

DEMO MANUAL DC1822B

LTC3861EUHE High Current, Dual Output Synchronous Buck Converter

DESCRIPTION

Demonstration circuit 1822B is a dual output synchronous buck converter featuring the LTC®3861EUHE. The board provides two outputs of 1.5V/25A and 1.2V/25A from an input voltage of 7V to 14V at a switching frequency of 500kHz. The power stage consists of a 6mm × 6mm DrMOS and a 13mm × 13mm iron powder type inductor. An on-board 5V LT®3470 buck regulator provides the 5V bias for the LTC3861 and the DrMOS.

The demo board uses a high density, two sided drop-in layout. The power components, excluding the bulk output and input capacitors, fit within a $1.5" \times 1.2"$ area on the top layer. The control circuit fits in a $1.1" \times 1.0"$ area on the bottom layer. The package style for the LTC3861EUHE is a 36-lead 5mm × 6mm QFN.

All registered trademarks and trademarks are the property of their respective owners.

The main features of the board are:

- Remote sensing for each output, where the divider is placed before a high input impedance differential amplifier.
- CLKIN and CLKOUT pins.
- Optional resistors to tie the two outputs together.
- Connector and header to tie two or more boards together for up to 12-phase operation.
- Optional footprint for an LTC4449 gate driver and discrete MOSFETs.
- Optional footprint for a dual phase Delta power block.

Design files for this circuit board are available.

PERFORMANCE SUMMARY ($T_A = 25^{\circ}C$), no airflow

PARAMETER	CONDITION	VALUE
Minimum Input Voltage		7V
Maximum Input Voltage		14V
Output Voltage V _{OUT1}	I _{OUT1} = 0A to 25A, V _{IN} = 7V to 14V	1.5V ±2%
Output Voltage V _{OUT2}	I_{OUT2} = 0A to 25A, V_{IN} = 7V to 14V	1.2V ±2%
V _{OUT1} Maximum Output Current, I _{OUT1}	V _{IN} = 7V to 14V, V _{OUT1} = 1.5V	25A
V _{OUT2} Maximum Output Current, I _{OUT2}	V _{IN} = 7V to 14V, V _{OUT2} = 1.2V	25A
Nominal Switching Frequency		500kHz
Efficiency	V _{OUT1} = 1.5V, I _{OUT1} = 25A, V _{IN} = 12V	91.6% Typical
(See Figure 2 and Figure 3)	V _{0UT2} = 1.2V, I _{0UT2} = 25A, V _{IN} = 12V	90.7% Typical

Note: The DC1828B demo circuit and manual replaces the DC1828A. The demo board was modified slightly.

Demonstration circuit 1822B is easy to set up to evaluate the performance of the LTC3861EUHE. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below.

1. With power off, connect the input supply, load and meters, as shown in Figure 1. Preset the load to OA and V_{IN} supply to be OV. Place jumpers in the following positions:

JP1	RUN1	ON
JP2	RUN2	ON
JP3	INT BIAS	ON

 Adjust the input voltage to be between 7V to 14V. VOUT1 should be 1.5V ±2%.VOUT2 should be 1.2V ± 2%.

- 3. Next, apply 25A load to each output and re-measure VOUT.
- 4. Once the DC regulation is confirmed, observe the output voltage ripple, load step response, efficiency and other parameters.

NOTE 1. Use the BNC connectors labeled VOUT1 or VOUT2 to measure the output voltage ripple.

NOTE 2. Do not apply the load from the VOS1+ turret to the VOS1- turret or from the VOS2+ turret to the VOS2turret. These are connected to the sense traces for the output voltage. Heavy load currents applied across these turrets may damage these traces.

Figure 1. Proper Measurement Equipment Setup

DYNAMIC LOAD CIRCUIT (OPTIONAL)

- 1. Preset the amplitude of a pulse generator to 0.0V and the duty cycle to 5% or less.
- Connect the scope to the VOUT BNC connectors for the rail under test with a coax cable. To monitor the load step current, connect the scope probe across the ISTEP± turrets for that rail.
- 3. Connect the output of the pulse generator to the PULSE GEN turret for the rail under test and connect the return to one of the GND turrets.
- 4. With the converter running, slowly increase the amplitude of the pulse generator output to provide the desired load step pulse height. The scaling for the load step signal is 10mV/Amp. See Figure 4 and Figure 5 for transient response curves with a 50% load change.

Figure 3. Efficiency Curves for the 1.2V Rail of the DC1822B. f_{SW} = 500kHz with the FDMF6820A DrMOS

Figure 4. Load Step Response of the DC1822B 1.5V Rail at V_{IN} = 12V. C_{OUT} = 3× Sanyo 2R5TPE330M9 || 2× 100 μ F X5R 6.3V 1210, L = 0.47 μ H, f_{SW} = 500kHz

Figure 5. Load Step Response of the DC1822B 1.2V Rail at V_{IN} = 12V. C_{OUT} = 3× Sanyo 2R5TPE330M9 || 2× 100 μ F X5R 6.3V 1210, L = 0.47 μ H, f_{SW} = 500kHz

SINGLE OUTPUT/DUAL PHASE OPERATION

A single output/dual phase converter may be preferred for higher output current applications. The optional components required to tie the phases together are found on the bottom of the schematic shown in Figure 8. To tie the two outputs together, make the following modifications:

- 1. Stuff 0Ω at R36 and R47 to tie the two outputs together.
- 2. Select one rail to be the master.
- If VOUT1 is the master, then stuff 0Ω at R51 to disable the error amplifier for phase 2. Also stuff 0Ω at R52.
- If VOUT2 is the master, then stuff 0Ω at R49 to disable the error amplifier for phase 1. Also stuff 0Ω at R50.
- 3. Remove the 0Ω jumper at R13 and stuff a 100pF capacitor at C14 for the IAVG signal.

- 4. Stuff 0Ω at R53, R48 and R54 to tie the COMP, TRK/SS and RUN pins together.
- 5. Remove the redundant compensation components.

PARALLELING BOARDS

The DC1822B demo boards can be tied together to form a converter with up to 12 phases. To tie the boards together, place the boards side-by-side and then connect the boards by connecting J8 of one board to J9 of the other. This will connect the IAVG, COMP, TRK/SS and signal ground signals together. Next, use copper strips to tie the VOUT planes, the VIN planes and GND planes of the two adjacent boards together. The board has exposed copper along the edges of the board for this purpose. Figure 6 shows how to set up a 4-phase converter and Figure 7 shows how to set up a 3-phase plus single phase converter.

IAVG PIN 4 R13 C14 R42 PHASE MODE SETTING R41 RUN1 TO RUN2 R54 COMP1 T0 COMP2 R53 TRK/SS1 T0 TRK/SS2 R48 FB2 T0 VCC R51 FB1 TO VCC R49 ILIM2 R R24 ILIM2 TO VCC R52 ILIM1 R R17 ILIM1 TO VCC R50

dc1822a F06

Figure 6. Setup of a 4-Phase Converter; Phase 1 of Board 1 is the Master

QUICK START PROCEDURE

NS NS

100pF 100pF

NS

NS NS

g g

gg

GO GO

gg

NS

G G

NS NS

0.0mΩ 0.0mΩ

BOARD #1 BOARD #2

VOUT1 TO VOUT2 R36 & R47 <u>0</u>0

NS NS

STUFF

Rev 0

Vote: Tie GND shapes together on the bottom layer by using the exposed copper along the edge of the board.

dc1822a F07														
NS	100pF	NS	<u>0</u> Ω	NS	NS	NS	SN	00	STUFF	NS	STUFF	NS	NS	BOARD #2
NS	100pF	SN	SN	0 0	0 0	<u>70</u>	0 0	SN	SN	0 0	STUFF	NS	0.0m	BOARD #1
R13	C14	R42	R41	R54	R53	R48	R51	R49	R24	R52	R17	R50	R36 & R47	
PIN	IAVG	TING	SET	RUN2	COMP2	TRK/SS2	VCC	VCC	ILIM2 R	VCC	ILIM1 R	VCC	V0UT2	
		MODE	PHASE	RUN1 TO	COMP1 TO	TRK/SS1 T0	FB2 T0	FB1 T0		ILIM2 TO		ILIM1 TO	VOUT1 TO	

Figure 7. Setup of a 3-Phase Plus Single Phase Converter; Phase 1 of Board 1 Is the Master of the 3-Phase Rail

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
DC18221	3 Requir	ed Circuit Components		
1	4	C1, C7, C8, C9	CAP, 0.22µF, 10%, 25V, X7R, 0603	AVX 06033C224KAT2A
2	2	C1-1, C1-2	CAP, 1500pF, 10%, 50V, GOG, 0603	MURATA,GRM1885C1H152JA01D
3	2	C2-1, C2-2	CAP, 100pF, 5%, 25V, NPO, 0603	AVX 06033A101JAT2A
4	2	C28, C29	CAP, 10µF, 20%, 6.3V, X5R, 0805	AVX 08056D106MAT2A
5	4	C3, C11, C34, C35	CAP, 2.2µF, 10%, 16V, X7R, 0603	MURATA GRM188R61C225KE15D
6	2	C3-1, C3-2	CAP, 3300pF, 10%, 50V X7R, 0603	AVX 06035C332KAT2A
7	1	C6	CAP, 1µF, 20%, 25V, X5R, 0603	AVX 06033D105MAT2A
8	1	CIN2	CAP, 180µF, 20%, 16V, OSCON	SANYO 16SVP180MX
9	4	CIN3, CIN4, CIN5, CIN6	CAP, 22µF, 20%, 16V, X5R, 1210	AVX 1210YD226MAT2A
10	6	COUT1-COUT3, COUT6-COUT8	CAP, 330µF, 20%, 2.5V POSCAP 7343	SANYO 2R5TPE330M9
11	4	COUT4, COUT5, COUT9, COUT10	CAP, 100µF, 20%, 6.3V, X5R, 1210	AVX 12106D107MAT2A
12	2	L1,L2	IND, 0.47µH, 20%	WURTH 744355147
13	2	R1, R45	RES, 18.2k, 1%, 1/10W, 0603	VISHAY CRCW060318K2FKEA
14	4	R11, R18, R39, R43	RES, 10Ω, 1%, 1/10W, 0603	VISHAY CRCW060310R0FKEA
15	2	R17, R24	RES, 53.6k, 1%, 1/10W, 0603	VISHAY CRCW060353K6FKEA
16	2	R2, R25	RES, 2.2Ω, 1%, 1/16W, 0603	VISHAY CRCW06032R20FKEA
17	2	R20, R38	RES, 2.87k, 1%, 1/10W, 0603	VISHAY CRCW06032K87FKEA
18	1	R2-1	RES, 9.76k, 1%, 1/16W, 0603	VISHAY CRCW06039K76FKEA
19	1	R2-2	RES, 9.31k, 1%, 1/16W, 0603	VISHAY CRCW06039K31FKEA
20	3	R3, R16, R26	RES, 1Ω, 1%, 1/10W, 0603	YAGEO RC0603FR-071RL
21	2	R3-1, R3-2	RES, 280Ω, 1%, 1/10W, 0603	VISHAY CRCW0603280RFKEA
22	1	R37	RES, 34k, 1%, 1/10W, 0603	VISHAY CRCW060334K0FKEA
23	2	R8, R44	RES, 100k, 1%, 1/10W, 0603	VISHAY CRCW0603100KFKEA
24	9	R9, R12, R13, R19, R21-R23, R32, R73	RES, 0Ω, JUMPER, 0603	VISHAY CRCW06030000Z0EA
25	11	RB-1, RB-2, RT-2, R1-1, R1-2, R4-R6, R29, R30, R46	RES, 10k, 1%, 1/10W, 0603	VISHAY CRCW060310K0FKEA
26	1	RT-1	RES, 15k, 1%, 1/10W, 0603	YAGEO RC0603FR-0715KL
27	1	U1	I.C., LTC3861EUHE	ANALOG DEVICES LTC3861EUHE#PBF
28	2	U2, U3	MOSFET, DrMOS, DC-DC, 3.3V, PWM	FAIRCHILD FDMF6820A
Addition	al Circui	t Components	1	
1	1	C17	CAP, 0.22µF, 10%, 25V, X7R, 0603	AVX 06033C224KAT2A
2	1	C18	CAP, 1µF, 20%, 25V, X5R, 0603	AVX 06033D105MAT2A
3	1	C19	CAP, 22µF, 20%, 16V, X5R, 1210	AVX 1210YD226MAT2A
4	2	C2, C4, C5, C10, C12-C16, C20, C22- C25, C27, C30-C33	CAP, 0603	OPT
5	1	C21	CAP, 22pF, 10%, 25V, NPO, 0603	AVX 06033A220KAT2A
6	1	C26	CAP, 1µF, 20%, 25V, X5R, 0603	AVX 06033D105MAT2A
7	0	CIN1	CAP, SVP, F8	OPT
8	0	CIN7-CIN14, COUT11-COUT17	CAP, 1210	OPT
9	0	COUT15-COUT17, COUT22-COUT24	CAP, 7343	OPT
10	0	D1	DIODE, BAV170, SOT23	OPT

DEMO MANUAL DC1822B

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
11	0	D2, D3	CMDSH-3	OPT
12	1	L3	IND, 33µH, –53DLC	TOKO A914BYW-330M=P3
13	0	L4	INDUCTOR, -53LDC	OPT
14	0	PB1	DC/DC Converters, D12S1R845A	OPT
15	2	Q1, Q2	MOSFET, 30V N-CHANNEL, DPAK	VISHAY SUD50N03-12P-E3
16	0	Q3, Q4, Q7, Q8	BSC050NE2LS	OPT
17	0	Q5, Q6, Q9, Q10	BSC010NE2LS	OPT
18	0	R10, R14, R15, R27, R28, R31, R33- R35, R41, R42, R47-R55, R62, R64- R67, R69, R71, R72, R74-R81	RES, 0603	OPT
19	2	R56, R58	RES, 10k, 1%, 1/10W, 0603	VISHAY CRCW060310K0FKEA
20	2	R57, R60	RES, 0.010Ω, 1%, 1W, 2010	IRC LRC-LRF2010LF-01-R010-F
21	1	R59	RES, 0Ω, JUMPER, 1206	VISHAY CRCW12060000Z0EA
22	1	R61	RES, 604k, 1%, 1/16W, 0603	VISHAY CRCW0603604KFKEA
23	1	R63	RES, 200k, 1%, 1/16W, 0603	VISHAY CRCW0603200KFKEA
24	1	U4	BUCK REGULATOR, LT3470ETS8	ANALOG DEVICES LT3470ETS8
25	0	U5	BUCK REGULATOR, LT3470ETS8	OPT
26	0	U8, U9	N-CHANNEL MOSFET DRIVER, LTC4449	OPT
Hardwar	e			
1	27	E1-E27	TESTPOINT, TURRET, 0.095"	MILL-MAX 2501-2-00-80-00-00-07-0
2	6	J1-J6	STUD, TEST PIN	PEM KFH-032-10
3	12	J1-J6	NUT, BRASS PL #10-32	ANY #10-32M/S
4	6	J1-J6	RING, LUG #10	KEYSTONE 8205
5	6	J1-J6	WASHER, TIN, PLATED BRASS	ANY
6	2	J7, J10	CON, BNC, 5 PINS	CONNEX 112404
7	1	J8	HEADER, DOBL ROW, RT ANGLE, 2×4, 8 PIN	MILL-MAX 802-10-008-20-001000
8	1	J9	SOCKET, DBL ROW, RT ANGLE, 2×4, 8 PIN	MILL-MAX 803-43-008-20-001000
9	4	JP1, JP2, JP3, JP4	HEADER, 3 PIN, 0.079" SINGLE ROW	SAMTEC TMM-103-02-L-S
10	4	MTGS AT 4 CORNERS	STAND-OFF, NYLON 0.5"	KEYSTONE 8833 (SNAP-ON)
11	4	XJP1, XJP2, XJP3, XJP4	SHUNT, 0.079" CENTER	SAMTEC 2SN-BK-G

SCHEMATIC DIAGRAM

Figure 8. DC1822B Demo Circuit Schematic

Rev 0

SCHEMATIC DIAGRAM

Figure 9. DC1822B Demo Circuit Schematic

SCHEMATIC DIAGRAM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Figure 10. DC1822B Demo Circuit Schematic

DEMO MANUAL DC1822B

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions of stad ad agreed to the Agreement. Your use of the Evaluation Board in which case the Analog Devices Standard Terms and Conditions of stab shall govern. Do not use the Evaluation Board and agreed to the Agreement is made by and between oyu ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board for any other purpose. Furthermore, the license grant agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board is provensity cannot the license grant of the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is not customer; all rights not expressly granted herein, including ownership of the Evaluation Board to reserved by ADI. CONFIDENTALITY. This Agreement and the Evaluation Board or termination of this Agreement, Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination and the Evaluation Board. Customer is ande by the terms and Conditions of alterations or alterations in makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Eva

12

Rev 0

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFLEV MIC5281YMMEEV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ