JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD Ultra Fast High PSRR Low Noise CMOS Voltage Regulators

CJ6211 Series

■ INTRODUCTION

The CJ6211 series are a group of positive voltage regulators manufactured by CMOS technologies with high ripple rejection, ultra low noise, low power consumption and low dropout voltage, which can prolong battery life in portable electronics. The CJ6211 work with low-ESR ceramic series capacitors, reducing the amount of board space necessary for power applications. The CJ6211 series consume less than 0.1µA in shutdown mode and have fast turn-on time less than 50µs. The series are very suitable for the battery-powered equipments, such as RF applicationsand other systems requiring a quiet voltage source.

APPLICATIONS

- Cellular and Smart Phones
- Laptop, Palmtops and PDA
- Digital Still and Video Cameras

BLOCK DIAGRAM

FEATURES

- High Ripple Rejection: 80dB@1kHz
- Low Dropout Voltage: 55mV@100mA
- Low Quiescent Current: 50µA
- Excellent Line and Load Transient Response
- Operating Voltage Range: 1.8V ~ 6.0V
- Output Voltage Range: 0.8V ~ 5.0V
- High Accuracy: ±2% (Typ.)
- Built-in Current Limiter, Short-Circuit
 Protection
- TTL- Logic-Controlled Shutdown Input

- Portable Audio Video Equipments
- Radio control systems
- Battery-Powered Equipments

ORDER INFORMATION

CJ6211(1)2(3)(4)

DESIGNATOR	SYMBOL	DESCRIPTION
_	Α	Standard
1	В	High Active, pull-down resistor built in, with C _{OUT} discharge resistor
23	Integer	Output Voltage e.g.1.8V=②:1, ③:8
	Ν	Package:SOT-23
4	М	Package:SOT-23-3L/5L
	F	Package:DFNWB1x1-4L

PIN CONFIGURATION

PIN N	UMBER			
SOT-23	SOT-23-3L	PIN NAME	FUNCTION	
N	М			
1	1	V _{SS}	Ground	
2	2	V _{OUT}	Output	
3	3	V _{IN}	Power input	

SOT-23-5L

PIN NUMBER	SYMBOL	FUNCTION
Μ	STWIDOL	FUNCTION
1	V _{IN}	Power Input Pin
2	Vss	Ground
3	CE	Chip Enable Pin
4	NC	No Connection
5	V _{OUT}	Output Pin

DFNWB1×1-4L

PIN NUMBER	SYMBOL	EUNCTION	
F	STWIDOL	FUNCTION	
1	V _{OUT}	Output Pin	
2	V _{SS}	Ground	
3	CE	Chip Enable Pin	
4	V _{IN}	Power Input Pin	

■ TYPICAL APPLICATION

■ ABSOLUTE MAXIMUM RATINGS⁽¹⁾ (Unless otherwise specified. T_A=25°C)

(011100 01	nerwise specified, TA-25	•)		
PARAMETER		SYMBOL	RATINGS	UNITS
Input Voltage ⁽²⁾		V _{IN}	-0.3~7	V
Output Voltage ⁽²⁾		Vout	-0.3~V _{IN} +0.3	V
Output Current		lout	700	mA
	SOT-23		0.3	W
Power	SOT-23-3L/SOT-23-5L	P _D	0.4	W
Dissipation	DFNWB1×1-4L		0.3	W
Operating free air temperature range		T _A	-40~85	°C
Operating Junction Temperature Range ⁽³⁾		TJ	-40~125	°C
Storage Temperature		T _{stg}	-40~125	°C
Lead Temperature(Soldering, 10 sec)		T _{solder}	260	°C
ESD rating ⁽⁴⁾		Human Body Model(HBM)	2	kV
		Machine Model(MM)	200	V

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

(2) All voltages are with respect to network ground terminal.

(3) This IC includes over temperature protection that is intended to protect the device during momentary overload. Junction temperature will exceed 125°C when over temperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

(4) ESD testing is performed according to the respective JESD22/JEDEC standard. The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pFcapacitor discharged directly into each pin.

PARAMETER		NOM.	MAX.	UNITS
Supply Voltage at V _{IN}	1.8		6	V
Operating Junction Temperature Range, T _j	0		125	°C
Operating Free Air Temperature Range, T _A	0		85	°C

■ RECOMMENDED OPERATING CONDITIONS

Electrical Characteristics

PARAME	ſER	SYMBOL	CONDITIONS	MIN.	TYP. ⁽³⁾	MAX.	UNITS
Output Vol	tage	V _{OUT} (E) ⁽⁴⁾	I _{OUT} =1mA	Vout ⁽⁵⁾	Vout ⁽⁵⁾	Vout ⁽⁵⁾	V
Supply Cu	rrent	Iss	I _{ОUT} =0		50	90	μA
Standby Cu	ırrent	I _{STBY}	CE = V _{SS}		0.1	1	μA
Outrout Out			V _{OUT} ≥1.8V	500	700		
Output Cu	rrent	Ι _{Ουτ}	V _{OUT} ≥0.8V	300	500		mA
Dropout Vo	ltage	V _{DO} ⁽⁶⁾	V _{OUT} = 3.3V I _{OUT} =100mA		55		mV
Load Regul	ation	<u> </u>	V _{IN} = V _{OUT} +1V		1		mV
Line Degui	-4'	ΔV _{OUT}	I _{OUT} =10mA		0.01	0.0	0/ \/
Line Regula	alion	$\overline{V_{OUT} \times \Delta V_{IN}}$	V _{OUT} +1V≤V _{IN} ≤6V		0.01	0.2	%/V
Output Vol	tage	ΔV _{OUT}	I _{OUT} =10mA		50		nnm
Temperat	ure	$\Delta T \times V_{OUT}$	-40≤T≤+85°C		50		ppm
Short Cur	rent	I _{Short}	V _{OUT} =V _{SS}		100		mA
Input Volta	age	V _{IN}	—	1.8		6.0	V
Dowor Supply	100Hz				75		
Power Supply	1kHz	PSRR	I _{OUT} =50mA		80		dB
Rejection Rate	10kHz	-			70		
CE "High" Voltage		V _{CE} "H"		1.5		V _{IN}	V
CE "Low" Voltage		V _{CE} "L"				0.3	V
Thermal Shutdown		T _{SD}			160		°C
Thermal Shu	tdown	ΔT_{SD}			20		°C
Cout Auto-Dis	charge	RDISCHRG	V _{IN} =5V		100		Ω

$(V_{IN}=V_{OUT}+1V, C_{IN}=C_{OUT}=1\mu F, T_A=25^{\circ}C, unless otherwise specified)$

(3) Typical numbers are at 25°C and represent the most likely norm.

(4) V_{OUT} (E): Effective output voltage (I.e. The output voltage when $V_{IN} = (V_{OUT} + 1.0V)$ and maintain a certain I_{OUT} value).

(5) V_{OUT} : Specified output voltage.

(6) V_{DO} : Test the difference of output voltage and input voltage when input voltage is decreased gradually till output voltage equals to 98% of V_{OUT} (E).

 $(V_{CE} = V_{IN} = V_{OUT} + 1V, C_{IN} = 1\mu F, C_{OUT} = 1\mu F, T_A = 25^{\circ}C, unless otherwise specified)$

C_{OUT} Auto-Discharge Function

CJ6211 series can discharge the electric charge in the output capacitor (C_{OUT}), when a low signal to the CE pin, which enables a whole IC circuit turn off, is inputted via the Nchannel transistor located between the V_{OUT} pin and the V_{SS} pin (cf. BLOCK DIAGRAM). The C_{OUT} auto-discharge resistance value is set at 60 Ω (V_{OUT}=3.0V @ V_{IN}=5.0V at typical). The discharge time of the output capacitor (C_{OUT}) is set by the C_{OUT} autodischarge resistance (R) and the output capacitor (C_{OUT}). By setting time constant of a C_{OUT} auto-discharge resistance value [R_{DISCHRG}] and an output capacitor value (C_{OUT}) as $\tau(\tau=C \times R_{DISCHRG})$, the output voltage after discharge via the N-channel transistor is calculated by the following formulas.

 $V=V_{OUT(E)} \times e^{-t/T}$ or $t=\tau ln(V/V_{OUT(E)})$

(V : Output voltage after discharge, $V_{OUT(E)}$: Output voltage, t: Discharge time,

 τ : C_{OUT} auto-discharge resistance R_{DISCHRG}×Output capacitor (C_{OUT}) value C)

SOT-23 Package Outline Dimensions

	I		I	
Symbol	Dimensions I	n Millimeters	Dimensior	ns In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950	TYP.	0.037 TYP.	
e1	1.800	2.000	0.071	0.079
L	0.550 REF.		0.022	2 REF.
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

SOT-23 Suggested Pad Layout

- 1. Controlling dimension: in millimeters.
- 2. General tolerance: ±0.05mm.
- 3. The pad layout is for reference purposes only.

SOT-23-3L Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensior	ns In Inches
Symbol	Min.	Max.	Min.	Max.
А	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	2.650	2.950	0.104	0.116
E1	1.500	1.700	0.059	0.067
е	0.950(BSC)		0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-23-3L Suggested Pad Layout

- 1. Controlling dimension: in millimeters.
- 2. General tolerance: ±0.05mm.
- 3. The pad layout is for reference purposes only.

SOT-23-5L Package Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimension	ns In Inches
	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	2.650	2.950	0.104	0.116
E1	1.500	1.700	0.059	0.067
е	0.950(BSC)		0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-23-5L Suggested Pad Layout

- 1. Controlling dimension: in millimeters.
- 2. General tolerance: ±0.05mm.
- 3. The pad layout is for reference purposes only.

DFNWB1*1-4L Package Outline Dimensions

TOP VIEW

BOTTOM VIEW

Symbol	Dimensions I	n Millimeters	Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	0.320	0.400	0.013	0.016
A1	0.000	0.050	0.000	0.002
A2	0.10	0 REF.	0.0	04 REF.
D	0.950	1.050	0.037	0.041
Е	0.950	1.050	0.037	0.041
D1	0.430	0.530	0.017	0.021
E1	0.430	0.530	0.017	0.021
k	0.150	MIN.	0.006MIN.	
b	0.180	0.280	0.007	0.011
е	0.650TYP.		0.02	бТҮР.
L	0.200	0.300	0.008	0.012
L1	0.200	0.300	0.008	0.012

DFNWB1*1-4L Suggested Pad Layout

- 1. Controlling dimension: in millimeters.
- 2. General tolerance: ±0.05mm.
- 3. The pad layout is for reference purposes only.

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Changjing Electronics Technology manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB BA033LBSG2-TR LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z MIC5281-3.3YMM MC78L06BP-AP TA48LS05F(TE85L,F) TA78L12F(TE12L,F) TC47BR5003ECT TCR2LN12,LF(S TCR2LN28,LF(S TCR2LN30,LF(S TCR3DF295,LM(CT TCR3DF40,LM(CT BA178M20CP-E2 L78M12ABDT LM7812SX/NOPB LR645N3-G-P003 LR645N3-G-P013 ZXTR2005P5-13 SCD7812BTG TCR3DF335,LM(CT ZXTR2012K-13 TLE42994E V33 ZXTR2008K-13 ZXTR2005K-13 L88R05DL-E ADP3300ARTZ-2.7RL7 LM120K-15/883 IFX54441LDVXUMA1 LM317D2T-TR