

Adafruit NeoTrellis M4 Express

Created by lady ada

https://learn.adafruit.com/adafruit-neotrellis-m4

Last updated on 2022-01-01 02:33:40 PM EST

©Adafruit Industries Page 1 of 148

7

12

12

15

16

17

18

18

19

19

20

21

22

22

24

25

26

27

28

30

33

33

36

36

37

38

40

41

42

43

43

43

44

44

44

44

45

45

45

45

46

46

46

Table of Contents

Overview

Update the UF2 Bootloader

• Updating Your Bootloader

Board Tour

• NeoPixel & Button Pads

• Main Chipset & SPI FLASH

• Audio TRRS Headset Jack

• Stereo Audio Out

• Microphone Input

• JST Hacking Port and Pads

• Triple Axis Accelerometer

• Everything Else!

Enclosure Assembly

• Prep

• Elastomer Pads

• Place the Trellis M4

• Frame Layer

• Penultimate Layer

• Back Layer

• Fasteners

• Customization

Arduino IDE Setup

Using with Arduino IDE

• Install SAMD Support

• Install Adafruit SAMD

• Install Drivers (Windows 7 & 8 Only)

• Blink

• Successful Upload

• Compilation Issues

• Manually bootloading

• Ubuntu & Linux Issue Fix

Arduino Libraries

• Install Libraries

• Adafruit NeoPixel

• Adafruit DMA NeoPixel

• Adafruit Unified Sensor

• Adafruit SPIFlash

• Adafruit Keypad

• MIDI USB

• ADXL343

• NeoTrellis M4

• SdFat - Adafruit Fork

• Audio - Adafruit Fork

©Adafruit Industries Page 2 of 148

46

47

47

47

48

49

50

50

50

51

51

51

52

52

53

53

54

54

54

55

55

56

56

56

56

56

56

57

57

58

59

61

61

62

62

63

64

64

64

65

65

66

67

67

67

70

70

72

Adapting Sketches to M0 & M4

• Analog References

• Pin Outputs & Pullups

• Serial vs SerialUSB

• AnalogWrite / PWM on Feather/Metro M0

• analogWrite() PWM range

• analogWrite() DAC on A0

• Missing header files

• Bootloader Launching

• Aligned Memory Access

• Floating Point Conversion

• How Much RAM Available?

• Storing data in FLASH

• Pretty-Printing out registers

• M4 Performance Options

• CPU Speed (overclocking)

• Optimize

• Cache

• Max SPI and Max QSPI

• Enabling the Buck Converter on some M4 Boards

Arduino Examples

• NeoPixel Test

• Keypad Test

• MIDI USB Test

• Audio Library Test

• Microphone Feed-thru Test

• Microphone FFT Test

What is CircuitPython?

• CircuitPython is based on Python

• Why would I use CircuitPython?

CircuitPython

Creating and Editing Code

• CircuitPython Libraries

• Choosing an Editor

• Creating Code

• Editing Code

• Exploring Your First CircuitPython Program

• Imports & Libraries

• Setting Up The Trellis M4

• Loop-de-loops

• More Changes

Connecting to the Serial Console

• Serial Console on Mac and Linux

• Serial Console on Windows

Interacting with the Serial Console

The REPL

• Entering the REPL

• Interacting with the REPL

©Adafruit Industries Page 3 of 148

74

75

76

76

77

77

78

78

79

79

82

83

83

84

84

84

86

87

88

88

89

92

92

94

95

95

95

96

98

98

99

99

101

101

101

102

102

103

104

104

105

106

107

107

109

109

110

111

112

112

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

Frequently Asked Questions

Advanced Serial Console on Mac

• What's the Port?

• Connect with screen

Advanced Serial Console on Windows

• Windows 7 and 8.1

• What's the COM?

• Install Putty

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

©Adafruit Industries Page 4 of 148

113

113

113

114

115

115

116

117

117

118

119

122

124

125

126

126

127

127

128

130

131

132

133

133

133

134

135

138

139

141

143

145

146

146

146

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

Adafruit CircuitPython TrellisM4 Library

• Installing the CircuitPython TrellisM4 Library

• TrellisM4 Library Features

• Now Let's Rotate the Board!

• Trellis M4 Coordinate Layout

• Width and Height Can Make Rainbows!

• More To Come!

Trellis M4 CircuitPython Demo

• Imports and Setup

• wheel for the Rainbow

• A Set of Button Presses

• A Multidimensional List of NeoPixel States

• Extra Credit: List Comprehensions

• NeoPixels On: True or False?

• NeoTrellis M4 NeoPixel Toggle Code

Downloads

• Files

• Schematics and Fabrication Prints

UF2 Bootloader Details

• Entering Bootloader Mode

• Using the Mass Storage Bootloader

• Using the BOSSA Bootloader

• Running bossac on the command line

• Updating the bootloader

• Getting Rid of Windows Pop-ups

• Making your own UF2

• Installing the bootloader on a fresh/bricked board

FAQ/Troubleshooting

©Adafruit Industries Page 5 of 148

©Adafruit Industries Page 6 of 148

Overview

So you've got a cool/witty name for your band, a Soundcloud account, a 3D-printed

Daft Punk helmet (https://adafru.it/CVS)... so what could be missing from your road to

stardom? The NeoTrellis M4, of course!

The NeoTrellis M4 is an all-in-one USB + NeoPixel + Elastomer + Audio board. It's

powered by our new favoritest-chip-in-the-world, the SAMD51, a Cortex M4 core

running at 120 MHz. This chip has a speedy core with CircuitPython and Arduino

support, hardware DSP/floating point, dual DACs (more on that later!) and all the

©Adafruit Industries Page 7 of 148

goodies you expect from normal chips like I2C, ADC, DMA, etc. It has a roomy 512KB

of flash and 192KB of SRAM so it's great for CircuitPython, we added a full 8MB flash

chip so tons of space for files and audio clips. Or you can load Arduino in for bonkers-

fast audio processing/generation with our fork of the PJRC Audio library (https://

adafru.it/CVT).

You can also use MakeCode (https://adafru.it/C9N)'s block-based GUI coding

environment on this board.

The native USB port can turn it into a MIDI USB device if you like - currently that's only

supported in Arduino. Tether it to a computer or tablet, if you like. Or use it in

standalone mode, as long as its powered from a USB power plug, it'll run whatever

firmware is burned into it.

OK so you've got this big brain, but now you need inputs and outputs! There's a 4x8

grid of elastomer button pads with a NeoPixel nestled in the center of each one. You

can read any/all button presses simultaneously thanks to the fully diode'd matrix, and

also set each button color to any of 24-bit colors. (We've even got some DMA Arduino

code for the NeoPixels so that they won't take up any processor time.) The elastomer

buttons are translucent so they glow beautifully when lit.

©Adafruit Industries Page 8 of 148

Time to make some noise! We picked the SAMD51 mostly because its got that dual

DAC - that's two 12-bit, 500KSPS 'true analog' outputs and we connected them to left

and right on a standard headphone jack. Since the DAC pins are also ADC pins you

could also use the left/right for audio line level input if you so choose. You're not

going to get audiophile-quality outputs from two 12-bit DACs but you can certainly

play audio clips and make beeps and bloops.

And if you want to have some audio inputs, we have you covered. The 4th pin on the

headphone jack is for microphone or line in. If you have a classic 'mobile phone

headset', the electret mic will go through an amplifier into an ADC pin. Again, it's not

©Adafruit Industries Page 9 of 148

audiophile quality (we're talking about an electret mic here) but you can do audio

recording and filtering on the mono input. The raw un-amplified mic input is also

connected to a DAC so you can read button presses on headsets that have a resistor-

selector for their buttons, or some other 3.3V-max analog signal.

To add more interactivity, a precision triple-axis accelerometer from Analog Devices,

the ADXL343, is included as well, and provides sensor information on tilt, motion, or

tapping. Great for adding another dimension of data input in addition to the button

pads.

Finally, a 4 pin JST hacking port is available for extra add-ons. It's STEMMA and Grove

compatible, and provides GND, 3.3V power, and two pins that can be used for I2C,

ADC, or a UART. So connect some other sensor, or read stereo audio in, or maybe

hack together a MIDI port. Whatever you like!

©Adafruit Industries Page 10 of 148

Here are some of the features you can look forward to when using NeoTrellis M4

ATSAMD51 32-bit Cortex M4 core running at 120 MHz (32-bit, 3.3V logic and

power)

Hardware DSP and floating point support

512 KB flash, 192 KB RAM

Native USB that can act as a true USB MIDI device if you like.

8 MB SPI FLASH chip for storing files and CircuitPython code storage.

4x8 elastomer pads with fully diode'd matrix - no ghosting!

4x8 NeoPixels for each pad, glows through the elastomer buttons

TRRS Headphone jack with stereo DAC outputs on Left/Right, can also be stereo

ADC inputs. Fourth pin on headphone for electret/ADC input

Built in MAX4466 electret mic amplifier (https://adafru.it/eQw) for mobile phone

headsets. 'Raw' DC level reading also available on a separate ADC

4-JST hacking port with 3.3V power, ground, and two GPIO that can be I2C/

ADC/UART

Analog Devices ADXL343 triple-axis accelerometer (https://adafru.it/CVU)

Really fun to press buttons and have sounds come out!

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 11 of 148

Update the UF2 Bootloader

Your SAMD51 M4 board bootloader may need to be updated to fix an intermittent bug

that can erase parts of internal flash.

Updating Your Bootloader

To see if you need to update your bootloader, get the UF2 boot drive to appear as a

mounted drive on your computer, in a file browser window. If you're running

MakeCode, click the reset button once. If you're running CircuitPython or an Arduino

program, double-click the reset button.

When you see the ...BOOT drive (FEATHERBOOT, METROM4BOOT, ITSYM4BOOT, PO

RTALBOOT, etc.) , click the drive in the file browser window and then double-click the

INFO_UF2.TXT file to see what's inside.

The example screenshots below are for a PyGamer. What you see for your board will

be largely the same except for the board name and the BOOT drive name.

Update the Bootloader on your SAMD51 M4 board to prevent a somewhat rare

problem of parts of internal flash being overwritten on power-up.

©Adafruit Industries Page 12 of 148

The bootloader version is listed in INFO_UF2.TXT. In this example, the version is v3.6

.0.

If the bootloader version you see is older than v3.9.0, you need to update. For

instance, the bootloader above needs to be upgraded.

Download the latest version of the bootloader updater from the circuitpython.org

Downloads page for your board.

©Adafruit Industries Page 13 of 148

Latest board downloads

https://adafru.it/Em8

The bootloader updater will be named update-bootloader-

name_of_your_board-v3.9.0.uf2 or some later version. Drag that file from your D

ownloads folder onto the BOOT drive:

•

©Adafruit Industries Page 14 of 148

After you drag the updater onto the boot drive, the red LED on the board will flicker

and then blink slowly about five times. A few seconds later, the BOOT will appear in

the Finder. After that, you can click on the BOOT drive and double-click INFO_UF2.T

XT again to confirm you've updated the bootloader.

Board Tour

OK there's a lot on the NeoTrellis M4 - so hold tight while we take a tour

©Adafruit Industries Page 15 of 148

NeoPixel & Button Pads

On the front side of the NeoTrellis is a 4x8 grid of NeoPixels and round gold inter-digit

pads for elastomer buttons.

The NeoPixels are chained together, and connect in a zig-zag. The first pixel is in the

top left, the last pixel is on the bottom right. In Arduino, the NeoPixels are on pin 10, in

CircuitPython they are on on board.NEOPIXEL

You can use any NeoPixel library you like. Note that FastLED does not at the time of

this writing, support the NeoTrellis M4. We do have a DMA NeoPixel library in Arduino

that will take care of writes for you without processor time, and we recommend that!

The elastomer pads require buttons to sap on top. There's holes in the PCB that nubs

from our Trellis pads fit into. You'll need two 4x4 pads:

Silicone Elastomer 4x4 Button Keypad -

for 3mm LEDs

So squishy! These silicone elastomer

keypads are just waiting for your fingers

to press them. Go ahead, squish all you

like! (They're durable and easy to clean,

just wipe with mild...

https://www.adafruit.com/product/1611

©Adafruit Industries Page 16 of 148

The buttons are set up in a 4 x 8 matrix, there are 4 rows and 8 columns. Each button

has a back-stop diode so you can press any/all keys at the same time without any

'ghosting'.

In CircuitPython, the rows/columns are on board.ROW0 , board.ROW1 , board.ROW2 ,

board.ROW3 and board.COL0 , board.COL1 , board.COL2 , board.COL3 , board.

COL4 , board.COL5 , board.COL6 , board.COL7

In Arduino the 4 rows are on pin 14-17 and the 8 columns are on pins 2-9

(We recommend just using our libraries to read the matrix instead of DIYing)

Main Chipset & SPI FLASH

This is what you came for!

Each NeoTrellis M4 comes with the main processor

ATSAMD51 32-bit Cortex M4 core running at 120 MHz (32-bit, 3.3V logic and

power)

Hardware DSP and floating point support

512 KB flash, 192 KB RAM

At the top of the board there's a micro USB port, used for debugging/uploading code

and is a native USB devices so it can act as a true USB MIDI device if you like. At the

time of this writing only Arduino support has USB MIDI but we hope to add it to

CircuitPython as well.

•

•

•

©Adafruit Industries Page 17 of 148

There is a 500mA fuse on the USB port which will throw when more than 1A is drawn,

to protect any device you plug the NeoTrellis into.

For on-board storage of audio files, code, or whatever else you like, there's also a 8

MB QSPI FLASH chip. In general we tend to use this only in CircuitPython because it

appears as a USB disk drive. However, you can use it in Arduino, you just will need to

load CircuitPython temporarily if you want to drag-n-drop files on and off

Audio TRRS Headset Jack

Unlike most button boards, the NeoTrellis M4 has built in audio generation/output and

input

Stereo Audio Out

The SAMD51 has a dual DAC - that's two 12-bit, 500KSPS 'true analog' outputs and we

connected them to left and right on a standard headphone jack. You're not going to

get audiophile-quality outputs from two 12-bit DACs but you can certainly play audio

clips and make beeps and bloops. They are AC coupled with a 100uF capacitor, and

have a small divider so that the output is about line level.

Since the DAC pins are also ADC pins you could also use the left/right for audio line

level input if you so choose. In that case, the same DAC channels can be used in ADC

mode, the inputs are AC coupled and then biased to a 1.65V center.

The left channel is on Arduino A1 or CircuitPython board.A1 . The right channel is on

Arduino A2 or CircuitPython board.A0 .

©Adafruit Industries Page 18 of 148

Microphone Input

If you want to have some audio inputs, the 4th pin on the headphone jack is for

microphone or line in. If you have a classic 'mobile phone headset', the electret mic

will go through a MAX4466 electret amplifier with 100x gain into an ADC pin. Again,

it's not audiophile quality (we're talking about an electret mic here) but you can do

audio recording and filtering on the mono input.

The raw un-amplified mic input is also connected to an ADC so you can read button

presses on headsets that have a resistor-selector for their buttons, or some other

3.3V-max analog signal. In general, the DC bias will be about 2.5VDC when a

microphone is plugged in. When pressed, the 'center' pause button on headsets will

set the DC bias on this pin to ground.

If you have an Android (not Apple) headset with up/down buttons as well, the bias

shift to 1.7V and 0.9V (approximately) so you can detect those button presses. Apple

headsets send digital chirps on the up/down buttons and we don't have code or

hardware to decode those!

On Arduino, the amplified microphone signal is on PIN_MIC and the raw DC signal is

available on PIN_MIC_RAW. With CircuitPython use board.MICOUT and board.MIC

OUT_RAW

JST Hacking Port and Pads

If you want to plug in some custom hardware, we make it easy with a 4 pin JST

hacking port, available for extra add-ons. It's STEMMA and Grove compatible, and

provides GND, 3.3V power, and two pins that can be used for I2C, ADC, or a UART.

©Adafruit Industries Page 19 of 148

If you're using Arduino, the two GPIO are available on PIN_WIRE_SDA and PIN_WIRE

_SCL for I2C usage, or A4 and A5 for analog reading.

On CircuitPython, you can use board.SDA and board.SCL

There are also pads around the PCB which provide VIN, GND, SDA, SCL as well as a

fifth pin, INT, in case you want to extend the NeoTrellis M4 with extra NeoTrellis

boards. (This is advanced and we don't have any documentation/tutorials on how to

do it)

Triple Axis Accelerometer

To add more interactivity, a precision triple-axis accelerometer from Analog Devices,

the ADXL343, is included as well, and provides sensor information on tilt, motion, or

tapping. Great for adding another dimension of data input in addition to the button

pads.

This sensor is on a separate I2C port, which is available in Arduino under Wire1 or in

CircuitPython under board.ACCELEROMETER_SCL and board.ACCELEROMETER_SDA

©Adafruit Industries Page 20 of 148

Everything Else!

There's a small reset button on the back of the PCB, you can double-click it to enter

the bootloader.

We also have a spot for an SWD port. We didn't solder this in because most people

don't need it and it would keep the case from being nice n slim. You can solder a 2x5

0.05" connector if you like to use SWD debugging

SWD 0.05" Pitch Connector - 10 Pin SMT

Box Header

This 1.27mm pitch, 2x5 male SMT Box

Header is the same one used on our SWD

Cable Breakout Board. The header...

https://www.adafruit.com/product/752

©Adafruit Industries Page 21 of 148

Enclosure Assembly

The acrylic enclosure is quick and easy to assemble. Each part is horizontally

symmetrical, so there is very little worry about placing them in a "wrong" direction.

Prep

First, you have the satisfying task of peeling off the protective paper from the acrylic

pieces. If you peel off all of the paper without tearing them you will have seven weeks

of good luck. Do not squander them.

©Adafruit Industries Page 22 of 148

©Adafruit Industries Page 23 of 148

Elastomer Pads

Place both of the button pads into the top piece as shown. Note, there are two pairs

of rubber registration nubs which must align with their associated holes on the Trellis

M4 board, so match the orientation as seen in the photos.

©Adafruit Industries Page 24 of 148

Place the Trellis M4

Place the Trellis M4 board down onto the elastomer pads with the NeoPixels and

button contacts aligned with the buttons as shown. Make sure all of the sixteen

registration nubs fit into their associated holes on the PCB.

©Adafruit Industries Page 25 of 148

Frame Layer

Now, place the frame layer which helps hold the board in place.

©Adafruit Industries Page 26 of 148

Penultimate Layer

This next layer has some large cutouts in it to allow for parts clearance.

©Adafruit Industries Page 27 of 148

Back Layer

It's the final layer! Lay it down and get ready for some fastening action.

©Adafruit Industries Page 28 of 148

©Adafruit Industries Page 29 of 148

Fasteners

Place the five nylon M3 screws through their holes from the front of the case toward

the back, then thread the nuts onto them and finger tighten.

©Adafruit Industries Page 30 of 148

©Adafruit Industries Page 31 of 148

Your Trellis M4 is ready for use!

©Adafruit Industries Page 32 of 148

Customization

Are you the sort of tinkerer who feels the urge to customize things? We knew it! In

case you want to try your hand at building a custom enclosure for your Trellis M4, and

make all your other DJ/Producer friends jealous, here are the CAD files to get you

started (https://adafru.it/D0i). Use them on a laser cutter to created a unique wooden

faceplate. Or, print the top piece out with ill graphics on a color printer, trim the button

holes and screw holes, and make a cool skin. You might even want to use the

templates as a reference for 3D modelling a case!

It's easy to press the Trellis M4's reset button through the case using a small object

such as a headphone plug, chopstick, or 5mm LED. But, if you're doing a lot of

development in Arduino and resetting a lot, you may want to make a button extender.

Here's a file you can 3D print for that!

resetbuttonTrellisM4.stl.zip

https://adafru.it/DlS

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino

IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

©Adafruit Industries Page 33 of 148

https://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

©Adafruit Industries Page 34 of 148

We will be adding a URL to the new Additional Boards Manager URLs option. The list

of URLs is comma separated, and you will only have to add each URL once. New

Adafruit boards and updates to existing boards will automatically be picked up by the

Board Manager each time it is opened. The URLs point to index files that the Board

Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party

board URLs on the Arduino IDE wiki (https://adafru.it/f7U). We will only need to add

one URL to the IDE in this example, but you can add multiple URLS by separating

them with commas. Copy and paste the link below into the Additional Boards

Manager URLs option in the Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/

package_adafruit_index.json

Here's a short description of each of the Adafruit supplied packages that will be

available in the Board Manager when you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4,

ItsyBitsy 32u4, Trinket, & Trinket Pro.

Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and

M4, ItsyBitsy M0 and M4, Circuit Playground Express, Gemma M0 and Trinket

M0

Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the

Flora, Feather 32u4, Micro and Leonardo using the arcore project (https://

adafru.it/eSI).

•

•

•

©Adafruit Industries Page 35 of 148

If you have multiple boards you want to support, say ESP8266 and Adafruit, have

both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings. Next we will look at

installing boards with the Board Manager.

Now continue to the next step to actually install the board support package!

Using with Arduino IDE

The Feather/Metro/Gemma/QTPy/Trinket M0 and M4 use an ATSAMD21 or ATSAMD51

chip, and you can pretty easily get it working with the Arduino IDE. Most libraries

(including the popular ones like NeoPixels and display) will work with the M0 and M4,

especially devices & sensors that use I2C or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the

previous page, you can open the Boards Manager by navigating to the Tools->Board

menu.

Once the Board Manager opens, click on the category drop down menu on the top

left hand side of the window and select All. You will then be able to select and install

the boards supplied by the URLs added to the preferences.

Install SAMD Support

First up, install the latest Arduino SAMD Boards (version 1.6.11 or later)

Remember you need SETUP the Arduino IDE to support our board packages -

see the previous page on how to add adafruit's URL to the preferences

©Adafruit Industries Page 36 of 148

You can type Arduino SAMD in the top search bar, then when you see the entry, click I

nstall

Install Adafruit SAMD

Next you can install the Adafruit SAMD package to add the board file definitions

Make sure you have Type All selected to the left of the Filter your search... box

You can type Adafruit SAMD in the top search bar, then when you see the entry, click I

nstall

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly

installed. You should now be able to select and upload to the new boards listed in the

Tools->Board menu.

©Adafruit Industries Page 37 of 148

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)

Feather M0 Express

Metro M0 Express

Circuit Playground Express

Gemma M0

Trinket M0

QT Py M0

ItsyBitsy M0

Hallowing M0

Crickit M0 (this is for direct programming of the Crickit, which is probably not

what you want! For advanced hacking only)

Metro M4 Express

Grand Central M4 Express

ItsyBitsy M4 Express

Feather M4 Express

Trellis M4 Express

PyPortal M4

PyPortal M4 Titano

PyBadge M4 Express

Metro M4 Airlift Lite

PyGamer M4 Express

MONSTER M4SK

Hallowing M4

MatrixPortal M4

BLM Badge

Install Drivers (Windows 7 & 8 Only)

When you plug in the board, you'll need to possibly install a driver

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 38 of 148

Click below to download our Driver Installer

Download Latest Adafruit Drivers

package

https://adafru.it/mb8

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to

click through the license

Select which drivers you want to install, the defaults will set you up with just about

every Adafruit board!

©Adafruit Industries Page 39 of 148

Click Install to do the installin'

Blink

Now you can upload your first blink sketch!

Plug in the M0 or M4 board, and wait for it to be recognized by the OS (just takes a

few seconds). It will create a serial/COM port, you can now select it from the drop-

down, it'll even be 'indicated' as Trinket/Gemma/Metro/Feather/ItsyBitsy/Trellis!

©Adafruit Industries Page 40 of 148

Please note, the QT Py and Trellis M4 Express are two of our very few boards that

does not have an onboard pin 13 LED so you can follow this section to practice

uploading but you wont see an LED blink!

Now load up the Blink example

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

And click upload! That's it, you will be able to see the LED blink rate change as you

adapt the delay() calls.

Successful Upload

If you have a successful upload, you'll get a bunch of red text that tells you that the

device was found and it was programmed, verified & reset

If you are having issues, make sure you selected the matching Board in the menu

that matches the hardware you have in your hand.

©Adafruit Industries Page 41 of 148

After uploading, you may see a message saying "Disk Not Ejected Properly" about the

...BOOT drive. You can ignore that message: it's an artifact of how the bootloader and

uploading work.

Compilation Issues

If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Ard

uino & Adafruit SAMD board packages

©Adafruit Industries Page 42 of 148

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that

crashes and doesn't auto-reboot into the bootloader, click the RST button twice (like a

double-click)to get back into the bootloader.

The red LED will pulse and/or RGB LED will be green, so you know that its in

bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and

re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want

to use the normal upload.

Ubuntu & Linux Issue Fix

 Follow the steps for installing Adafruit's udev rules on this page. (https://adafru.it/iOE)

Arduino Libraries

OK now that you have Arduino IDE set up, drivers installed if necessary and you've

practiced uploading code, you can start installing all the Libraries we'll be using to

program it.

There's a lot of libraries!

©Adafruit Industries Page 43 of 148

Install Libraries

Open up the library manager...

And install the following libraries:

Adafruit NeoPixel

This will let you light up the LEDs on the front

Adafruit DMA NeoPixel

This adds a special NeoPixel library that uses DMA so the NeoPixel stuff happens

without processor time taken.

Adafruit Unified Sensor

The underlying sensor library for ADXL343 support

©Adafruit Industries Page 44 of 148

Adafruit SPIFlash

This will let you read/write to the onboard FLASH memory with super-fast QSPI

support

Adafruit Keypad

Our Keypad support library (for reading the button matrix)

MIDI USB

So you can have the Trellis M4 act like a MIDI device over USB

ADXL343

The ADXL343 Library which provides accelerometer support

©Adafruit Industries Page 45 of 148

NeoTrellis M4

The NeoTrellis_M4 Library that handles MIDI, LEDs & button presses

SdFat - Adafruit Fork

Our fork of the SdFat library provides read/write access to FAT16/FAT32 file systems

on SD/SDHC flash cards.

Audio - Adafruit Fork

Our fork of the Audio library provides a toolkit for building streaming audio projects.

Adapting Sketches to M0 & M4

The ATSAMD21 and 51 are very nice little chips, but fairly new as Arduino-compatible

cores go. Most sketches & libraries will work but here’s a collection of things we

noticed.

©Adafruit Industries Page 46 of 148

The notes below cover a range of Adafruit M0 and M4 boards, but not every rule will

apply to every board (e.g. Trinket and Gemma M0 do not have ARef, so you can skip

the Analog References note!).

Analog References

If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is

analogReference(AR_EXTERNAL) (it's AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups

The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)

digitalWrite(pin, HIGH)

This is because the pullup-selection register on 8-bit AVR chips is the same as the

output-selection register.

For M0 & M4 boards, you can't do this anymore! Instead, use:

pinMode(pin, INPUT_PULLUP)

Code written this way still has the benefit of being backwards compatible with AVR.

You don’t need separate versions for the different board types.

Serial vs SerialUSB

99.9% of your existing Arduino sketches use Serial.print to debug and give output. For

the Official Arduino SAMD/M0 core, this goes to the Serial5 port, which isn't exposed

on the Feather. The USB port for the Official Arduino M0 core is called SerialUSB

instead.

In the Adafruit M0/M4 Core, we fixed it so that Serial goes to USB so it will

automatically work just fine.

However, on the off chance you are using the official Arduino SAMD core and not the

Adafruit version (which really, we recommend you use our version because it’s been

©Adafruit Industries Page 47 of 148

tuned to our boards), and you want your Serial prints and reads to use the USB port,

use SerialUSB instead of Serial in your sketch.

If you have existing sketches and code and you want them to work with the M0

without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)

 // Required for Serial on Zero based boards

 #define Serial SERIAL_PORT_USBVIRTUAL

#endif

right above the first function definition in your code. For example:

AnalogWrite / PWM on Feather/Metro M0

After looking through the SAMD21 datasheet, we've found that some of the options

listed in the multiplexer table don't exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The

Timer/Counter (TC) and Timer/Counter for Control Applications (TCC). Each SAMD21

has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output

channels. Either channel can be enabled and disabled, and either channel can be

inverted. The pins connected to a TC instance can output identical versions of the

same PWM waveform, or complementary waveforms.

Each TCC instance has a single count register, but multiple compare registers and

output channels. There are options for different kinds of waveform, interleaved

switching, programmable dead time, and so on.

©Adafruit Industries Page 48 of 148

The biggest members of the SAMD21 family have five TC instances with two

'waveform output' (WO) channels, and three TCC instances with eight WO channels:

TC[0-4],WO[0-1]

TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output

channels, and three TCC instances with eight output channels:

TC[3-5],WO[0-1]

TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't

do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as

the SPI, I2C, and UART pins keep their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13

Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the

following pins:

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range

On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully

HIGH. On the ARM cortex, it will set it to be 255/256 so there will be very slim but

still-existing pulses-to-0V. If you need the pin to be fully on, add test code that checks

if you are trying to analogWrite(pin, 255) and, instead, does a digitalWrite(p

in, HIGH)

•

•

•

•

•

•

•

•

©Adafruit Industries Page 49 of 148

analogWrite() DAC on A0

If you are trying to use analogWrite() to control the DAC output on A0, make sure

you do not have a line that sets the pin to output. Remove: pinMode(A0, OUTPUT) .

Missing header files

There might be code that uses libraries that are not supported by the M0 core. For

example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory

 #include <util/delay.h>

 ^

compilation terminated.

Error compiling.

In which case you can simply locate where the line is (the error will give you the file

name and line number) and 'wrap it' with #ifdef's so it looks like:

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !

defined(ESP8266) && !defined(ARDUINO_ARCH_STM32F2)

 #include <util/delay.h>

#endif

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching

For most other AVRs, clicking reset while plugged into USB will launch the bootloader

manually, the bootloader will time out after a few seconds. For the M0/M4, you'll need

to double click the button. You will see a pulsing red LED to let you know you're in

bootloader mode. Once in that mode, it wont time out! Click reset again if you want to

go back to launching code.

©Adafruit Industries Page 50 of 148

Aligned Memory Access

This is a little less likely to happen to you but it happened to me! If you're used to 8-

bit platforms, you can do this nice thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];

float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer

might not be aligned to a 2 or 4-byte boundary. The ARM Cortex-M0 can only directly

access data on 16-bit boundaries (every 2 or 4 bytes). Trying to access an odd-

boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU.

Thankfully, there's an easy work around ... just use memcpy!

uint8_t mybuffer[4];

float f;

memcpy(&f, mybuffer, 4)

Floating Point Conversion

Like the AVR Arduinos, the M0 library does not have full support for converting

floating point numbers to ASCII strings. Functions like sprintf will not convert floating

point. Fortunately, the standard AVR-LIBC library includes the dtostrf function which

can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some

references to using #include <avr/dtostrf.h> to get dtostrf in your code. And while it

will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in

your code:

http://forum.arduino.cc/index.php?topic=368720.0 (https://adafru.it/lFS)

How Much RAM Available?

The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some

reason. You can do so with this handy function:

©Adafruit Industries Page 51 of 148

extern "C" char *sbrk(int i);

int FreeRam () {

 char stack_dummy = 0;

 return &stack_dummy - sbrk(0);

}

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 (h

ttps://adafru.it/m6D) for the tip!

Storing data in FLASH

If you're used to AVR, you've probably used PROGMEM to let the compiler know

you'd like to put a variable or string in flash memory to save on RAM. On the ARM, its

a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the

compiler will automatically read from FLASH so you dont need special progmem-

knowledgeable functions.

You can verify where data is stored by printing out the address:

Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000

and $3FFFF Then it is in FLASH

Pretty-Printing out registers

There's a lot of registers on the SAMD21, and you often are going through ASF or

another framework to get to them. So having a way to see exactly what's going on is

handy. This library from drewfish will help a ton!

https://github.com/drewfish/arduino-ZeroRegs (https://adafru.it/Bet)

©Adafruit Industries Page 52 of 148

M4 Performance Options

As of version 1.4.0 of the Adafruit SAMD Boards package in the Arduino Boards

Manager, some options are available to wring extra performance out of M4-based

devices. These are in the Tools menu.

All of these performance tweaks involve a degree of uncertainty. There’s no

guarantee of improved performance in any given project, and some may even be

detrimental, failing to work in part or in whole. If you encounter trouble, select the

default performance settings and re-upload.

Here’s what you get and some issues you might encounter…

CPU Speed (overclocking)

This option lets you adjust the microcontroller core clock…the speed at which it

processes instructions…beyond the official datasheet specifications.

Manufacturers often rate speeds conservatively because such devices are marketed

for harsh industrial environments…if a system crashes, someone could lose a limb or

worse. But most creative tasks are less critical and operate in more comfortable

settings, and we can push things a bit if we want more speed.

There is a small but nonzero chance of code locking up or failing to run entirely. If this

happens, try dialing back the speed by one notch and re-upload, see if it’s more

stable.

Much more likely, some code or libraries may not play well with the nonstandard CPU

speed. For example, currently the NeoPixel library assumes a 120 MHz CPU speed

and won’t issue the correct data at other settings (this will be worked on). Other

©Adafruit Industries Page 53 of 148

libraries may exhibit similar problems, usually anything that strictly depends on CPU

timing…you might encounter problems with audio- or servo-related code depending

how it’s written. If you encounter such code or libraries, set the CPU speed to the

default 120 MHz and re-upload.

Optimize

There’s usually more than one way to solve a problem, some more resource-intensive

than others. Since Arduino got its start on resource-limited AVR microcontrollers, the

C++ compiler has always aimed for the smallest compiled program size. The

“Optimize” menu gives some choices for the compiler to take different and often

faster approaches, at the expense of slightly larger program size…with the huge flash

memory capacity of M4 devices, that’s rarely a problem now.

The “Small” setting will compile your code like it always has in the past, aiming for the

smallest compiled program size.

The “Fast” setting invokes various speed optimizations. The resulting program should

produce the same results, is slightly larger, and usually (but not always) noticably

faster. It’s worth a shot!

“Here be dragons” invokes some more intensive optimizations…code will be larger

still, faster still, but there’s a possibility these optimizations could cause unexpected

behaviors. Some code may not work the same as before. Hence the name. Maybe

you’ll discover treasure here, or maybe you’ll sail right off the edge of the world.

Most code and libraries will continue to function regardless of the optimizer settings.

If you do encounter problems, dial it back one notch and re-upload.

Cache

This option allows a small collection of instructions and data to be accessed more

quickly than from flash memory, boosting performance. It’s enabled by default and

should work fine with all code and libraries. But if you encounter some esoteric

situation, the cache can be disabled, then recompile and upload.

Max SPI and Max QSPI

These should probably be left at their defaults. They’re present mostly for our own

experiments and can cause serious headaches.

©Adafruit Industries Page 54 of 148

Max SPI determines the clock source for the M4’s SPI peripherals. Under normal

circumstances this allows transfers up to 24 MHz, and should usually be left at that

setting. But…if you’re using write-only SPI devices (such as TFT or OLED displays), this

option lets you drive them faster (we’ve successfully used 60 MHz with some TFT

screens). The caveat is, if using any read/write devices (such as an SD card), this will

not work at all…SPI reads absolutely max out at the default 24 MHz setting, and

anything else will fail. Write = OK. Read = FAIL. This is true even if your code is using a

lower bitrate setting…just having the different clock source prevents SPI reads.

Max QSPI does similarly for the extra flash storage on M4 “Express” boards. Very few

Arduino sketches access this storage at all, let alone in a bandwidth-constrained

context, so this will benefit next to nobody. Additionally, due to the way clock dividers

are selected, this will only provide some benefit when certain “CPU Speed” settings

are active. Our PyPortal Animated GIF Display (https://adafru.it/EkO) runs marginally

better with it, if using the QSPI flash.

Enabling the Buck Converter on some M4

Boards

If you want to reduce power draw, some of our boards have an inductor so you can

use the 1.8V buck converter instead of the built in linear regulator. If the board does

have an inductor (see the schematic) you can add the line SUPC->VREG.bit.SEL =

1; to your code to switch to it. Note it will make ADC/DAC reads a bit noisier so we

don't use it by default. You'll save ~4mA (https://adafru.it/F0H).

Arduino Examples

Once you have the Arduino libraries installed you can try these examples!

All of our example code lives in the github repo at https://github.com/adafruit/

Adafruit_NeoTrellisM4 (https://adafru.it/CW5)

You can download the code by clicking here (https://adafru.it/CW6)

©Adafruit Industries Page 55 of 148

NeoPixel Test

Load this example (https://adafru.it/CW7) to display a variety of colors and effects on

the NeoPixels, good to test that they're all working and shining as expected. You need

to have the Adafruit NeoPixel library installed first

Keypad Test

Load this example (https://adafru.it/CW8) to turn on NeoPixels whenever you press a

button. Press again to turn it off. Good for checking button presses, elastomers and

NeoPixels.

MIDI USB Test

Your NeoTrellis M4 can act as a 32-button MIDI board. This example (https://adafru.it/

CW9) will send Note On and Note Off reports for every button when pressed and

released.

Audio Library Test

The Audio library (originally by PJRC) allows the creation of waveforms and filters

dynamically by the chip! You can try this out with the simple synth example (https://

adafru.it/CWa), which will give you an octave each of four different voices. The

playback is polyphonic, try pressing multiple buttons!

Microphone Feed-thru Test

This example will take microphone input and then pipe it out the headphones (https://

adafru.it/CWb). Simple but good for checking that your headset is wired correctly.

Microphone FFT Test

You can take audio input, then display it on the LEDs - here's an FFT example (https://

adafru.it/CWc). You don't get a lot of bins but it can make for a neat audio effect!

©Adafruit Industries Page 56 of 148

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and

learning to program on low-cost microcontroller boards. It makes getting started

easier than ever with no upfront desktop downloads needed. Once you get your

board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and

universities. It's a high-level programming language which means it's designed to be

easier to read, write and maintain. It supports modules and packages which means it's

easy to reuse your code for other projects. It has a built in interpreter which means

there are no extra steps, like compiling, to get your code to work. And of course,

Python is Open Source Software which means it's free for anyone to use, modify or

improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already

have Python knowledge, you can easily apply that to using CircuitPython. If you have

no previous experience, it's really simple to get started!

©Adafruit Industries Page 57 of 148

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is

a board with a microcontroller chip that's essentially an itty-bitty all-in-one computer.

The board you're holding is a microcontroller board! CircuitPython is easy to use

because all you need is that little board, a USB cable, and a computer with a USB

connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the

file, and it runs immediately. There is no compiling, no downloading and no

uploading needed.

You're new to programming. CircuitPython is designed with education in mind.

It's easy to start learning how to program and you get immediate feedback from

the board.

Easily update your code. Since your code lives on the disk drive, you can edit it

whenever you like, you can also keep multiple files around for easy

experimentation.

The serial console and REPL. These allow for live feedback from your code and

interactive programming.

File storage. The internal storage for CircuitPython makes it great for data-

logging, playing audio clips, and otherwise interacting with files.

Strong hardware support. There are many libraries and drivers for sensors,

breakout boards and other external components.

It's Python! Python is the fastest-growing programming language. It's taught in

schools and universities. CircuitPython is almost-completely compatible with

Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being

updated. Adafruit welcomes and encourages feedback from the community, and

incorporate it into the development of CircuitPython. That's the core of the open

source concept. This makes CircuitPython better for you and everyone who uses it!

•

•

•

•

•

•

•

©Adafruit Industries Page 58 of 148

CircuitPython

CircuitPython (https://adafru.it/tB7) is designed to simplify experimentation and

education on low-cost microcontrollers. It makes it easier than ever to get prototyping

by requiring no upfront desktop software downloads. Simply copy and edit files on

the flash drive named CIRCUITPY which appears when NeoTrellis is plugged into a

computer to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Download the latest version of

CircuitPython for this board via

CircuitPython.org

https://adafru.it/Em6

Click the link above and download the

latest UF2 file.

Download and save it to your desktop (or

wherever is handy).

Plug your NeoTrellis M4 Express into your

computer using a known-good USB

cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button next to the

USB connector on your board, and you

will see the status DotStar RGB LED turn

green. If it turns red, check the USB

cable, try another USB port, etc.

©Adafruit Industries Page 59 of 148

If double-clicking doesn't work the first time, try again. Sometimes it can take a few

tries to get the rhythm right!

You will see a new flash disk drive

appear called TRELM4BOOT.

Drag the adafruit_circuitpython_etc.uf2

file to TRELM4BOOT.

The LED will flash. Then, the

TRELM4BOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

You can then unzip this download and drag the files onto CIRCUITPY drive to get

back to the default drum machine

neotrellis_m4_default_files.zip

https://adafru.it/Djj

©Adafruit Industries Page 60 of 148

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. In this section, we're going to cover how to load libraries, and create and edit

your first CircuitPython program.

CircuitPython Libraries

The first thing you'll need to do is make sure you have the CircuitPython library

bundle (https://adafru.it/y8E) installed. Each CircuitPython program you run needs to

have a lot of information to work. The reason CircuitPython is so simple to use is that

most of that information is stored in other files and works in the background. These

files are called libraries. Some of them are built into CircuitPython. Others are stored

on your CIRCUITPY drive in a folder called lib . Part of what makes CircuitPython so

awesome is its ability to store code separately from the firmware itself. Storing code

separately from the firmware makes it easier to update both the code you write and

the libraries you depend.

Your board may ship with a lib folder already present. We're always updating and

improving libraries, so it's best to download the latest version and replace the version

that it shipped with!

Click on the link below to go to the CircuitPython Library Bundle Releases page. Dow

nload the 4.x bundle. You always want to download the bundle that matches the

version of CircuitPython you're using.

CircuitPython Library Bundle Latest

Release

https://adafru.it/y8E

Unzip the file you downloaded, open the folder, and then copy the lib folder to your

CIRCUITPY drive. For a more detailed explanation, please see the CircuitPython

Libraries page in this guide (https://adafru.it/CYo).

That's all there is to installing the CircuitPython library bundle!

©Adafruit Industries Page 61 of 148

Choosing an Editor

To create and edit code, all you'll need is an editor. There are many options. There are

basic text editors built into every operating system such as Notepad on Windows,

TextEdit on Mac, and gedit on Linux. However, many of these editors don't write back

changes immediately to files that you edit. That can cause problems when using

CircuitPython. If you choose to use one of these editors, make sure you do "Eject" or

"Safe Remove" on Windows or "sync" on Linux after writing a file. (This is not a

problem on MacOS.) However, here are some editors that write the file completely on

save:

emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on save (ht

tps://adafru.it/Be7)

vim (https://adafru.it/ek9) / vi safely writes all changes

Sublime Text (https://adafru.it/xNB) safely writes all changes

The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in

Settings->System Settings->Synchronization (on by default).

If you are using Atom (https://adafru.it/fMG), install the fsync-on-save package (h

ttps://adafru.it/E9m) so that it will always write out all changes to files on CIRCU

ITPY .

Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes

gedit on Linux appears to safely write all changes

Creating Code

To create your first program, create a file called code.py on your CIRCUITPY drive

using your editor. Copy and paste the following code into your code.py file and save.

The first NeoPixel will start blinking red!

import time

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

while True:

 trellis.pixels[0, 0] = (100, 0, 0)

 time.sleep(0.5)

 trellis.pixels[0, 0] = (0, 0, 0)

 time.sleep(0.5)

There's one warning we have to give you before we continue...

•

•

•

•

•

•

•

©Adafruit Industries Page 62 of 148

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or

resetting your board! On Windows using some editors this can sometimes take up to

90 seconds, on Linux it can take 30 seconds to complete because the text editor

does not save the file completely. Mac OS does not seem to have this delay, which is

nice!

This is really important to be aware of. If you unplug or reset the board before your

computer finishes writing the file to your board, you can corrupt the drive. If this

happens, you may lose the code you've written, so it's important to backup your code

to your computer regularly.

You can avoid this in two ways:

Use an editor that writes fully on save, like the editors suggested int the list

above.

Always eject or sync the after writing. On Windows, you can Eject or Safe

Remove the CIRCUITPY drive. It won't actually eject, but it will force the

operating system to save your file to disk. On Linux, use the sync command in a

terminal to force the write to disk.

Editing Code

Now that you've created and run your CircuitPython program, let's take a look at

editing it. We'll make a simple change. Change the first 0.5 to 0.1 . The code should

look like this:

import time

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

while True:

 trellis.pixels[0, 0] = (100, 0, 0)

 time.sleep(0.1)

 trellis.pixels[0, 0] = (0, 0, 0)

 time.sleep(0.5)

Don't Click Reset or Unplug!

•

•

©Adafruit Industries Page 63 of 148

Leave the rest of the code as-is. Save your file. See what happens to the NeoPixel on

your board? Something changed! Do you know why? Let's find out!

Exploring Your First CircuitPython Program

First, we'll take a look at the code we're editing.

Here is the original code again:

import time

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

while True:

 trellis.pixels[0, 0] = (100, 0, 0)

 time.sleep(0.5)

 trellis.pixels[0, 0] = (0, 0, 0)

 time.sleep(0.5)

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib.

import time

import adafruit_trellism4

The import statements tells the board that you're going to use a particular library in

your code. In this example, we imported two libraries: time and adafruit_trellis

m4 . time let's you pass time by 'sleeping', and adafruit_trellism4 lets you interact

with the buttons and NeoPixels on the front of your board.

Setting Up The Trellis M4

The next line sets up Trellis M4 library.

trellis = adafruit_trellism4.TrellisM4Express()

©Adafruit Industries Page 64 of 148

We assign trellis to allow us to use the features of the Trellis M4 library in our

code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means,

"forever do the following:". while True: creates a loop. Code will loop "while" the

condition is "true" (vs. false), and as True is never False, the code will loop forever.

All code that is indented under while True: is "inside" the loop.

Inside our loop, we have four items:

while True:

 trellis.pixels[0, 0] = (100, 0, 0)

 time.sleep(0.5)

 trellis.pixels[0, 0] = (0, 0, 0)

 time.sleep(0.5)

First, we have trellis.pixels[0, 0] = (100, 0, 0) . This line tells the first

NeoPixel to turn on red. On the next line, we have time.sleep(0.5) . This line is

telling CircuitPython to pause running code for 0.5 seconds. Since this is between

turning the NeoPixel red and off, the led will be on for 0.5 seconds.

The next two lines are similar. trellis.pixels[0, 0] = (100, 0, 0) tells the

NeoPixel to turn off, and time.sleep(0.5) tells CircuitPython to pause for another

0.5 seconds. This occurs between turning the NeoPixel off and back on so the

NeoPixel will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that

the code leaves the NeoPixel on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

More Changes

We don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

while True:

 trellis.pixels[0, 0] = (100, 0, 0)

©Adafruit Industries Page 65 of 148

 time.sleep(0.1)

 trellis.pixels[0, 0] = (0, 0, 0)

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the

NeoPixel on and off!

Now try increasing both of the 0.1 to 1 . Your NeoPixel will blink much more slowly

because you've increased the amount of time that the NeoPixel is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython looks like this:

print("Hello, world!")

This line would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

print those too.

The serial console requires a terminal program. A terminal is a program that gives you

a text-based interface to perform various tasks.

©Adafruit Industries Page 66 of 148

Serial Console on Mac and Linux

Connecting to the serial console on Mac and Linux uses essentially the same process.

Neither operating system needs drivers installed. On MacOSX, Terminal comes

installed. On Linux, there are a variety such as gnome-terminal (called Terminal) or

Konsole on KDE.

To connect to the serial output, you'll use the screen command. For a detailed

explanation of how to connect to the serial console using screen, please see the

Advanced Serial Console on Mac and Linux page in this guide (https://adafru.it/CYp).

Serial Console on Windows

If you're using Windows, you'll need to download a terminal program. We suggest

PuTTY. First, download the latest version of PuTTY (https://adafru.it/Bf1). You'll want to

download the Windows installer file. It is most likely that you'll need the 64-bit version.

Download the file and install the program on your machine. If you run into issues, you

can try downloading the 32-bit version instead. However, the 64-bit version will work

on most PCs.

You'll use PuTTY to connect to the serial output. For a detailed explanation of how to

use PuTTY to connect to the serial console, please see the Advanced Serial Console

on Windows page in this guide (https://adafru.it/CYq).

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, we're going to edit

it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import time

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

while True:

©Adafruit Industries Page 67 of 148

 print("Hello, CircuitPython!")

 trellis.pixels[0, 0] = (100, 0, 0)

 time.sleep(0.5)

 trellis.pixels[0, 0] = (0, 0, 0)

 time.sleep(0.5)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import time

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

while True:

 print("Hello back to you!")

 trellis.pixels[0, 0] = (100, 0, 0)

 time.sleep(0.5)

 trellis.pixels[0, 0] = (0, 0, 0)

 time.sleep(0.5)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

©Adafruit Industries Page 68 of 148

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so we can see how it is used.

Delete the) at the end of (100, 0, 0) from the line trellis.pixels[0, 0] =

(100, 0, 0) so that it says trellis.pixels[0, 0] = (100, 0, 0 .

import time

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

while True:

 print("Hello back to you!")

 trellis.pixels[0, 0] = (100, 0, 0

 time.sleep(0.5)

 trellis.pixels[0, 0] = (0, 0, 0)

 time.sleep(0.5)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. We need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 9 in your code. The next line is your error: SyntaxError:

invalid syntax . This error might not mean a lot to you, but combined with knowing

the issue is on line 9, it gives you a great place to start!

Go back to your code, and take a look at line 9. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 9 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You removed a parenthesis. Fix the typo and save your file.

©Adafruit Industries Page 69 of 148

Nice job fixing the error! Your serial console is streaming and your NeoPixel Is

blinking red again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting. If your code isn't working, and you want to know where it's failing,

you can put print statements in various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

©Adafruit Industries Page 70 of 148

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

©Adafruit Industries Page 71 of 148

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

©Adafruit Industries Page 72 of 148

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

©Adafruit Industries Page 73 of 148

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 74 of 148

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are an excellent reference for how it all should work. In

Python terms, you can place our library files in the lib directory because it's part of the

Python path by default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 75 of 148

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

©Adafruit Industries Page 76 of 148

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

©Adafruit Industries Page 77 of 148

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

•

•

©Adafruit Industries Page 78 of 148

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

•

•

©Adafruit Industries Page 79 of 148

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL page (http

s://adafru.it/Awz) in this guide, the help("modules") command is discussed. This

command provides a list of all of the built-in modules available in CircuitPython for

your board. So, if you connect to the serial console on your board, and enter the

REPL, you can run help("modules") to see what modules are available for your

board. Then, as you read through the import statements, you can, for the purposes

of figuring out which libraries to load, ignore the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

•

•

©Adafruit Industries Page 80 of 148

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

©Adafruit Industries Page 81 of 148

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

©Adafruit Industries Page 82 of 148

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportE

rror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page (https://

adafru.it/Den).

Updating CircuitPython Libraries and Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

©Adafruit Industries Page 83 of 148

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

(>>>) and run the following commands:

©Adafruit Industries Page 84 of 148

import board

dir(board)

Here is the output for the QT Py. You may have a different board, and this list will vary,

based on the board.

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL,

TX, RX, SCK, MISO, and MOSI. You see that there are many more entries available in

board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py,

pin A0 is labeled on the physical board silkscreen, but it is available in CircuitPython

as both A0 and D0 . For more information on finding all the names for a given pin,

see the What Are All the Available Pin Names? (https://adafru.it/QkA) section below.

The results of dir(board) for CircuitPython compatible boards will look similar to

the results for the QT Py in terms of the pin names, e.g. A0, D0, etc. However, some

boards, for example, the Metro ESP32-S2, have different styled pin names. Here is the

output for the Metro ESP32-S2.

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

©Adafruit Industries Page 85 of 148

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa

rd module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

This eliminates the need for the busio module, and simplifies the code. Behind the

scenes, the board.I2C() object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all

boards. They exist if there are board markings for the default pins for those

devices.

©Adafruit Industries Page 86 of 148

until you need it, and provides the same object every time you need it. You can call

board.I2C() as many times as you like, and it will always return the same object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, connect to the serial console. Then,

save the following as code.py on your CIRCUITPY drive.

"""CircuitPython Essentials Pin Map Script"""

import microcontroller

import board

board_pins = []

for pin in dir(microcontroller.pin):

 if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):

 pins = []

 for alias in dir(board):

 if getattr(board, alias) is getattr(microcontroller.pin, pin):

 pins.append("board.{}".format(alias))

 if len(pins) > 0:

 board_pins.append(" ".join(pins))

for pins in sorted(board_pins):

 print(pins)

Here is the result when this script is run on QT Py:

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your

board documentation/pinout for the default busses.

©Adafruit Industries Page 87 of 148

example, the first pin on the board is labeled A0. The first line in the output is board

.A0 board.D0 . This means that you can access pin A0 with both board.A0 and bo

ard.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

an on-board sensor. The Qt Py only has one on-board extra piece of hardware, a

NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

aliases to the microcontroller pin names. If you look at the datasheet for your

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin module. As with board , you can run dir(m

icrocontroller.pin) in the REPL to receive a list of the microcontroller pin names.

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board or digitalio in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here (https://adafru.it/QkB) and the Python-like

modules included here (https://adafru.it/QkC). However, not every module is available

for every board due to size constraints or hardware limitations. How do you find out

what modules are available for your board?

©Adafruit Industries Page 88 of 148

There are two options for this. You can check the support matrix (https://adafru.it/

N2a), and search for your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

I have to continue using CircuitPython 6.x or earlier.

Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 6.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest

version (https://adafru.it/Em8) and use the current version of the libraries (https://

adafru.it/ENC). However, if for some reason you cannot update, here are the last

available library bundles for older versions:

2.x bundle (https://adafru.it/FJA)

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

©Adafruit Industries Page 89 of 148

3.x bundle (https://adafru.it/FJB)

4.x bundle (https://adafru.it/QDL)

5.x bundle (https://adafru.it/QDJ)

6.x bundle (https://adafru.it/Xmf)

Is ESP8266 or ESP32 supported in CircuitPython? Why

not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here (https://adafru.it/CiG)!

We do not support ESP32 because it does not have native USB.

We do support ESP32-S2, which has native USB.

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, check out this guide (https://adafru.it/

F5X) on using AirLift with CircuitPython. For further project examples, and guides

about using AirLift with specific hardware, check out the Adafruit Learn

System (https://adafru.it/VBr).

Is there asyncio support in CircuitPython?

There is preliminary support for asyncio starting with CircuitPython 7.1.0. Read

about using it in the Cooperative Multitasking in CircuitPython (https://adafru.it/

XnA) Guide.

My RGB NeoPixel/DotStar LED is blinking funny colors -

what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! (https://adafru.it/Den)

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

•

•

•

•

©Adafruit Industries Page 90 of 148

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle (https://adafru.it/uap) for

your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (https://

adafru.it/QDK). Builds are available for Windows, macOS, x64 Linux, and Raspberry

Pi Linux. Choose the latest mpy-cross whose version matches the version of

CircuitPython you are using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

©Adafruit Industries Page 91 of 148

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an

estimated time for when they will be included

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run

CircuitPython?

No.

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/KJD)

CPC = Circuit Playground Classic (https://adafru.it/ncE)

CPX = Circuit Playground Express (https://adafru.it/wpF)

CPB = Circuit Playground Bluefruit (https://adafru.it/Gpe)

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or

extra software. You'll use a terminal program to find your board, and screen to

connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

©Adafruit Industries Page 92 of 148

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with

tty. . The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, you're asking to see all of the listings in /dev/ that start with t

ty. and end in anything. This will show us the current serial connections.

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

©Adafruit Industries Page 93 of 148

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem

141441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of

this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You're going to use a command called screen . The screen command is

included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board_name with the name you found your board is

using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

©Adafruit Industries Page 94 of 148

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7

and 8.1 Drivers page (https://adafru.it/VuB) for details. You will not need to install

drivers on Mac, Linux or Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows

7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives

security updates. A free upgrade to Windows 10 is still available (https://adafru.it/

RWc).

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The

easiest way to determine which port the board is using is to first check without the

board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find

something already in that list with (COM#) after it where # is a number.

©Adafruit Industries Page 95 of 148

Now plug in your board. The Device Manager list will refresh and a new item will

appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the

list.

Sometimes the item will refer to the name of the board. Other times it may be called

something like USB Serial Device, as seen in the image above. Either way, there is a

new (COM#) following the name. This is the port your board is using.

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to

use PuTTY.

The first thing to do is download the latest version of PuTTY (https://adafru.it/Bf1).

You'll want to download the Windows installer file. It is most likely that you'll need the

64-bit version. Download the file and install the program on your machine. If you run

into issues, you can try downloading the 32-bit version instead. However, the 64-bit

version will work on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is

using.

•

•

©Adafruit Industries Page 96 of 148

In the box under Speed, enter 115200. This called the baud rate, which is the

speed in bits per second that data is sent over the serial connection. For boards

with built in USB it doesn't matter so much but for ESP8266 and other board

with a separate chip, the speed required by the board is 115200 bits per second.

So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete

a stored session. Enter a name in the box under Saved Sessions, and click the Save

button on the right.

Once your settings are entered, you're ready to connect to the serial console. Click

"Open" at the bottom of the window. A new window will open.

•

©Adafruit Industries Page 97 of 148

If no code is running, the window will either be blank or will look like the window

above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

Always Run the Latest Version of

CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. (https:

//adafru.it/Em8).

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 98 of 148

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle (http

s://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

I have to continue using CircuitPython 5.x or earlier.

Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version (http

s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).

However, if for some reason you cannot update, links to the previous bundles are

available in the FAQ (https://adafru.it/FwY).

Bootloader (boardnameBOOT) Drive Not

Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader (https://adafru.it/zbX)installed. The Feather M0 Basic, Feather M0

Adalogger, and similar boards use a regular Arduino-compatible bootloader, which

does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground

Express, press the reset button just once to get the CPLAYBOOT drive to show up.

Pressing it twice will not work.

©Adafruit Industries Page 99 of 148

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here (https://adafru.it/VuB).

It is recommended (https://adafru.it/Amd) that you upgrade to Windows 10 if possible;

an upgrade is probably still free for you. Check here (https://adafru.it/Amd).

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit

Discord () if this does not work for you!

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

©Adafruit Industries Page 100 of 148

Windows Explorer Locks Up When

Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive

Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

•

•

•

•

©Adafruit Industries Page 101 of 148

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended (https://adafru.it/Amd) that you upgrade

to Windows 10 if possible; an upgrade is probably still free for you: see this link (https

://adafru.it/V2a).

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool (http

s://adafru.it/RWd). Download and unzip the tool. Unplug all the boards and other USB

devices you want to clean up. Run the tool as Administrator. You will see a listing like

this, probably with many more devices. It is listing all the USB devices that are not

currently attached.

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying

Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

©Adafruit Industries Page 102 of 148

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

©Adafruit Industries Page 103 of 148

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " (https://adafru.it/XDZ)Acr

onis Managed Machine Service Mini" (https://adafru.it/XDZ).

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.disable_autoreload()

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing reset

during this time will restart the board and then enter safe mode. On Bluetooth

capable boards, after the yellow blinks, there will be a set of faster blue blinks.

Pressing reset during the BLUE blinks will clear Bluetooth information and start the

device in discoverable mode, so it can be used with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

•

•

©Adafruit Industries Page 104 of 148

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 105 of 148

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

Serial console showing ValueError:

Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle (https://adafru.it/y8E).

•

•

•

©Adafruit Industries Page 106 of 148

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

©Adafruit Industries Page 107 of 148

Entering Safe Mode in CircuitPython 7.x

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

©Adafruit Industries Page 108 of 148

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version (https://adafru.it/Amd) to do this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal

program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 109 of 148

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

https://adafru.it/AdI

Feather M0 Express

https://adafru.it/AdJ

Feather M4 Express

https://adafru.it/EVK

Metro M0 Express

https://adafru.it/AdK

Metro M4 Express QSPI Eraser

https://adafru.it/EoM

Trellis M4 Express (QSPI)

https://adafru.it/DjD

Grand Central M4 Express (QSPI)

https://adafru.it/DBA

PyPortal M4 Express (QSPI)

https://adafru.it/Eca

Circuit Playground Bluefruit (QSPI)

https://adafru.it/Gnc

Monster M4SK (QSPI)

https://adafru.it/GAN

©Adafruit Industries Page 110 of 148

PyBadge/PyGamer QSPI Eraser.UF2

https://adafru.it/GAO

CLUE_Flash_Erase.UF2

https://adafru.it/Jat

Matrix_Portal_M4_(QSPI).UF2

https://adafru.it/Q5B

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd). You'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

©Adafruit Industries Page 111 of 148

 1. Download the erase file:

SAMD21 non-Express Boards

https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd) YYou'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that do not have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (https://adafru.it/Bed),

which will erase and re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-

Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

©Adafruit Industries Page 112 of 148

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

©Adafruit Industries Page 113 of 148

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal

commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

©Adafruit Industries Page 114 of 148

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

©Adafruit Industries Page 115 of 148

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

©Adafruit Industries Page 116 of 148

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

Adafruit CircuitPython TrellisM4 Library

We've written a library that makes it super easy to use the buttons and NeoPixel LEDs

on your NeoTrellis M4 Express board. It allows you to address both the buttons and

the NeoPixels using coordinates (i.e. (0, 0)) so it's easy to know which button and

NeoPixel you're working with. It also allows you to tell the code that you've rotated

your board and then alters the coordinates to match the orientation. Let's take a look!

Installing the CircuitPython TrellisM4 Library

First you need to make sure you've loaded the Adafruit CircuitPython TrelllisM4 (https

://adafru.it/CYr) library onto your board. Download the latest CircuitPython Library

Bundle (https://adafru.it/ENC) that corresponds to the version of Circuit Python you're

using (as of this writing that would be 4.x), unzip the downloaded file, open the folder,

and copy the lib folder found inside to your CIRCUITPY drive.

If you're loading libraries individually, ensure you have the following in your lib folder:

adafruit_trellism4.mpy

adafruit_matrixkeypad.mpy

neopixel.mpy

Check out the CircuitPython Libraries page of this guide (https://adafru.it/CYo) for a

detailed explanation of how to load the library bundle on your board.

•

•

•

©Adafruit Industries Page 117 of 148

TrellisM4 Library Features

With this library, you can optionally specify the orientation of the board at the

beginning of your code when you initialise the library by setting:

rotation - Specify the orientation of your board in 90 degree increments. Default

is 0. When rotation is not specified or rotation=0 , the code assumes the

board is oriented with the USB port facing away from you or pointing upward.

Acceptable rotations are: 0 , 90 , 180 , and 270 .

You can use the following properties to interact with your NeoTrellis M4 Express:

pressed_keys - A list of tuples of currently pressed button coordinates.

pixels - Provides a two-dimensional grid representation of the NeoPixels on the

NeoTrellis M4.

pixels.fill - Colors all the NeoPixels a given color.

pixels.brightness - The overall brightness of the pixels. Must be a number

between 0 and 1 , which represents a percentage, i.e. 0.3 is 30%.

pixels.width - The width of the NeoPixel grid. When rotation is 0 or 180 , the

width is 8. When rotation is 90 or 270 , the width is 4.

pixels.height - The height of the NeoPixel grid. When rotation is 0 or 180 , the

height is 4. When rotation is 90 or 270 , the height is 8.

Let's take a look at a simple example. Copy the following code to the code.py file on

your CIRCUITPY drive and save the file. Then connect to the serial console.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

while True:

 pressed = trellis.pressed_keys

 if pressed:

 print("Pressed:", pressed)

Try pressing a button. The coordinates are printed to the serial output.

•

•

•

•

•

•

•

©Adafruit Industries Page 118 of 148

Try pressing more than one button. It prints the coordinates of all buttons pressed at

any given point in time.

As you can see, pressed_keys returns a list (the outer brackets, i.e. []) of

coordinate tuples (the sets of numbers in parentheses, i.e. (x, y)).

This example is useful to test the buttons and give you an idea of what the

coordinates are for each one.

Now we'll explore the other features of this library using the NeoPixels found on your

NeoTrellis M4 Express.

Now Let's Rotate the Board!

Copy the following code to the code.py file found on your CIRCUITPY drive and save

it.

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

while True:

 trellis.pixels[0, 0] = (255, 0, 0)

We have setup the library for use with: trellis =

adafruit_trellism4.TrellisM4Express()

©Adafruit Industries Page 119 of 148

With the board oriented with the USB port on the opposite side of the board from you,

the top-left button will light up red. This is the default orientation and is considered to

be a 0 degree rotation.

The TrellisM4 library has the ability to specify four different orientations in 90 degree

increments by setting rotation in the setup line equal to: 0, 90, 180, or 270. This

allows you to rotate your board with ease to the position that works best for your

project, without requiring complicated code to compensate. We do that for you! The

coordinates of the buttons change with the rotation, so (0, 0) is always top-left.

Let's look at some examples.

Rotate your board 90 degrees clockwise so the USB port is to the right, and change

the setup line to update your code to the following:

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express(rotation=90)

while True:

 trellis.pixels[0, 0] = (255, 0, 0)

Here we have told the code rotation=90 . Again, the top-left button is red, without

needing to change the rest of your code.

©Adafruit Industries Page 120 of 148

Try rotating your board another 90 degrees clockwise, until the USB cord is pointing

down or towards you, and updating your code so rotation=180 . Same result.

And another 90 degrees clockwise so the USB cord is pointing to the left, and update

your code so rotation=270 . Upper left is red!

©Adafruit Industries Page 121 of 148

These examples show that (0, 0) will always be in the upper left corner if you

orient the board to match the rotation you provide. However, we've only specified

pixel (0, 0) in these examples, so the code continues to work at all rotations. What

happens if you have all the pixel coordinates specified in your code and provide a

different rotation?

Trellis M4 Coordinate Layout

The rest of the available coordinates also update to match the rotation you specify

on setup.

Therefore, if your code uses specific coordinates for either the buttons or the

NeoPixels, and you provide a new rotation and rotate your board, you may need to

change your code. This is because the available coordinates are different for different

rotations.

For example, if you light up the NeoPixel at (7, 3) and then set rotation=90 , your

code will fail because that coordinate is not available at a 90 degree rotation. The

images below show you what the coordinate grids look like at each possible rotation.

Let's take a look.

Here are the coordinates available when the board is at the 0 or 180 degree

rotations:

©Adafruit Industries Page 122 of 148

(0, 0) is always in the upper left corner and the rest of the grid follows standard

positive (x, y) coordinates. So when the board is rotated 0 or 180 degrees, the

board is oriented horizontally, and the lower right will be (7, 3) .

However, when you rotate the board to 90 or 270 degrees, the available

coordinates change, as the grid is now oriented vertically:

©Adafruit Industries Page 123 of 148

The top left is still (0, 0) , but the bottom right is now (3, 7) .

So, remember, if you have specific coordinates for either the NeoPixels or the buttons

in your code that are not available in the opposite orientation, and you provide a rot

ation for an opposite orientation, your code will error and stop running. This is

important to keep in mind as a troubleshooting step if your code works in one

orientation but fails if you rotate it 90 degrees in either direction.

Width and Height Can Make Rainbows!

This library provides a two-dimensional representation of the NeoPixel grid so you

can use coordinates to address the different pixels. If you want to be able to iterate

over the grid, you need to use the pixels.width and pixels.height properties.

©Adafruit Industries Page 124 of 148

The following example uses pixels.width and pixels.height to spread a

rainbow over all the NeoPixels. Copy the following code to your code.py file and save

it.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""Test your Trellis M4 Express without needing the serial output.

Press any button and the rest will light up the same color!"""

import time

from rainbowio import colorwheel

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

for x in range(trellis.pixels.width):

 for y in range(trellis.pixels.height):

 pixel_index = ((y * 8) + x) * 256 // 32

 trellis.pixels[x, y] = colorwheel(pixel_index & 255)

current_press = set()

while True:

 pressed = set(trellis.pressed_keys)

 for press in pressed - current_press:

 if press:

 print("Pressed:", press)

 pixel = (press[1] * 8) + press[0]

 pixel_index = pixel * 256 // 32

 trellis.pixels.fill(colorwheel(pixel_index & 255))

 for release in current_press - pressed:

 if release:

 print("Released:", release)

 for x in range(trellis.pixels.width):

 for y in range(trellis.pixels.height):

 pixel_index = ((y * 8) + x) * 256 // 32

 trellis.pixels[x, y] = colorwheel(pixel_index & 255)

 time.sleep(0.08)

 current_press = pressed

Rainbow! When you press a button, it lights up all the pixels to match the color of the

button pressed and then returns to the rainbow layout when the button is released.

It's an easy way to test whether your buttons are working without being connected to

the serial console.

More To Come!

We will be adding more features to this library. Check back for updates and make

sure you're always using the latest version of the library!

©Adafruit Industries Page 125 of 148

Trellis M4 CircuitPython Demo

We've explained how to use the features in the Adafruit CircuitPython TrellisM4

library. Now we'll show how to use the library to write a CircuitPython program. In this

section, you'll learn how to initialise the library for use in your code, and then use

Python lists and sets to keep track of LED states and button presses.

This program begins with all the NeoPixels turned off. You can then press the buttons

to toggle the associated NeoPixels on and off in a rainbow pattern spread over all of

the LEDs.

Imports and Setup

The first thing you need to do is import the library and then set it up for use. This is

super simple. You being your program with the following code:

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

This is how you'll begin any program that will be using the TrellisM4 library. You can

include other libraries in your code by adding them after the import line and setting

them up after the trellis line.

©Adafruit Industries Page 126 of 148

wheel for the Rainbow

Next, a helper function called wheel is defined. This code allows us to generate the

rainbow pattern seen when you toggle all of the buttons on.

def wheel(pos):

 if pos < 0 or pos > 255:

 return 0, 0, 0

 if pos < 85:

 return int(255 - pos * 3), int(pos * 3), 0

 if pos < 170:

 pos -= 85

 return 0, int(255 - pos * 3), int(pos * 3)

 pos -= 170

 return int(pos * 3), 0, int(255 - (pos * 3))

For more information on how wheel is used, check out the Wheel Explained section

here (https://adafru.it/Bek).

A Set of Button Presses

With basic code, when you press a button, the button press gets sent over and over

as long as you hold the button. This happens very quickly, too quickly for you to easily

press it once and have the button press sent only once. Since we're trying to use the

button as a toggle, we need it to respond only once until it is pressed again. So, we're

going to use sets to keep track of which buttons have been pressed.

A set is an unordered collection with no duplicate elements. Since we're not keeping

track of the order in which we press the buttons, we don't care that it's unordered.

Since a set eliminates duplicates, we don't have to worry about it including the same

button press twice. You can use math on sets to do things including subtracting one

set from another. Subtracting one set from another provides you with the elements in

one set that are not in another. This allows you to determine the difference between

the two sets. We will be comparing two sets. So sets are perfect for our needs!

This code creates two sets and then compares them. This allows for us to keep track

of the buttons currently being pressed and compare them to to the buttons previously

pressed to determine what buttons have been released.

First, we create an empty set called current_press . Then we begin our loop and

create a set called pressed that contains all the buttons being pressed (trellis.

pressed_keys) at the beginning of the loop. If no buttons are pressed, pressed will

be empty.

©Adafruit Industries Page 127 of 148

current_press = set()

while True:

 pressed = set(trellis.pressed_keys)

 for press in pressed - current_press:

 ... # LED toggle code lives here.

 current_press = pressed

At the end of the loop, we set current_press = pressed so current_press

contains all of the buttons currently pressed when the loop ends. Then, the loop

begins again, and we check to see which buttons are being pressed by checking pr

essed . This means we now have two sets: one containing the buttons pressed when

the loop ended, and one containing the buttons pressed when the loop begins.

Now, we do some math so we can compare the two. press - current_press will

provide a collection of buttons still being pressed, and we can now apply the LED

toggle code to only those buttons!

A Multidimensional List of NeoPixel States

This example toggles the NeoPixels on or off when each button is pressed. Whether

the pixel is turned on or off is dependent on the pixel's current state; if the pixel is on,

the button press turns it off, and if the pixel is off, the button press turns it on. We

need to track the current state of every pixel to be able to determine what state to

toggle it to. For that, we're going to use a multidimensional list.

A list is a collection of items that are both ordered and changeable. We want to use

the (x, y) coordinates of the pixels to keep track of which pixel is which, so we

want to keep all of the list entries in a particular order. We are going to be tracking

two states for each pixel, so we need to be able to change each entry in the list to

reflect the current state. Lists are exactly what we need!

Since we are going to be using (x, y) coordinates of the pixels to determine which

pixel we are addressing, we need to create a list that is a representation of the

NeoPixel grid. For this, we need to create a multidimensional list, which is a list made

up of lists.

First we create the initial list and call it led_on .

led_on = []

If you were to print(led_on) , it would look like this:

©Adafruit Industries Page 128 of 148

[]

Then we create the multidimensional aspect of the list. We use append to add

width number of empty lists to the initial list, and then we populate them with heig

ht number of entries, which we're setting to False because the LEDs are not on to

begin with. As we initialised the Trellis without specifying a rotation value, width is

equal to 8 and height is equal to 4.

for x in range(trellis.pixels.width):

 led_on.append([])

 for y in range(trellis.pixels.height):

 led_on[x].append(False)

Let's take a look at the two parts of this section of code.

We append x , or 8, empty lists to our initial list:

for x in range(trellis.pixels.width):

 led_on.append([])

If you were to print(led_on) now, it would look like this:

[[], [], [], [], [], [], [], []]

Then we append four entries of False to each of the x empty lists:

 for y in range(trellis.pixels.height):

 led_on[x].append(False)

Finally, if you were to print(led_on) now, it would look like this:

[[False, False, False, False], [False, False, False, False], [False,

False, False, False], [False, False, False, False], [False, False,

False, False], [False, False, False, False], [False, False, False,

False], [False, False, False, False]] [False, False, False, False]]

Each four member list represents an x coordinate, 0 - 7. Each False represents a y

coordinate, 0 - 3. For example, if (3, 2) were set to True , the list would look like

this:

©Adafruit Industries Page 129 of 148

[[False, False, False, False], [False, False, False, False], [False,

False, False, False], [False, False, True, False], [False, False,

False, False], [False, False, False, False], [False, False, False,

False], [False, False, False, False]] [False, False, False, False]]

Now we have our representation of the NeoPIxel grid and we can start toggling!

Extra Credit: List Comprehensions

We used five lines of code to create our list. It was easy to see what was happening in

each section of code, and to explain how it was affecting the creation of our list. It

turns out, however, that there's a way to do it in one line of code!

List comprehensions provide a more concise way to create lists. They consist of

brackets containing an expression followed by a for clause, potentially followed by

further for or if clauses. As you can see, we used two for clauses in our list

creation code. Our list comprehension consists of two for clauses as well.

You can replace every line of code discussed in the previous section with the

following line:

led_on = [[False for y in range(trellis.pixels.height)] for x in

range(trellis.pixels.width)]

It does exactly the same thing as the code in the previous section: creates a

multidimensional list made up of x lists, each containing y entries of False . And,

it's much shorter. Handy!

©Adafruit Industries Page 130 of 148

NeoPixels On: True or False?

Now that we have our button presses tracked and our multidimensional list, we can

easily toggle the NeoPixels. We're going to use the list to track whether they are on or

off. Each time we press a button, we'll check to see whether it's associated list entry is

True or False , If it's False , that means the LED is currently off. If it's True , it

means the LED is currently on. Based on these results, that button press will change

the list entry and turn the LED to the appropriate status. Let's take a look!

Here is our LED toggle code:

 x, y = press

 if not led_on[x][y]:

 print("Turning on:", press)

 pixel_index = ((x + (y * 8)) * 256 // 32)

 trellis.pixels[x, y] = wheel(pixel_index & 255)

 led_on[x][y] = True

 else:

 print("Turning off:", press)

 trellis.pixels[x, y] = (0, 0, 0)

 led_on[x][y] = False

press is already an x, y coordinate, but we need to have access to x and y

separately. So, we first unpack press with x, y = press .

We need access to x and y to use our list. Remember, we're using a

multidimensional list containing x number of lists made up of y number. of entries.

So, to access them, we'll use led_on[x][y] .

Next, we have an if/else block. The if not led_on[x][y]: says if the led_on

list entry found at [x][y] is False , run the code indented below it. The else says,

"otherwise," which is to say, if the led_on list entry found at [x][y] is True , run

the code indented below it.

If the list entry is False when we press a button, we send a print statement, turn

on the LED associated with that button to the rainbow color that matches it's location

in the rainbow spread over all the buttons. Then, we set the list entry to True .

 if not led_on[x][y]:

 print("Turning on:", press)

 pixel_index = ((x + (y * 8)) * 256 // 32)

 trellis.pixels[x, y] = wheel(pixel_index & 255)

 led_on[x][y] = True

©Adafruit Industries Page 131 of 148

If the list entry is True when we press a button, we send a print statement, turn

the LED associated with that button off. Then, we set the list entry to False .

 else:

 print("Turning off:", press)

 trellis.pixels[x, y] = (0, 0, 0)

 led_on[x][y] = False

You may have noticed that to address the pixels, we use trellis.pixels[x, y] ,

but to address the list we use led_on[x][y] . This is because the NeoPixel code is

specially designed to work with an [x, y] coordinate assignment. The

multidimensional list, however, only works by addressing [x] and [y] separately.

Whew! That's it! Now it's time to press, press, press!

NeoTrellis M4 NeoPixel Toggle Code

Here's the full program. Copy it to code.py on your NeoTrellis M4 and start toggling!

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

from rainbowio import colorwheel

import adafruit_trellism4

trellis = adafruit_trellism4.TrellisM4Express()

led_on = []

for x in range(trellis.pixels.width):

 led_on.append([])

 for y in range(trellis.pixels.height):

 led_on[x].append(False)

trellis.pixels.fill((0, 0, 0))

current_press = set()

©Adafruit Industries Page 132 of 148

while True:

 pressed = set(trellis.pressed_keys)

 for press in pressed - current_press:

 x, y = press

 if not led_on[x][y]:

 print("Turning on:", press)

 pixel_index = (x + (y * 8)) * 256 // 32

 trellis.pixels[x, y] = colorwheel(pixel_index & 255)

 led_on[x][y] = True

 else:

 print("Turning off:", press)

 trellis.pixels[x, y] = (0, 0, 0)

 led_on[x][y] = False

 current_press = pressed

Downloads

Files

PCB and Enclosure Files (https://adafru.it/D0i)

Schematics and Fabrication Prints

Click to Embiggen

•

©Adafruit Industries Page 133 of 148

UF2 Bootloader Details

Adafruit SAMD21 (M0) and SAMD51 (M4) boards feature an improved bootloader that

makes it easier than ever to flash different code onto the microcontroller. This

bootloader makes it easy to switch between Microsoft MakeCode, CircuitPython and

Arduino.

Instead of needing drivers or a separate program for flashing (say, bossac , jlink

or avrdude), one can simply drag a file onto a removable drive.

The format of the file is a little special. Due to 'operating system woes' you cannot just

drag a binary or hex file (trust us, we tried it, it isn't cross-platform compatible).

Instead, the format of the file has extra information to help the bootloader know

where the data goes. The format is called UF2 (USB Flashing Format). Microsoft

MakeCode generates UF2s for flashing and CircuitPython releases are also available

as UF2. You can also create your own UF2s from binary files using uf2tool, available

here. (https://adafru.it/vPE)

This is an information page for advanced users who are curious how we get code

from your computer into your Express board!

©Adafruit Industries Page 134 of 148

The bootloader is also BOSSA compatible, so it can be used with the Arduino IDE

which expects a BOSSA bootloader on ATSAMD-based boards

For more information about UF2, you can read a bunch more at the MakeCode blog (h

ttps://adafru.it/w5A), then check out the UF2 file format specification. (https://

adafru.it/vPE)

Visit Adafruit's fork of the Microsoft UF2-samd bootloader GitHub repository (https://

adafru.it/Beu) for source code and releases of pre-built bootloaders on CircuitPython.

org (https://adafru.it/Em8).

Entering Bootloader Mode

The first step to loading new code onto your board is triggering the bootloader. It is

easily done by double tapping the reset button. Once the bootloader is active you will

see the small red LED fade in and out and a new drive will appear on your computer

with a name ending in BOOT. For example, feathers show up as FEATHERBOOT,

while the new CircuitPlayground shows up as CPLAYBOOT, Trinket M0 will show up

as TRINKETBOOT, and Gemma M0 will show up as GEMMABOOT

The bootloader is not needed when changing your CircuitPython code. Its only

needed when upgrading the CircuitPython core or changing between

CircuitPython, Arduino and Microsoft MakeCode.

©Adafruit Industries Page 135 of 148

Furthermore, when the bootloader is active, it will change the color of one or more

onboard neopixels to indicate the connection status, red for disconnected and green

for connected. If the board is plugged in but still showing that its disconnected, try a

different USB cable. Some cables only provide power with no communication.

For example, here is a Feather M0 Express running a colorful Neopixel swirl. When

the reset button is double clicked (about half second between each click) the

NeoPixel will stay green to let you know the bootloader is active. When the reset

button is clicked once, the 'user program' (NeoPixel color swirl) restarts.

If the bootloader couldn't start, you will get a red NeoPixel LED.

That could mean that your USB cable is no good, it isn't connected to a computer, or

maybe the drivers could not enumerate. Try a new USB cable first. Then try another

port on your computer!

©Adafruit Industries Page 136 of 148

Once the bootloader is running, check your computer. You should see a USB Disk

drive...

Once the bootloader is successfully connected you can open the drive and browse

the virtual filesystem. This isn't the same filesystem as you use with CircuitPython or

Arduino. It should have three files:

 CURRENT.UF2 - The current contents of the microcontroller flash.

 INDEX.HTM - Links to Microsoft MakeCode.

 INFO_UF2.TXT - Includes bootloader version info. Please include it on bug

reports.

•

•

•

©Adafruit Industries Page 137 of 148

Using the Mass Storage Bootloader

To flash something new, simply drag any UF2 onto the drive. After the file is finished

copying, the bootloader will automatically restart. This usually causes a warning about

an unsafe eject of the drive. However, its not a problem. The bootloader knows when

everything is copied successfully.

You may get an alert from the OS that the file is being copied without it's properties.

You can just click Yes

©Adafruit Industries Page 138 of 148

You may also get get a complaint that the drive was ejected without warning. Don't

worry about this. The drive only ejects once the bootloader has verified and

completed the process of writing the new code

Using the BOSSA Bootloader

As mentioned before, the bootloader is also compatible with BOSSA, which is the

standard method of updating boards when in the Arduino IDE. It is a command-line

tool that can be used in any operating system. We won't cover the full use of the bos

sac tool, suffice to say it can do quite a bit! More information is available at ShumaTec

h (https://adafru.it/vQa).

Windows 7 Drivers

If you are running Windows 7 (or, goodness, something earlier?) You will need a Serial

Port driver file. Windows 10 users do not need this so skip this step.

You can download our full driver package here:

Download Latest Adafruit Driver

Installer

https://adafru.it/AB0

Download and run the installer. We recommend just selecting all the serial port drivers

available (no harm to do so) and installing them.

©Adafruit Industries Page 139 of 148

Verifying Serial Port in Device Manager

If you're running Windows, its a good idea to verify the device showed up. Open your

Device Manager from the control panel and look under Ports (COM & LPT) for a

device called Feather M0 or Circuit Playground or whatever!

©Adafruit Industries Page 140 of 148

If you see something like this, it means you did not install the drivers. Go back and try

again, then remove and re-plug the USB cable for your board

Running bossac on the command line

If you are using the Arduino IDE, this step is not required. But sometimes you want to

read/write custom binary files, say for loading CircuitPython or your own code. We

recommend using bossac v 1.7.0 (or greater), which has been tested. The Arduino

branch is most recommended (https://adafru.it/vQb).

You can download the latest builds here. (https://adafru.it/s1B) The mingw32 version

is for Windows, apple-darwin for Mac OSX and various linux options for Linux.

Once downloaded, extract the files from the zip and open the command line to the

directory with bossac .

With bossac versions 1.9 or later, you must use the --offset parameter on the

command line, and it must have the correct value for your board.

©Adafruit Industries Page 141 of 148

With bossac version 1.9 or later, you must give an --offset parameter on the

command line to specify where to start writing the firmware in flash memory. This

parameter was added in bossac 1.8.0 with a default of 0x2000 , but starting in 1.9, the

default offset was changed to 0x0000 , which is not what you want in most cases. If

you omit the argument for bossac 1.9 or later, you will probably see a "Verify Failed"

error from bossac. Remember to change the option for -p or --port to match the

port on your Mac.

Replace the filename below with the name of your downloaded .bin : it will vary

based on your board!

Using bossac Versions 1.7.0, 1.8

There is no --offset parameter available. Use a command line like this:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-bo

ardname-version.bin

For example,

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-

feather_m0_express-3.0.0.bin

Using bossac Versions 1.9 or Later

For M0 boards, which have an 8kB bootloader, you must specify -offset=0x2000 ,

for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x2000 adafruit-

circuitpython-feather_m0_express-3.0.0.bin

For M4 boards, which have a 16kB bootloader, you must specify -offset=0x4000 ,

for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x4000 adafruit-

circuitpython-feather_m4_express-3.0.0.bin

This will e rase the chip, w rite the given file, v erify the write and R eset the board.

On Linux or MacOS you may need to run this command with sudo ./bossac ... , or

add yourself to the dialout group first.

©Adafruit Industries Page 142 of 148

Updating the bootloader

The UF2 bootloader is relatively new and while we've done a ton of testing, it may

contain bugs. Usually these bugs effect reliability rather than fully preventing the

bootloader from working. If the bootloader is flaky then you can try updating the

bootloader itself to potentially improve reliability.

If you're using MakeCode on a Mac, you need to make sure to upload the bootloader

to avoid a serious problem with newer versions of MacOS. See instructions and more

details here (https://adafru.it/ECU).

In general, you shouldn't have to update the bootloader! If you do think you're having

bootloader related issues, please post in the forums or discord.

Updating the bootloader is as easy as flashing CircuitPython, Arduino or MakeCode.

Simply enter the bootloader as above and then drag the update bootloader uf2 file

below. This uf2 contains a program which will unlock the bootloader section, update

the bootloader, and re-lock it. It will overwrite your existing code such as

CircuitPython or Arduino so make sure everything is backed up!

After the file is copied over, the bootloader will be updated and appear again. The IN

FO_UF2.TXT file should show the newer version number inside.

For example:

UF2 Bootloader v2.0.0-adafruit.5 SFHWRO

Model: Metro M0

Board-ID: SAMD21G18A-Metro-v0

Lastly, reload your code from Arduino or MakeCode or flash the latest CircuitPython

core (https://adafru.it/Em8).

©Adafruit Industries Page 143 of 148

Below are the latest updaters for various boards. The latest versions can always be

found here (https://adafru.it/Bmg). Look for the update-bootloader... files, not

the bootloader... files.

Circuit Playground Express V3.7.0

update-bootloader.uf2

https://adafru.it/JcN

Feather M0 Express v3.7.0 update-

bootloader.uf2

https://adafru.it/JcO

Metro M0 Express v3.7.0 update-

bootloader.uf2

https://adafru.it/JcR

Gemma M0 v3.7.0 update-

bootloader.uf2

https://adafru.it/JcU

Trinket M0 v3.7.0 update-

bootloader.uf2

https://adafru.it/JcX

Itsy Bitsy M0 v3.7.0 update-

bootloader.uf2

https://adafru.it/Jc-

Grand Central M4 v3.7.0 update-

bootloader.uf2

https://adafru.it/Jd2

Latest version of update-

bootloader.uf2 for other boards.

Make sure you pick the right one.

https://adafru.it/Bmg

©Adafruit Industries Page 144 of 148

Getting Rid of Windows Pop-ups

If you do a lot of development on Windows with the UF2 bootloader, you may get

annoyed by the constant "Hey you inserted a drive what do you want to do" pop-ups.

Go to the Control Panel. Click on the

Hardware and Sound header

Click on the Autoplay header

Uncheck the box at the top, labeled Use

Autoplay for all devices

©Adafruit Industries Page 145 of 148

Making your own UF2

Making your own UF2 is easy! All you need is a .bin file of a program you wish to flash

and the Python conversion script (https://adafru.it/vZb). Make sure that your program

was compiled to start at 0x2000 (8k) for M0 boards or 0x4000 (16kB) for M4 boards.

The bootloader takes up the first 8kB (M0) or 16kB (M4). CircuitPython's linker script (h

ttps://adafru.it/CXh) is an example on how to do that.

Once you have a .bin file, you simply need to run the Python conversion script over it.

Here is an example from the directory with uf2conv.py. This command will produce a f

irmware.uf2 file in the same directory as the source firmware.bin. The uf2 can then be

flashed in the same way as above.

For programs with 0x2000 offset (default)

uf2conv.py -c -o build-circuitplayground_express/firmware.uf2 build-

circuitplayground_express/firmware.bin

For programs needing 0x4000 offset (M4 boards)

uf2conv.py -c -b 0x4000 -o build-metro_m4_express/firmware.uf2 build-

metro_M4_express/firmware.bin

Installing the bootloader on a fresh/bricked

board

If you somehow damaged your bootloader or maybe you have a new board, you can

use a JLink to re-install it.

Here's a Learn Guide explaining how to fix the bootloader on a variety of boards using

Atmel Studio (https://adafru.it/F5f)

Here's a short writeup by turbinenreiter on how to do it for the Feather M4 (but

adaptable to other boards) (https://adafru.it/ven)

FAQ/Troubleshooting

©Adafruit Industries Page 146 of 148

While playing audio back from the NeoTrellis M4 over the

TRRS jack, I get an odd 'hissing' sound along with

whatever is being played. Anything I should do to address

this?

If your NeoTrellis M4 is powered by your computer USB, first thing to try is

decoupling any ground loops by using headphones or a powered speaker running

from a battery pack.

If it persists, there's a chance you're hearing serial data being transferred over the

USB port, which can be noisy. This is the trade off of going with plain DAC output

as opposed to I2S. It is meant to be a simple audio playback toy, not audiophile

quality :)

You may also want to try powering the NeoTrellis M4 over a USB battery pack

instead of your computer.

When using the 16-step sequencer, if you press the audio

sampler buttons, odd music will play

The 16-step sequencer 'sampler' demo where you can record audio onto the board

depends on audio being stored in the flash memory, which is also where

circuitpython stores files, so if you play one of the 'prerecorded' audio clips it will

play files on the file system!

You can solve this by loading CircuitPython back onto the board, then removing all

the WAV files.

Why does the NeoTrellis sometimes 'hiccup' and restart

after a few seconds?

Some computers, especially Mac's, will write a small amount of data after a few

seconds, this causes CircuitPython to (correctly) reboot, and you'll get the audio re-

start after a few seconds.

©Adafruit Industries Page 147 of 148

After loading the 16-step sequencer, the MIDI arpeggiator

or some other UF2 examples, my CIRCUITPY no longer

appears!

Correct, these are Arduino programs. Once you're done with these examples, re-

visit the CircuitPython for NeoTrellis M4 installation page and re-install

CircuitPython (https://adafru.it/C-O)

A few seconds/minutes after playing a sound on the

NeoTrellis there's a 'peeeeeeeeeeewwwwwwwww' sound

- what's that?

You're hearing the output capacitors discharge after not playing audio for a while.

This normal, not harmful, and occurs with some headphones/speakers

When I press a button on the NeoTrellis a whole row is

activated?

It's possible to accidentally "press" a column of four buttons even when you intend

to only press one. This can happen when you press a button at an angle other than

straight down on top of the button pad. The elastomer conductive part touches the

NeoPixel ground pin against the column which makes the chip think the whole row/

column is pressed. It only happens on some buttons and some angles, and is not

common

It's not harmful, and there's a few ways to avoid it:

Press straight down on buttons not at an angle

Cut a thicker top panel from wood/plastic/3D printing so that the buttons

cannot be pressed at an angle

Read buttons via the https://github.com/adafruit/

Adafruit_NeoTrellisM4 (https://adafru.it/CW5) library which will do a software

filtering to remove the duplicate button presses

Why do sometimes all the buttons get dimmer and the

Trellis stops working?

If many of the NeoPixels are at close to full brightness, you will draw too much

power from the USB port on your computer. Try lowering the brightness. If you are

using the adafruit_trellism4 library, you can use the .brightness setter to

lower the brightness (1.0 is max; try 0.2 or 0.3).

•

•

•

©Adafruit Industries Page 148 of 148

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Boards & Kits - ARM category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

SAFETI-HSK-RM48 PICOHOBBITFL CC-ACC-MMK-2443 TWR-MC-FRDMKE02Z EVALSPEAR320CPU EVB-SCMIMX6SX

MAX32600-KIT# TMDX570LS04HDK TXSD-SV70 OM13080UL EVAL-ADUC7120QSPZ OM13082UL TXSD-SV71

YGRPEACHNORMAL OM13076UL PICODWARFFL YR8A77450HA02BG 3580 32F3348DISCOVERY ATTINY1607 CURIOSITY

NANO PIC16F15376 CURIOSITY NANO BOARD PIC18F47Q10 CURIOSITY NANO VISIONSTK-6ULL V.2.0 80-001428 DEV-17717

EAK00360 YR0K77210B000BE RTK7EKA2L1S00001BE MAX32651-EVKIT# SLN-VIZN-IOT LV18F V6 DEVELOPMENT SYSTEM

READY FOR AVR BOARD READY FOR PIC BOARD READY FOR PIC (DIP28) EVB-VF522R3 AVRPLC16 V6 PLC SYSTEM

MIKROLAB FOR AVR XL MIKROLAB FOR PIC L MINI-AT BOARD - 5V MINI-M4 FOR STELLARIS MOD-09.Z BUGGY +

CLICKER 2 FOR PIC32MX + BLUETOOT 1410 LETS MAKE PROJECT PROGRAM. RELAY PIC LETS MAKE - VOICE

CONTROLLED LIGHTS LPC-H2294 DSPIC-READY2 BOARD DSPIC-READY3 BOARD MIKROBOARD FOR ARM 64-PIN

MIKROLAB FOR AVR

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/embedded-development-tools/embedded-processor-development-kits/development-boards-kits-arm
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/texasinstruments/safetihskrm48
https://www.x-on.com.au/mpn/technexion/picohobbitfl
https://www.x-on.com.au/mpn/digiinternational/ccaccmmk2443
https://www.x-on.com.au/mpn/nxp/twrmcfrdmke02z
https://www.x-on.com.au/mpn/stmicroelectronics/evalspear320cpu
https://www.x-on.com.au/mpn/nxp/evbscmimx6sx
https://www.x-on.com.au/mpn/maxim/max32600kit
https://www.x-on.com.au/mpn/texasinstruments/tmdx570ls04hdk
https://www.x-on.com.au/mpn/ka-ro/txsdsv70
https://www.x-on.com.au/mpn/nxp/om13080ul
https://www.x-on.com.au/mpn/analogdevices/evaladuc7120qspz
https://www.x-on.com.au/mpn/nxp/om13082ul
https://www.x-on.com.au/mpn/ka-ro/txsdsv71
https://www.x-on.com.au/mpn/renesas/ygrpeachnormal
https://www.x-on.com.au/mpn/nxp/om13076ul
https://www.x-on.com.au/mpn/technexion/picodwarffl
https://www.x-on.com.au/mpn/renesas/yr8a77450ha02bg
https://www.x-on.com.au/mpn/adafruit/3580
https://www.x-on.com.au/mpn/stmicroelectronics/32f3348discovery
https://www.x-on.com.au/mpn/microchip/attiny1607curiositynano
https://www.x-on.com.au/mpn/microchip/attiny1607curiositynano
https://www.x-on.com.au/mpn/microchip/pic16f15376curiositynanoboard
https://www.x-on.com.au/mpn/microchip/pic18f47q10curiositynano
https://www.x-on.com.au/mpn/somlabs/visionstk6ullv20
https://www.x-on.com.au/mpn/criticallink/80001428
https://www.x-on.com.au/mpn/sparkfun/dev17717
https://www.x-on.com.au/mpn/embeddedartists/eak00360
https://www.x-on.com.au/mpn/renesas/yr0k77210b000be
https://www.x-on.com.au/mpn/renesas/rtk7eka2l1s00001be
https://www.x-on.com.au/mpn/maxim/max32651evkit
https://www.x-on.com.au/mpn/nxp/slnvizniot
https://www.x-on.com.au/mpn/mikroelektronika/lv18fv6developmentsystem
https://www.x-on.com.au/mpn/mikroelektronika/readyforavrboard
https://www.x-on.com.au/mpn/mikroelektronika/readyforpicboard
https://www.x-on.com.au/mpn/mikroelektronika/readyforpicdip28
https://www.x-on.com.au/mpn/nxp/evbvf522r3
https://www.x-on.com.au/mpn/mikroelektronika/avrplc16v6plcsystem
https://www.x-on.com.au/mpn/mikroelektronika/mikrolabforavrxl
https://www.x-on.com.au/mpn/mikroelektronika/mikrolabforpicl
https://www.x-on.com.au/mpn/mikroelektronika/miniatboard5v
https://www.x-on.com.au/mpn/mikroelektronika/minim4forstellaris
https://www.x-on.com.au/mpn/modulowo/mod09z
https://www.x-on.com.au/mpn/mikroelektronika/buggyclicker2forpic32mxbluetoot
https://www.x-on.com.au/mpn/mikroelektronika/buggyclicker2forpic32mxbluetoot
https://www.x-on.com.au/mpn/adafruit/1410
https://www.x-on.com.au/mpn/mikroelektronika/letsmakeprojectprogramrelaypic
https://www.x-on.com.au/mpn/mikroelektronika/letsmakevoicecontrolledlights
https://www.x-on.com.au/mpn/mikroelektronika/letsmakevoicecontrolledlights
https://www.x-on.com.au/mpn/olimex/lpch2294
https://www.x-on.com.au/mpn/mikroelektronika/dspicready2board
https://www.x-on.com.au/mpn/mikroelektronika/dspicready3board
https://www.x-on.com.au/mpn/mikroelektronika/mikroboardforarm64pin
https://www.x-on.com.au/mpn/mikroelektronika/mikrolabforavr

