Adafruit DVI Sock for Pico

Created by Liz Clark

https://learn.adafruit.com/adafruit-dvi-sock-for-pico

Last updated on 2025-03-31 01:30:51 PM EDT

©Adafruit Industries Page 1 of 26

Table of Contents

Overview

Pinouts

« Power Pins
« HDMI Connector
- Additional HDMI Pins

CircuitPython

« Wiring

« CircuitPython Usage

« Hello World DVI Output Example

Python Docs

Arduino

« Wiring

« Library Installation
« Example Code

Arduino Docs
Downloads

. Files
« Schematic and Fab Print

©Adafruit Industries

14

14

25

25

Page 2 of 26

Overview

The DVI Sock uses the HSTX pins on the Pico 2, so it is compatible with both
CircuitPython and Arduino.

Wouldn't it be cool to display images and graphics directly from your Pico or Pico W to
an HDMI monitor or television? We think so! So we designed this DVI Sock with a
digital video output (a.k.a DVI) that will work with any HDMI monitor or display. Note it
doesn't do audio, just graphics!

©Adafruit Industries Page 3 of 26

WD 12/00+ DI1-/19CR
B 13/00- 2
. D DVI'SOCK <=
D 14/CK+ D2-/17€CR
D2+/16 Q1

B 15/CK-

We designed this little breakout board after seeing Wren6991's Pico DVI Sock (https://
adafru.it/19Wb) and their cool demos (https://adafru.it/ZTf)of the Raspberry Pi Pico

driving an HDMI display. By using some fun 'abuse' of overclocking and the RP2040's
PIO system, a low-cost microcontroller can have great-looking video output. It's great

for making demos or just noodling around with digital video generation.

o8 DVIsock@o

o For RP2 Pico 0

o8 fly 89
o 30

©15/CK-. D2+/16©D
€©14/CK+ D2-/17©
€ GND GNDOD
| €13/00- D1+/180
| €@12/D0+ D1-/19@

This breakout board has no active components on it. It's just a connector you can plug
an HDMI/DVI cable into, and 220 ohm series resistors. Wire it up to the bottom pins of

your Pico board, or solder it directly onto the 'end' like a li'l PCB sock. The

connections that are made:

+ GP12 to DO+

©Adafruit Industries

Page 4 of 26

+ GP13 to DO-

+ GP14 to CK+

+ GP15 to CK-

+ GP16 to D2+

+ GP17 to D2-

+ GP18 to D1+

+ GP19 to D1-

+ Pico GND to GND

We also breakout the 5V, GND, Hot-Plug Detect, CEC and Util pins, for more
advanced hacking. Note that while technically you're supposed to provide 5V to the
DVI port, it isn't convenient to do so on the Sock so it's left disconnected. Since the
5V is used for the 12C EDID EEPROM and we don't care about it, the 'Sock will work
just fine without.

©Adafruit Industries Page 5 of 26

Pinouts

Power Pins

D 12/D0+ D1-/19CB

. mD13/00-2014/13CE

> DVISOCK <=
D 14/CK+ D2-/17CR
B 15/cK- D2+/16QC

"o8 DVI Sock 8o
o For RP2 Pico O

°§ *@@

©15/CK-. D2+/16©D
©14/CK+ D2-N17©D

| €@ GND GNDO
| €13/D0- D1+/18©
©@12/00+ DI1-/190

+ 5 - This is the 5V power pin. It is not connected by default. It is available for use
if you're adding an I2C EEPROM to the board.
« GND pins - These are common ground for power and logic.

HDMI Connector

On the end of the board is the HDMI connector. It provides DVI output to any HDMI

display or monitor. The following GPIO pins are routed to the connector:

+ GP12: DO+
+ GP13: DO-
+ GP14: CK+
+ GP15: CK-
« GP16: D2+
+ GP17: D2-

+ GP18: D1+
- GP19: D1-

Additional HDMI Pins

Three additional pins for the HDMI connector are broken out on either side of the

HDMI port. You can route them to GPIO pins if you would like to use them:

- Utility pin -

labeled Util on the board silk. This pin is reserved for future HDMI

specification updates

©Adafruit Industries

Page 6 of 26

« CEC pin - labeled CEC on the board silk. Consumer Electronic Control (https://
adafru.it/18AQ) is a one-wire bidirectional serial bus that is standardized for
remote control functions

« Hot Plug Detection pin - labeled HPD on the board silk. Hot plug detection is
used to detect if a device is connected or disconnected to the HDMI connector
by monitoring power, plug and unplug events

CircuitPython

The DVI Sock uses the HSTX pins on the Pico 2, so it is compatible with

CircuitPython.

It's easy to use the DVI Sock with CircuitPython and the PicoDVI (https://adafru.it/
18Eu) core module. This module has been added to CircuitPython as of

8.1.0b2 (https://adafru.it/18Et) - but note that it uses a lot of memory so in particular if
you want to use Pico W with WiFi support, you'll likely only be able to get away with
monochrome display.

Wiring
Attach the Sock to the bottom pins of your Pico board, or solder it directly onto the
'end' like a li'l PCB sock.

©Adafruit Industries Page 7 of 26

CircuitPython Usage

To use with CircuitPython, you need to first install the PicoDVI dependencies into the
lib folder onto your CIRCUITPY drive. Then you need to update code.py with the
example script.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file.

Connect your Pico board to your computer via a known good data+power USB cable.
The board should show up in your File Explorer/Finder (depending on your operating
system) as a flash drive named CIRCUITPY.

Extract the contents of the zip file, and copy the entire lib folder, the Helvetica-
Bold-16.pcf font file, blinka_computer.omp bitmap file and code.py file to your
CIRCUITPY drive.

Your CIRCUITPY/lib folder should contain the following folders and file:

« adafruit_bitmap_font/

- adafruit_display_shapes/
- adafruit_display_text/

« simpleio.mpy

v @ CIRCUITPY
<
Ll
[
R boot_out.txt
code.py
settings.toml
Helvetica-Bold-16.pcf

blinka_computer.omp
v @ |ib

» @ adafruit_bitmap_font
» @ adafruit_display_shapes
> @ adafruit_display_text
adafruit_ticks.mpy
simpleio.mpy
> @ sd

Hello World DVI Output Example

Once everything is saved to the CIRCUITPY drive, you can connect the DVI Sock to
an HDMI monitor and connect your Pico to USB power. You'll see the Hello World
example display on the screen.

©Adafruit Industries Page 8 of 26

SPDX-FileCopyrightText: 2023 Liz Clark for Adafruit Industries
SPDX-FileCopyrightText: Adapted from Phil B.'s 16bit hello Arduino Code

#

SPDX-License-Identifier: MIT

import gc

import math

from random import randint
import time

import displayio
import picodvi
import board

import framebufferio
import vectorio
import terminalio
import simpleio

from adafruit bitmap font import bitmap font

from adafruit display text import label, wrap text to lines
from adafruit display shapes.
from adafruit display shapes.
from adafruit display shapes.
from adafruit display shapes.
from adafruit display shapes.

pin defs for DVI Sock
displayio.release displays()

rect import Rect

circle import Circle
roundrect import RoundRect
triangle import Triangle
line import Line

fb = picodvi.Framebuffer(320, 240,
clk _dp=board.GP14, clk dn=board.GP15,
red dp=board.GP12, red dn=board.GP13,
green_dp=board.GP18, green dn=board.GP19,
blue dp=board.GP16, blue_dn=board.GP17,

color depth=8)

display = framebufferio.FramebufferDisplay(fb)

bitmap = displayio.Bitmap(display.width, display.height, 3)

red = Oxff0000
yellow = OxccccO0
orange = Oxff5500
blue = Ox0000ff
pink = OxffOOff
purple = 0x5500ff
white = Oxffffff
green Ox00ffO0
aqua = 0x125690

palette = displayio.Palette(3

palette[0] = 0x000000 # black
palette[l] = white
palette[2] = yellow

palette.make transparent(0)

tile grid = displayio.TileGrid(bitmap, pixel shader=palette)

group = displayio.Group()

def clean up(group name):

)

for in range(len(group name)):

group_name.pop()
gc.collect()

def show shapes():
gc.collect()
cx = int(display.width /

2)

cy = int(display.height / 2)

minor = min(cx, cy)
pad = 5

©Adafruit Industries

Page 9 of 26

size = minor - pad

half = int(size / 2)

rect = Rect(cx - minor, cy - minor, size, size, stroke = 1, fill=red, outline =
red)

tri = Triangle(cx + pad, cy - pad, cx + pad + half, cy - minor,
cxX + minor - 1, cy - pad, fill=green, outline = green)
circ = Circle(cx - pad - half, cy + pad + half, half, fill=blue, stroke =1,
outline blue)
rnd RoundRect(cx + pad, cy + pad, size, size, int(size / 5), stroke =1,
fill=yellow, outline = yellow)

group.append(rect)
group.append(tri)
group.append(circ)
group.append(rnd)
rect.fill = None
tri.fill = None
circ.fill = None
rnd.fill = None

time.sleep(2)

rect.fill = red
tri.fill = green
circ.fill = blue
rnd.fill = yellow
time.sleep(2)
clean up(group)
del rect

del tri

del circ

del rnd
gc.collect()

def sine chart():
gc.collect()
cx = int(display.width / 2)
cy = int(display.height / 2)
minor min(cx, cy)
major max(cx, cy)

group.append(Line(cx, 0, cx, display.height, blue)) # v
group.append(Line(0, cy, display.width, cy, blue)) # h

for i in range(10):
~n = simpleio.map_range(i, 0, 10, 0, major - 1)
n = int(_n)

group.append(Line(cx - n, cy - 5, ¢x - n, (cy - 5) + 11, blue)) # v
group.append(Line(cx + n, cy - 5, ¢cx + n, (cy - 5) + 11, blue)) # v
group.append(Line(cx - 5, cy - n, (cx - 5) + 11, cy - n, blue)) # h
group.append(Line(cx - 5, cy + n, (cx - 5) + 11, cy + n, blue)) # h

for x in range(display.width):
y = cy - int(math.sin((x - cx) * 0.05) * float(minor * 0.5))
bitmap[x, y] =1

group.append(tile grid)

time.sleep(2)

clean up(group)

def widgetO():
gc.collect()
data = [31, 42, 36, 58, 67, 88]
num_points = len(data)

text area = label.Label(terminalio.FONT, text="Widget Sales", color=white)
text area.anchor_point = (0.5, 0.0)

text area.anchored position = (display.width / 2, 3)
group.append(text area)

for i in range(11):

©Adafruit Industries Page 10 of 26

X = simpleio.map _range(i, 0, 10, 0, display.width - 1)
X = int(x)
group.append(Line(x, 20, x, display.height, blue))
_y = simpleio.map_range(i, 0, 10, 20, display.height - 1)
y = int(_y)
group.append(Line(0, y, display.width, y, blue))
prev.x = 0
_prev_y = simpleio.map_range(data[0], 0, 100, display.height - 1, 20)
prev_y = int(_prev_y)
for i in range(l, num_points):
~new x = simpleio.map range(i, O, num points - 1, 0, display.width - 1)
new x = int(new x)
_new y = simpleio.map_range(data[i], 0, 100, display.height - 1, 20)
new y = int(_new y)
group.append(Line(prev_x, prev_y, new X, new_y, aqua))
prev_x = new_X
prev_y = newy

for i in range(num_points):
X = simpleio.map_range(i, 0, num points - 1, 0, display.width - 1)
X = int(_x)
_y = simpleio.map_range(data[i], O, 100, display.height - 1, 20)
y = int(_y)
group.append(Circle(x, y, 5, fill=None, stroke = 2, outline = white))

time.sleep(2)
clean up(group)

def widgetl():
gc.collect()
data = [31, 42, 36, 58, 67, 88]
num_points = len(data)
bar width = int(display.width / num points) - 4
x_mapped w = display.width + 2
h mapped h = display.height + 20

text area = label.Label(terminalio.FONT, text="Widget Sales", color=white)
text area.anchor point = (0.5, 0.0)
text _area.anchored position = (display.width / 2, 3)
group.append(text area)
for i in range(1l):
_y = simpleio.map range(i, 0, 10, 20, display.height - 1)
y = int(_y)
group.append(Line(0, y, display.width, y, blue))
for i in range(num_points):
X = simpleio.map_range(i, 0, num points, 0, x mapped w)
X = int(_x)
_height = simpleio.map_range(data[i], 0, 100, h mapped h, 0)
height = int(_height)
group.append(vectorio.Rectangle(pixel shader=palette, width=bar width,
height=display.height + 1, x=x, y=height, color_index = 2))

time.sleep(2)
clean up(group)

def text align():
gc.collect()
TEXT = "hello world"

text area top left = label.Label(terminalio.FONT, text=TEXT, color=red)
text area top left.anchor point = (0.0, 0.0)
text area top left.anchored position = (0, 0)

text area top middle = label.Label(terminalio.FONT, text=TEXT, color=orange)
text area top middle.anchor point = (0.5, 0.0)
text area top middle.anchored position = (display.width / 2, 0)

text area top right = label.Label(terminalio.FONT, text=TEXT, color=yellow)
text area top right.anchor point = (1.0, 0.0)

©Adafruit Industries Page 11 of 26

text _area top right.anchored position = (display.width, 0)

text area middle left = label.Label(terminalio.FONT, text=TEXT, color=green)
text area middle left.anchor point = (0.0, 0.5)
text area middle left.anchored position = (0, display.height / 2)

text area middle middle = label.Label(terminalio.FONT, text=TEXT, color=aqua)
text area middle middle.anchor point = (0.5, 0.5)
text area middle middle.anchored position = (display.width / 2, display.height /

text area middle right = label.Label(terminalio.FONT, text=TEXT, color=blue)
text area middle right.anchor point = (1.0, 0.5)
text area middle right.anchored position = (display.width, display.height / 2)

text area bottom left = label.lLabel(terminalio.FONT, text=TEXT, color=purple)
text area bottom left.anchor point = (0.0, 1.0)
text area bottom left.anchored position = (0, display.height)

text area bottom middle = label.Label(terminalio.FONT, text=TEXT, color=pink)
text area bottom middle.anchor point = (0.5, 1.0)
text area bottom middle.anchored position = (display.width / 2, display.height)

text area bottom right = label.Label(terminalio.FONT, text=TEXT, color=white)
text area bottom right.anchor point = (1.0, 1.0)
text area bottom right.anchored position = (display.width, display.height)

group.append(text area top middle)
group.append(text area top left)
group.append(text area top right)
group.append(text area middle middle)
group.append(text area middle left)
group.append(text area middle right)
group.append(text area bottom middle)
group.append(text area bottom left)
group.append(text area bottom right)

time.sleep(2)
clean up(group)

def custom font():
gc.collect()
my font = bitmap font.load font("/Helvetica-Bold-16.pcf")
text _sample = "The quick brown fox jumps over the lazy dog."
text _sample = "\n".join(wrap_text to lines(text sample, 28))
text area = label.Label(my font, text="Custom Font", color=white)
text area.anchor point = (0.0, 0.0)
text _area.anchored position = (0, 0)

sample text = label.Label(my font, text=text sample)
sample text.anchor point = (0.5, 0.5)
sample text.anchored position = (display.width / 2, display.height / 2)

group.append(text area)
group.append(sample text)

time.sleep(2)
clean up(group)

del my font
gc.collect()

def bitmap example():
gc.collect()
blinka bitmap = displayio.OnDiskBitmap("/blinka computer.bmp")
blinka grid = displayio.TileGrid(blinka bitmap,
pixel shader=blinka bitmap.pixel shader)
gc.collect()
group.append(blinka grid)

©Adafruit Industries Page 12 of 26

time.sleep(2)
clean up(group)

del blinka grid
del blinka bitmap
gc.collect()

def sensor _values():
gc.collect()

text x = "X: %d" % randint(-25, 25)
text y = "Y: %d" % randint(-25, 25)
text z = "Z: %d" % randint(-25, 25)
x_text = label.Label(terminalio.FONT, text=text x, color=red)

x_text.anchor _point = (0.0, 0.0)

x_text.anchored position = (2, 0)

y text = label.Label(terminalio.FONT, text=text y, color=green)
y text.anchor _point = (0.0, 0.0)

y text.anchored position = (2, 10)

z text = label.Label(terminalio.FONT, text=text z, color=blue)
z text.anchor point = (0.0, 0.0)

z text.anchored position = (2, 20)

group.append(x_text)

group.append(y_ text)

group.append(z_text)

for i in range(40):

if i == 10:
group.scale = 2
elif i == 20:
group.scale = 3
elif i == 30:

group.scale = 4
X_text.text "X
y text.text "Y'
z_text.text "Z:
time.sleep(0.1)
time.sleep(0.1)
clean_up(group)
group.scale =1

andint(-50, 50)
andint(-50, 50)
andint(-50, 50)

o° 0P o
o 0 O
O\O o\o O\o
=S 9

display.root group = group

while True:
show shapes()
sine chart()
widgetO()
widgetl()
text align()
custom_font()
bitmap example()
sensor_values()

This example is a port of the Arduino 16bit_hello code written by Phil B (https://

adafru.it/18Bf). with some slight variation to show off some of the unique abilities of
displayio.

The example begins by showing a rectangle, circle, triangle and rounded rectangle
and changing the fill attribute from None to a color.

Then, a few chart variations are shown, including a sine wave pattern, line graph and
bar graph.

©Adafruit Industries Page 13 of 26

Next is a text alignment example, showing how to use the anchor point and
anchor position functions in the adafruit_display_text library.

Following that is a custom text example, loading a bitmap font instead of the built-in
terminalio font.

Then there is a quick break from fonts to show off a bitmap image, specifically Blinka
happily using her computer.

Finally, an example shows how to update the textin a Label object for projects
where you want to display text information that updates over time.

Python Docs

Python Docs (https://adafru.it/18Eu)

Arduino

Using the DVI Sock with Arduino involves connecting the DVI Sock to a Pico board,
connecting the boards to an HDMI monitor and USB power, installing the Adafruit fork
of the PicoDVI library and running the provided example code.

Wiring
Attach the Sock to the bottom pins of your Pico board, or solder it directly onto the
'‘end’ like a li'l PCB sock.

©Adafruit Industries Page 14 of 26

Library Installation

You can install the Adafruit fork of the PicoDVI library for Arduino using the Library

Manager in the Arduino IDE.

@ Arduino File Edit Sketch Tools Help
CEDNE verify/Compile sketch_jun25a | Arduino 1.8.13
Upload
Upload Using Programmer
sketch_jun25a Export compiled Binary

oid setupQ {

// put your setup code he gowieteEo e

Include Library Manage Libraries...

} Add File... z
Add .ZIP Library...

Click the Manage Libraries ... menu item, search for PicoDVI - Adafruit Fork and

select the PicoDVI - Adafruit Fork library:

! @ Library Manager X
o| Type Al + | Topic |Al + | |picodvi|
PicoDVI - Adafruit Fork ~
by Adafruit

Arduino library for RP2040 DVI output, based on PicoDVI Arduino library for RP2040 DVI output, based on PicoDVI
More info

Version 1.1.0 + Install

If asked about dependencies for any of the libraries, click "Install all".

Dependencies for library PicoDVI - Adafruit Fork:1.1.0 X F

The library PicoDVI - Adafruit Fork:1.1.0 needs some other library
dependencies currently not installed:

- Adafruit GFX Library
- Adafruit BusIO I
- Adafruit CPFS -
- SdFat - Adafruit Fork

- Adafruit SPIFlash

- Adafruit NeoPixel

- Adafruit TinyUSB Library
- MIDI Library

- Adafruit InternalFlash

- FlashStorage

Would you like to install also all the missing dependencies?

Install all Install ‘PicoDVI - Adafruit Fork' only Cancel o

©Adafruit Industries

Page 15 of 26

If the "Dependencies" window does not come up, then you already have the
dependencies installed.

If the dependencies are already installed, you must make sure you update

them through the Arduino Library Manager before loading the example!

Example Code

// SPDX-FileCopyrightText: 2023 Phil B. for Adafruit Industries
// SPDX-License-Identifier: MIT

// Basic full-color PicoDVI test. Provides a 16-bit color video framebuffer to
// which Adafruit GFX calls can be made. It's based on the EYESPI Test.ino sketch.

#include <PicoDVI.h> // Core display & graphics library
#include <Fonts/FreeSansBold1l8pt7b.h> // A custom font

// Here's how a 320x240 16-bit color framebuffer is declared. Double-buffering
// 1s not an option in 16-bit color mode, just not enough RAM; all drawing

// operations are shown as they occur. Second argument is a hardware

// configuration -- examples are written for Adafruit Feather RP2040 DVI, but
// that's easily switched out for boards like the Pimoroni Pico DV (use

// 'pimoroni_demo hdmi cfg') or Pico DVI Sock ('pico sock cfg').

DVIGFX16 display(DVI RES 320x240p60, pico sock cfg);

// A 400x240 mode is possible but pushes overclocking even higher than
// 320x240 mode. SOME BOARDS MIGHT SIMPLY NOT BE COMPATIBLE WITH THIS.
// May require selecting QSPI div4 clock (Tools menu) to slow down flash
// accesses, may require further over-volting the CPU to 1.25 or 1.3 V.
//DVIGFX16 display(DVI RES 400x240p60, adafruit feather dvi cfg);

void setup() { // Runs once on startup
if (!display.begin()) { // Blink LED if insufficient RAM
pinMode (LED BUILTIN, OUTPUT);
for (;;) digitalWrite(LED BUILTIN, (millis() / 500) & 1);
}
}

#define PAUSE 2000 // Delay (milliseconds) between examples
uint8 t rotate = 0; // Current screen orientation (0-3)
#define CORNER RADIUS 0

void loop() {
// Each of these functions demonstrates a different Adafruit GFX concept:
show_shapes();
show charts();
show basic text();
show_char_map();
show custom text();
show bitmap();
show_canvas();

if (++rotate > 3) rotate = 0; // Cycle through screen rotations 0-3
display.setRotation(rotate); // Takes effect on next drawing command

}
// BASIC SHAPES EXAMPLE - - - - - m s mmmo o mm o io oo

void show shapes() {

©Adafruit Industries Page 16 of 26

// Draw outlined and filled shapes. This demonstrates:
// - Enclosed shapes supported by GFX (points & lines are shown later).
// - Adapting to different-sized displays, and to rounded corners.

const intl6 t cx display.width() / 2; // Center of screen =

const intl6_t cy = display.height() / 2; // half of width, height

intle_t minor = min(cx, cy); // Lesser of half width or height
// Shapes will be drawn in a square region centered on the screen. But one
// particular screen -- rounded 240x280 ST7789 -- has VERY rounded corners
// that would clip a couple of shapes if drawn full size. If using that

// screen type, reduce area by a few pixels to avoid drawing in corners.
if (CORNER RADIUS > 40) minor -= 4;

const uint8 t pad = 5; // Space between shapes is 2X this
const intl6 t size = minor - pad; // Shapes are this width & height
const intle t half = size / 2; // 1/2 of shape size

display.fillScreen(0); // Start by clearing the screen; color 0 = black

// Draw outline version of basic shapes: rectangle, triangle, circle and
// rounded rectangle in different colors. Rather than hardcoded numbers

// for position and size, some arithmetic helps adapt to screen dimensions.
display.drawRect(cx - minor, cy - minor, size, size, 0xF800);
display.drawTriangle(cx + pad, cy - pad, cx + pad + half, cy - minor,

CX + minor - 1, cy - pad, OxO07E0);
display.drawCircle(cx - pad - half, cy + pad + half, half, 0x001F);
display.drawRoundRect(cx + pad, cy + pad, size, size, size / 5, OxFFEO);
delay (PAUSE) ;

// Draw same shapes, same positions, but filled this time.
display.fillRect(cx - minor, cy - minor, size, size, 0xF800);
display.fillTriangle(cx + pad, cy - pad, cx + pad + half, cy - minor,

CX + minor - 1, cy - pad, OxO07E0);
display.fillCircle(cx - pad - half, cy + pad + half, half, 0x001F);
display.fillRoundRect(cx + pad, cy + pad, size, size, size / 5, OxFFEOQ);
delay (PAUSE) ;

} // END SHAPE EXAMPLE

// CHART EXAMPLES - - === - - m s m o mm o e e o e e e oo oo

void show charts() {
// Draw some graphs and charts. GFX library doesn't handle these as native
// object types, but it only takes a little code to build them from simple
// shapes. This demonstrates:
// - Drawing points and horizontal, vertical and arbitrary lines.
// - Adapting to different-sized displays.
// - Graphics being clipped off edge.
// - Use of negative values to draw shapes "backward" from an anchor point.
// - C technique for finding array size at runtime (vs hardcoding).

display.fillScreen(0); // Clear screen

const intle t cx = display.width() / 2; // Center of screen =

const intl6_t cy display.height() / 2; // half of width, height

const intl6 t minor = min(cx, cy); // Lesser of half width or height
const intle _t major = max(cx, cy); // Greater of half width or height

// Let's start with a relatively simple sine wave graph with axes.

// Draw graph axes centered on screen. drawFastHLine() and drawFastVLine()
// need fewer arguments than normal 2-point line drawing shown later.
display.drawFastHLine (0, cy, display.width(), 0x0210); // Dark blue
display.drawFastVLine(cx, 0, display.height(), 0x0210);

// Then draw some tick marks along the axes. To keep this code simple,
// these aren't to any particular scale, but a real program may want that.
// The loop here draws them from the center outward and pays no mind
// whether the screen is rectangular; any ticks that go off-screen will
// be clipped by the library.
for (uint8 t i=1; i<=10; i++) {

// The Arduino map() function scales an input value (e.g. "i") from an

©Adafruit Industries Page 17 of 26

// input range (0-10 here) to an output range (0 to major-1 here).

// Very handy for making graphics adjust to different screens!

intle t n = map(i, 0, 10, 0, major - 1); // Tick offset relative to center point
display.drawFastVLine(cx - n, cy - 5, 11, 0x210);
display.drawFastVLine(cx + n, cy - 5, 11, 0x210);
display.drawFastHLine(cx - 5, cy - n, 11, 0x210);
display.drawFastHLine(cx - 5, cy + n, 11, 0x210);

}

// Then draw sine wave over this using GFX drawPixel() function.

for (intl6 t x=0; x<display.width(); x++) { // Each column of screen...
// Note the inverted Y axis here (cy-value rather than cy+value)
// because GFX, 1like most graphics libraries, has +Y heading down,
// vs. classic Cartesian coords which have +Y heading up.
intle t y = cy - (intl6e t)(sin((x - cx) * 0.05) * (float)minor * 0.5);
display.drawPixel(x, y, OXFFFF);

}

delay (PAUSE) ;

// Next, let's draw some charts...

// NOTE: some other examples in this code take extra steps to avoid placing
// anything off in the rounded corners of certain displays. The charts do
// not. It's *possible* but would introduce a lot of complexity into code
// that's trying to show the basics. We'll leave the clipped charts here as
// a teachable moment: not all content suits all displays.

// A list of data to plot. These are Y values only; X assumed equidistant.
const uint8 t datal] = { 31, 42, 36, 58, 67, 88 }; // Percentages, 0-100
const uint8 t num _points = sizeof data / sizeof data[0]; // Length of data[] list

display.fillScreen(0); // Clear screen
display.setFont(); // Use default (built-in) font
display.setTextSize(2); // and 2X size for chart label

// Chart label is centered manually; 144 is the width in pixels of

// "Widget Sales" at 2X scale (12 chars * 6 px * 2 = 144). A later example

// shows automated centering based on string.
display.setCursor((display.width() - 144) / 2, 0);

display.print(F("wWidget Sales")); // F("string") is in program memory, not RAM
// The chart-drawing code is then written to skip the top 20 rows where

// this label is located.

// First, a line chart, connecting the values point-to-point:

// Draw a grid of lines to provide scale & an interesting background.

for (uint8 t i=0; i<1l; i++) {
intle t x = map(i, 0, 10, 0, display.width() - 1); // Scale grid X to screen
display.drawFastVLine(x, 20, display.height(), Ox001F);
intle t y = map(i, 0, 10, 20, display.height() - 1); // Scale grid Y to screen
display.drawFastHLine (0, y, display.width(), Ox001F);

// And then draw lines connecting data points. Load up the first point...
intl6 t prev_x = 0;
intle t prev_y = map(data[0], O, 100, display.height() - 1, 20);
// Then connect lines to each subsequent point...
for (uint8 t i=1; i<num points; i++) {
intle t new x = map(i, 0, num_points - 1, 0, display.width() - 1);
intl6_t new y = map(data[i], O, 100, display.height() - 1, 20);
display.drawlLine(prev_x, prev_y, new X, new y, OxO7FF);
prev_x = new_Xx;
prev_y = new_y;
¥
// For visual interest, let's add a circle around each data point. This is
// done in a second pass so the circles are always drawn "on top" of lines.
for (uint8 t i=0; i<num points; i++) {
intlée t x = map(i, O, num points - 1, 0, display.width() - 1);
intle t y = map(data[i], 0, 100, display.height() - 1, 20);
display.drawCircle(x, y, 5, OxFFFF);

©Adafruit Industries Page 18 of 26

}
delay (PAUSE) ;
// Then a bar chart of the same data...

// Erase the old chart but keep the label at top.
display.fillRect (0, 20, display.width(), display.height() - 20, 0);

// Just draw the Y axis lines; bar chart doesn't really need X lines.
for (uint8 t i=0; i<11l; i++) {
intle t y = map(i, 0, 10, 20, display.height() - 1);
display.drawFastHLine (0, y, display.width(), 0x001F);

int bar _width = display.width() / num _points - 4; // 2px pad to either side
for (uint8 t i=0; i<num points; i++) {
intle t x = map(i, O, num _points, 0, display.width()) + 2; // Left edge of bar
intl6 t height = map(data[i], 0, 100, 0, display.height() - 20);
// Some GFX functions (rects, H/V lines and similar) can accept negative
// width/height values. What this does is anchor the shape at the right or
// bottom coordinate (rather than the usual left/top) and draw back from
// there, hence the -height here (bar is anchored at bottom of screen):
display.fillRect(x, display.height() - 1, bar width, -height, OXFFEO);
}

delay (PAUSE) ;
} // END CHART EXAMPLES
// TEXT ALIGN FUNCTIONS === cc o s s s m e oo oo e e e e e o d e e e e e e e e e o

// Adafruit GFX only handles left-aligned text. This is normal and by design;
// it's a rare need that would further strain AVR by incurring a ton of extra
// code to properly handle, and some details would confuse. If needed, these
// functions give a fair approximation, with the "gotchas" that multi-line
// input won't work, and this operates only as a println(), not print()

// (though, unlike println(), cursor X does not reset to column 0, instead

// returning to initial column and downward by font's line spacing). If you
// can work with those constraints, it's a modest amount of code to copy

// into a project. Or, if your project only needs one or two aligned strings,
// simply use getTextBounds() for a bounding box and work from there.

// DO NOT ATTEMPT TO MAKE THIS A GFX-NATIVE FEATURE, EVERYTHING WILL BREAK.

typedef enum { // Alignment options passed to functions below
GFX ALIGN LEFT,
GFX_ALIGN CENTER,
GFX_ ALIGN RIGHT

} GFXalign;

// Draw text aligned relative to current cursor position. Arguments:

// gfx : An Adafruit GFX-derived type (e.g. display or canvas object).
// str : String to print (as a char *).

// align : One of the GFXalign values declared above.

// GFX ALIGN LEFT is normal left-aligned println() behavior.

// GFX ALIGN CENTER prints centered on cursor pos.

// GFX ALIGN RIGHT prints right-aligned to cursor pos.

// Cursor advances down one line a la println(). Column is unchanged.
void print_aligned(Adafruit GFX &gfx, const char *str,
GFXalign align = GFX ALIGN LEFT) {
uintle t w, h;
intlée t x, y, cursor_x, cursor_x_ save;
cursor x = cursor_x save = gfx.getCursorX();
gfx.getTextBounds(str, 0, gfx.getCursorY(), &x, &y, &w, &h);

if (align == GFX ALIGN RIGHT) cursor_x -= w;
else if (align == GFX ALIGN CENTER) cursor x -=w / 2;
//gfx.drawRect(cursor_x, y, w, h, OxF800); // Debug rect

gfx.setCursor(cursor x - x, gfx.getCursorY()); // Center/right align
gfx.println(str);

©Adafruit Industries Page 19 of 26

gfx.setCursor(cursor_x save, gfx.getCursorY()); // Restore cursor X

}

// Equivalent function for strings in flash memory (e.g. F("Foo")). Body
// appears identical to above function, but with C++ overloading it it works
// from flash instead of RAM. Any changes should be made in both places.
void print _aligned(Adafruit GFX &gfx, const _ FlashStringHelper *str,
GFXalign align = GFX ALIGN LEFT) {

uintle t w, h;

intle_ t x, y, cursor_X, cursor_Xx save;

cursor x = cursor_x save = gfx.getCursorX();

gfx.getTextBounds(str, 0, gfx.getCursorY(), &x, &y, &w, &h);

if (align == GFX ALIGN RIGHT) cursor_x -= w;
else if (align == GFX ALIGN CENTER) cursor x -=w / 2;
//gfx.drawRect(cursor _x, y, w, h, OxF800); // Debug rect

gfx.setCursor(cursor x - x, gfx.getCursorY()); // Center/right align
gfx.println(str);
gfx.setCursor(cursor_x save, gfx.getCursorY()); // Restore cursor X

}

// Equivalent function for Arduino Strings; converts to C string (char *)
// and calls corresponding print aligned() implementation.
void print aligned(Adafruit GFX &gfx, const String &str,
GFXalign align = GFX ALIGN LEFT) {
print aligned(gfx, const cast<char *>(str.c str()));

}
// TEXT EXAMPLES - - - = -« s o s m e ettt

// This section demonstrates:

// - Using the default 5x7 built-in font, including scaling in each axis.

// - How to access all characters of this font, including symbols.

// - Using a custom font, including alignment techniques that aren't a normal
// part of the GFX library (uses functions above).

void show basic text() {
// Show text scaling with built-in font.
display.fillScreen(0);

display.setFont(); // Use default font
display.setCursor(0, CORNER RADIUS); // Initial cursor position
display.setTextSize(1); // Default size

display.println(F("Standard built-in font"));

display.setTextSize(2);

display.println(F("BIG TEXT"));

display.setTextSize(3);

// "BIGGER TEXT" won't fit on narrow screens, so abbreviate there.
display.println((display.width() >= 200) ? F("BIGGER TEXT") : F("BIGGER"));
display.setTextSize(2, 4);

display.println(F("TALL and"));

display.setTextSize(4, 2);

display.println(F("WIDE"));

delay (PAUSE) ;
} // END BASIC TEXT EXAMPLE

void show char _map() {
// "Code Page 437" is a name given to the original IBM PC character set.
// Despite age and limited language support, still seen in small embedded
// settings as it has some useful symbols and accented characters. The
// default 5x7 pixel font of Adafruit GFX is modeled after CP437. This
// function draws a table of all the characters & explains some issues.

// There are 256 characters in all. Draw table as 16 rows of 16 columns,
// plus hexadecimal row & column labels. How big can each cell be drawn?
const int cell size = min(display.width(), display.height()) / 17;

if (cell size < 8) return; // Screen is too small for table, skip example.
const int total size = cell _size * 17; // 16 cells + 1 row or column label

// Set up for default 5x7 font at 1:1 scale. Custom fonts are NOT used

©Adafruit Industries Page 20 of 26

// here as most are only 128 characters to save space (the "7b" at the
// end of many GFX font names means "7 bits," i.e. 128 characters).
display.setFont();

display.setTextSize(1l);

// Early Adafruit GFX was missing one symbol, throwing off some indices!
// But fixing the library would break MANY existing sketches that relied
// on the degrees symbol and others. The default behavior is thus "broken"
// to keep older code working. New code can access the CORRECT full CP437
// table by calling this function like so:

display.cp437(true);

display.fillScreen(0);

const intl6 t x = (display.width() - total size) / 2; // Upper left corner of
intl6 t y = (display.height() - total size) / 2; // table centered on screen
if (y >= 4) { // If there's a little extra space above & below, scoot table
y += 4; // down a few pixels and show a message centered at top.
display.setCursor((display.width() - 114) / 2, 0); // 114 = pixel width
display.print(F("CP437 Character Map")); // of this message
}

const intl6e t inset x
cell,
const intl6 t inset y

(cell size - 5) / 2; // To center each character within

(cell size - 8) / 2; // compute X & Y offset from corner.

for (uint8 t row=0; row<1l6; row++) { // 16 down...

// Draw row and columm headings as hexadecimal single digits. To get the
// hex value for a specific character, combine the left & top labels,
// e.g. Pi symbol is row E, column 3, thus: display.print((char)0xE3);
display.setCursor(x + (row + 1) * cell size + inset x, y + inset y);
display.print(row, HEX); // This actually draws column labels
display.setCursor(x + inset x, y + (row + 1) * cell size + inset y);
display.print(row, HEX); // and THIS is the row labels
for (uint8 t col=0; col<16; col++) { // 16 across...

if ((row + col) & 1) { // Fill alternating cells w/gray

display.fillRect(x + (col + 1) * cell size, y + (row + 1) * cell size,
cell size, cell size, 0x630C);
}

// drawChar() bypasses usual cursor positioning to go direct to an X/Y
// location. If foreground & background match, it's drawn transparent.
display.drawChar(x + (col + 1) * cell size + inset X,
y + (row + 1) * cell size + inset y, row * 16 + col,
OxFFFF, OXFFFF, 1);
}
}

delay(PAUSE * 2);
} // END CHAR MAP EXAMPLE

void show custom text() {
// Show use of custom fonts, plus how to do center or right alignment
// using some additional functions provided earlier.

display.fillScreen(0);
display.setFont(&FreeSansBold18pt7b);
display.setTextSize(1l);

display.setTextWrap(false); // Allow text off edges

// Get "M height" of custom font and move initial base line there:
uintle t w, h;

intle t x, y;

display.getTextBounds("M", 0, 0, &x, &y, &w, &h);

// 0On rounded 240x280 display in tall orientation, "Custom Font" gets

// clipped by top corners. Scoot text down a few pixels in that one case.
if (CORNER RADIUS && (display.height() == 280)) h += 20;
display.setCursor(display.width() / 2, h);

if (display.width() >= 200) {

©Adafruit Industries Page 21 of 26

print aligned(display, F("Custom Font"), GFX ALIGN CENTER);
display.setCursor(0, display.getCursorY() + 10);
print aligned(display, F("Align Left"), GFX ALIGN LEFT);
display.setCursor(display.width() / 2, display.getCursorY());
print aligned(display, F("Centered"), GFX ALIGN CENTER);
// Small rounded screen, when oriented the wide way, "Right" gets
// clipped by bottom right corner. Scoot left to compensate.
intle t x offset = (CORNER RADIUS && (display.height() < 200)) ? 15 :
display.setCursor(display.width() - x offset, display.getCursorY());
print _aligned(display, F("Align Right"), GFX ALIGN RIGHT);

} else {
// 0On narrow screens, use abbreviated messages
print aligned(display, F("Font &"), GFX ALIGN_ CENTER);
print aligned(display, F("Align"), GFX ALIGN CENTER);
display.setCursor(0, display.getCursorY() + 10);
print aligned(display, F("Left"), GFX ALIGN LEFT);
display.setCursor(display.width() / 2, display.getCursorY());
print aligned(display, F("Center"), GFX ALIGN CENTER);
display.setCursor(display.width(), display.getCursorY());
print aligned(display, F("Right"), GFX ALIGN RIGHT);

}

delay (PAUSE) ;
} // END CUSTOM FONT EXAMPLE

0;

// BITMAP EXAMPLE - - - - - mmmm oo oo oo e
// This section demonstrates:

// - Embedding a small bitmap in the code (flash memory).

// - Drawing that bitmap in various colors, and transparently (only 'l' bits
// are drawn; 'Q' bits are skipped, leaving screen contents in place).

// - Use of the color565() function to decimate 24-bit RGB to 16 bits.

#define HEX_WIDTH 16 // Bitmap width in pixels

#define HEX HEIGHT 16 // Bitmap height in pixels

// Bitmap data. PROGMEM ensures it's in flash memory (not RAM). And while
// it would be valid to leave the brackets empty here (i.e. hex bitmap[]),
// having dimensions with a little math makes the compiler verify the

// correct number of bytes are present in the list.

PROGMEM const
0b00000001,
0b0000O0111,
0b000O11111,
Ob01111111,
Ob01111111,
0b01111111,
Ob01111111,
0b01111111,
0b01111111,
Obo01111111,
Ob01111111,
0b01111111,
ObO1111111,
0b00011111,
0b0000O0111,
0b00000001,

};

uint8 t hex bitmap[(HEX WIDTH + 7) / 8 * HEX HEIGHT] = {
0b10000000,
0b11100000,
0b11111000,
0b11111110,
0b11111110,
0b11111110,
0b11111110,
0b11111110,
0b11111110,
0b11111110,
0b11111110,
0b11111110,
0b11111110,
0b111116000,
0b11100000,
0b10000000,

#define Y SPACING (HEX HEIGHT - 2) // Used by code below for positioning

void show bitmap() {
display.fillScreen(0);

// Not screen
const intl6 t
const intl6 t
const uint8 t

center, but UL coordinates of center hexagon bitmap

center x = (display.width() - HEX WIDTH) / 2;

center y = (display.height() - HEX HEIGHT) / 2;

steps = min((display.height() - HEX HEIGHT) / Y SPACING,
display.width() / HEX WIDTH - 1) / 2;

display.drawBitmap(center x, center_y, hex bitmap, HEX WIDTH, HEX HEIGHT,

©Adafruit Industries

Page 22 of 26

OxXFFFF); // Draw center hexagon in white

// Tile the hexagon bitmap repeatedly in a range of hues. Don't mind the
// bit of repetition in the math, the optimizer easily picks this up.
// Also, if math looks odd, keep in mind "PEMDAS" operator precedence;
// multiplication and division occur before addition and subtraction.
for (uint8 t a=0; a<=steps; a++) {
for (uint8 t b=1; b<=steps; b++) {
display.drawBitmap(// Right section centered red: a = green, b = blue
center x + (a + b) * HEX WIDTH / 2,
center y + (a - b) * Y SPACING,
hex bitmap, HEX WIDTH, HEX HEIGHT,
display.color565(255, 255 - 255 * a / steps, 255 - 255 * b / steps));
display.drawBitmap(// UL section centered green: a = blue, b = red
center x - b * HEX WIDTH + a * HEX WIDTH / 2,
center_y - a * Y _SPACING,
hex bitmap, HEX WIDTH, HEX HEIGHT,
display.color565(255 - 255 * b / steps, 255, 255 - 255 * a / steps));
display.drawBitmap(// LL section centered blue: a = red, b = green
center x - a * HEX WIDTH + b * HEX WIDTH / 2,
center y + b * Y SPACING,
hex bitmap, HEX WIDTH, HEX HEIGHT,
display.color565(255 - 255 * a / steps, 255 - 255 * b / steps, 255));
b
}

delay (PAUSE) ;
} // END BITMAP EXAMPLE

// CANVAS EXAMPLE - - - - = - - s s o s oot ottt il

// This section demonstrates:

// - How to refresh changing values onscreen without erase/redraw flicker.
// - Using an offscreen canvas. It's similar to a bitmap above, but rather
// than a fixed pattern in flash memory, it's drawable like the screen.
// - More tips on text alignment, and adapting to different screen sizes.

#define PADDING 6 // Pixels between axis label and value

void show canvas() {
// For this example, let's suppose we want to display live readings from a
// sensor such as a three-axis accelerometer, something like:
// X: (number)
// Y: (number)
// Z: (number)
// To look extra classy, we want a custom font, and the labels for each
// axis are right-aligned so the ':' characters line up...

display.setFont(&FreeSansBold18pt7b); // Use a custom font
display.setTextSize(1); // and reset to 1:1 scale

char *Llabel[]
const uintl6_t color[]

{ "X, ny:", "z:" 3}, // Labels for each axis
{ OxF800, OxO7E0, Ox001F }; // Colors for each value

// To get the labels right-aligned, one option would be simple trial and
// error to find a column that looks good and doesn't clip anything off.
// Let's do this dynamically though, so it adapts to any font or labels!
// Start by finding the widest of the label strings:
uintle t w, h, max w = 0;
intle t x, y;
for (uint8 t i=0; i<3; i++) { // For each label...
display.getTextBounds(label[i], 0, 0, &x, &y, &w, &h);
if (w > max w) max w = w; // Keep track of widest label

}

// Rounded corners throwing us a curve again. If needed, scoot everything
// to the right a bit on wide displays, down a bit on tall ones.

intle t y offset = 0;

if (display.width() > display.height()) max w += CORNER RADIUS;

©Adafruit Industries Page 23 of 26

else y _offset = CORNER_RADIUS;

// Now we have max w for right-aligning the labels. Before we draw them

// though...in order to perform flicker-free updates, the numbers we show
// will be rendered in either a GFXcanvasl or GFXcanvasl6 object; a 1-bit
// or 16-bit offscreen bitmap, RAM permitting. The correct size for this
// canvas could also be trial-and-errored, but again let's make this adapt
// automatically. The width of the canvas will span from max w (plus a few
// pixels for padding) to the right edge. But the height? Looking at an

// uppercase 'M' can work in many situations, but some fonts have ascenders
// and descenders on digits, and in some locales a comma (extending below
// the baseline) is the decimal separator. Feed ALL the numeric chars into
// getTextBounds() for a cumulative height:

display.setTextWrap(false); // Keep on one line
display.getTextBounds(F("0123456789.,-"), 0, 0, &x, &y, &w, &h);

// Now declare a GFXcanvasl6 object based on the computed width & height:
GFXcanvasl6 canvasl6(display.width() - max w - PADDING, h);

// Small devices (e.g. ATmega328p) will almost certainly lack enough RAM
// for the canvas. Check if canvas buffer exists. If not, fall back on
// using a 1l-bit (rather than 16-bit) canvas. Much more RAM friendly, but
// not as fast to draw. If a project doesn't require super interactive
// updates, consider just going straight for the more compact Canvasl.
if (canvasl6.getBuffer()) {
// If here, 16-bit canvas allocated successfully! Point of interest,
// only one canvas is needed for this example, we can reuse it for all
// three numbers because the regions are the same size.

// display and canvas are independent drawable objects; must explicitly
// set the same custom font to use on the canvas now:
canvasl6.setFont(&FreeSansBold18pt7b);

// Clear display and print labels. Once drawn, these remain untouched.
display.fillScreen(0);

display.setCursor(max_w, -y + y offset); // Set baseline for first row

for (uint8 t i=0; i<3; i++) print aligned(display, label[i], GFX ALIGN RIGHT);

// Last part now is to print numbers on the canvas and copy the canvas to

// the display, repeating for several seconds...

uint32 t elapsed, startTime = millis();

while ((elapsed = (millis() - startTime)) <= PAUSE * 2) {

for (uint8 t i=0; i<3; i++) { // For each label...
canvasl6.fillScreen(0); // fillScreen() in this case clears canvas
canvasl6.setCursor(0, -y); // Reset baseline for custom font
canvasl6.setTextColor(color[il]);
// These aren't real accelerometer readings, just cool-looking numbers.
// Notice we print to the canvas, NOT the display:
canvasl6.print(sin(elapsed / 200.0 + (float)i * M PI * 2.0 / 3.0), 5);
// And HERE is the secret sauce to flicker-free updates. Canvas details
// can be passed to the drawRGBBitmap() function, which fully overwrites
// prior screen contents in that area. yAdvance is font line spacing.
display.drawRGBBitmap(max _w + PADDING, i * FreeSansBold18pt7b.yAdvance +
y offset, canvasl6.getBuffer(), canvasl6.width(),
canvasl6.height());
}
}
} else {

// Insufficient RAM for Canvasl6. Try declaring a 1-bit canvas instead...

GFXcanvasl canvasl(display.width() - max w - PADDING, h);

// If even this smaller object fails, can't proceed, cancel this example.

if (!canvasl.getBuffer()) return;

// Remainder here is nearly identical to the code above, simply using a

// different canvas type. It's stripped of most comments for brevity.
canvasl.setFont (&FreeSansBold18pt7b);

display.fillScreen(0);

display.setCursor(max w, -y + y offset);

for (uint8 t i=0; i<3; i++) print _aligned(display, label[i], GFX ALIGN RIGHT);

©Adafruit Industries Page 24 of 26

uint32 t elapsed, startTime = millis();
while ((elapsed = (millis() - startTime)) <= PAUSE * 2) {
for (uint8 t i=0; i<3; i++) {
canvasl.fillScreen(0);
canvasl.setCursor(0, -y);
canvasl.print(sin(elapsed / 200.0 + (float)i * M PI * 2.0 / 3.0), 5);
// Here's the secret sauce to flicker-free updates with GFXcanvasl.
// Canvas details can be passed to the drawBitmap() function, and by
// specifying both a foreground AND BACKGROUND color (0), this will fully
// overwrite/erase prior screen contents in that area (vs transparent).
display.drawBitmap(max w + PADDING, i * FreeSansBoldl18pt7b.yAdvance +
y offset, canvasl.getBuffer(), canvasl.width(),
canvasl.height(), color[i], 0);
}
}
}

// Because canvas object was declared locally to this function, it's freed
// automatically when the function returns; no explicit delete needed.
} // END CANVAS EXAMPLE

Upload the Example Code to the Pico. Then, you can connect the DVI Sock to an
HDMI monitor and USB power to the Pico. You'll see the 16bit_hello example display
on the screen.

There is an excellent explainer page (https://adafru.it/18Ex) for the example code in
the PicoDVI Arduino Library Learn Guide.

PicoDVI Arduino Library: Video Out for
RP2040 Boards
By Phillip Burgess

16bit_hello

https://learn.adafruit.com/picodvi-arduino-
library-video-out-for-rp2040-boards/
16bit_hello

Arduino Docs

Arduino Docs (https://adafru.it/18Az)

Downloads

Files

« HDMI Connector pinout (https://adafru.it/ZZB)
- EagleCAD PCB Files on GitHub (https://adafru.it/19Wd)
« Fritzing object in the Adafruit Fritzing Library (https://adafru.it/19We)

©Adafruit Industries Page 25 of 26

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Video |C Development Tools category:
Click to view products by Adafruit manufacturer:

Other Similar products are found below :

ME812AU-WH50R ME812A-WH50R 5957 107784 MES1/EV VM816C50A-D VM816C50A-N VM816CUS50A-D VM816CUS0A-N
DFR0566 DFR0604 SEN0305 SEN0305-S VMB800B35A-BK VM800B43A-BK VMB800B50A-BK VMB800C43A-D VMB00C43A-N
VMB800P35A-BK VM800P50A-BK VM810C50A-D VMB810C50A-N MPF300-VIDEO-KIT-NS ML86640-EVA MLEB8360 102991074
EBK-GS2971A-00 SEN-146/8 AFES808EVM ASK1017

https://www.xonelec.com/category/embedded-solutions/engineering-tools/analog-digital-ic-development-tools/video-ic-development-tools
https://www.xonelec.com/manufacturer/adafruit
https://www.xonelec.com/mpn/bridgetek/me812auwh50r
https://www.xonelec.com/mpn/bridgetek/me812awh50r
https://www.xonelec.com/mpn/adafruit/5957
https://www.xonelec.com/mpn/basler/107784
https://www.xonelec.com/mpn/bridgetek/me817ev
https://www.xonelec.com/mpn/bridgetek/vm816c50ad
https://www.xonelec.com/mpn/bridgetek/vm816c50an
https://www.xonelec.com/mpn/bridgetek/vm816cu50ad
https://www.xonelec.com/mpn/bridgetek/vm816cu50an
https://www.xonelec.com/mpn/dfrobot/dfr0566
https://www.xonelec.com/mpn/dfrobot/dfr0604
https://www.xonelec.com/mpn/dfrobot/sen0305
https://www.xonelec.com/mpn/dfrobot/sen0305s
https://www.xonelec.com/mpn/ftdi/vm800b35abk
https://www.xonelec.com/mpn/ftdi/vm800b43abk
https://www.xonelec.com/mpn/ftdi/vm800b50abk
https://www.xonelec.com/mpn/ftdi/vm800c43ad
https://www.xonelec.com/mpn/ftdi/vm800c43an
https://www.xonelec.com/mpn/ftdi/vm800p35abk
https://www.xonelec.com/mpn/ftdi/vm800p50abk
https://www.xonelec.com/mpn/ftdi/vm810c50ad
https://www.xonelec.com/mpn/ftdi/vm810c50an
https://www.xonelec.com/mpn/microchip/mpf300videokitns
https://www.xonelec.com/mpn/rohm/ml86640eva
https://www.xonelec.com/mpn/rohm/mleb8360
https://www.xonelec.com/mpn/seeedstudio/102991074
https://www.xonelec.com/mpn/semtech/ebkgs2971a00
https://www.xonelec.com/mpn/sparkfun/sen14678
https://www.xonelec.com/mpn/texasinstruments/afe5808evm
https://www.xonelec.com/mpn/tinycircuits/ask1017

