STGB10NB37LZT4
 FGH40T70SHD-F155
 NGTB40N65IHL2WG
 HGTG30N60C3D
 IXGH28N120B