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FEATURES 
Low offset voltage: 1 μV  
Input offset drift: 0.005 μV/°C  
Rail-to-rail input and output swing  
5 V/2.7 V single-supply operation  
High gain, CMRR, PSRR: 130 dB  
Ultralow input bias current: 20 pA  
Low supply current: 700 μA/op amp  
Overload recovery time: 50 μs  
No external capacitors required 

APPLICATIONS 
Temperature sensors  
Pressure sensors  
Precision current sensing  
Strain gage amplifiers  
Medical instrumentation  
Thermocouple amplifiers 

GENERAL DESCRIPTION 

This family of amplifiers has ultralow offset, drift, and bias 
current. The AD8551, AD8552, and AD8554 are single, dual, 
and quad amplifiers featuring rail-to-rail input and output swings. 
All are guaranteed to operate from 2.7 V to 5 V with a single supply.  

The AD8551/AD8552/AD8554 provide the benefits previously 
found only in expensive auto-zeroing or chopper-stabilized 
amplifiers. Using Analog Devices, Inc. topology, these new 
zero-drift amplifiers combine low cost with high accuracy. No 
external capacitors are required.  

With an offset voltage of only 1 μV and drift of 0.005 μV/°C, the 
AD8551/AD8552/AD8554 are perfectly suited for applications 
in which error sources cannot be tolerated. Temperature, 
position and pressure sensors, medical equipment, and strain 
gage amplifiers benefit greatly from nearly zero drift over their 
operating temperature range. The rail-to-rail input and output 
swings provided by the AD8551/AD8552/AD8554 make both 
high-side and low-side sensing easy.  

The AD8551/AD8552/AD8554 are specified for the extended 
industrial/automotive temperature range (−40°C to +125°C). 
The AD8551 single amplifier is available in 8-lead MSOP and  
8-lead narrow SOIC packages. The AD8552 dual amplifier is 
available in 8-lead narrow SOIC and 8-lead TSSOP surface-
mount packages. The AD8554 quad is available in 14-lead 
narrow SOIC and 14-lead TSSOP packages. 

PIN CONFIGURATIONS 
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Figure 1. 8-Lead MSOP (RM Suffix) 
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Figure 2. 8-Lead SOIC (R Suffix) 
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Figure 3. 8-Lead TSSOP (RU Suffix) 
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Figure 4. 8-Lead SOIC (R Suffix) 
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Figure 5. 14-Lead TSSOP (RU Suffix) 
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Figure 6. 14-Lead SOIC (R Suffix) 
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SPECIFICATIONS 
ELECTRICAL CHARACTERISTICS 
VS = 5 V, VCM = 2.5 V, VO = 2.5 V, TA = 25°C, unless otherwise noted. 

Table 1.  
Parameter  Symbol  Conditions  Min  Typ  Max  Unit 
INPUT CHARACTERISTICS        

Offset Voltage  VOS    1  5  μV  
  −40°C ≤ TA ≤ +125°C    10  μV  
Input Bias Current  IB    10  50  pA  

AD8551/AD8554  −40°C ≤ TA ≤ +125°C   1.0  1.5  nA  
AD8552  −40°C ≤ TA ≤ +85°C   160  300  pA  
AD8552  −40°C ≤ TA ≤ +125°C   2.5  4  nA  

Input Offset Current  IOS    20  70  pA  
AD8551/AD8554  −40°C ≤ TA ≤ +125°C   150  200  pA  
AD8552  −40°C ≤ TA ≤ +85°C   30  150  pA  
AD8552  −40°C ≤ TA ≤ +125°C   150  400  pA  

Input Voltage Range    0   5  V  
Common-Mode Rejection Ratio  CMRR  VCM = 0 V to +5 V  120  140   dB  
  −40°C ≤ TA ≤ +125°C  115  130   dB  
Large Signal Voltage Gain1  AVO  RL = 10 kΩ, VO = 0.3 V to 4.7 V  125  145   dB  
  −40°C ≤ TA ≤ +125°C  120  135   dB  
Offset Voltage Drift  ΔVOS/ΔT −40°C ≤ TA ≤ +125°C   0.005  0.04  μV/°C  

OUTPUT CHARACTERISTICS        
Output Voltage High  VOH  RL = 100 kΩ to GND  4.99  4.998   V  
  RL = 100 kΩ to GND @ −40°C to +125°C  4.99  4.997   V  
  RL = 10 kΩ to GND  4.95  4.98   V  
  RL = 10 kΩ to GND @ −40°C to +125°C  4.95  4.975   V  
Output Voltage Low  VOL  RL = 100 kΩ to V+   1  10  mV  
  RL = 100 kΩ to V+ @ −40°C to +125°C   2  10  mV  
  RL = 10 kΩ to V+   10  30  mV  
  RL = 10 kΩ to V+ @ −40°C to +125°C   15  30  mV  
Output Short-Circuit Limit Current ISC   ±25  ±50   mA  
  −40°C to +125°C   ±40   mA  
Output Current  IO    ±30   mA  
  −40°C to +125°C   ±15   mA  

POWER SUPPLY        
Power Supply Rejection Ratio  PSRR  VS = 2.7 V to 5.5 V  120  130   dB  
  −40°C ≤ TA ≤ +125°C  115  130   dB  
Supply Current/Amplifier  ISY  VO = 0 V   850  975  μA  
  −40°C ≤ TA ≤ +125°C   1000  1075  μA  

DYNAMIC PERFORMANCE        
Slew Rate  SR  RL = 10 kΩ   0.4  V/μs 
Overload Recovery Time     0.05  0.3  ms 
Gain Bandwidth Product  GBP    1.5  MHz 

NOISE PERFORMANCE        
Voltage Noise  en p-p  0 Hz to 10 Hz   1.0   μV p-p 
 en p-p  0 Hz to 1 Hz   0.32   μV p-p 
Voltage Noise Density  en  f = 1 kHz   42   nV/√Hz 
Current Noise Density  in  f = 10 Hz   2   fA/√Hz 

 
1 Gain testing is dependent upon test bandwidth. 
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VS = 2.7 V, VCM = 1.35 V, VO = 1.35 V, TA = 25°C, unless otherwise noted. 

Table 2.  
Parameter  Symbol  Conditions  Min  Typ  Max  Unit  
INPUT CHARACTERISTICS        

Offset Voltage  VOS    1  5  μV  
  −40°C ≤ TA ≤ +125°C    10  μV  
Input Bias Current  IB    10  50  pA  

AD8551/AD8554  −40°C ≤ TA ≤ +125°C   1.0  1.5  nA  
AD8552  −40°C ≤ TA ≤ +85°C   160  300  pA  
AD8552  −40°C ≤ TA ≤ +125°C   2.5  4  nA  

Input Offset Current  IOS    10  50  pA  
AD8551/AD8554  −40°C ≤ TA ≤ +125°C   150  200  pA  
AD8552  −40°C ≤ TA ≤ +85°C   30  150  pA  
AD8552  −40°C ≤ TA ≤ +125°C   150  400  pA  

Input Voltage Range    0   2.7  V  
Common-Mode Rejection Ratio  CMRR  VCM = 0 V to 2.7 V  115  130   dB  
  −40°C ≤ TA ≤ +125°C  110  130   dB  
Large Signal Voltage Gain1  AVO  RL = 10 kΩ, VO = 0.3 V to 2.4 V  110  140   dB  
  −40°C ≤ TA ≤ +125°C  105  130   dB  
Offset Voltage Drift  ΔVOS/ΔT  −40°C ≤ TA ≤ +125°C   0.005  0.04  μV/°C  

OUTPUT CHARACTERISTICS        
Output Voltage High  VOH  RL = 100 kΩ to GND  2.685  2.697   V  
  RL = 100 kΩ to GND @ −40°C to +125°C  2.685  2.696   V  
  RL = 10 kΩ to GND  2.67  2.68   V  
  RL = 10 kΩ to GND @ −40°C to +125°C  2.67  2.675   V  
Output Voltage Low  VOL  RL = 100 kΩ to V+   1  10  mV  
  RL = 100 kΩ to V+ @ −40°C to +125°C   2  10  mV  
  RL = 10 kΩ to V+   10  20  mV  
  RL = 10 kΩ to V+ @ −40°C to +125°C   15  20  mV  
Short-Circuit Limit  ISC   ±10  ±15   mA  
  −40°C to +125°C   ±10   mA  
Output Current  IO    ±10   mA  
  −40°C to +125°C   ±5   mA  

POWER SUPPLY        
Power Supply Rejection Ratio  PSRR  VS = 2.7 V to 5.5 V  120  130   dB  
  −40°C ≤ TA ≤ +125°C  115  130   dB  
Supply Current/Amplifier  ISY  VO = 0 V   750  900  μA  
  −40°C ≤ TA ≤ +125°C   950  1000  μA  

DYNAMIC PERFORMANCE        
Slew Rate  SR  RL = 10 kΩ   0.5   V/μs 
Overload Recovery Time     0.05   ms 
Gain Bandwidth Product  GBP    1   MHz 

NOISE PERFORMANCE        
Voltage Noise  en p-p  0 Hz to 10 Hz   1.6   μV p-p 
Voltage Noise Density  en  f = 1 kHz   75   nV/√Hz  
Current Noise Density  in  f = 10 Hz   2   fA/√Hz 

 
1 Gain testing is dependent upon test bandwidth. 
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ABSOLUTE MAXIMUM RATINGS 
Table 3. 
Parameter Rating 
Supply Voltage 6 V 
Input Voltage GND −0.3 V to VS + 0.3 V 
Differential Input Voltage1 ±5.0 V 
ESD (Human Body Model) 2000 V 
Output Short-Circuit Duration to GND Indefinite 
Storage Temperature Range −65°C to +150°C 
Operating Temperature Range −40°C to +125°C 
Junction Temperature Range −65°C to +150°C 
Lead Temperature Range  
(Soldering, 60 sec) 

300°C 

 
1 Differential input voltage is limited to ±5.0 V or the supply voltage, 

whichever is less. 

Stresses at or above those listed under Absolute Maximum 
Ratings may cause permanent damage to the product. This is a 
stress rating only; functional operation of the product at these 
or any other conditions above those indicated in the operational 
section of this specification is not implied. Operation beyond 
the maximum operating conditions for extended periods may 
affect product reliability. 

 

 

THERMAL CHARACTERISTICS 

Table 4. 
Package Type  θJA θJC Unit 
8-Lead MSOP (RM)  190  44  °C/W  
8-Lead TSSOP (RU)  240  43  °C/W  
8-Lead SOIC (R)  158  43  °C/W  
14-Lead TSSOP (RU)  180  36  °C/W  
14-Lead SOIC (R)  120  36  °C/W  

ESD CAUTION 
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TYPICAL PERFORMANCE CHARACTERISTICS 
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Figure 7. Input Offset Voltage Distribution at 2.7 V 
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Figure 8. Input Bias Current vs. Common-Mode Voltage 
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Figure 9. Input Bias Current vs. Common-Mode Voltage 
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Figure 10. Input Offset Voltage Distribution at 5 V 
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Figure 11. Input Offset Voltage Drift Distribution at 5 V 
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Figure 12. Output Voltage to Supply Rail vs. Load Current at 5 V 
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Figure 13. Output Voltage to Supply Rail vs. Load Current at 2.7 V 
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Figure 14. Input Bias Current vs. Temperature 
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Figure 15. Supply Current vs. Temperature 
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Figure 16. Supply Current per Amplifier vs. Supply Voltage 
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Figure 17. Open-Loop Gain and Phase Shift vs. Frequency at 2.7 V 
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Figure 18. Open-Loop Gain and Phase Shift vs. Frequency at 5 V 
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Figure 19. Closed-Loop Gain vs. Frequency at 2.7 V 
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Figure 20. Closed-Loop Gain vs. Frequency at 5 V 
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Figure 21. Output Impedance vs. Frequency at 2.7 V 
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Figure 22. Output Impedance vs. Frequency at 5 V 
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Figure 23. Large Signal Transient Response at 2.7 V 
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Figure 24. Large Signal Transient Response at 5 V 
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Figure 25. Small Signal Transient Response at 2.7 V 
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Figure 26. Small Signal Transient Response at 5 V 

CAPACITANCE (pF)

SM
A

LL
 S

IG
N

A
L 

O
VE

R
SH

O
O

T 
(%

)

50

45

0

40

35

30

25

20

15

10

5

+OS

–OS

10 100 1k 10k

VSY = ±1.35V
RL = 2kΩ
TA = 25°C

01
10

1-
02

7

 

Figure 27. Small Signal Overshoot vs. Load Capacitance at 2.7 V 
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Figure 28. Small Signal Overshoot vs. Load Capacitance at 5 V 
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Figure 29. Positive Overvoltage Recovery 
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Figure 30. Negative Overvoltage Recovery 
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Figure 31. No Phase Reversal 
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Figure 32. CMRR vs. Frequency at 2.7 V 
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Figure 33. CMRR vs. Frequency at 5 V 
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Figure 34. PSRR vs. Frequency at ±1.35 V 
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Figure 35. PSRR vs. Frequency at ±2.5 V 
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Figure 36. Maximum Output Swing vs. Frequency at 2.7 V 
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Figure 37. Maximum Output Swing vs. Frequency at 5 V 
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Figure 38. 0.1 Hz to 10 Hz Noise at 2.7 V 
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Figure 39. 0.1 Hz to 10 Hz Noise at 5 V 
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Figure 40. Voltage Noise Density at 2.7 V from 0 Hz to 2.5 kHz 
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Figure 41. Voltage Noise Density at 2.7 V from 0 Hz to 25 kHz 
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Figure 42. Voltage Noise Density at 5 V from 0 Hz to 2.5 kHz 
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Figure 43. Voltage Noise Density at 5 V from 0 Hz to 25 kHz 
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Figure 44. Voltage Noise Density at 5 V from 0 Hz to 10 Hz 
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Figure 45. Power Supply Rejection vs. Temperature 
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Figure 46. Output Short-Circuit Current vs. Temperature 
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Figure 47. Output Short-Circuit Current vs. Temperature 
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Figure 48. Output Voltage to Supply Rail vs. Temperature 
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Figure 49. Output Voltage to Supply Rail vs. Temperature 
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FUNCTIONAL DESCRIPTION 
The AD8551/AD8552/AD8554 are high precision, rail-to-rail 
operational amplifiers that can be run from a single-supply voltage. 
Their typical offset voltage of less than 1 μV allows these amplifiers 
to be easily configured for high gains without risk of excessive 
output voltage errors. The extremely small temperature drift of 
5 nV/°C ensures a minimum of offset voltage error over its 
entire temperature range of −40°C to +125°C, making the 
AD8551/AD8552/AD8554 amplifiers ideal for a variety of 
sensitive measurement applications in harsh operating 
environments, such as underhood and braking/suspension 
systems in automobiles.  

The AD8551/AD8552/AD8554 are CMOS amplifiers and 
achieve their high degree of precision through auto-zero 
stabilization. This autocorrection topology allows the 
AD8551/AD8552/AD8554 to maintain its low offset voltage 
over a wide temperature range and over its operating lifetime.  

AMPLIFIER ARCHITECTURE  
Each AD8551/AD8552/AD8554 op amps consist of two 
amplifiers, a main amplifier and a secondary amplifier, used  
to correct the offset voltage of the main amplifier. Both consist 
of a rail-to-rail input stage, allowing the input common-mode 
voltage range to reach both supply rails. The input stage consists 
of an NMOS differential pair operating concurrently with a 
parallel PMOS differential pair. The outputs from the 
differential input stages are combined in another gain stage 
whose output is used to drive a rail-to-rail output stage.  

The wide voltage swing of the amplifier is achieved by using two 
output transistors in a common-source configuration. The output 
voltage range is limited by the drain-to-source resistance of 
these transistors. As the amplifier is required to source or sink 
more output current, the rDS of these transistors increases, raising 
the voltage drop across these transistors. Simply put, the output 
voltage does not swing as close to the rail under heavy output 
current conditions as it does with light output current. This is a 
characteristic of all rail-to-rail output amplifiers. Figure 12 and 
Figure 13 show how close the output voltage can get to the rails 
with a given output current. The output of the AD8551/AD8552/ 
AD8554 is short-circuit protected to approximately 50 mA of 
current.  

The AD8551/AD8552/AD8554 amplifiers have exceptional gain, 
yielding greater than 120 dB of open-loop gain with a load of 2 kΩ. 
Because the output transistors are configured in a common-source 
configuration, the gain of the output stage, and thus the open-
loop gain of the amplifier, is dependent on the load resistance. 
Open-loop gain decreases with smaller load resistances. This is 
another characteristic of rail-to-rail output amplifiers.  

BASIC AUTO-ZERO AMPLIFIER THEORY 
Autocorrection amplifiers are not a new technology. Various IC 
implementations have been available for more than 15 years with 

some improvements made over time. The AD8551/AD8552/ 
AD8554 design offers a number of significant performance 
improvements over previous versions while attaining a very 
substantial reduction in device cost. This section offers a simplified 
explanation of how the AD8551/AD8552/AD8554 are able to 
offer extremely low offset voltages and high open-loop gains. 

As noted in the Amplifier Architecture section, each AD8551/ 
AD8552/AD8554 op amp contains two internal amplifiers. One 
is used as the primary amplifier, the other as an autocorrection, 
or nulling, amplifier. Each amplifier has an associated input 
offset voltage that can be modeled as a dc voltage source in 
series with the noninverting input. In Figure 50 and Figure 51 
these are labeled as VOSX, where x denotes the amplifier 
associated with the offset: A for the nulling amplifier and B for 
the primary amplifier. The open-loop gain for the +IN and −IN 
inputs of each amplifier is given as AX. Both amplifiers also have 
a third voltage input with an associated open-loop gain of BX.  

There are two modes of operation determined by the action of 
two sets of switches in the amplifier: an auto-zero phase and an 
amplification phase.  

Auto-Zero Phase  

In this phase, all φA switches are closed and all φB switches are 
opened. Here, the nulling amplifier is taken out of the gain loop 
by shorting its two inputs together. Of course, there is a degree 
of offset voltage, shown as VOSA, inherent in the nulling amplifier 
which maintains a potential difference between the +IN and 
−IN inputs. The nulling amplifier feedback loop is closed through 
φB2 and VOSA appears at the output of the nulling amp and on 
CM1, an internal capacitor in the AD8551/AD8552/AD8554. 
Mathematically, this is expressed in the time domain as 

VOA[t] = AAVOSA[t] − BAVOA[t] (1) 

which can be expressed as 

   
A

OSAA
OA B

tVA
tV




1
 (2) 

This demonstrates that the offset voltage of the nulling amplifier 
times a gain factor appears at the output of the nulling amplifier 
and, thus, on the CM1 capacitor.  
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Figure 50. Auto-Zero Phase of the AD8551/AD8552/AD8554 
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Amplification Phase  

When the φB switches close and the φA switches open for the 
amplification phase, this offset voltage remains on CM1 and, 
essentially, corrects any error from the nulling amplifier. The 
voltage across CM1 is designated as VNA. Furthermore, VIN is 
designated as the potential difference between the two inputs to 
the primary amplifier, or VIN = (VIN+ − VIN−). Thus, the nulling 
amplifier can be expressed as 

[ ] [ ]( ) [ ]tVBtVtVAtV NAAOSAINAOA −−=][  (3) 
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Figure 51. Output Phase of the Amplifier 

Because φA is now open and there is no place for CM1 to discharge, 
the voltage (VNA), at the present time (t), is equal to the voltage 
at the output of the nulling amp (VOA) at the time when φA was 
closed. If the period of the autocorrection switching frequency is 
labeled tS, then the amplifier switches between phases every 0.5 × tS. 
Therefore, in the amplification phase  

[ ] 



 −= SNANA ttVtV

2
1  (4) 

Substituting Equation 4 and Equation 2 into Equation 3 yields 

[ ] [ ] [ ]
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ttVBA
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−+=
1

2
1

 (5) 

For the sake of simplification, assume that the autocorrection 
frequency is much faster than any potential change in VOSA or 
VOSB. This is a valid assumption because changes in offset voltage 
are a function of temperature variation or long-term wear time, 
both of which are much slower than the auto-zero clock frequency 
of the AD8551/AD8552/AD8554. This effectively renders VOS  

time invariant; therefore, Equation 5 can be rearranged and 
rewritten as 

[ ] [ ] ( )
A

OSAAAOSAAA
INAOA B

VBAVBA
tVAtV

+
−+

+=
1

1
 (6) 

or 

[ ] [ ] 
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+=

A

OSA
INAOA B

V
tVAtV

1
 (7) 

From these equations, the auto-zeroing action becomes evident. 
Note the VOS term is reduced by a 1 + BA factor. This shows how 

the nulling amplifier has greatly reduced its own offset voltage 
error even before correcting the primary amplifier. This results 
in the primary amplifier output voltage becoming the voltage at 
the output of the AD8551/AD8552/AD8554 amplifiers. It is 
equal to  

[ ] [ ]( ) NBBOSBINBOUT VBVtVAtV ++=  (8) 

In the amplification phase, VOA = VNB, so this can be rewritten as 
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Combining terms, 

[ ] [ ]( ) OSAB
A

OSAAA
BBBINOUT VA

B
VBA

BAAtVtV +
+

++=
1

 (10) 

The AD8551/AD8552/AD8554 architecture is optimized in 
such a way that  

AA = AB and BA = BB and BA >> 1 

Also, the gain product of AABB is much greater than AB. These 
allow Equation 10 to be simplified to 

[ ] [ ] ( )OSBOSAAAAINOUT VVABAtVtV ++≈  (11) 

Most obvious is the gain product of both the primary and nulling 
amplifiers. This AABA term is what gives the AD8551/AD8552/ 
AD8554 its extremely high open-loop gain. To understand how 
VOSA and VOSB relate to the overall effective input offset voltage of 
the complete amplifier, establish the generic amplifier equation of  

( )EFFOSINOUT VVkV ,+×=  (12) 

where k is the open-loop gain of an amplifier and VOS, EFF is its 
effective offset voltage.  

Putting Equation 12 into the form of Equation 11 gives  

[ ] [ ] AAEFFOSAAINOUT BAVBAtVtV ,+≈  (13) 

Thus, it is evident that  

A

OSBOSA
EFFOS B

VV
V

+
≈,  (14) 

The offset voltages of both the primary and nulling amplifiers 
are reduced by the Gain Factor BA. This takes a typical input 
offset voltage from several millivolts down to an effective input 
offset voltage of submicrovolts. This autocorrection scheme is 
the outstanding feature of the AD8551/AD8552/AD8554 series 
that continues to earn the reputation of being among the most 
precise amplifiers available on the market. 

HIGH GAIN, CMRR, PSRR  
Common-mode and power supply rejection are indications of 
the amount of offset voltage an amplifier has as a result of a change 
in its input common-mode or power supply voltages. As shown 
in the previous section, the autocorrection architecture of the 
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AD8551/AD8552/AD8554 allows it to quite effectively 
minimize offset voltages. The technique also corrects for offset 
errors caused by common-mode voltage swings and power 
supply variations. This results in superb CMRR and PSRR 
figures in excess of 130 dB. Because the autocorrection occurs 
continuously, these figures can be maintained across the entire 
temperature range of the device, from −40°C to +125°C.  

MAXIMIZING PERFORMANCE THROUGH 
PROPER LAYOUT  
To achieve the maximum performance of the extremely high 
input impedance and low offset voltage of the AD8551/ 
AD8552/AD8554, care is needed in laying out the circuit board. 
The PC board surface must remain clean and free of moisture to 
avoid leakage currents between adjacent traces. Surface coating 
of the circuit board reduces surface moisture and provides a 
humidity barrier, reducing parasitic resistance on the board. 
The use of guard rings around the amplifier inputs further reduces 
leakage currents. Figure 52 shows proper guard ring 
configuration, and Figure 53 shows the top view of a surface-
mount layout. The guard ring does not need to be a specific 
width, but it should form a continuous loop around both inputs. 
By setting the guard ring voltage equal to the voltage at the 
noninverting input, parasitic capacitance is minimized as well. 
For further reduction of leakage currents, components can be 
mounted to the PC board using Teflon standoff insulators.  
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Figure 52. Guard Ring Layout and Connections to Reduce  

PC Board Leakage Currents 
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Figure 53. Top View of AD8552 SOIC Layout with Guard Rings 

Other potential sources of offset error are thermoelectric 
voltages on the circuit board. This voltage, also called Seebeck 
voltage, occurs at the junction of two dissimilar metals and is 
proportional to the temperature of the junction. The most common 
metallic junctions on a circuit board are solder-to-board trace 
and solder-to-component lead. Figure 54 shows a cross-section 
of the thermal voltage error sources. If the temperature of the 

PC board at one end of the component (TA1) is different from 
the temperature at the other end (TA2), the resulting Seebeck 
voltages are not equal, resulting in a thermal voltage error.  

This thermocouple error can be reduced by using dummy com-
ponents to match the thermoelectric error source. Placing the 
dummy component as close as possible to its partner ensures both 
Seebeck voltages are equal, thus canceling the thermocouple error. 
Maintaining a constant ambient temperature on the circuit board 
further reduces this error. The use of a ground plane helps distrib-
ute heat throughout the board and reduces EMI noise pickup.  
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Figure 54. Mismatch in Seebeck Voltages Causes  

Thermoelectric Voltage Error 
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Figure 55. Using Dummy Components to Cancel  

Thermoelectric Voltage Errors 

1/f NOISE CHARACTERISTICS 
Another advantage of auto-zero amplifiers is their ability to 
cancel flicker noise. Flicker noise, also known as 1/f noise, is 
noise inherent in the physics of semiconductor devices, and it 
increases 3 dB for every octave decrease in frequency. The 1/f 
corner frequency of an amplifier is the frequency at which the 
flicker noise is equal to the broadband noise of the amplifier.  
At lower frequencies, flicker noise dominates, causing higher 
degrees of error for sub-Hertz frequencies or dc precision 
applications.  

Because the AD8551/AD8552/AD8554 amplifiers are self-
correcting op amps, they do not have increasing flicker noise at 
lower frequencies. In essence, low frequency noise is treated as a 
slowly varying offset error and is greatly reduced as a result of 
autocorrection. The correction becomes more effective as the 
noise frequency approaches dc, offsetting the tendency of the 
noise to increase exponentially as frequency decreases. This 
allows the AD8551/AD8552/AD8554 to have lower noise near 
dc than standard low noise amplifiers that are susceptible to 1/f 
noise.  
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INTERMODULATION DISTORTION  
The AD8551/AD8552/AD8554 can be used as a conventional 
op amp for gain/ bandwidth combinations up to 1.5 MHz. The 
auto-zero correction frequency of the device is fixed at 4 kHz. 
Although a trace amount of this frequency feeds through to the 
output, the amplifier can be used at much higher frequencies. 
Figure 56 shows the spectral output of the AD8552 with the 
amplifier configured for unity gain and the input grounded.  

The 4 kHz auto-zero clock frequency appears at the output with 
less than 2 μV of amplitude. Harmonics are also present, but at 
reduced levels from the fundamental auto-zero clock frequency. 
The amplitude of the clock frequency feedthrough is proportional 
to the closed-loop gain of the amplifier. Like other autocorrection 
amplifiers, at higher gains there is more clock frequency 
feedthrough. Figure 57 shows the spectral output with the 
amplifier configured for a gain of 60 dB.  

FREQUENCY (kHz)

0

–140
0 101

O
U

TP
U

T 
SI

G
N

A
L 

(d
B

)

–20

–40

–60

–80

–100

–120

2 3 4 5 6 7 8 9

VSY = 5V
AV = 0dB

01
10

1-
05

6

 
Figure 56. Spectral Analysis of AD8552 Output in Unity Gain Configuration 
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Figure 57. Spectral Analysis of AD8551/AD8552/AD8554 Output  

with +60 dB Gain 

When an input signal is applied, the output contains some 
degree of intermodulation distortion (IMD). This is another 
characteristic feature of all autocorrection amplifiers. IMD 
appears as sum and difference frequencies between the input 
signal and the 4 kHz clock frequency (and its harmonics) and is 
at a level similar to, or less than, the clock feedthrough at the 
output. The IMD is also proportional to the closed-loop gain of 

the amplifier. Figure 58 shows the spectral output of an AD8552 
configured as a high gain stage (+60 dB) with a 1 mV input signal 
applied. The relative levels of all IMD products and harmonic 
distortion add up to produce an output error of −60 dB relative 
to the input signal. At unity gain, these add up to only −120 dB 
relative to the input signal.  
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Figure 58. Spectral Analysis of AD8552 in High Gain with a 1 mV Input Signal 

For most low frequency applications, the small amount of auto- 
zero clock frequency feedthrough does not affect the precision 
of the measurement system. If it is desired, the clock frequency 
feedthrough can be reduced through the use of a feedback 
capacitor around the amplifier. However, this reduces the 
bandwidth of the amplifier. Figure 59 and Figure 60 show a 
configuration for reducing the clock feedthrough and the 
corresponding spectral analysis at the output. The −3 dB 
bandwidth of this configuration is 480 Hz.  
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Figure 59. Reducing Autocorrection Clock Noise Using a Feedback Capacitor 
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Figure 60. Spectral Analysis Using a Feedback Capacitor 

 



AD8551/AD8552/AD8554 Data Sheet 
 

Rev. F | Page 18 of 24 

BROADBAND AND EXTERNAL RESISTOR NOISE 
CONSIDERATIONS 
The total broadband noise output from any amplifier is primarily 
a function of three types of noise: input voltage noise from the 
amplifier, input current noise from the amplifier, and Johnson 
noise from the external resistors used around the amplifier. 
Input voltage noise, or en, is strictly a function of the amplifier 
used. The Johnson noise from a resistor is a function of the re-
sistance and the temperature. Input current noise, or in, creates 
an equivalent voltage noise proportional to the resistors used 
around the amplifier. These noise sources are not correlated 
with each other and their combined noise sums in a root-
squared-sum fashion. The full equation is given as  

( )[ ] 2
122

_ 4 SnSnTOTALn RikTree ++=  (15) 

Where: 
en = the input voltage noise density of the amplifier.  
in = the input current noise of the amplifier.  
RS = source resistance connected to the noninverting terminal.  
k = Boltzmann’s constant (1.38 × 10−23 J/K).  
T = ambient temperature in Kelvin (K = 273.15 + °C).  

The input voltage noise density (en) of the AD8551/AD8552/ 
AD8554 is 42 nV/√Hz, and the input noise, in, is 2 fA/√Hz. The 
en, TOTAL is dominated by the input voltage noise, provided the 
source resistance is less than 106 kΩ. With source resistance 
greater than 106 kΩ, the overall noise of the system is 
dominated by the Johnson noise of the resistor itself.  

Because the input current noise of the AD8551/AD8552/ 
AD8554 is very small, it does not become a dominant term 
unless RS is greater than 4 GΩ, which is an impractical value of 
source resistance.  

The total noise (en, TOTAL) is expressed in volts per square root 
Hertz, and the equivalent rms noise over a certain bandwidth 
can be found as  

BWee TOTALnn ×= ,  (16) 

where BW is the bandwidth of interest in Hertz.  

OUTPUT OVERDRIVE RECOVERY  
The AD8551/AD8552/AD8554 amplifiers have an excellent 
overdrive recovery of only 200 μs from either supply rail. This 
characteristic is particularly difficult for autocorrection 
amplifiers because the nulling amplifier requires a nontrivial 
amount of time to error correct the main amplifier back to a 
valid output. Figure 29 and Figure 30 show the positive and 
negative overdrive recovery times for the AD8551/AD8552/ 
AD8554. 

 

 

The output overdrive recovery for an autocorrection amplifier is 
defined as the time it takes for the output to correct to its final 
voltage from an overload state. It is measured by placing the 
amplifier in a high gain configuration with an input signal that 
forces the output voltage to the supply rail. The input voltage is 
then stepped down to the linear region of the amplifier, usually 
to halfway between the supplies. The time from the input signal 
stepdown to the output settling to within 100 μV of its final 
value is the overdrive recovery time.  

INPUT OVERVOLTAGE PROTECTION  
Although the AD8551/AD8552/AD8554 are rail-to-rail input 
amplifiers, exercise care to ensure that the potential difference 
between the inputs does not exceed 5 V. Under normal 
operating conditions, the amplifier corrects its output to ensure 
the two inputs are at the same voltage. However, if the device is 
configured as a comparator, or is under some unusual operating 
condition, the input voltages may be forced to different 
potentials. This can cause excessive current to flow through 
internal diodes in the AD8551/AD8552/AD8554 used to 
protect the input stage against overvoltage.  

If either input exceeds either supply rail by more than 0.3 V, large 
amounts of current begin to flow through the ESD protection 
diodes in the amplifier. These diodes connect between the inputs 
and each supply rail to protect the input transistors against an 
electrostatic discharge event and are normally reverse-biased. 
However, if the input voltage exceeds the supply voltage, these 
ESD diodes become forward-biased. Without current limiting, 
excessive amounts of current can flow through these diodes, 
causing permanent damage to the device. If inputs are subjected 
to overvoltage, appropriate series resistors should be inserted to 
limit the diode current to less than 2 mA maximum.  

OUTPUT PHASE REVERSAL  
Output phase reversal occurs in some amplifiers when the input 
common-mode voltage range is exceeded. As common-mode 
voltage moves outside of the common-mode range, the outputs 
of these amplifiers suddenly jump in the opposite direction to 
the supply rail. This is the result of the differential input pair 
shutting down and causing a radical shifting of internal 
voltages, resulting in the erratic output behavior.  

The AD8551/AD8552/AD8554 amplifiers have been carefully 
designed to prevent any output phase reversal, provided both 
inputs are maintained within the supply voltages. If there is the 
potential of one or both inputs exceeding either supply voltage, 
place a resistor in series with the input to limit the current to 
less than 2 mA to ensure the output does not reverse its phase.  
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CAPACITIVE LOAD DRIVE  
The AD8551/AD8552/AD8554 have excellent capacitive load 
driving capabilities and can safely drive up to 10 nF from a 
single 5 V supply. Although the device is stable, capacitive 
loading limits the bandwidth of the amplifier. Capacitive loads 
also increase the amount of overshoot and ringing at the output. 
An R-C snubber network, shown in Figure 61, can be used to 
compensate the amplifier against capacitive load ringing and 
overshoot.  

5V

VIN
200mV p-p RX

60Ω
CX
0.47µF

CL
4.7nF

VOUT

AD8551/
AD8552/
AD8554

01
10

1-
06

1

 
Figure 61. Snubber Network Configuration for Driving Capacitive Loads 

Although the snubber does not recover the loss of amplifier 
bandwidth from the load capacitance, it does allow the amplifier to 
drive larger values of capacitance while maintaining a minimum of 
overshoot and ringing. Figure 62 shows the output of an AD8551/ 
AD8552/AD8554 driving a 1 nF capacitor with and without a 
snubber network.  
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Figure 62. Overshoot and Ringing are Substantially Reduced  

Using a Snubber Network 

The optimum value for the resistor and capacitor is a function 
of the load capacitance and is best determined empirically because 
actual CLOAD (CL) includes stray capacitances and may differ 
substantially from the nominal capacitive load. Table 5 shows 
some snubber network values that can be used as starting points.  

Table 5. Snubber Network Values for Driving Capacitive Loads 
CLOAD RX CX  
1 nF 200 Ω  1 nF 
4.7 nF 60 Ω 0.47 μF 
10 nF 20 Ω 10 μF 

POWER-UP BEHAVIOR  
At power-up, the AD8551/AD8552/AD8554 settle to a valid 
output within 5 μs. Figure 63 shows an oscilloscope photo of the 
output of the amplifier with the power supply voltage, and 
Figure 64 shows the test circuit. With the amplifier configured 
for unity gain, the device takes approximately 5 μs to settle to its 
final output voltage. This turn-on response time is much faster 
than most other autocorrection amplifiers, which can take 
hundreds of microseconds or longer for their output to settle.  
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VOUT

5µs 1V
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BOTTOM TRACE = 2V/DIV
TOP TRACE = 1V/DIV  

Figure 63. AD8551/AD8552/AD8554 Output Behavior on Power-Up 
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Figure 64. AD8551/AD8552/AD8554 Test Circuit for Turn-On Time 
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APPLICATIONS INFORMATION 
A 5 V PRECISION STRAIN GAGE CIRCUIT  
The extremely low offset voltage of the AD8552 makes it an 
ideal amplifier for any application requiring accuracy with high 
gains, such as a weigh scale or strain gage. Figure 65 shows a 
configuration for a single-supply, precision, strain gage 
measurement system.  

A REF192 provides a 2.5 V precision reference voltage for A2. 
The A2 amplifier boosts this voltage to provide a 4.0 V reference 
for the top of the strain gage resistor bridge. Q1 provides the 
current drive for the 350 Ω bridge network. A1 is used to 
amplify the output of the bridge with the full-scale output 
voltage equal to 

( )
B

21

R
RR +×2  (17) 

where RB is the resistance of the load cell.  

Using the values given in Figure 65, the output voltage linearly 
varies from 0 V with no strain to 4.0 V under full strain. 

NOTES
1. USE 0.1% TOLERANCE RESISTORS.
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Figure 65. A 5 V Precision Strain Gage Amplifier 

3 V INSTRUMENTATION AMPLIFIER  
The high common-mode rejection, high open-loop gain, and 
operation down to 3 V of supply voltage makes the AD8551/ 
AD8552/AD8554 an excellent choice of op amp for discrete 
single-supply instrumentation amplifiers. The common-mode 
rejection ratio of the AD8551/AD8552/AD8554 is greater than 
120 dB, but the CMRR of the system is also a function of the 
external resistor tolerances. The gain of the difference amplifier 
shown in Figure 66 is given as  
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Figure 66. Using the AD8551/AD8552/AD8554 as a Difference Amplifier 

In an ideal difference amplifier, the ratio of the resistors are set 
exactly equal to 

3

4

1

2
V R

R
R
RA ==  (19) 

Which sets the output voltage of the system to 

VOUT = AV (V1 − V2) (20) 

Due to finite component tolerance, the ratio between the four 
resistors is not exactly equal, and any mismatch results in a 
reduction of common-mode rejection from the system. Referring 
to Figure 66, the exact common-mode rejection ratio can be 
expressed as 

3241

324241

RRRR
RRRRRRCMRR

22
2
−

++
=  (21) 

In the three-op amp, instrumentation amplifier configuration 
shown in Figure 67, the output difference amplifier is set to 
unity gain with all four resistors equal in value. If the tolerance 
of the resistors used in the circuit is given as δ, the worst-case 
CMRR of the instrumentation amplifier is 

δ
CMRRMIN 2

1
=  (22) 
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Figure 67. A Discrete Instrumentation Amplifier Configuration 

Consequently, using 1% tolerance resistors results in a worst-case 
system CMRR of 0.02, or 34 dB. Therefore, either high precision 
resistors or an additional trimming resistor, as shown in Figure 67, 
must be used to achieve high common-mode rejection. The 
value of this trimming resistor must be equal to the value of R 
multiplied by its tolerance. For example, using 10 kΩ resistors 
with 1% tolerance requires a series trimming resistor equal to 
100 Ω.  



Data Sheet AD8551/AD8552/AD8554 
 

Rev. F | Page 21 of 24 

A HIGH ACCURACY THERMOCOUPLE AMPLIFIER  
Figure 68 shows a K-type thermocouple amplifier configuration 
with cold junction compensation. Even from a 5 V supply, the 
AD8551 can provide enough accuracy to achieve a resolution of 
better than 0.02°C from 0°C to 500°C. D1 is used as a tempera-
ture measuring device to correct the cold junction error from 
the thermocouple and should be placed as close as possible to 
the two terminating junctions. With the thermocouple measuring 
tip immersed in a 0°C ice bath, R6 should be adjusted until the 
output is at 0 V.  

Using the values shown in Figure 68, the output voltage tracks 
temperature at 10 mV/°C. For a wider range of temperature 
measurement, R9 can be decreased to 62 kΩ. This creates a 
5 mV/°C change at the output, allowing measurements of up  
to 1000°C.  
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Figure 68. A Precision K-Type Thermocouple Amplifier with  

Cold Junction Compensation  

PRECISION CURRENT METER  
Because of its low input bias current and superb offset voltage at 
single supply voltages, the AD8551/AD8552/AD8554 are 
excellent amplifiers for precision current monitoring. Its rail-to-
rail input allows the amplifier to be used as either a high-side or 
low-side current monitor. Using both amplifiers in the AD8552 
provides a simple method to monitor both current supply and 
return paths for load or fault detection.  

Figure 69 shows a high-side current monitor configuration. In 
this configuration, the input common-mode voltage of the 
amplifier is at or near the positive supply voltage. The rail-to-
rail input of the amplifier provides a precise measurement even 
with the input common-mode voltage at the supply voltage. The 
CMOS input structure does not draw any input bias current, 
ensuring a minimum of measurement error. 

The 0.1 Ω resistor creates a voltage drop to the noninverting 
input of the AD8551/AD8552/AD8554. The output of the 
amplifier is corrected until this voltage appears at the inverting 
input. This creates a current through R1, which in turn flows 
through R2. The monitor output is given by 

L
1

SENSE
2 I

R
R

ROutputMonitor ×







×=  (23) 

Using the components shown in Figure 69, the monitor output 
transfer function is 2.5 V/A. 

Figure 70 shows the low-side monitor equivalent. In this circuit, 
the input common-mode voltage to the AD8552 is at or near 
ground. Again, a 0.1 Ω resistor provides a voltage drop propor-
tional to the return current. The output voltage is given as  
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R
RVV
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For the component values shown in Figure 70, the output 
transfer function decreases from V+ at −2.5 V/A. 
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Figure 69. A High-Side Load Current Monitor 
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Figure 70. A Low-Side Load Current Monitor 

PRECISION VOLTAGE COMPARATOR  
The AD8551/AD8552/AD8554 can be operated open-loop and 
used as a precision comparator. The AD8551/AD8552/AD8554 
have less than 50 μV of offset voltage when run in this 
configuration. The slight increase of offset voltage stems from 
the fact that the autocorrection architecture operates with 
lowest offset in a closed-loop configuration, that is, one with 
negative feedback. With 50 mV of overdrive, the device has a 
propagation delay of 15 μs on the rising edge and 8 μs on the 
falling edge. Ensure the maximum differential voltage of the 
device is not exceeded. For more information, refer to the Input 
Overvoltage Protection section.  
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OUTLINE DIMENSIONS 

COMPLIANT TO JEDEC STANDARDS MO-187-AA
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Figure 71. 8-Lead Mini Small Outline Package [MSOP] 

(RM-8) 
Dimensions shown in millimeters 
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COMPLIANT TO JEDEC STANDARDS MO-153-AA  
Figure 72. 8-Lead Thin Shrink Small Outline Package [TSSOP] 

(RU-8) 
Dimensions shown in millimeters 
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CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
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Figure 73. 8-Lead Standard Small Outline Package [SOIC_N] 

Narrow Body (R-8) 
Dimensions shown in millimeters and (inches) 
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Figure 74. 14-Lead Thin Shrink Small Outline Package [TSSOP] 

(RU-14) 
Dimensions shown in millimeters 
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CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
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Figure 75. 14-Lead Standard Small Outline Package [SOIC_N] 

Narrow Body (R-14) 
Dimensions shown in millimeters and (inches) 

ORDERING GUIDE 
Model1  Temperature Range  Package Description  Package Option  Branding 
AD8551ARZ −40°C to +125°C  8-Lead SOIC_N R-8  
AD8551ARZ-REEL  −40°C to +125°C  8-Lead SOIC_N R-8  
AD8551ARZ-REEL7 −40°C to +125°C  8-Lead SOIC_N R-8  
AD8551ARM-REEL −40°C to +125°C  8-Lead MSOP RM-8  AHA  
AD8551ARMZ −40°C to +125°C  8-Lead MSOP RM-8  AHA# 
AD8551ARMZ-REEL −40°C to +125°C  8-Lead MSOP RM-8  AHA#  
AD8552AR −40°C to +125°C  8-Lead SOIC_N R-8  
AD8552AR-REEL  −40°C to +125°C  8-Lead SOIC_N R-8  
AD8552AR-REEL7 −40°C to +125°C  8-Lead SOIC_N R-8  
AD8552ARZ −40°C to +125°C  8-Lead SOIC_N R-8  
AD8552ARZ-REEL  −40°C to +125°C  8-Lead SOIC_N R-8  
AD8552ARZ-REEL7 −40°C to +125°C  8-Lead SOIC_N R-8  
AD8552ARU −40°C to +125°C  8-Lead TSSOP  RU-8   
AD8552ARU-REEL −40°C to +125°C  8-Lead TSSOP  RU-8   
AD8552ARUZ −40°C to +125°C  8-Lead TSSOP  RU-8   
AD8552ARUZ-REEL −40°C to +125°C  8-Lead TSSOP  RU-8   
AD8554ARZ −40°C to +125°C  14-Lead SOIC_N  R-14  
AD8554ARZ-REEL −40°C to +125°C  14-Lead SOIC_N  R-14  
AD8554ARZ-REEL7 −40°C to +125°C  14-Lead SOIC_N  R-14  
AD8554ARUZ −40°C to +125°C  14-Lead TSSOP  RU-14   
AD8554ARUZ-REEL −40°C to +125°C  14-Lead TSSOP  RU-14   
 
1 Z = RoHS Compliant Part, # denotes RoHS compliant part may be top or bottom marked. 
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