

v07.0421

Typical Applications

Prescaler for DC to X Band PLL Applications:

- Satellite Communication Systems
- Fiber Optic
- Point-to-Point and Point-to-Multi-Point Radios
- VSAT

Functional Diagram

HMC363S8G / 363S8GE

SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 12 GHz

Features

Ultra Low SSB Phase Noise: -153 dBc/Hz Wide Bandwidth Output Power: -6 dBm Single DC Supply: +5V S8G SMT Package

General Description

The HMC363S8G & HMC363S8GE are low noise Divide-by-8 Static Dividers with InGaP GaAs HBT technology in 8 lead surface mount plastic packages. This device operates from DC (with a square wave input) to 12 GHz input frequency with a single +5V DC supply. The low additive SSB phase noise of -153 dBc/Hz at 100 kHz offset helps the user maintain good system noise performance.

Electrical Specifications, $T_A = +25^{\circ}$ C, 50 Ohm System, Vcc= 5V

Parameter	Conditions	Min.	Тур.	Max.	Units
Maximum Input Frequency		12	13		GHz
Minimum Input Frequency	Sine Wave Input. [1]		0.2	0.5	GHz
Input Power Range	Fin = 1 to 7 GHz	-15	>-20	+10	dBm
	Fin = 7 to 11 GHz	-10	>-15	+2	dBm
	Fin = 11 to 12 GHz	-5	>-8	0	dBm
Output Power	Fin = 12 GHz	-9	-6		dBm
Reverse Leakage	Both RF Outputs Terminated		65		dB
SSB Phase Noise (100 kHz offset)	Pin = 0 dBm, Fin = 6 GHz		-153		dBc/Hz
Output Transition Time	Pin = 0 dBm, Fout = 882 MHz		100		ps
Supply Current (Icc)			70		mA

1. Divider will operate down to DC for square-wave input signal.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v07.0421

Input Sensitivity Window, T= 25 °C

Output Power vs. Temperature

Output Harmonic Content, Pin= 0 dBm, T= 25 °C

HMC363S8G / 363S8GE

SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 12 GHz

SSB Phase Noise Performance, Pin= 0 dBm, T= 25 °C

Reverse Leakage, Pin= 0 dBm, T= 25 °C

v07.0421

Absolute Maximum Ratings

RF Input (Vcc = +5V)	+13 dBm
Vcc	+5.5V
Channel Temperature	135 °C
Continuous Pdiss (T=85°C) (derate 13.7 mW/°C above 85°C)	680 mW
Thermal Resistance (channel to ground paddle)	73.2 C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	64
5.0	70
5.25	75

Note: Divider will operate over full voltage range shown above

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 12 GHz

v07.0421

Outline Drawing

Dimensions shown in millimeters.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC363S8G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	HMC363 XXXX
HMC363S8GTR	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	HMC363 XXXX
HMC363S8GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	HMC363 XXXX
HMC363S8GETR	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	HMC363 XXXX
104631- HMC363S8G	Eval Board			

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 $^\circ\text{C}$

[3] 4-Digit lot number XXXX

v07.0421

SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 12 GHz

Pin Description

Pin Number	Function	Description	Interface Schematic
1	NOUT	Divided output 180° out of phase with pin 3.	OUT
2, 6	N/C	No connection. These pins must not be grounded.	
3	OUT	Divided Output.	
4	VCC	Supply voltage 5V \pm 0.25V.	5V 25 $50=$ $=$
5	IN	RF Input must be DC blocked.	50 IN
7	NIN	RF Input 180° out of phase with pin 5 for differential operation. A/C ground for single ended operation	50 5V
8, paddle	GND	Backside of package has exposed metal ground slug which must be connected to ground.	

Application Circuit

SMT GaAs HBT MMIC DIVIDE-BY-8, DC - 12 GHz

v07.0421

Evaluation PCB

List of Materials for Evaluation PCB 104631 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
C1 - C4	100 pF Capacitor, 0402 Pkg.
C5	1000 pF Capacitor, 0603 Pkg.
C6	10 µF Tantalum Capacitor
U1	HMC363S8G / HMC363S8GE Divide-by-8
PCB [2]	104627 Eval Board

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request. This evaluation board is designed for single ended input testing. J2 and J3 provide differential output signals.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Prescaler category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

UXD20P UXN14M9P MX1DS10P UXC20P UXN14M32K HMC492LP3TR HMC434TR HMC433TR HMC394LP4TR MC12093MNR4G NB7N017MMNG HMC437MS8GTR HMC434SRJZ-EP-PT HMC365S8G HMC362S8G ADF5000BCPZ ADF5001BCPZ ADF5002BCPZ HMC988LP3ETR HMC361G8 HMC361S8G HMC361S8GETR HMC363G8 HMC363S8G HMC363S8GETR HMC365G8 HMC365S8GETR HMC394LP4ETR HMC437MS8G HMC447LC3 HMC447LC3TR HMC492LP3ETR HMC492LP3 HMC493LP3E HMC433 HMC432ETR HMC434ETR HMC434E HMC432 HMC432E HMC794LP3E HMC859LC3 HMC983LP5E HMC438MS8GTR ADMV2101BRHZ UXM15P HMC437MS8GETR HMC438MS8G HMC438MS8GE HMC438MS8GETR