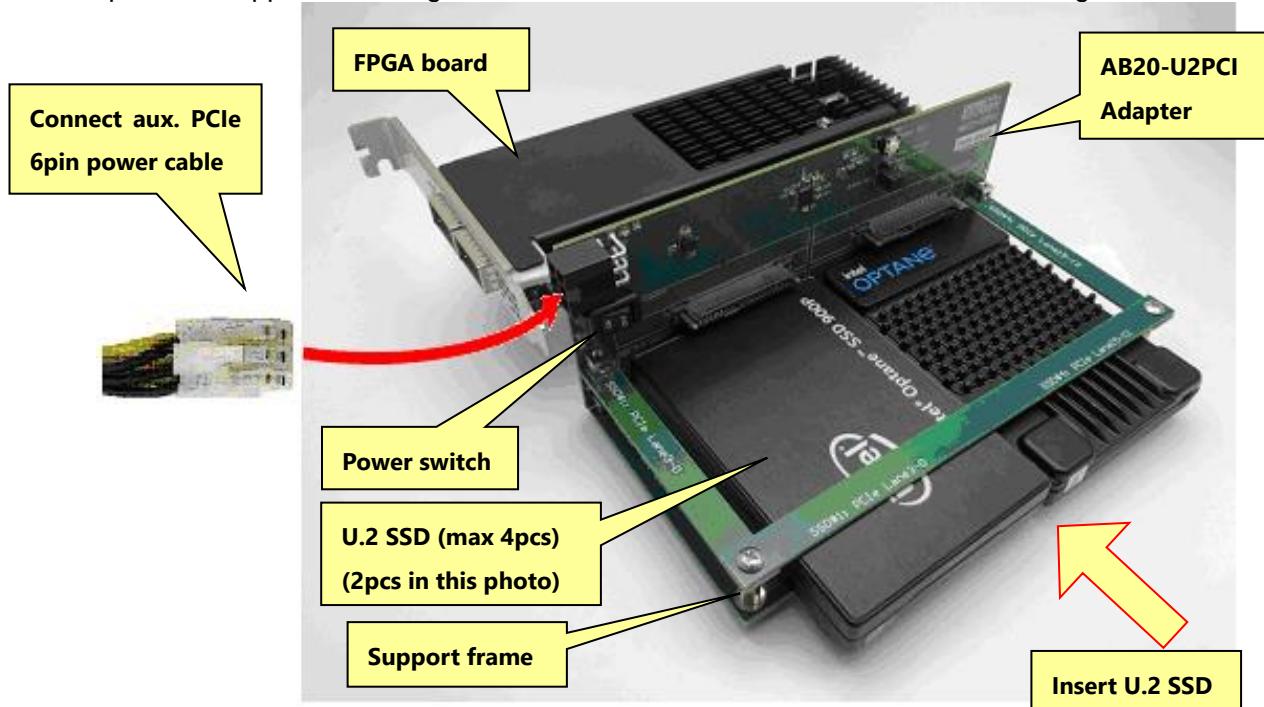


U.2-PCIe adapter board [AB20-U2PCI] Manual [Rev. 1.0E]

Introduction


Thank you for choosing U.2 – PCIe conversion adapter board [Part Number: AB20-U2PCI] (“adapter board” in this manual). This adapter board converts 16-lane PCI Express interface to four 4-lane PCI standard U.2 interfaces. This adapter can be applied to standard altera(Intel) or AMD(Xilinx) FPGA evaluation board so that user can evaluate NVMe series IP-Core operation and can use for prototype development platform.

Four U.2 connectors are mounted on the component side of the adapter board to accommodate up to four 2.5” form factor U.2 SSDs. On the solder side, 16-lane PCIe (PCI Express) connector is mounted, and lanes 3-0/7-4/11-8/15-12 connect to four SSDs mounted on CN1/CN2/CN3/CN4, respectively.

The adapter includes a low-jitter clock generator and reset circuitry to provide clock and reset signals to PCIe and U.2 SSDs. Power for the adapter and U.2 SSDs is provided by a standard 6-pin type PCIe auxiliary power supply.

The adapter board furnishes mechanical support frame to mount U.2 SSD in stable position.

The adapter with support frame together with U.2 SSD and FPGA board is shown in Figure 1 below.

Figure-1: AB20-U2PCI adapter with support frame

The features of this adapter are shown below.

- ✓ Expansion adapter board for U.2 SSD with 16-Lane PCI Express support
- ✓ Read/write access between FPGA and U.2 SSD in PCIe Gen5, confirmed in actual device operation
- ✓ Up to four U.2 SSDs under 15mm height size can be installed simultaneously
- ✓ Power is supplied at +12V from a standard external 6-pin PCIe auxiliary power supply
- ✓ Power supply to the adapter and U.2 SSD can be controlled ON/OFF with a switch
- ✓ PCIe standard 100MHz low-jitter clock source mounted on the adapter
- ✓ Supplies 100MHz differential clock signals of the same phase to PCIe and four SSDs
- ✓ Reset is selectable between PCIe-SSD direct connection and reset output on the adapter board via jumper socket

Adapter outline

The adapter board with support frame size is 166 mm wide, 60mm height, and 85mm depth. The component side and the solder side of the board are shown in Figure 2 and Figure 3 respectively.

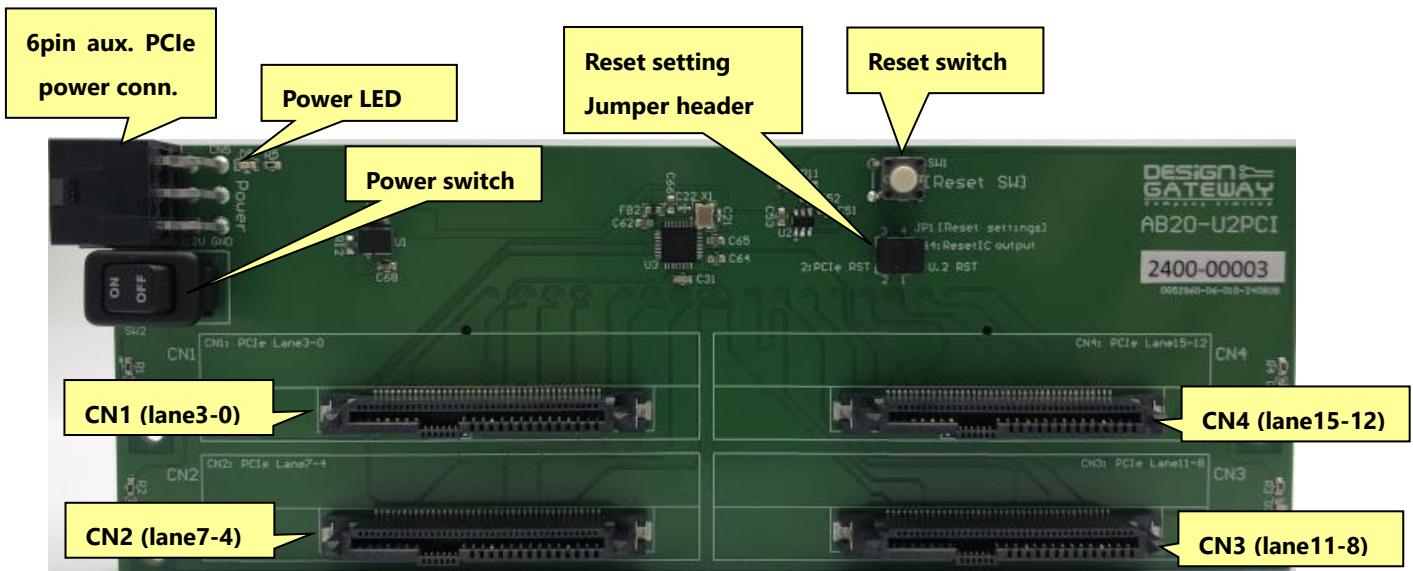
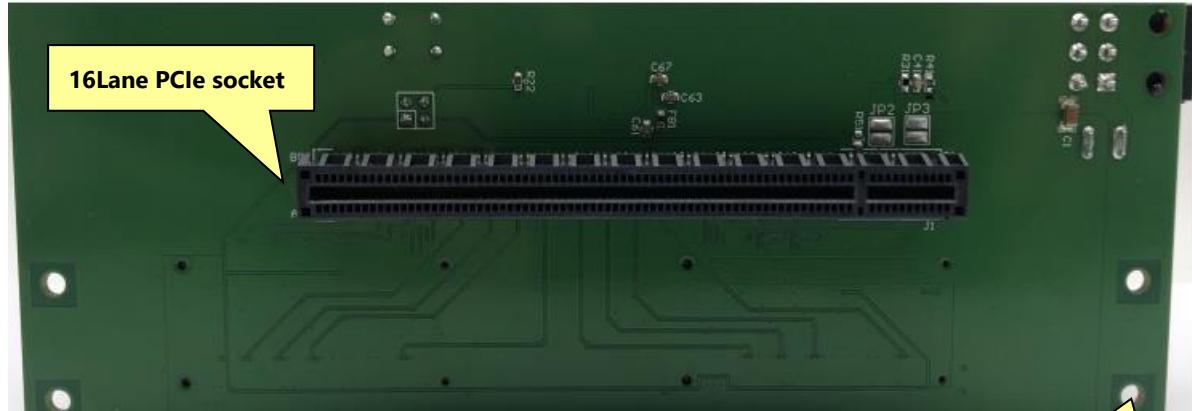
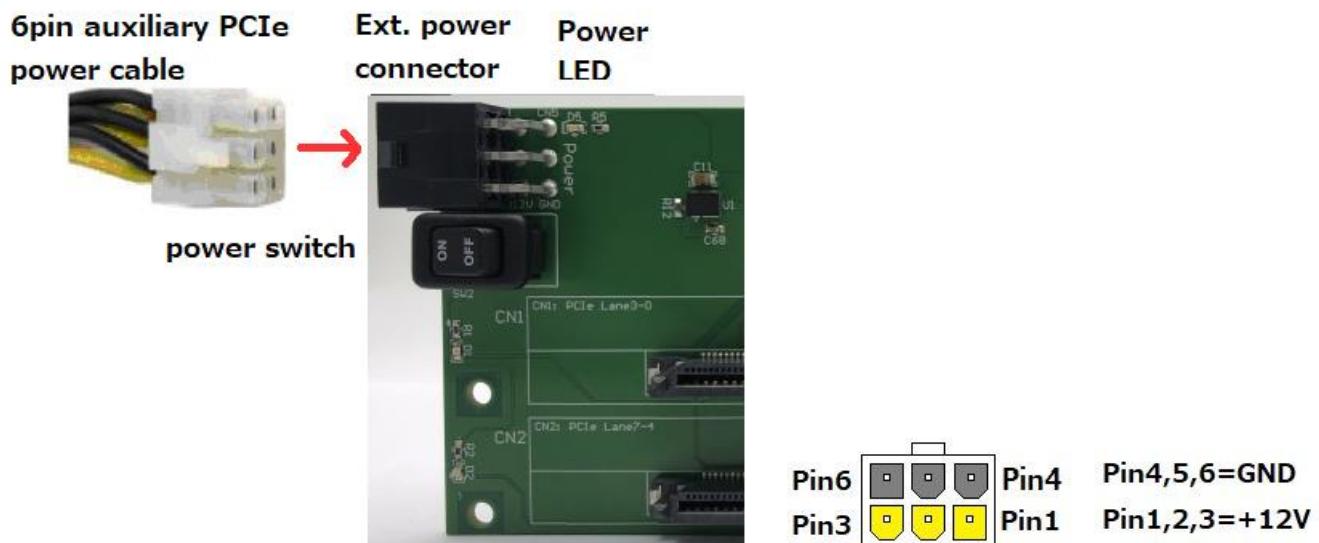


Figure-2: adapter board component side




Figure-3: adapter board solder side

Cut-hole to fix support frame by M3 screw (4 holes)

Power Supply

This adapter power is supplied by +12V from a 6-pin type PCIe auxiliary power supply as shown in Figure 4. The power switch controls the power supply to the adapter and the installed SSD. The power-on status can be checked with the LED next to the power connector

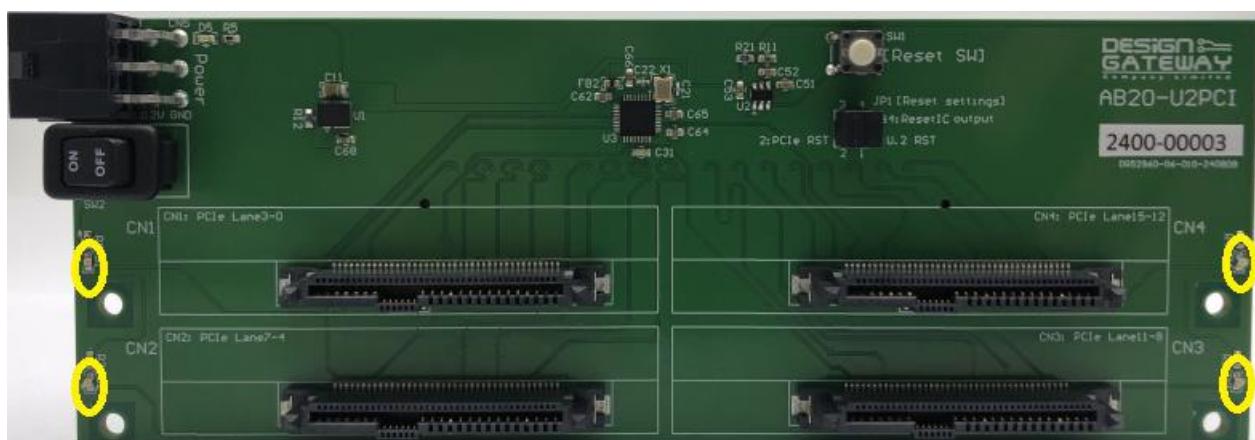

The +12V power supply is used to generate a +3.3V power supply with a regulator inside the adapter, but +3.3V power is not supplied to U.2 SSD or +3.3V power pin of PCIe connector. So that +3.3V power supply to the connected FPGA board via PCIe connector is not possible.

Figure-4: Power switch, PCIe auxiliary power supply, and its pin assignment

Access Indicator LED

There is an SSD access LED near each U.2 connector as shown in Figure 5, which emits light when the respective U.2 connector pin P11 (ACTIVITY# signal) is at a Low level.

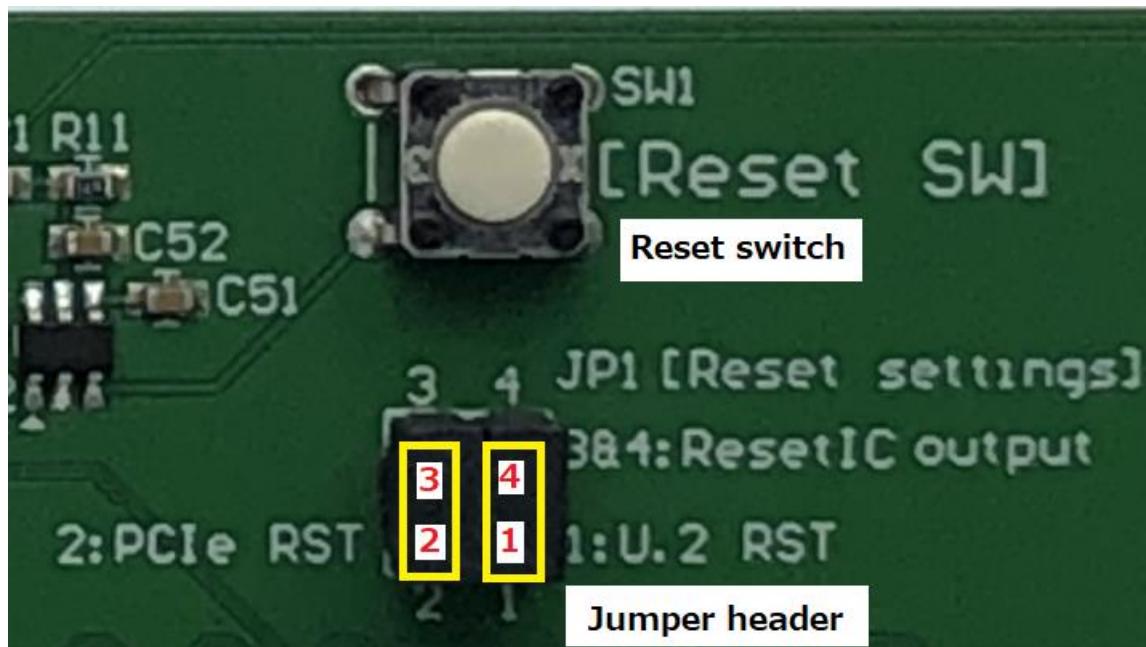
Figure-5: Access Indicator LED for each SSD (Yellow mark position)

Clock circuit

The adapter is equipped with a clock generator that complies with the PCI Express Gen5 standard and provides 100MHz differential clocks in the same phase for all PCIe clock (Pin# A13/A14) and all 4 channels of U.2 SSDs system clock (Pin# E7/E8). The clock frequency is fixed at 100 MHz and cannot be changed.

Reset circuit

The adapter contains a reset IC that generates reset signals for PCIe and U.2, a reset switch for manually generating a reset signal, and 2x2 jumper headers for selecting each reset system.


The reset IC constantly monitors the voltage level of the +3.3V power supply and outputs a low active reset signal when the voltage level falls below approximately 3.0V. It also generates a reset signal pulse of about 100msec when the reset switch is pressed.

The reset signal connection can be set as shown below by inserting a socket into the 2 x 2 4-pin header JP1 shown in Figure 6. (The factory default socket settings are the connections between 1-4 and between 2-3 as shown in Figure 6.)

Short between 1 and 4: Connects the reset IC output to the reset of all 4 U.2 SSDs (Pin# E5).

Short between 2 and 3: Connects the reset IC output to the PCI Express reset (Pin# A11)

Short between 1-2: Connects PCI Express reset (Pin#A11) to all 4 U.2 SSD resets (Pin#E5).

Figure-6: Reset switch (SW1) and pin header (JP1) for reset connection settings

Connection between PCIe and each U.2 SSD

The connection between each lane of the PCIe socket and the four U.2 SSDs attached to CN1-CN4 in this adapter is as follows

PCIe Lane# (signal direction)	PCIe signal name	PCIe Pin#	U.2 Conn.	U.2 Pin#
Lane0 Tx (FPGA->PCIe->U.2)	PERp0/PERn0	A16/A17	CN1	E10/E11
Lane0 Rx (FPGA-<PCIe-<-U.2)	PETp0/PETn0	B14/B15	CN1	E14/E13
Lane1 Tx (FPGA->PCIe->U.2)	PERp1/PERn1	A21/A22	CN1	S17/S18
Lane1 Rx (FPGA-<PCIe-<-U.2)	PETp1/PETn1	B19/B20	CN1	S21/S20
Lane2 Tx (FPGA->PCIe->U.2)	PERp2/PERn2	A25/A26	CN1	S23/S24
Lane2 Rx (FPGA-<PCIe-<-U.2)	PETp2/PETn2	B23/B24	CN1	S27/S26
Lane3 Tx (FPGA->PCIe->U.2)	PERp3/PERn3	A29/A30	CN1	E17/E18
Lane3 Rx (FPGA-<PCIe-<-U.2)	PETp3/PETn3	B27/B28	CN1	E21/E20
Lane4 Tx (FPGA->PCIe->U.2)	PERp4/PERn4	A35/A36	CN2	E10/E11
Lane4 Rx (FPGA-<PCIe-<-U.2)	PETp4/PETn4	B33/B34	CN2	E14/E13
Lane5 Tx (FPGA->PCIe->U.2)	PERp5/PERn5	A39/A40	CN2	S17/S18
Lane5 Rx (FPGA-<PCIe-<-U.2)	PETp5/PETn5	B37/B38	CN2	S21/S20
Lane6 Tx (FPGA->PCIe->U.2)	PERp6/PERn6	A43/A44	CN2	S23/S24
Lane6 Rx (FPGA-<PCIe-<-U.2)	PETp6/PETn6	B41/B42	CN2	S27/S26
Lane7 Tx (FPGA->PCIe->U.2)	PERp7/PERn7	A47/A48	CN2	E17/E18
Lane7 Rx (FPGA-<PCIe-<-U.2)	PETp7/PETn7	B45/B46	CN2	E21/E20
Lane8 Tx (FPGA->PCIe->U.2)	PERp8/PERn8	A52/A53	CN3	E10/E11
Lane8 Rx (FPGA-<PCIe-<-U.2)	PETp8/PETn8	B50/B51	CN3	E14/E13
Lane9 Tx (FPGA->PCIe->U.2)	PERp9/PERn9	A56/A57	CN3	S17/S18
Lane9 Rx (FPGA-<PCIe-<-U.2)	PETp9/PETn9	B54/B55	CN3	S21/S20
Lane10 Tx (FPGA->PCIe->U.2)	PERp10/PERn10	A60/A61	CN3	S23/S24
Lane10 Rx (FPGA-<PCIe-<-U.2)	PETp10/PETn10	B58/B59	CN3	S27/S26
Lane11 Tx (FPGA->PCIe->U.2)	PERp11/PERn11	A64/A65	CN3	E17/E18
Lane11 Rx (FPGA-<PCIe-<-U.2)	PETp11/PETn11	B62/B63	CN3	E21/E20
Lane12 Tx (FPGA->PCIe->U.2)	PERp12/PERn12	A68/A69	CN4	E10/E11
Lane12 Rx (FPGA-<PCIe-<-U.2)	PETp12/PETn12	B66/B67	CN4	E14/E13
Lane13 Tx (FPGA->PCIe->U.2)	PERp13/PERn13	A72/A73	CN4	S17/S18
Lane13 Rx (FPGA-<PCIe-<-U.2)	PETp13/PETn13	B74/B75	CN4	S21/S20
Lane14 Tx (FPGA->PCIe->U.2)	PERp14/PERn14	A76/A77	CN4	S23/S24
Lane14 Rx (FPGA-<PCIe-<-U.2)	PETp14/PETn14	B70/B71	CN4	S27/S26
Lane15 Tx (FPGA->PCIe->U.2)	PERp15/PERn15	A80/A81	CN4	E17/E18
Lane15 Rx (FPGA-<PCIe-<-U.2)	PETp15/PETn15	B78/B79	CN4	E21/E20

Table 1: Connection between each PCIe lane and four U.2 SSDs

Disclaimer

Any damage to the FPGA evaluation board or SSD device caused by misuse of this adapter will be exempted from any and all liability. In addition, this adapter board is for evaluation purposes only, and may not operate properly depending on the characteristics of the FPGA evaluation board or the SSD device to which it is connected, but this is an exemption from liability except for manufacturing defects in the adapter board.

[Contact]

URL : https://dgway.com/index_E.html

Email : info@dgway.com

Revision History

Revision	Date	Description
1.0E	Oct-7 th -2024	English manual first release

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for [Interface Development Tools](#) category:

Click to view products by [Design Gateway](#) manufacturer:

Other Similar products are found below :

[CY4607M](#) [CHA2066-99F](#) [XR17V358/SP339-E8-EB](#) [XR21B1424IV64-0A-EVB](#) [P0551](#) [5346](#) [SI32185ACB10SL1KIT](#)
[Si32185ACB10SL0EVB](#) [4901](#) [LIME2-SHIELD](#) [USB TO TTL](#) [USB TO RS485](#) [PL2303](#) [USB UART Board \(type A\)](#) [V2](#) [USB-CAN-A](#)
[MIKROE-5492](#) [5956](#) [SL-MIPI-LVDS-HDMI-CNV v.1.1](#) [WEBCARDLXE](#) [103030295](#) [MIKROE-2335](#) [KIT_MINIWIGGLER_3_USB](#)
[KITXMC4XCOMETH001TOBO1](#) [SI871XSOIC8-KIT](#) [1764](#) [1833](#) [ZSC31010KITV2.1](#) [EVALISO1I811TTOBO1](#) [EVB-USB82514](#)
[ATAB663231A-V1.2](#) [ATAB663254A-V1.2](#) [2264](#) [MCP23X17EV](#) [PS09-EVA-KIT](#) [FR12-0002](#) [MAFR-000667-000001](#) [MAFR-000589-000001](#) [MAFR-000553-000001](#) [BOB-13263](#) [BP359C](#) [ORG4572-R01-UAR](#) [XR21B1422IL40-0A-EVB](#) [XR21B1420IL28-0A-EVB](#) [SKYFR-000743](#) [SKYFR-000827](#) [SKYFR-000982](#) [MIKROE-2750](#) [292](#) [DFR0065](#) [DFR0077](#) [DFR0504](#)