

CA-IS3062 集成隔离电源的隔离式 CAN 收发器

1 产品特性

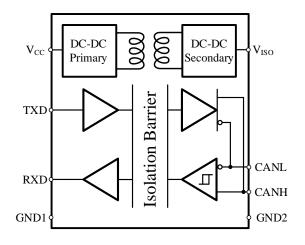
- 符合 ISO11898-2 标准
- 高达 5000V_{RMS} 隔离耐压
- 集成隔离式 DC-DC 转换器(含变压器)
- 逻辑侧 I/O 电压范围支持 4.5V~5.5 V
- 信号传输速率高达 1 Mbps
- 高共模瞬态抗扰度: 150 kV/μs(典型值)
- -40 V 至 40 V 的总线故障保护
- 低环路延时:
 - 150 ns (典型值)
 - 210 ns (最大值)
- 驱动器(TXD)主动态超时功能
- 热关断保护
- 总线最多可支持 110 个节点
- 无电节点不干扰总线
- 温度范围: -40℃至 125℃
- 安全和法规认证(申请中):
 - 61010-1 的 VDE 认证
 - 符合 UL 1577 认证, 1 分钟 5 kV_{RMS}
 - 符合 IEC 60950-1、 IEC 61010-1 和 IEC 60601-1 认证
 - 符合 EN/UL/CSA 60950-1 审批的 TUV 5kV_{RMS} 增强 绝缘
 - 符合 GB4843.1-2011 的 CQC 增强绝缘

2 应用

- CAN 数据总线
- 工业现场网络
- 楼字和温室环境控制自动化
- 安防系统
- 运输
- 医疗
- 电信

3 概述

CA-IS3062 是一款隔离式控制区域网络(CAN)物理层收发器,同时内部集成隔离式 DC-DC 转换器。符合ISO11898-2 标准的技术规范。此器件采用片上二氧化硅(SiO₂)电容作为隔离层,在 CAN 协议控制器和物理层总线之间创建一个完全隔离的接口,配合内部集成的隔离式 DC-DC,可隔绝噪声和干扰并防止损坏敏感电路。

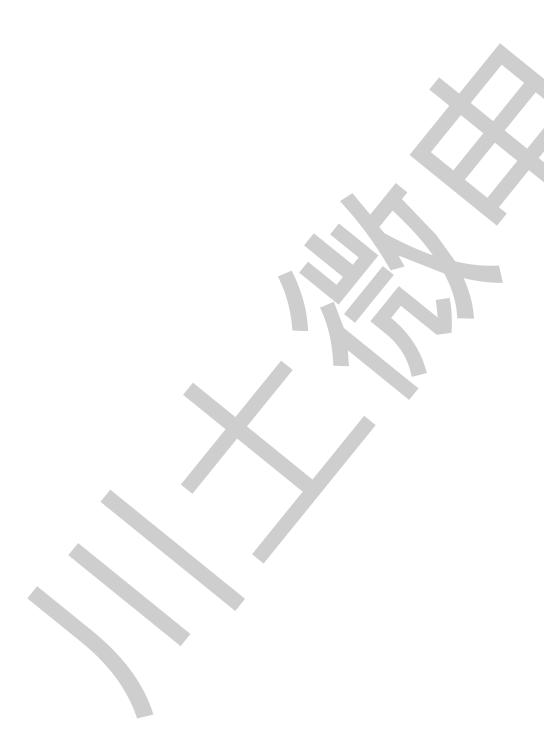

CA-IS3062 采用 SOIC 表面贴片封装形式,将 2 通道数字隔离器,CAN 收发器以及隔离式 DC-DC 集成化,芯片全局仅需要逻辑侧一个 5V 电源,实现了全隔离式 CAN 收发器方案。

CA-IS3062 可为 CAN 协议控制器和物理层总线分别提供差分接收和差分发射能力,信号传输速率最高可达 1 Mbps。该器件具有限流、过压和总线故障保护(-40 V至 40 V)以及热关断功能,可防止输出短路,共模电压范围为-12 V至 12 V。CA-IS3062 额定温度范围为-40°C至 125°C,提供宽体 SOIC16 封装。

器件信息

器件型号	封装	封装尺寸(标称值)
CA-IS3062	SOIC16-WB(W)	10.30 mm × 7.50 mm

简化功能框图



4 订购指南

表 4-1 有效订购零件编号

型号	ν _{cc} (ν)	传输速度(kbps)	额定耐压(V _{RMS})	封装
CA-IS3062W	4.5~5.5	1000	5000	SOIC16-WB

\blacksquare	=
Н	
ш	> N
	<i>></i> 1\

1	产品	!特性	1
2	应用]	1
3	概述	<u> </u>	1
4	订购	指南	2
5	修订	「历史	3
6	引脚	配置和功能描述	4
7	产品	规格	5
	7.1	绝对最大额定值 ¹	5
	7.2	ESD 额定值	5
	7.3	建议工作条件	5
	7.4	热阻特性	5
	7.5	隔离特性	6
	7.6	相关安全认证	7
	7.7	电气特性	
	7.8	时序特性:器件	9
	7.9	时序特性:驱动器和接收器	9

8	测	试电路.		10
9	功	能描述.		13
	9.1	概述	<u> </u>	13
	9.2	CAN	总线状态	13
	9.3	保护	功能	13
		9.3.1	信号隔离	
		9.3.2	主动态超时功能	
		9.3.3	热关断保护	13
		9.3.4	限流保护	14
	9.4	器件	功能真值表	14
10		应用电	路	15
11	4	封装信	息	17
	SOI	C16 宽体	外形尺寸	17
12		编带	言息	18
12		计响信	自	19

5 修订历史

Preliminary Version

6 引脚配置和功能描述

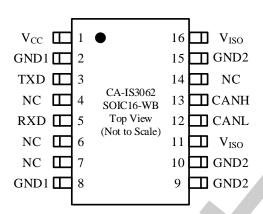


图 6-1 引脚配置

表 6-1 引脚功能描述

引脚名称	引脚编号	类型	描述
J1 144 12 101	SOIC16	大宝)III/L
V _{CC}	1	电源	逻辑侧电源输入
GND1	2	地	逻辑侧地
TXD	3	输入	驱动器输入数据
NC	4	无	不连接,请勿连接该引脚
RXD	5	输出	接收器输出数据
NC	6	无	不连接,请勿连接该引脚
NC	7	无	不连接,请勿连接该引脚
GND1	8	地	地,逻辑侧
GND2	9	地	地,总线侧
GND2	10	地	地,总线侧
V _{ISO}	11	电源	总线侧隔离电源输出,请将 PIN11 与 PIN16 在 PCB 上连接在一起
CANL	12	输入/输出	低电平 CAN 电压输入 / 输出
CANH	13	输入/输出	高电平 CAN 电压输入 / 输出
NC	14	无	不连接,请勿连接该引脚
GND2	15	地	地,总线侧
V _{ISO}	16	电源	总线侧隔离电源输出,请将 PIN11 与 PIN16 在 PCB 上连接在一起

CHIPANALOG

7 产品规格

7.1 绝对最大额定值 1

	参数	最小值	最大值	单位
V _{CC} 或 V _{iso}	电源电压 2	-0.5	6.0	V
V _I	逻辑侧输入电压(TXD)	-0.5	$V_{CC} + 0.5^3$	V
V _{CANH} 或 V _{CANL}	总线侧电压(CANH,CANL)	-40	40	V
Io	接收器输出电流	-15	15	mA
T _J	结温		150	°C
T _{STG}	存储温度范围	-65	150	°C

备注:

- 1. 等于或超出上述绝对最大额定值可能会导致产品永久性损坏。这只是额定最值,并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下,推断产品能否正常工作。长期在超出最大额定值条件下工作会影响产品的可靠性。
- 2. 所有输入/输出逻辑电压相对于逻辑侧地 GND1 测量,差分总线电压相对于总线侧地 GND2 测量。
- 3. 最大电压不得超过 6 V。

7.2 ESD 额定值

		数值	単位
V _{ESD} 静电放电	人体模型(HBM),根据 ANSI/ESDA/JEDEC JS-001,所有引脚 ¹	±5000	V
V _{ESD} 静电放电	器件充电模型(CDM),根据 JEDEC specification JESD22-C101,所有引脚 ²	\pm 2000	V
备注:			

- 1. JEDEC 文件 JEP155 规定 500V HBM 可通过标准 ESD 控制过程实现安全制造。
- 2. JEDEC 文件 JEP157 规定 250V CDM 允许使用标准 ESD 控制过程进行安全制造。

7.3 建议工作条件

	参数		最小值	典型值	最大值	单位	
V _{cc}	逻辑侧电源电压		4.5	5	5.5	V	
V _I 或 V _{IC}	总线引脚电压(单端或共模)		-12		12	V	
V _{IH}	输入高电压	驱动器(TXD)	2		V _{CC} + 0.3	V	
V _{IL}	输入低电压	驱动器(TXD)	-0.3		0.8	V	
V _{ID}	差分输入电压		-7		7	V	
	输出高电平电流	驱动器(Driver)	-70			m A	
Іон	制出向电 十电流	接收器(Receiver)	-2			- mA	
	输出低电平电流	驱动器(Driver)			70	- mA	
I _{OL}		接收器(Receiver)			2.5		
T _A	环境温度		-40		125	°C	
TJ	结温		-40		150	°C	
P _D	总功耗	V _{CC} = 5.5V, T _A = 125°C, R _L = 60Ω, TXD 输 入信号是 500 kHz 的方波(50%占空比)			900	mW	
T _{J(shutdown)}	热关断温度 1			165		°C	
备注:	备注:						

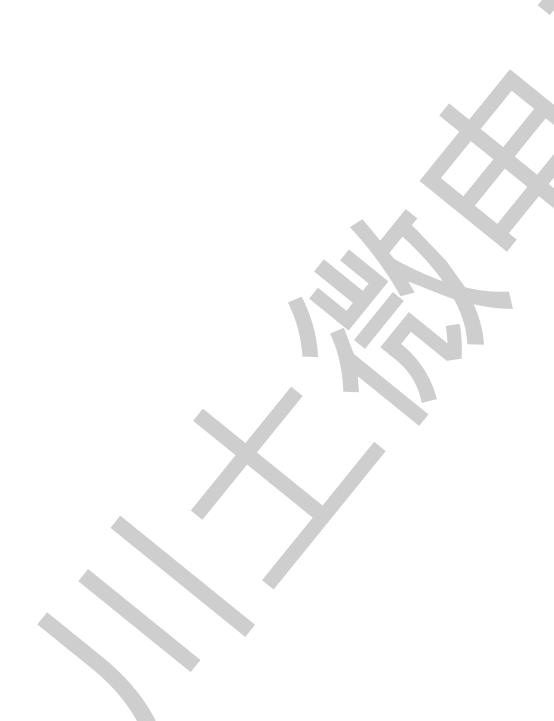
7.4 热阻特性

	热量表	SOIC16-WB	单位
R _{0JA}	芯片结到环境的热阻	86.5	°C/W

7.5 隔离特性

	参数	测试条件	数值	单位
CLR	外部气隙(间隙) ¹	测量输入端至输出端,隔空最短距离	8	mm
CPG	外部爬电距离 1	测量输入端至输出端,沿壳体最短距离	8	mm
DTI	隔离距离	最小内部间隙 (内部距离)	21	μm
CTI	相对漏电指数	DIN EN 60112 (VDE 0303-11); IEC 60112	>400	V
	材料组	依据 IEC 60664-1	1	
		额定市电电压≤ 300 V _{RMS}	I-IV	
	IEC 60664-1 过压类别	额定市电电压≤ 400 V _{RMS}	I-IV	1
		额定市电电压 ≤ 600 V _{RMS}	I-III	
DIN V VI	DE V 0884-11:2017-01 ²			
V _{IORM}	最大重复峰值隔离电压	交流电压(双极)	849	V _{PK}
	最大工作隔离电压	交流电压; 时间相关的介质击穿 (TDDB) 测试	600	V_{RMS}
V_{IOWM}	取八工下層內电压	直流电压	849	V_{DC}
		V _{TEST} = V _{IOTM} ,		
V_{IOTM}	最大瞬态隔离电压	t = 60 s (认证);	7070	V _{PK}
		$V_{TEST} = 1.2 \times V_{IOTM}$	7070	V PK
		t=1s(100%产品测试)		
V _{IOSM}	最大浪涌隔离电压3	测试方法 依据 IEC 60065, 1.2/50 μs 波形,	6250	V _{PK}
• 103IVI	ACONTRAINING STATE	$V_{TEST} = 1.6 \times V_{IOSM}$	0200	
		方法 a, 输入/输出安全测试子类 2/3 后,	_	
		$V_{\text{ini}} = V_{\text{IOTM}}, t_{\text{ini}} = 60 \text{ s};$	≤5	
		$V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10 \text{ s}$		
_	表尔内 <i>类 4</i>	方法 a, 环境测试子类 1 后,	. F	
q_{pd}	表征电荷 4	$V_{\text{ini}} = V_{\text{IOTM}}, t_{\text{ini}} = 60 \text{ s};$	≤5	pC
		V _{pd(m)} = 1.6 × V _{IORM} , t _m = 10 s Method b1, 常规测试 (100% 生产测试) 和前期 预处理		
		V _{ini} = 1.2 × V _{IOTM} , t _{ini} = 1 s;	≤5	
		$V_{\text{pd(m)}} = 1.875 \times V_{\text{IORM}}, t_{\text{m}} = 1.5$	33	
C _{IO}	栅电容,输入到输出 ⁵	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$	~0.5	pF
9 10	1944 C D J 11107 + 2-3 T D D C D	$V_{10} = 500 \text{ V}, T_A = 25^{\circ}\text{C}$	>1012	Ρ'
R _{IO}	绝缘电阻 5	$V_{10} = 500 \text{ V}, 12.25 \text{ C}$ $V_{10} = 500 \text{ V}, 100^{\circ}\text{C} \le T_A \le 125^{\circ}\text{C}$	>10 ¹¹	Ω
10	. 5.13	V _{IO} = 500 V at T _S = 150°C	>109	1
	污染度		2	
UL 1577			L	1
.,	月十四亩中口	V _{TEST} = V _{ISO} , t = 60 s (认证),	5000	.,
V_{ISO}	最大隔离电压	V _{TEST} = 1.2 × V _{ISO} , t = 1 s (100%生产测试)	5000	V_{RMS}

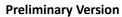
备注:


- 1. 根据应用的特定设备隔离标准应用爬电距离和间隙要求。注意保持电路板设计的爬电距离和间隙距离,以确保印刷电路板上隔离器的安装焊盘不会缩短该距离。在某些情况下印刷电路板上的爬电距离和间隙变得相等。诸如在印刷电路板上插入凹槽的技术用于帮助增加这些规格。
- 2. 该标准仅适用于安全等级内的安全电气绝缘。应通过适当的保护电路确保符合安全等级。
- 3. 测试在空气或油中进行,以确定隔离屏障的固有浪涌抗扰度。
- 4. 表征电荷是由局部放电引起的放电电荷(pd)。
- 5. 栅两侧的所有引脚连接在一起,形成双端子器件。

上海川土微电子有限公司

7.6 相关安全认证

VDE(申请中)	CSA(申请中)	UL(申请中)	CQC(申请中)	TUV(申请中)
根据 DIN V VDE V 0884-	根 据 IEC60950-1, IEC	UL1577 器件认证程序认证	根据 GB4843.1-2011 认证	根据 EN61010-1:2010 (3rd
11:2017-01 认证	62368-1 和 IEC 60601-1 认			Ed)和 EN 60950-
	证			1:2006/A2:2013 认证



7.7 电气特性

除非另有说明,所有电压均参照其各自的地, $4.5\,V \le V_{CC} \le 5.5\,V$ 。所有最小 / 最大值规格适用于整个建议工作范围。除非另有说明,所有规格在 T_A =-40°C 至 125°C、 $V_{CC} = 5\,V$ 情况下测得。

	参数		测试条件	最小值	典型值	最大值	单位	
供电电流	i						7	
	逻辑侧供电电流	主动态	V _I = 0 V, R _L = 60 Ω, 进入主动态保护	14	20	29	mA	
I _{VCC}	被动态		$V_I = V_{CC}$	14	20	29	IIIA	
隔离电源								
V_{ISO}	驱动侧隔离供电电压	无负载	I _{ISO} =0mA	4.65	5.05	5.47	V	
驱动器								
$V_{O(D)}$	总线输出电压(主动	CANH	 V _I = 0 V,R _L = 60 Ω;见图 8-1 图 8-2	2.9	3.4	4.5	V	
	态)	CANL		0.5		2		
$V_{O(R)}$	总线输出电压 (被动态)		V _I = 2 V,R _L = 60 Ω;见图 8-1 图 8-2	2	2.5	3	V	
$V_{OD(D)}$	差分输出电压(主动态)		V _I = 0 V,R _L = 60 Ω;见图 8-1 图 8-2 图 8-3	1.5		3	V	
V OD(D)	左刀 棚田 电压 (工		V _I = 0 V,R _L = 45 Ω;见图 8-1 图 8-2 图 8-3	1.3		3	V	
$V_{OD(R)}$	差分输出电压(被动态)		V _I = 3 V,R _L = 60 Ω;见图 8-1 图 8-2	-80		80	mV	
V OD(R)			V _I = 3 V,无负载	-0.5		0.05	V	
$V_{OC(D)}$	共模输出电压 (主动态)		- 见图 8-7	2	2.5	3	V	
$V_{OC(pp)}$	共模输出电压峰峰值		光闰 0-7		60		mV	
I _{IH}	高电平输入电流,TXD 输入		V _I = 2 V			20	μΑ	
I _{IL}	低电平输入电流,TXD 输入		V _I = 0.8 V	-20			μΑ	
			V _{CANH} = -12 V,CANL 开路; 见图 8-10	105	-72			
1	短路稳态输出电流		V _{CANH} = 12 V,CANL 开路; 见图 8-10		0.36	1	mA	
I _{OS(SS)}	次下时 4.95 安县的 ETT 4.25 ADD		V _{CANL} = -12 V, CANH 开路; 见图 8-10	-1	-0.5			
			V _{CANL} = 12 V,CANH 开路; 见图 8-10		71	105		
CMTI	共模瞬态抗扰度		V _I = 0 V 或者 V _{CC} ; 见图 8-11	100	150		kV/μs	
接收器				_				
V _{IT+}	正向输入阈值电压				0.8	0.9	V	
V _{IT-}	负向输入阈值电压			0.5	0.65		V	
V_{HYS}	输入电压迟滞窗口			50	125		mV	
V _{OH}	输出高电压, $V_{cc} = 5 V$		I _{OH} = -4 mA; 见图 8-6	V _{CC} - 0.8	4.8		V	
			J _{OH} = -20 μA; 见图 8-6	V _{CC} - 0.1	5		V	
V _{OL}	输出低电压		l _{он} = 4 mA;见图 8-6		0.2	0.4	V	
			IOH = 20 μA;见图 8-6		0	0.1	V	
Cı	CANH、CANL 对地输入电容		TXD 为 3V,VI = 0.4xsin(2πft) + 2.5 V,		13		pF	
			f = 1MHz		13		рі	
C_{ID}	输入差分电容		TXD 为 3V,VI = 0.4xsin(2πft), f = 1MHz		5		pF	
R _{IN}	CANH、CANL 输入电阻		TXD 为 3V	28	32	36	kΩ	
R_{ID}	差分输入电阻		TXD 为 3V	56	62	68	kΩ	
R _{I(m)}	输入电阻匹配(1 - [R _{IN(CANH)} /	R _{IN(CANL)}])	$V_{CANH} = V_{CANL}$	-5%	0%	5%		
CMTI	共模瞬态抗扰度		V _I = 0 V 或者 V _{CC} ; 见图 8-11	100	150		kV/μs	

上海川土微电子有限公司

CHIPANALOG

时序特性:器件 7.8

除非另有说明,所有电压均参照其各自的地, 4.5 V ≤ V_{CC} ≤ 5.5 V。所有最小/最大值规格适用于整个建议工作范围。除非另有说明,所有规格在 T_A =-40°C 至 125°C、V_{cc} = 5 V 情况下测得。

	参数	测试条件	最小值	典型值	最大值	単位
t _{loop1}	总环路延时,驱动器输入到接收器输出,被动态到主动态	见图 8-8	110	150	210	ns
t _{loop2}	总环路延时,驱动器输入到接收器输出,主动态到被动态	光图 0-0	110	150	210	ns

7.9 时序特性:驱动器和接收器

除非另有说明,所有电压均参照其各自的地,4.5 V ≤ V_{CC} ≤ 5.5 V。所有最小/最大值规格适用于整个建议工作范围。除非另有说明,所有规格在 T_A =-40°C 至 125°C、V_{cc} = 5 V 情况下测得。

- 40 C I 1	23 C, VCC - 3 V 1A DL 1 100 N3 N3 6					
	参数	测试条件	最小值	典型值	最大值	単位
驱动器					_	
t _{PLH}	传播延时,输出从被动态变为主动态		35	75	130	
t _{PHL}	传播延时,输出从主动态变为被动态	- - 见图 8-4	35	55	100	ns
t _r	差分输出信号上升时间	人图 6-4		40	60	ns
t _f	差分输出信号下降时间			40	60	
t _{TXD_DTO} ¹	主动态超时时间	C _L = 100 pF; 见图 8-9	300	450	700	μs
接收器						
t _{PLH}	传播延时,输出由低电平变为高电平		55	110	140	
t _{PHL}	传播延时,输出由高电平变为低电平	可因のの	55	80	140	
t _r	输出信号上升时间	- 见图 8-6		2.5	6	ns
t _f	输出信号下降时间			2.5	6	1
反注						

备注:

一旦驱动器进入主动态的时间超过 t_{TXD_DTO} ,主动态超时功能会关断驱动器从而释放总线进入被动态,防止总线被本地锁死一直处 1. 于主动态。驱动器只有进入被动态后才能恢复传输主动态的功能。

8 测试电路

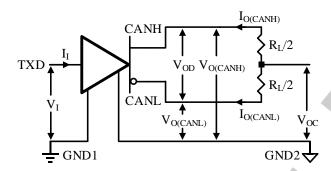


图 8-1 驱动器电压和电流定义

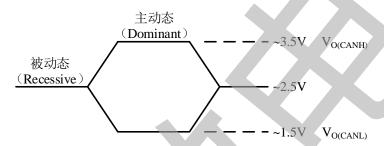


图 8-2 总线逻辑态电压定义

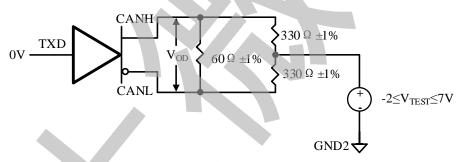
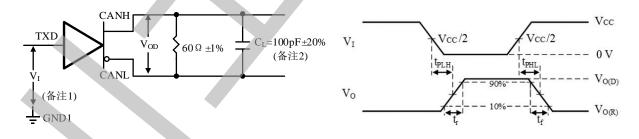



图 8-3 驱动器 Vop 电压带共模负载测量电路

备注

- 1. 信号源产生的输入脉冲有如下要求:脉冲重复率 PRR \leq 125 kHz,50%占空比,上升时间 $t_r \leq$ 6 ns,下降时间 $t_r \leq$ 6 ns,输出阻抗 $Z_0 = 50~\Omega$;
- 2. 负载电容 CL包括仪器和夹具的寄生电容。

图 8-4 驱动器测量电路和电压波形

CHIPANALOG

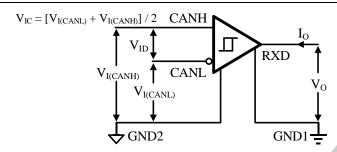
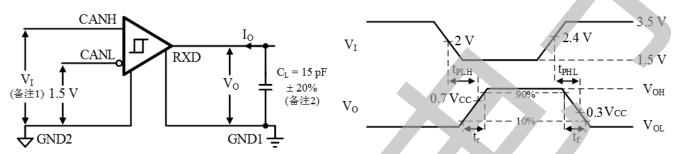



图 8-5 接收器电压和电流定义

备注:

- 1. 信号源产生的输入脉冲有如下要求:脉冲重复率 PRR ≤ 125 kHz,50%占空比,上升时间 t_r ≤ 6 ns,下降时间 t_r ≤ 6 ns,输出阻抗 Z_0 = 50 Ω ;
- 2. 负载电容 CL包括仪器和夹具的寄生电容。

图 8-6 接收器测量电路和电压波形

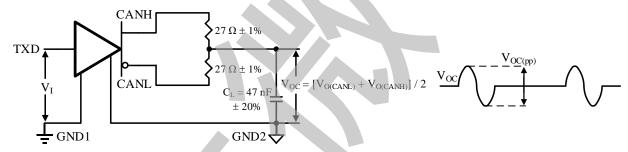


图 8-7 共模输出电压峰峰值测量电路和波形

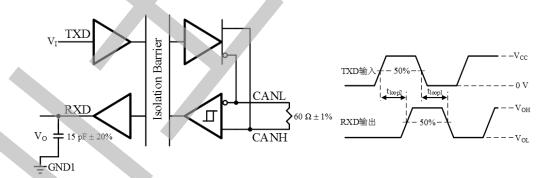
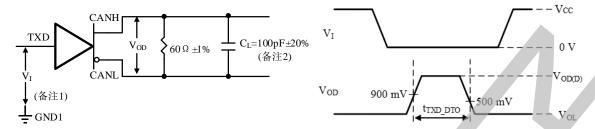



图 8-8 tloop 测量电路和电压波形

备注:

- 1. 信号源产生的输入脉冲有如下要求:上升时间 $t_r \le 6$ ns,下降时间 $t_r \le 6$ ns,输出阻抗 $t_0 = 50$ Ω;
- 2. 负载电容 CL包括仪器。

图 8-9 主动态超时功能测量电路和电压波形

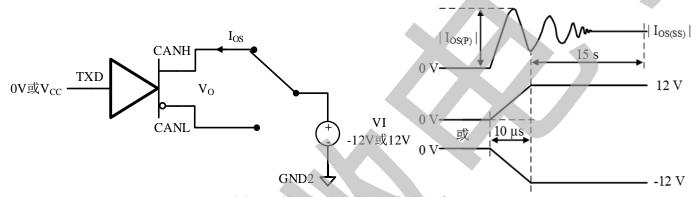


图 8-10 输出短路电流测量电路和波形

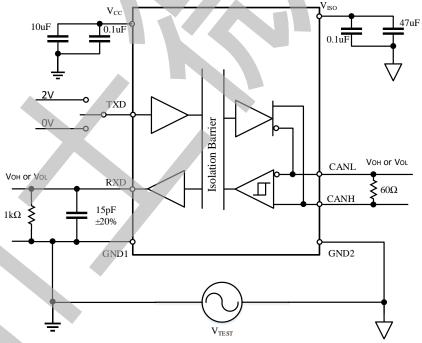


图 8-11 共模瞬态抗扰测量电路

CHIPANALOG

9 功能描述

9.1 概述

CA-IS3062 是隔离式控制器区域网络(CAN)物理层收发器系列芯片,支持 5 kV_{RMS} 隔离耐压等级,共模瞬态抗扰度大于 150 kV/μs,集成有主动态超时功能和热关断保护。该器件逻辑侧可以使用 5 V 电源供电,总线侧由内部集成的隔离 DC-DC 提供 5 V 电源供电,适用于环境恶劣的工业控制场合。

9.2 CAN 总线状态

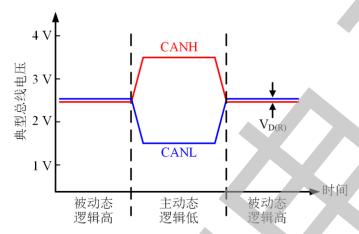


图 9-1 CAN 总线状态典型波形

CAN 总线有主动和被动两种状态: 当 CANH 和 CANL 之间的差分电压大于 0.9 V 时,总线呈主动态; 当 CANH 和 CANL 之间的差分电压小于 0.5 V 时,总线呈被动态。当总线处于主动态时,CANH 引脚处于高电平状态,CANL 引脚处于低电平状态; 当总线处于被动态时,CANH 和 CANL 引脚均处于高阻状态。典型的总线电压波形如图 9-1 所示。

9.3 保护功能

9.3.1 信号隔离

CA-IS3062 信号隔离是通过基于电容隔离方案的数字隔离器实现的,在逻辑侧通过数字隔离器采用开关键控(On-Off Key,OOK)调制方式将输入信号调制到高频然后通过起隔离耐压作用的片上二氧化硅电容,在总线侧数字隔离器部分电路将接收到的信号恢复然后转换成符合标准的电平输出至 CAN 总线。同理,总线侧的电平被总线侧电路处理后同样通过数字隔离器调制到高频然后传输回逻辑侧,然后在逻辑侧解调恢复输出至 RXD。逻辑侧和总线侧的地完全可以分开,并通过片上二氧化硅电容实现高达 5 kV_{RMS} 的隔离耐压等级,确保了实际使用时微控制器和高压总线之间信号传输的完整性和安全性。

9.3.2 主动态超时功能

CA-IS3062 具有主动态超时功能,防止 TXD 因为软件或者硬件故障一直被下拉到低电平,造成总线持续进入主动态从而被锁死(阻断整个网络通信)。主动态超时功能通过使用一个计数器,在 TXD 输入信号的负边沿发生期间被触发,当 TXD 的低电平持续时间长于主动态超时时间 t_{TXD_DTO} 时,收发器会被关断,此时总线被释放并进入被动态。在 TXD 输入信号的正边沿期间,计数器会被置位。

9.3.3 热关断保护

CA-IS3062 集成有热关断保护功能,可在过温情况下对器件内部电路进行保护。如果器件的结温超过热关断温度 T_{J(shutdown)},驱动器会被关断,从而阻断 TXD 到总线的信号传输路径,典型的热关断温度为 165°C。当器件结温低于热关断温度后,驱动器会被重新使能。

9.3.4 限流保护

CA-IS3062 集成有限流保护功能,可防止总线侧输出短路至电源或地瞬间过流对器件造成损坏,注意限流保护一旦发生会产生较大的电流,从而带来较大损耗。

9.4 器件功能真值表

表 9-1 真值表缩略语

字母	描述
Н	高电平
L	低电平
X	无关
Z	高阻 (美)
?	不确定
Open	开路

表 9-2 驱动器功能真值表

输入	输	出	总线状态
TXD	CANH	CANL	图象从他
L	Н	L	主动态
H 或 Open	Z	Z	被动态

表 9-3 接收器功能真值表

CAN 总线差分输入 V _{ID} = V _{CANH} - V _{CANL}	总线状态	RXD
0.9 V ≤ V _{ID}	主动态	L
0.5 V < V _{ID} < 0.9 V	?	?
V _{ID} ≤ 0.5 V	被动态	н
Open (V _{ID} ≈ 0 V)	Open	н

表 9-4 收发器功能真值表

	驱动	力器	接收器			
输入	输	出	总线状态	差分输入	RXD 输出	总线状态
TXD	CANH	CANL	E STACES	$V_{ID} = V_{CANH} - V_{CANL}$	なり間田	心线状态
L	H	L	主动态	$0.9 \text{ V} \leq \text{V}_{\text{ID}}$	L	主动态
Н	Z	Z	被动态	$0.5 \text{ V} < \text{V}_{\text{ID}} < 0.9 \text{ V}$?	?
Open	Z	Z	被动态	$V_{ID} \le 0.5 \text{ V}$	Н	被动态
Х	Z	Z	被动态	Open	Н	被动态

10 应用电路

此器件需要外部 VCC 电容($0.1\mu F$, $10\mu F$),VISO($0.1\mu F$, $47\mu F$)电容即可工作。在布局上 VCC 电容和 VISO 需要尽量靠近芯片的供电管脚。建议在设计线路图时,VISO 处电容使用 $47\mu F$ 电容。

图 10-1 和图 10-2 是 CA-IS3062 的典型应用电路。

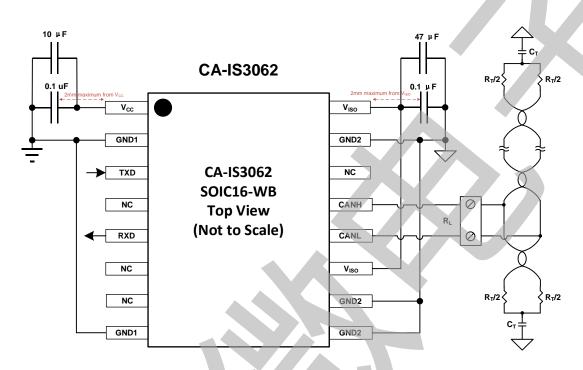
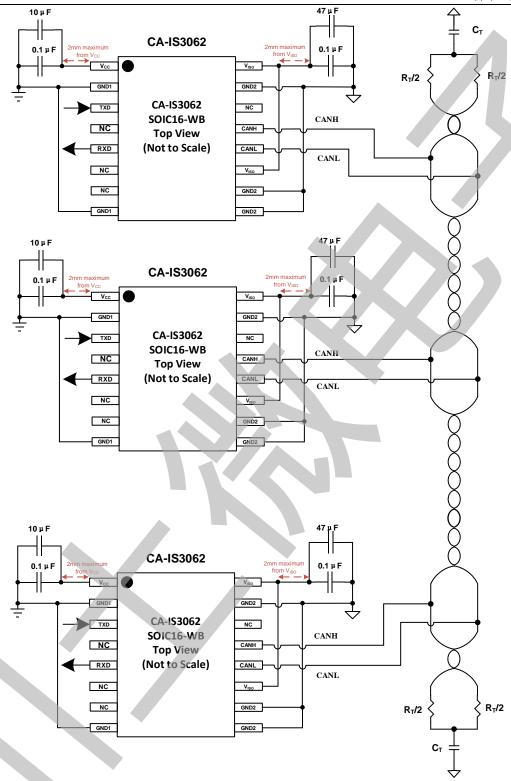



图 10-1 CA-IS3062 典型应用电路

备注:

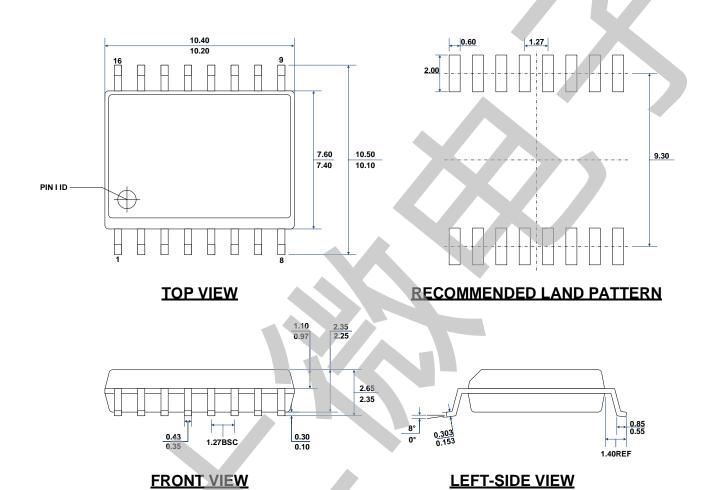
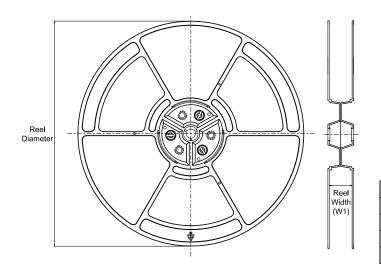

- R_τ 是 CAN 总线的特征阻抗 ;
- 2. CA-IS3062 支持 CAN 总线上挂 110 个节点设备。

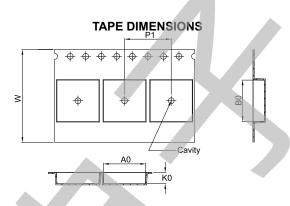
图 10-2 CA-IS3062 典型应用电路

11 封装信息

SOIC16 宽体外形尺寸

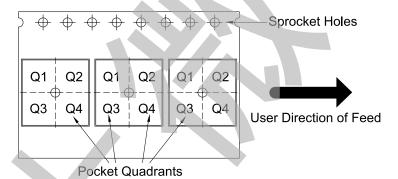
下图说明了 CA-IS3062 隔离式 CAN 收发器采用 SOIC16 宽体封装大小尺寸图和建议焊盘尺寸图。尺寸以毫米为单位。





12 编带信

REEL DIMENSIONS


息

Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	KO (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3062W	SOIC	W	16	1000	330	24.4	10.8	10.7	2.9	12.0	24.0	Q1

上海川土微电子有限公司

13 订购信息

Ordera Devic	Status ¹	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp(°C)	Device Marking	Samples
CA- IS3062	N PREVIEW	SOIC	w	16	1000				-40 to 125		

1. The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY:CA has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but CA does not recommend using this part in new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE:CA has discontinued the production of the device.

重要声明

上述资料仅供参考使用,用于协助 Chipanalog 客户进行设计与研发。Chipanalog 有权在不事先通知的情况下,保留因技术革新而改变上述资料的权利。

Chipanalog 产品全部经过出厂测试。针对具体的实际应用,客户需负责自行评估,并确定是否适用。Chipanalog 对客户使用所述资源的授权仅限于开发所涉及 Chipanalog 产品的相关应用。除此之外不得复制或展示所述资源,如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,Chipanalog 对此概不负责。

商标信息

Chipanalog Inc.®、Chipanalog®为 Chipanalog 的注册商标。

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Chipanalog manufacturer:

Other Similar products are found below:

CA-HP6025S CA-HP6041S CA-HP6050S CA-IF1021D-Q1 CA-IF10283S-Q1 CA-IF10285S-Q1 CA-IF1042LS-Q1 CA-IF1042LVS-Q1 CA-IF1042S-Q1 CA-IF1043DF-Q1 CA-IF1043NF-Q1 CA-IF1044D-Q1 CA-IF1044S-Q1 CA-IF1044VS-Q1 CA-IF1051HS CA-IF1051S CA-IF1051S-Q1 CA-IF1051VS CA-IF1051VS-Q1 CA-IF4023 CA-IF4220NF CA-IF4288 CA-IF4289 CA-IF4420S CA-IF4805HS CA-IF4820FD CA-IF4820FS CA-IF4820HD CA-IF4820HM CA-IF4820HS CA-IF4850HS CA-IF4888HS CA-IS1200G CA-IS1200U CA-IS1204W CA-IS1300B25G CA-IS1300B25G-Q1 CA-IS1300G25G CA-IS1305AM25W CA-IS1305M25W CA-IS1306AM25W CA-IS1306M25G CA-IS1311G CA-IS2062VW CA-IS2062W CA-IS2082B CA-IS2092A CA-IS2092VW CA-IS2092W