



## GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 7.5 - 26.5 GHz

### Typical Applications

This HMC962LC4 is ideal for:

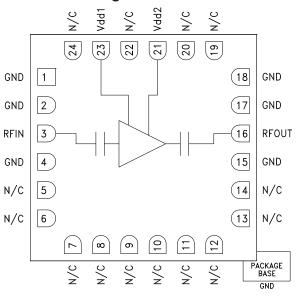
- · Point-to-Point Radios
- · Point-to-Multi-Point Radios
- Military & Space
- · Test Instrumentation

#### **Features**

Low Noise Figure: 2.5 dB

Gain: 13 dB

P1dB Output Power: 13 dBm


Single Supply Voltage: +3.5V @ 70mA

Output IP3: +23 dBm

50 Ohm matched Input/Output

24 Lead 4x4 mm SMT Package: 16mm<sup>2</sup>

#### **Functional Diagram**

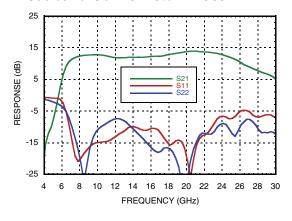


#### **General Description**

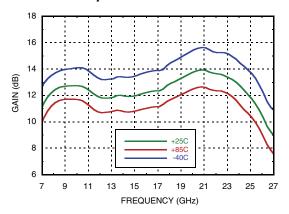
The HMC962LC4 is a self-biased GaAs MMIC Low Noise Amplifier housed in a leadless 4x4 mm ceramic surface mount package. The amplifier operates between 7.5 and 26.5 GHz, providing 13 dB of small signal gain, 2.5 dB noise figure, and output IP3 of +23 dBm, while requiring only 70 mA from a +3.5 V supply. The P1dB output power of +13 dBm enables the LNA to function as a LO driver for balanced, I/Q or image reject mixers. The HMC962LC4 also features I/Os that are DC blocked and internally matched to 50 Ohms, making it ideal for high capacity microwave radios and VSAT applications.

## Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd1 = Vdd2 = +3.5V, Idd = 70 mA

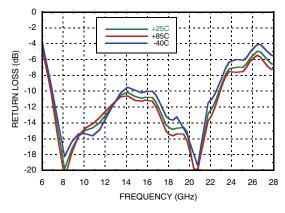
| Parameter                                                | Min. | Тур.     | Max. | Min. | Тур.    | Max. | Min. | Тур.      | Max. | Units |
|----------------------------------------------------------|------|----------|------|------|---------|------|------|-----------|------|-------|
| Frequency Range                                          |      | 7.5 - 10 |      |      | 10 - 24 |      |      | 24 - 26.5 |      | GHz   |
| Gain                                                     | 10   | 12       |      | 10   | 13      |      | 8    | 10        |      | dB    |
| Gain Variation over Temperature                          |      | 0.027    |      |      | 0.024   |      |      | 0.024     |      | dB/°C |
| Noise Figure [1]                                         |      | 2.5      | 3.7  |      | 2.5     | 3    |      | 2.7       | 3.7  | dB    |
| Input Return Loss                                        |      | 13       |      |      | 10      |      |      | 7         |      | dB    |
| Output Return Loss                                       |      | 10       |      |      | 12      |      |      | 11        |      | dB    |
| Output Power for 1 dB Compression                        |      | 10       |      |      | 12      |      |      | 13        |      | dBm   |
| Saturated Output Power (Psat)                            |      | 14       |      |      | 15      |      |      | 15        |      | dBm   |
| Output Third Order Intercept (IP3)                       |      | 22       |      |      | 23      |      |      | 25        |      | dBm   |
| Supply Current (ldd)<br>(Vdd = 3.5V, Vgg1 = Vgg2 = Open) |      | 70       | 95   |      | 70      | 95   |      | 70        | 95   | mA    |


[1] Board loss subtracted out.

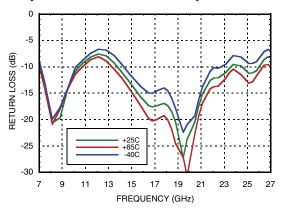




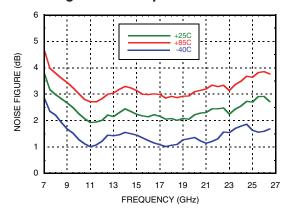

# GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 7.5 - 26.5 GHz


#### **Broadband Gain & Return Loss**

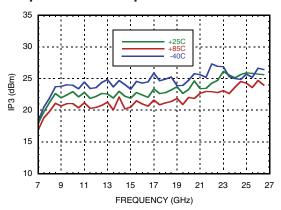



#### Gain vs. Temperature




## Input Return Loss vs. Temperature




#### **Output Return Loss vs. Temperature**

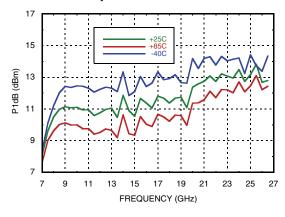


#### Noise Figure vs. Temperature [1]

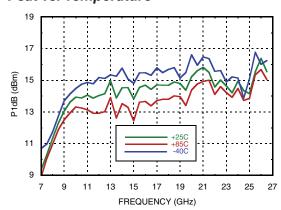


#### Output IP3 vs. Temperature

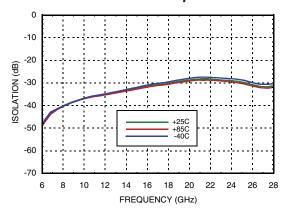



[1] Board loss subtracted out.

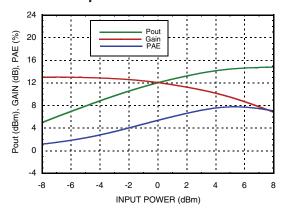




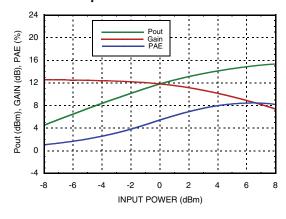

# GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 7.5 - 26.5 GHz


#### P1dB vs. Temperature

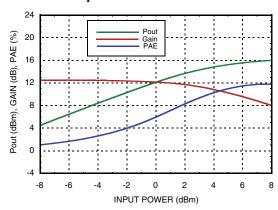



#### Psat vs. Temperature




#### Reverse Isolation vs. Temperature



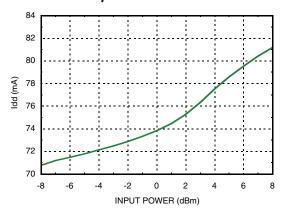

#### **Power Compression @ 10 GHz**



#### **Power Compression @ 17 GHz**



#### **Power Compression @ 24 GHz**





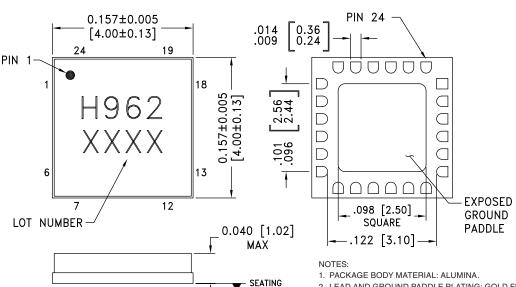



# GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 7.5 - 26.5 GHz

#### Current vs. Input Power @ 17 GHz



#### **Absolute Maximum Ratings**


| Drain Bias Voltage                                              | +4V            |
|-----------------------------------------------------------------|----------------|
| RF Input Power                                                  | +10 dBm        |
| Channel Temperature                                             | 150 °C         |
| Continuous Pdiss (T = 85 °C)<br>(derate 5.97 mW/°C above 85 °C) | 0.39 W         |
| Thermal Resistance (Channel to ground paddle)                   | 167.6 °C/W     |
| Storage Temperature                                             | -65 to +150 °C |
| Operating Temperature                                           | -40 to +85 °C  |
| ESD Sensitivity (HBM)                                           | Class 1A       |



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

#### **Outline Drawing**

#### **BOTTOM VIEW**



PLANE

C-

- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER NICKEL.
- 3. DIMENSIONS ARE IN INCHES (MILLIMETERS).
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM C -
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

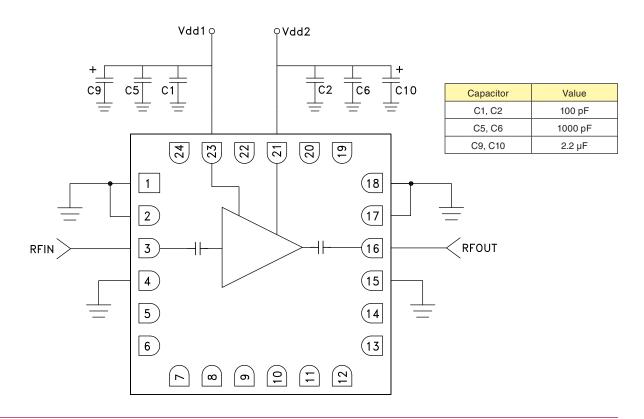
## Package Information

| Part Number | Package Body Material | Lead Finish      | MSL Rating          | Package Marking [2] |
|-------------|-----------------------|------------------|---------------------|---------------------|
| HMC962LC4   | Alumina, White        | Gold over Nickel | MSL3 <sup>[1]</sup> | H962<br>XXXX        |

<sup>[1]</sup> Max peak reflow temperature of 260  $^{\circ}\text{C}$ 

<sup>[2] 4-</sup>Digit lot number XXXX



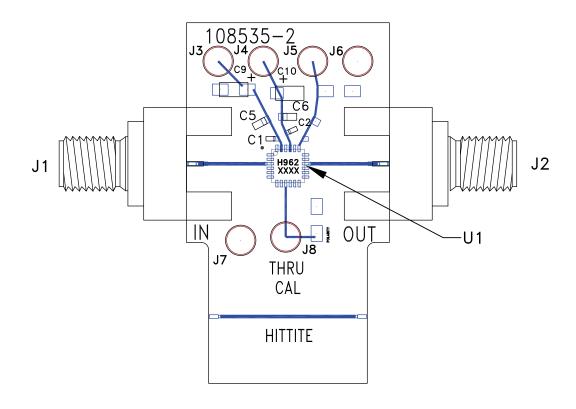



# GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 7.5 - 26.5 GHz

### **Pin Descriptions**

| Pin Number                | Function   | Description                                                                                              | Interface Schematic |
|---------------------------|------------|----------------------------------------------------------------------------------------------------------|---------------------|
| 1, 2, 4,<br>15, 17, 18    | GND        | These pins and package bottom must be connected to RF/DC ground.                                         | ○ GND<br>=          |
| 3                         | RFIN       | This pin AC coupled and matched to 50 Ohms                                                               | RFIN O—             |
| 5 - 14, 19,<br>20, 22, 24 | N/C        | No connection necessary. These pins may be connected to RF/DC ground. Performance will not be affected.  |                     |
| 16                        | RFOUT      | This pin AC coupled and matched to 50 Ohms                                                               | RFOUT               |
| 21, 23                    | Vdd1, Vdd2 | Power supply voltages for the amplifier. Bypass capacitors are required. See application circuit herein. | Vdd1,2              |

## **Application Circuit**








# GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 7.5 - 26.5 GHz

#### **Evaluation PCB**



#### List of Material for Evaluation PCB EVAL01-HMC962LC4 [1]

| Item    | Description                  |
|---------|------------------------------|
| J1, J2  | 2.92 mm Connectors           |
| J3 - J8 | DC Pin                       |
| C1, C2  | 100 pF Capacitor, 0402 Pkg.  |
| C5, C6  | 1000 pF Capacitor, 0603 Pkg. |
| C9, C10 | 2.2 µF Capacitor, Tantalum   |
| U1      | HMC962LC4 Amplifier          |
| PCB [2] | 108535 Evaluation PCB        |

<sup>[1]</sup> Reference this number when ordering complete evaluation PCB

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

<sup>[2]</sup> Circuit Board Material: Rogers 4350 or Arlon 25FR

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4
EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT#
MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2
EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4
MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1
SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB