

40A TRIACS

BTA41-600/800/1200/1600 TOP3 Plastic Package

BTA41 series triacs, with high ability to withstand the shock loading of large current, provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrants products especially recommended for use on inductive load.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Storage junction temperature range	T _{stg}	-40 to 150	°C
Operating junction temperature range	T _j	-40 to 125	°C
Repetitive peak off-state voltage (T _j =25°C)	V_{DRM}	600/800/1200/1600	V
Repetitive peak reverse voltage (T _j =25°C)	V _{RRM}	600/800/1200/1600	V
Non repetitive surge peak Off-state voltage	V _{DSM}	V _{DRM} +100	V
Non repetitive peak reverse voltage	V _{RSM}	V _{RRM} +100	V
RMS on-state current (T _C =80°C)	I _{T(RMS)}	40	А
Non repetitive surge peak on-state current (full cycle, F=50Hz)	I _{TSM}	400	А
I ² t value for fusing (t _p =10ms)	l ² t	880	A ² s
Critical rate of rise of on-state current $(I_G = 2 \times I_{GT})$	dI/dt	50	A/µs
Peak gate current	I _{GM}	4	А
Average gate power dissipation	P _{G(AV)}	1	W
Peak gate power	P _{GM}	10	W

ELECTRICAL CHARACTERISTICS $(T_j=25^{\circ}c \text{ unless otherwise specified})$

3 Quadrants

PARAMETER	TEST CONDITIONS	SYMBOL	QUADRANT		VALUES	UNITS
Gate Trigger Current		I _{GT}	I - II - III	MAX	50	mA
Gate Trigger Voltage	VD =12V RL =33Ω	V _{GT}	I - II - III	MAX	1.3	V
Off-State Gate Voltage	$V_D = V_{DRM} T_j = 125^{\circ}C R_L$ =3.3K Ω	V_{GD}	I - II - III	MIN	0.2	V
Latching Current I _G =1.2I _{GT}		IL	I - III II	MAX	80 100	mA
Holding Current	I _T =100mA	I _H		MAX	60	mA
Critical Rate of Rise of Off-State Voltage	$V_D = 2/3V_{DRM}$ Gate Open T_j =125°C	dV/dt		MIN	1000	V/µs
	Without snubber T _j =125°C	(dV/dt)c		MIN	20	V/µs

4 Quadrants

PARAMETER	TEST CONDITIONS	SYMBOL	QUADRANT		VALUES	UNITS
Gate Trigger Current		I _{GT}	I - II - III IV	MAX	50 70	mA
Gate Trigger Voltage	$V_D = 12V R_L = 33\Omega$	V _{GT}	ALL	MAX	1.5	V
Off-State Gate Voltage	$V_D = V_{DRM} T_j = 125$ °C R _L = 3.3K Ω	V_{GD}	ALL	MIN	0.2	V
Latching Current I _G =1.2I _{GT}		IL	I - III - IV II	MAX	90 100	mA
Holding Current	I _T =100mA	I _H		MAX	80	mA
Critical Rate of Rise of Off-State Voltage	$V_D = 2/3V_{DRM}$ Gate Open $T_j = 125$ °C	dV/dt		MIN	500	V/µs
	Without snubber T _j =125°C	(dV/dt)c		MIN	30	V/µs

STATIC CHARACTERISTICS

PARAMETER	TEST CONDITIONS		SYMBOL	VALUE (MAX)	UNITS		
On-State Voltage	I_{TM} =60A t_p =380 μ s	T _j =25°C	V_{TM}	1.55	V		
Off-State Leakage Current	$V_D = V_{DRM} V_R = V_{RRM}$	T _j =25°C	I _{DRM}	10	μA		
		T _i =125°C	I _{RRM}	5	mA		

THERMAL RESISTANCES

PARAMETER	SYMBOL	VALUE (MAX)	UNITS
junction to case(AC)	R _{th(i-c)}	0.9	°C/W

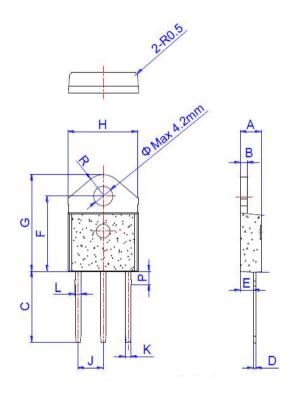
ORDERING INFORMATION

BTA 41 - 600 BW

(a) (b)

(a) = 600: VDRM/VRRM ≥ 600

= 800: VDRM/VRRM ≥ 800

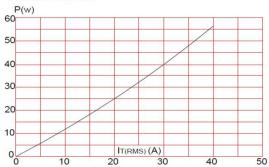

= 1200: VDRM/VRRM ≥ 1200

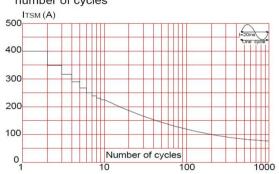
= 1600: VDRM/VRRM ≥ 1600

(b) = BW: I_{GT3} ≤ 50mA

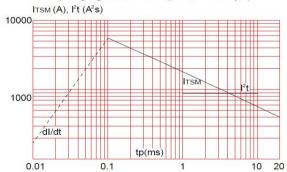
= B: I_{GT1-3} ≤ 50mA I_{GT4} ≤ 70mA

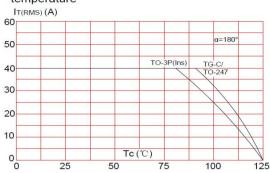
TOP3 PACKAGE OUTLINE AND DIMENSION

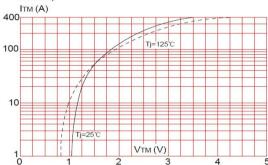

				Dime	ensions		
	Ref.	Millimeters			Inches		
		Min.	Тур.	Max.	Min.	Тур.	Max.
	Α	4.40		4.60	0.173	2	0.181
İ	В	1.45		1.55	0.057		0.061
-	С	14.35		15.60	0.565		0.614
	D	0.50		0.70	0.020		0.028
	E	2.70		2.90	0.106	(2)	0.114
	F	15.80		16.50	0.622		0.650
	G	20.40		21.10	0.803	5.9	0.831
	Н	15.10		15.50	0.594		0.610
	J	5.40		5.65	0.213		0.222
ĺ	K	1.10		1.40	0.043		0.055
ĺ	L	1.35		1.50	0.053		0.059
ĺ	Р	2.80		3.00	0.110		0.118
	R		4.35			0.171	



CHARACTERISTIC CURVES


FIG.1 Maximum power dissipation versus RMS on-state current


FIG.3: Surge peak on-state current versus number of cycles


FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I²t (dI/dt < 50A/µs)

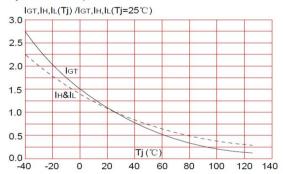

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

DISCLAIMER

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of
Continental Device India Pvt. Limited
C-120 Naraina Industrial Area, New Delhi 110 028, India.
Telephone + 91-11-2579 6150, 4141 1112 Fax + 91-11-2579 5290, 4141 1119
email@cdil.com www.cdil.com
CIN No. U32109DL1964PLC004291

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by CDIL manufacturer:

Other Similar products are found below:

T2035H-6G BT137-600-0Q Z0409MF0AA2 Z0109NA 2AL2 ACST1635T-8FP BCR20RM-30LA#B00 CMA60MT1600NHR NTE5611

NTE5612 NTE5613 NTE5621 NTE5623 NTE5629 NTE5638-08 NTE5688 NTE5689 NTE5690 T1235T-8I BTA312-600CT.127 T1210T
8G-TR Z0109NN0,135 T2535T-8I T2535T-8T TN4050-12WL MAC4DLM-1G BT137-600E,127 BT137X-600D BT148W-600R,115

BT258-500R,127 BTA08-800BW3G BTA140-800,127 BTA30-600CW3G BTA30-600CW3G BTB08-800BW3G BTB16-600CW3G

BTB16-600CW3G Z0410MF0AA2 Z0109MN,135 T825T-6I T1635T-6I T1220T-6I NTE5638 TYN612MRG TYN1225RG TPDV840RG

ACST1235-8FP ACS302-6T3-TR BT134-600D,127 BT134-600G,127 BT136X-600E,127