ANALOG DEVICES

Low Distortion, High Speed Rail-to-Rail Input/Output Amplifier

Known Good Die

FEATURES

FET input amplifier 1 pA input bias current Low cost High speed: 145 MHz, -3 dB bandwidth (G = +1) 180 V/ μ s slew rate (G = +2) Low noise $7 \text{ nV} / \sqrt{\text{Hz}} (f = 10 \text{ kHz})$ $0.6 \, \text{fA} / \sqrt{\text{Hz}} \, (\text{f} = 10 \, \text{kHz})$ Wide supply voltage range: 5 V to 24 V Single-supply and rail-to-rail output Low offset voltage 1.5 mV maximum High common-mode rejection ratio: -100 dB SFDR -88 dBc @ 1 MHz Low power: 6.4 mA/amplifier typical supply current Known good die (KGD): these die are fully guaranteed to data sheet specifications

APPLICATIONS

Photodiode preamps Filters A/D drivers Level shifting Buffering

GENERAL DESCRIPTION

The AD8065-KGD-CHIP *FastFET*[™] amplifier is a voltage feedback amplifier with a FET input offering high performance and ease of use. With a wide supply voltage range from 5 V to 24 V, and the ability to operate on single supplies, with a bandwidth of 145 MHz, the AD8065-KGD-CHIP is designed to work in a variety of applications. For added versatility, the amplifier also features a rail-to-rail output.

AD8065-KGD-CHIP

Despite the low cost, the amplifiers provide excellent overall performance. The differential gain and phase errors of 0.02% and 0.02°, respectively, along with 0.1 dB flatness out to 7 MHz, make these amplifiers ideal for video applications. Additionally, they offer a high slew rate of 180 V/ μ s, excellent distortion (SFDR of -88 dBc at 1 MHz), extremely high common-mode rejection of -100 dB, and a low input offset voltage of 1.5 mV maximum under warmed up conditions. The AD8065-KGD-CHIP operates using only a 6.4 mA/amplifier typical supply current and are capable of delivering up to 30 mA of load current.

The AD8065-KGD-CHIP is rated to work over the industrial temperature range of -40° C to $+85^{\circ}$ C.

Additional application and technical information can be found in the AD8065 data sheet.

¹Protected by U.S. patent numbers 6,486,737B1; 6,518,842B1

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

1
1
1
2
3
5

ESD Caution	.5
Pad Configuration and Function Descriptions	.6
Outline Dimensions	.7
Die Specifications and Assembly Recommendations	.7
Ordering Guide	.7

REVISION HISTORY

10/12—Revision 0: Initial Version

SPECIFICATIONS

 $V_s = \pm 5$ V at $T_A = 30^{\circ}$ C, $R_L = 1$ k Ω to midsupply, G = 1, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Status	Unit
DYNAMIC PERFORMANCE						
–3 dB Bandwidth	$G = +1, V_0 = 0.2 V p-p$	100	145		GBD ¹	MHz
	$G = +2, V_0 = 0.2 V p-p$		50			MHz
	$G = +2, V_0 = 2 V p-p$		42			MHz
Bandwidth for 0.1 dB Flatness	$G = +2, V_0 = 0.2 V p-p$		7			MHz
Input Overdrive Recovery Time	G = +1, -5.5 V to +5.5 V		175			ns
Output Recovery Time	G = -1, -5.5 V to +5.5 V		170			ns
Slew Rate	$G = +2$, $V_0 = 4 V$ step	130	180		GBD ¹	V/µs
Settling Time to 0.1%	$G = +2, V_0 = 2 V \text{ step}$		55			ns
-	$G = +2, V_0 = 8 V step$		205			ns
NOISE/HARMONIC PERFORMANCE						
SFDR	$f_{c} = 1 \text{ MHz}, G = +2, V_{0} = 2 \text{ V p-p}$		-88			dBc
	$f_c = 5 \text{ MHz}, G = +2, V_0 = 2 \text{ V p-p}$		-67			dBc
	$f_c = 1 \text{ MHz}, G = +2, V_0 = 8 \text{ V p-p}$		-73			dBc
Third-Order Intercept	$f_{c} = 10 \text{ MHz}, R_{L} = 100 \Omega$		24			dBm
Input Voltage Noise	f = 10 kHz		7			nV/√Hz
Input Current Noise	f = 10 kHz		0.6			fA/√Hz
Differential Gain Error	NTSC, G = +2, $R_L = 150 \Omega$		0.02			%
Differential Phase Error	NTSC, $G = +2$, $R_L = 150 \Omega$		0.02			Degrees
DC PERFORMANCE						
Input Offset Voltage	$V_{CM} = 0 V$		0.4	1.5	Tested	mV
Input Offset Voltage Drift			1	17	GBD ¹	μV/°C
Input Bias Current			2			pA
	T _{MIN} to T _{MAX}		25			pA
Input Offset Current			1			pA
input offset current	Tmin to Tmax		1			pA
Open-Loop Gain	$V_0 = \pm 3 V, R_L = 1 k\Omega$	100	113		Tested	dB
INPUT CHARACTERISTICS		100	115		icsica	ab
Common-Mode Input Impedance			1000 2.1			GΩ∥pF
Differential Input Impedance			1000 4.5			GΩ∥pF
Input Common-Mode Voltage Range			1000 1.5			012 pi
FET Input Range		-5 to +1.7	-5.0 to +2.4		GBD ¹	v
Common-Mode Rejection Ratio	$V_{CM} = -1 V \text{ to } +1 V$	-85	-100		Tested	dB
OUTPUT CHARACTERISTICS		-05	-100		lesteu	ub
Output Voltage Swing	$R_L = 1 k\Omega$	-4.88 to	-4.94 to +4.95		Tested	v
Output voltage swilig	$M_{\rm L} = 1 \mathrm{K} \mathrm{Z}$	-4.88 to +4.9	-4.94 10 +4.93		lesteu	v
	$R_L = 150 \Omega$		-4.8 to +4.7			v
Output Current	$V_0 = 9 V p - p$, SFDR $\ge -60 dBc$,		35			mA
output current	f = 500 kHz		55			
Short-Circuit Current			90			mA
Capacitive Load Drive	30% overshoot G = +1		20			pF
POWER SUPPLY						·
Operating Range		5		24	Tested	v
Quiescent Current per Amplifier		-	6.4	7.2	Tested	mA
		1				

 1 GBD = Guaranteed By Design.

 $V_{\text{S}}=\pm 12$ V at $T_{\text{A}}=30^{\circ}\text{C},$ $R_{\text{L}}=1$ k Ω to midsupply, unless otherwise noted.

Parameter	Test Conditions/Comments	Min	Тур	Max	Status	Unit
DYNAMIC PERFORMANCE						
–3 dB Bandwidth	$G = +1, V_0 = 0.2 V p-p$	100	145		GBD ¹	MHz
Slew Rate	$G = +2$, $V_0 = 4 V$ step	130	180		GBD ¹	V/µs
DC PERFORMANCE						
Input Offset Voltage	$V_{CM} = 0 V$		0.4	1.5	Tested	mV
Input Offset Voltage Drift			1	17	GBD ¹	μV/°C
Input Bias Current			3			рΑ
Input Offset Current			2			рΑ
Open-Loop Gain	$V_{O} = \pm 10 V$	103	114		Tested	dB
INPUT CHARACTERISTICS						
Input Common-Mode Voltage Range						
FET Input Range		-12 to +8.5	-12.0 to +9.5		GBD ¹	V
Common-Mode Rejection Ratio	$V_{CM} = -1 V to +1 V$	-85	-100		Tested	dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing	$R_L = 1 \ k\Omega$	-11.8 to +11.8	-11.9 to +11.9		Tested	V
POWER SUPPLY						
Power Supply Rejection Ratio	$V_{S} \pm 2 V$	-84	-93		Tested	dB
Quiescent Current per Amplifier			6.6	7.4	Tested	mA

 1 GBD = Guaranteed By Design.

 V_{S} = +5 V at T_{A} = 30°C, R_{L} = 1 k Ω to midsupply, unless otherwise noted.

Table 3.						
Parameter	Test Conditions/Comments	Min	Тур	Max	Status	Unit
DYNAMIC PERFORMANCE						
–3 dB Bandwidth	$G = +1, V_0 = 0.2 V p-p$	125	155		GBD ¹	MHz
Slew Rate	$G = +2$, $V_0 = 2 V$ step	105	160		GBD ¹	V/µs
DC PERFORMANCE						
Input Offset Voltage	$V_{CM} = 1.0 \text{ V}$		0.4	1.5	Tested	mV
Input Offset Voltage Drift			1	17	GBD ¹	μV/°C
Input Bias Current			1			pА
Input Offset Current			1			pА
Open-Loop Gain	$V_{\rm O} = 1 V$ to $4 V$	100	113		Tested	dB
INPUT CHARACTERISTICS						
Input Common-Mode Voltage Range						
FET Input Range		0 to 1.7	0 to 2.4		GBD ¹	V
Common-Mode Rejection Ratio	$V_{CM} = 1 V \text{ to } 2 V$	-78	-91		Tested	dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing	$R_L = 1 \ k\Omega$	0.1 to 4.85	0.03 to 4.95		Tested	V
POWER SUPPLY						
Power Supply Rejection Ratio	$V_{s} \pm 2 V$	-78	-100		Tested	dB
Quiescent Current per Amplifier			6.4	7.0	Tested	mA

 1 GBD = Guaranteed by Design.

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	26.4 V
Common-Mode Input Voltage	$V_{\text{EE}} - 0.5V$ to $V_{\text{CC}} + 0.5V$
Differential Input Voltage	±1.8 V
Storage Temperature	–65°C to +125°C
Operating Temperature Range	–40°C to +105°C
Junction Temperature	150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PAD CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 1. AD8065 Die Pad Configuration

Table 5. Pad Function Descriptions

Pad No.	X-Axis	Y-Axis	Mnemonic	Description
2	-485	254	-IN	Inverting Input.
3	-485	-172	+IN	Noninverting Input.
4	201	-301	-Vs	Negative Supply.
6	343	-189	Vout	Output.
7	485	25	+Vs	Positive Supply.

OUTLINE DIMENSIONS

(C-6-5) Dimensions shown in millimeters

DIE SPECIFICATIONS AND ASSEMBLY RECOMMENDATIONS

Table 6. Typical Die Specifications

Parameter	Value	Unit
Chip Size	1205 × 855	μm
Die Size	47.4 × 33.7	Mil
Thickness	483	μm
Bond Pads (Min Size)	92 × 92	μm
Bond Pad Composition	1% Copper Doped Aluminum	%
Backside	Si	Not Applicable
Passivation	Doped oxide/SiN	Not Applicable
ESD	HBM 1000	V

Table 7. Assembly Recommendations

Assembly Component	Recommendation
Die Attach	Ablestik 84-1LMIS R4
Bonding Method	1 mil gold

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8065-KGD-CHIP	–40°C to +85°C	6-Pad Bare Die [CHIP]	C-6-5

NOTES

©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D11011-0-10/12(0)

www.analog.com

Rev. 0 | Page 8 of 8

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

NCV33072ADR2G LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR LM2902M/TR