

Adafruit Hallowing
Created by lady ada

https://learn.adafruit.com/adafruit-hallowing

Last updated on 2022-01-01 02:32:15 PM EST

©Adafruit Industries Page 1 of 150

7

10

11

12

12

13

13

14

14

17

17

18

19

21

22

23

24

24

24

25

25

25

26

27

28

28

28

29

29

29

30

30

31

31

32

32

32

33

33

35

37

38

39

39

40

41

Table of Contents

Overview

Pinouts

• Power Pins & Ports

• Chip & Flash

• Sensors

• Speaker

• LEDs

• TFT

Arduino IDE Setup

Using with Arduino IDE

• Install SAMD Support

• Install Adafruit SAMD

• Install Drivers (Windows 7 & 8 Only)

• Blink

• Successful Upload

• Compilation Issues

• Manually bootloading

• Ubuntu & Linux Issue Fix

Adapting Sketches to M0 & M4

• Analog References

• Pin Outputs & Pullups

• Serial vs SerialUSB

• AnalogWrite / PWM on Feather/Metro M0

• analogWrite() PWM range

• analogWrite() DAC on A0

• Missing header files

• Bootloader Launching

• Aligned Memory Access

• Floating Point Conversion

• How Much RAM Available?

• Storing data in FLASH

• Pretty-Printing out registers

• M4 Performance Options

• CPU Speed (overclocking)

• Optimize

• Cache

• Max SPI and Max QSPI

• Enabling the Buck Converter on some M4 Boards

Using SPI Flash

• Read & Write CircuitPython Files

• Format Flash Memory

• Datalogging Example

• Reading and Printing Files

• Full Usage Example

• Accessing SPI Flash

Feather HELP!

©Adafruit Industries Page 2 of 150

46

46

47

47

47

48

48

48

48

48

49

49

49

49

50

50

50

50

51

51

51

51

51

52

53

57

57

58

58

59

59

59

60

61

62

62

62

62

63

63

64

64

66

67

67

68

Arcada Libraries

• Install Libraries

• Adafruit Arcada

• If you aren't running Arduino IDE 1.8.10 or later, you'll need to install all of the following!

• Adafruit NeoPixel

• Adafruit FreeTouch

• Adafruit Touchscreen

• Adafruit SPIFlash

• Adafruit Zero DMA

• Adafruit GFX

• Adafruit ST7735

• Adafruit ILI9341

• Adafruit LIS3DH

• Adafruit Sensor

• Adafruit ImageReader

• ArduinoJson

• Adafruit ZeroTimer

• Adafruit TinyUSB

• Adafruit WavePlayer

• SdFat (Adafruit Fork)

• Audio - Adafruit Fork

Using the TFT

• Install Libraries

• Setup

• Graphics Test Code

Full Test Sketch

• Install Libraries

Arcada Library

• Initialization

• Joystick & Buttons

• Backlight, Speaker and Sensors

• Alert Boxes

Arcada Library Docs

Spooky Eyes

• Customizing the Spooky Eye Demo

Synchronized Eyes

• Synchronized Eyes with Two HalloWings

What is CircuitPython?

• CircuitPython is based on Python

• Why would I use CircuitPython?

CircuitPython

• Set up CircuitPython Quick Start!

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

©Adafruit Industries Page 3 of 150

68

69

71

72

73

73

74

75

75

76

76

79

80

81

83

84

85

85

86

86

87

88

88

88

91

92

93

93

93

94

95

96

97

98

98

99

99

100

101

101

102

102

103

104

104

104

105

107

107

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

©Adafruit Industries Page 4 of 150

107

109

110

110

112

112

113

113

113

114

114

115

115

116

117

117

118

119

120

121

122

126

128

129

129

131

133

134

137

139

141

142

142

142

142

143

144

144

146

147

149

150

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

"Uninstalling" CircuitPython

• Backup Your Code

• Moving Circuit Playground Express to MakeCode

• Moving to Arduino

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

UF2 Bootloader Details

• Entering Bootloader Mode

• Using the Mass Storage Bootloader

• Using the BOSSA Bootloader

• Running bossac on the command line

• Updating the bootloader

• Getting Rid of Windows Pop-ups

• Making your own UF2

• Installing the bootloader on a fresh/bricked board

Downloads

• Files

• Schematic & Fabrication Print

Troubleshooting

• TFT Screen Adhesive

• Double Stick Tape

• E6000 Glue

• Sugru

• Diagnostics

©Adafruit Industries Page 5 of 150

©Adafruit Industries Page 6 of 150

Overview

This is Hallowing..this is Hallowing... Hallowing! Hallowing! (https://adafru.it/C8m)

Are you the kind of person who doesn't like taking down the skeletons and spiders

until after January? Well, we've got the development board for you. This is electronics

at its most spooky! The Adafruit HalloWing is a skull-shaped ATSAMD21 board with a

ton of extras built in to make for an adorable wearable, badge, development kit, or the

engine for your next cosplay or prop.

©Adafruit Industries Page 7 of 150

On the front is a cute 1.44" sized 128x128 full color TFT. Our default example code has

our spooky eye demo running but you can use it for anything you like to display in

glorious color.

There's also 4 fang-teeth below the display, these are analog/capacitive touch inputs

with big alligator-clip holes.

On the reverse is a smorgasbord of electronic goodies:

ATSAMD21G18 @ 48MHz with 3.3V logic/power - 256KB of FLASH + 32KB of

RAM

8 MB of SPI Flash for storing images, sounds, animations, whatever!

3-axis accelerometer (motion sensor)

Light sensor, reverse-mount so that it points out the front

LiPoly battery port with built in recharging capability

USB port for battery charging, programming and debugging

Two female header strips with Feather-compatible pinout so you can plug any

FeatherWings in

Mono Class-D speaker driver for 4-8 ohm speakers, up to 2 Watts, with mini

volume pot

JST ports for Neopixels, sensor input, and I2C (you can fit I2C Grove connectors

in here)

3.3V regulator with 500mA peak current output

Reset button

On-Off switch

OK so technically it's more like a really tricked-out Feather than a Wing but we simply

could not resist the Hallowing pun.

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 150

Right now you can use the Hallowing just like a Feather M0 Express, it's got the same

chip although the pins have been rearranged. We've got both Arduino and

CircuitPython build support for it so you can pick your favorite development language!

The extra 8 MB of SPI Flash is great for sound effects projects where you want to play

up to 3 minutes of WAV files.

©Adafruit Industries Page 9 of 150

On each side of the Hallowing are JST-PH plugs for connecting external devices. The

3-pin JSTs connect to analog pins on the SAMD21, so you can use them for analog

inputs. We label one for Neopixel and one for Sensors since we think most people will

have one of each. The 4-pin JST connector connects to the I2C port and you can fit

Grove connectors in it for additional hardware support.

Comes fully assembled and ready to be your spooky friend. We install the UF2

bootloader on it so updating code and converting it to CircuitPython is easy.

Pinouts

We put a ton of stuff on this HalloWing, above you can see a 'guided tour' of whats

available!

©Adafruit Industries Page 10 of 150

Power Pins & Ports

There's two ways to power your

Hallowing. The best way is to plug in a

3.7/4.2V Lipoly battery into the JST 2-PH

port. You can then recharge the battery

over the Micro USB jack. You can also

just run the board directly from Micro

USB, it will automatically 'switch over' to

USB power when that's plugged in

Lithium Ion Polymer Battery Ideal For

Feathers - 3.7V 400mAh

Lithium-ion polymer (also known as 'lipo'

or 'lipoly') batteries are thin, light, and

powerful. The output ranges from 4.2V

when completely charged to 3.7V. This...

https://www.adafruit.com/product/3898

You can turn off power completely with the on/off switch at the bottom of the board.

If you need access to the power pins, the 'Feather Headers' have 3.3V regulated out,

GND (labeled G) on the left. On the right there's the BAT pin (connects directly to

lipoly) and two pins below that is the USB pin. You can measure the voltage on the

battery by reading analog pin A6 - this is divided by two with resistors so don't forget

to x2 once you do the reading. The voltage, after doubling, will range from about 3.5

(empty) to 4.2V (charged)

The Hallowing JST battery port is expecting a LiPo with the 'standard' Adafruit

polarity wiring. Using other battery packs with opposite wiring or voltages may

destroy your Hallowing!

©Adafruit Industries Page 11 of 150

Chip & Flash

The main processor chip is the

ATSAMD21G18 Cortex M0+ running at

48MHz with 3.3V logic/power. It has

256KB of FLASH + 32KB of RAM and can

run Arduino or CircuitPython

We also include 8 MB of SPI Flash for

storing images, sounds, animations,

whatever!

Sensors

There's a few built in sensors.

On the top there's a light sensor,

connected to pin A1 - it's reverse mount

so you can read light levels from the

front.

There's also a LIS3DH 3-axis

accelerometer connected to the I2C pins

for detection motion, tilt or taps

On the bottom of the board are four pads designed for capacitive touch. They are

connected to A2, A3, A4 and A5

On the right is a SENSE port, this is a JST 3-PH for connecting an external sensor.

From the top to bottom the pads are GND, V+, D3 (in Arduino this is also A11). V+ is

either LiPoly or USB power, whchever is plugged in and higher. There's a 470

ohm+3.6V zener diode connection to protect against voltages higher than 3.3V

coming in.

©Adafruit Industries Page 12 of 150

Speaker

We have a mono 2 Watt class D audio

amp connected to A0 - that's the DAC

output on the SAMD21, so you can get

10-bit audio output, good for many simple

sound effects or musical output. There's

a small smt trimpot you can adjust if you

want, but the default 50% setting is pretty

good.

The connector for the speaker is a Molex

PicoBlade (https://adafru.it/C8p), but

there's large pads you can solder too if

you want to connect a custom speaker

LEDs

There are three LEDs - a red LED on pin

D13, a CHG LED that will let you know

when the battery is charging, and a

NeoPixel on D8 (in Arduino) or

board.NEOPIXEL (in CircuitPython)

It's normal for the yellow CHG LED to

flicker when no battery is in place, that's

the charge circuitry trying to detect

whether a battery is there or not. If you

are powering only over USB, you can

cover it with tape

The charge LED is automatically driven by the Lipoly charger circuit. It will try to

detect a battery and is expecting one to be attached. If there isn't one it may

flicker once in a while when you use power because it's trying to charge a (non-

existant) battery. It's not harmful, and its totally normal!

©Adafruit Industries Page 13 of 150

TFT

On the front is a 128x128 TFT. The TFT is

connected to the SPI pins: SCK and MOSI

(MISO is not connected)

We also use pin #37 for TFT Reset, #38

for TFT DC, #39 for TFT CS, and #7 for

the backlight which is default-off.

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino

IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

https://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File menu in Windows or Linux, or the Arduino menu on OS X.

©Adafruit Industries Page 14 of 150

A dialog will pop up just like the one shown below.

We will be adding a URL to the new Additional Boards Manager URLs option. The list

of URLs is comma separated, and you will only have to add each URL once. New

Adafruit boards and updates to existing boards will automatically be picked up by the

Board Manager each time it is opened. The URLs point to index files that the Board

Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party

board URLs on the Arduino IDE wiki (https://adafru.it/f7U). We will only need to add

one URL to the IDE in this example, but you can add multiple URLS by separating

them with commas. Copy and paste the link below into the Additional Boards

Manager URLs option in the Arduino IDE preferences.

©Adafruit Industries Page 15 of 150

https://adafruit.github.io/arduino-board-index/
package_adafruit_index.json

Here's a short description of each of the Adafruit supplied packages that will be

available in the Board Manager when you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4,

ItsyBitsy 32u4, Trinket, & Trinket Pro.

Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and

M4, ItsyBitsy M0 and M4, Circuit Playground Express, Gemma M0 and Trinket

M0

Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the

Flora, Feather 32u4, Micro and Leonardo using the arcore project (https://

adafru.it/eSI).

If you have multiple boards you want to support, say ESP8266 and Adafruit, have

both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings. Next we will look at

installing boards with the Board Manager.

Now continue to the next step to actually install the board support package!

•

•

•

©Adafruit Industries Page 16 of 150

Using with Arduino IDE

The Feather/Metro/Gemma/QTPy/Trinket M0 and M4 use an ATSAMD21 or ATSAMD51

chip, and you can pretty easily get it working with the Arduino IDE. Most libraries

(including the popular ones like NeoPixels and display) will work with the M0 and M4,

especially devices & sensors that use I2C or SPI.

Now that you have added the appropriate URLs to the Arduino IDE preferences in the

previous page, you can open the Boards Manager by navigating to the Tools->Board

menu.

Once the Board Manager opens, click on the category drop down menu on the top

left hand side of the window and select All. You will then be able to select and install

the boards supplied by the URLs added to the preferences.

Install SAMD Support

First up, install the latest Arduino SAMD Boards (version 1.6.11 or later)

You can type Arduino SAMD in the top search bar, then when you see the entry, click I

nstall

Remember you need SETUP the Arduino IDE to support our board packages -

see the previous page on how to add adafruit's URL to the preferences

©Adafruit Industries Page 17 of 150

Install Adafruit SAMD

Next you can install the Adafruit SAMD package to add the board file definitions

Make sure you have Type All selected to the left of the Filter your search... box

You can type Adafruit SAMD in the top search bar, then when you see the entry, click I

nstall

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly

installed. You should now be able to select and upload to the new boards listed in the

Tools->Board menu.

©Adafruit Industries Page 18 of 150

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)

Feather M0 Express

Metro M0 Express

Circuit Playground Express

Gemma M0

Trinket M0

QT Py M0

ItsyBitsy M0

Hallowing M0

Crickit M0 (this is for direct programming of the Crickit, which is probably not

what you want! For advanced hacking only)

Metro M4 Express

Grand Central M4 Express

ItsyBitsy M4 Express

Feather M4 Express

Trellis M4 Express

PyPortal M4

PyPortal M4 Titano

PyBadge M4 Express

Metro M4 Airlift Lite

PyGamer M4 Express

MONSTER M4SK

Hallowing M4

MatrixPortal M4

BLM Badge

Install Drivers (Windows 7 & 8 Only)

When you plug in the board, you'll need to possibly install a driver

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 19 of 150

Click below to download our Driver Installer

Download Latest Adafruit Drivers

package

https://adafru.it/mb8

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to

click through the license

Select which drivers you want to install, the defaults will set you up with just about

every Adafruit board!

©Adafruit Industries Page 20 of 150

Click Install to do the installin'

Blink

Now you can upload your first blink sketch!

Plug in the M0 or M4 board, and wait for it to be recognized by the OS (just takes a

few seconds). It will create a serial/COM port, you can now select it from the drop-

down, it'll even be 'indicated' as Trinket/Gemma/Metro/Feather/ItsyBitsy/Trellis!

©Adafruit Industries Page 21 of 150

Please note, the QT Py and Trellis M4 Express are two of our very few boards that

does not have an onboard pin 13 LED so you can follow this section to practice

uploading but you wont see an LED blink!

Now load up the Blink example

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

And click upload! That's it, you will be able to see the LED blink rate change as you

adapt the delay() calls.

Successful Upload

If you have a successful upload, you'll get a bunch of red text that tells you that the

device was found and it was programmed, verified & reset

If you are having issues, make sure you selected the matching Board in the menu

that matches the hardware you have in your hand.

©Adafruit Industries Page 22 of 150

After uploading, you may see a message saying "Disk Not Ejected Properly" about the

...BOOT drive. You can ignore that message: it's an artifact of how the bootloader and

uploading work.

Compilation Issues

If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Ard

uino & Adafruit SAMD board packages

©Adafruit Industries Page 23 of 150

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that

crashes and doesn't auto-reboot into the bootloader, click the RST button twice (like a

double-click)to get back into the bootloader.

The red LED will pulse and/or RGB LED will be green, so you know that its in

bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and

re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want

to use the normal upload.

Ubuntu & Linux Issue Fix

 Follow the steps for installing Adafruit's udev rules on this page. (https://adafru.it/iOE)

Adapting Sketches to M0 & M4

The ATSAMD21 and 51 are very nice little chips, but fairly new as Arduino-compatible

cores go. Most sketches & libraries will work but here’s a collection of things we

noticed.

The notes below cover a range of Adafruit M0 and M4 boards, but not every rule will

apply to every board (e.g. Trinket and Gemma M0 do not have ARef, so you can skip

the Analog References note!).

©Adafruit Industries Page 24 of 150

Analog References

If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is

analogReference(AR_EXTERNAL) (it's AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups

The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)

digitalWrite(pin, HIGH)

This is because the pullup-selection register on 8-bit AVR chips is the same as the

output-selection register.

For M0 & M4 boards, you can't do this anymore! Instead, use:

pinMode(pin, INPUT_PULLUP)

Code written this way still has the benefit of being backwards compatible with AVR.

You don’t need separate versions for the different board types.

Serial vs SerialUSB

99.9% of your existing Arduino sketches use Serial.print to debug and give output. For

the Official Arduino SAMD/M0 core, this goes to the Serial5 port, which isn't exposed

on the Feather. The USB port for the Official Arduino M0 core is called SerialUSB

instead.

In the Adafruit M0/M4 Core, we fixed it so that Serial goes to USB so it will

automatically work just fine.

However, on the off chance you are using the official Arduino SAMD core and not the

Adafruit version (which really, we recommend you use our version because it’s been

tuned to our boards), and you want your Serial prints and reads to use the USB port,

use SerialUSB instead of Serial in your sketch.

©Adafruit Industries Page 25 of 150

If you have existing sketches and code and you want them to work with the M0

without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)

 // Required for Serial on Zero based boards

 #define Serial SERIAL_PORT_USBVIRTUAL

#endif

right above the first function definition in your code. For example:

AnalogWrite / PWM on Feather/Metro M0

After looking through the SAMD21 datasheet, we've found that some of the options

listed in the multiplexer table don't exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The

Timer/Counter (TC) and Timer/Counter for Control Applications (TCC). Each SAMD21

has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output

channels. Either channel can be enabled and disabled, and either channel can be

inverted. The pins connected to a TC instance can output identical versions of the

same PWM waveform, or complementary waveforms.

Each TCC instance has a single count register, but multiple compare registers and

output channels. There are options for different kinds of waveform, interleaved

switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two

'waveform output' (WO) channels, and three TCC instances with eight WO channels:

TC[0-4],WO[0-1]

•

©Adafruit Industries Page 26 of 150

TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output

channels, and three TCC instances with eight output channels:

TC[3-5],WO[0-1]

TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't

do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as

the SPI, I2C, and UART pins keep their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13

Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the

following pins:

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range

On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully

HIGH. On the ARM cortex, it will set it to be 255/256 so there will be very slim but

still-existing pulses-to-0V. If you need the pin to be fully on, add test code that checks

if you are trying to analogWrite(pin, 255) and, instead, does a digitalWrite(p

in, HIGH)

•

•

•

•

•

•

•

©Adafruit Industries Page 27 of 150

analogWrite() DAC on A0

If you are trying to use analogWrite() to control the DAC output on A0, make sure

you do not have a line that sets the pin to output. Remove: pinMode(A0, OUTPUT) .

Missing header files

There might be code that uses libraries that are not supported by the M0 core. For

example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory

 #include <util/delay.h>

 ^

compilation terminated.

Error compiling.

In which case you can simply locate where the line is (the error will give you the file

name and line number) and 'wrap it' with #ifdef's so it looks like:

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !
defined(ESP8266) && !defined(ARDUINO_ARCH_STM32F2)
 #include <util/delay.h>
#endif

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching

For most other AVRs, clicking reset while plugged into USB will launch the bootloader

manually, the bootloader will time out after a few seconds. For the M0/M4, you'll need

to double click the button. You will see a pulsing red LED to let you know you're in

bootloader mode. Once in that mode, it wont time out! Click reset again if you want to

go back to launching code.

©Adafruit Industries Page 28 of 150

Aligned Memory Access

This is a little less likely to happen to you but it happened to me! If you're used to 8-

bit platforms, you can do this nice thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];

float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer

might not be aligned to a 2 or 4-byte boundary. The ARM Cortex-M0 can only directly

access data on 16-bit boundaries (every 2 or 4 bytes). Trying to access an odd-

boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU.

Thankfully, there's an easy work around ... just use memcpy!

uint8_t mybuffer[4];

float f;

memcpy(&f, mybuffer, 4)

Floating Point Conversion

Like the AVR Arduinos, the M0 library does not have full support for converting

floating point numbers to ASCII strings. Functions like sprintf will not convert floating

point. Fortunately, the standard AVR-LIBC library includes the dtostrf function which

can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some

references to using #include <avr/dtostrf.h> to get dtostrf in your code. And while it

will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in

your code:

http://forum.arduino.cc/index.php?topic=368720.0 (https://adafru.it/lFS)

How Much RAM Available?

The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some

reason. You can do so with this handy function:

©Adafruit Industries Page 29 of 150

extern "C" char *sbrk(int i);

int FreeRam () {
 char stack_dummy = 0;
 return &stack_dummy - sbrk(0);
}

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 (h

ttps://adafru.it/m6D) for the tip!

Storing data in FLASH

If you're used to AVR, you've probably used PROGMEM to let the compiler know

you'd like to put a variable or string in flash memory to save on RAM. On the ARM, its

a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the

compiler will automatically read from FLASH so you dont need special progmem-

knowledgeable functions.

You can verify where data is stored by printing out the address:

Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000

and $3FFFF Then it is in FLASH

Pretty-Printing out registers

There's a lot of registers on the SAMD21, and you often are going through ASF or

another framework to get to them. So having a way to see exactly what's going on is

handy. This library from drewfish will help a ton!

https://github.com/drewfish/arduino-ZeroRegs (https://adafru.it/Bet)

©Adafruit Industries Page 30 of 150

M4 Performance Options

As of version 1.4.0 of the Adafruit SAMD Boards package in the Arduino Boards

Manager, some options are available to wring extra performance out of M4-based

devices. These are in the Tools menu.

All of these performance tweaks involve a degree of uncertainty. There’s no

guarantee of improved performance in any given project, and some may even be

detrimental, failing to work in part or in whole. If you encounter trouble, select the

default performance settings and re-upload.

Here’s what you get and some issues you might encounter…

CPU Speed (overclocking)

This option lets you adjust the microcontroller core clock…the speed at which it

processes instructions…beyond the official datasheet specifications.

Manufacturers often rate speeds conservatively because such devices are marketed

for harsh industrial environments…if a system crashes, someone could lose a limb or

worse. But most creative tasks are less critical and operate in more comfortable

settings, and we can push things a bit if we want more speed.

There is a small but nonzero chance of code locking up or failing to run entirely. If this

happens, try dialing back the speed by one notch and re-upload, see if it’s more

stable.

Much more likely, some code or libraries may not play well with the nonstandard CPU

speed. For example, currently the NeoPixel library assumes a 120 MHz CPU speed

and won’t issue the correct data at other settings (this will be worked on). Other

©Adafruit Industries Page 31 of 150

libraries may exhibit similar problems, usually anything that strictly depends on CPU

timing…you might encounter problems with audio- or servo-related code depending

how it’s written. If you encounter such code or libraries, set the CPU speed to the

default 120 MHz and re-upload.

Optimize

There’s usually more than one way to solve a problem, some more resource-intensive

than others. Since Arduino got its start on resource-limited AVR microcontrollers, the

C++ compiler has always aimed for the smallest compiled program size. The

“Optimize” menu gives some choices for the compiler to take different and often

faster approaches, at the expense of slightly larger program size…with the huge flash

memory capacity of M4 devices, that’s rarely a problem now.

The “Small” setting will compile your code like it always has in the past, aiming for the

smallest compiled program size.

The “Fast” setting invokes various speed optimizations. The resulting program should

produce the same results, is slightly larger, and usually (but not always) noticably

faster. It’s worth a shot!

“Here be dragons” invokes some more intensive optimizations…code will be larger

still, faster still, but there’s a possibility these optimizations could cause unexpected

behaviors. Some code may not work the same as before. Hence the name. Maybe

you’ll discover treasure here, or maybe you’ll sail right off the edge of the world.

Most code and libraries will continue to function regardless of the optimizer settings.

If you do encounter problems, dial it back one notch and re-upload.

Cache

This option allows a small collection of instructions and data to be accessed more

quickly than from flash memory, boosting performance. It’s enabled by default and

should work fine with all code and libraries. But if you encounter some esoteric

situation, the cache can be disabled, then recompile and upload.

Max SPI and Max QSPI

These should probably be left at their defaults. They’re present mostly for our own

experiments and can cause serious headaches.

©Adafruit Industries Page 32 of 150

Max SPI determines the clock source for the M4’s SPI peripherals. Under normal

circumstances this allows transfers up to 24 MHz, and should usually be left at that

setting. But…if you’re using write-only SPI devices (such as TFT or OLED displays), this

option lets you drive them faster (we’ve successfully used 60 MHz with some TFT

screens). The caveat is, if using any read/write devices (such as an SD card), this will

not work at all…SPI reads absolutely max out at the default 24 MHz setting, and

anything else will fail. Write = OK. Read = FAIL. This is true even if your code is using a

lower bitrate setting…just having the different clock source prevents SPI reads.

Max QSPI does similarly for the extra flash storage on M4 “Express” boards. Very few

Arduino sketches access this storage at all, let alone in a bandwidth-constrained

context, so this will benefit next to nobody. Additionally, due to the way clock dividers

are selected, this will only provide some benefit when certain “CPU Speed” settings

are active. Our PyPortal Animated GIF Display (https://adafru.it/EkO) runs marginally

better with it, if using the QSPI flash.

Enabling the Buck Converter on some M4
Boards

If you want to reduce power draw, some of our boards have an inductor so you can

use the 1.8V buck converter instead of the built in linear regulator. If the board does

have an inductor (see the schematic) you can add the line SUPC->VREG.bit.SEL =

1; to your code to switch to it. Note it will make ADC/DAC reads a bit noisier so we

don't use it by default. You'll save ~4mA (https://adafru.it/F0H).

Using SPI Flash

One of the best features of the M0 express board is a small SPI flash memory chip

built into the board. This memory can be used for almost any purpose like

storing data files, Python code, and more. Think of it like a little SD card that is always

connected to the board, and in fact with Arduino you can access the memory using a

library that is very similar to the Arduino SD card library (https://adafru.it/ucu). You can

even read and write files that CircuitPython stores on the flash chip!

To use the flash memory with Arduino you'll need to install the Adafruit SPI Flash

Memory library (https://adafru.it/wbt) in the Arduino IDE.

Open up the Arduino library manager

©Adafruit Industries Page 33 of 150

Search for the Adafruit SPIFlash library and install it

Search for the SdFat - Adafruit Fork library and install it

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

Once the library is installed look for the following examples in the library:

fatfs_circuitpython

fatfs_datalogging

fatfs_format

fatfs_full_usage

fatfs_print_file

flash_erase

These examples allow you to format the flash memory with a FAT filesystem (the same

kind of filesystem used on SD cards) and read and write files to it just like a SD card.

•

•

•

•

•

•

©Adafruit Industries Page 34 of 150

Read & Write CircuitPython Files

The fatfs_circuitpython example shows how to read and write files on the flash chip

so that they're accessible from CircuitPython. This means you can run a CircuitPython

program on your board and have it store data, then run an Arduino sketch that uses

this library to interact with the same data.

Note that before you use the fatfs_circuitpython example you must have loaded

CircuitPython on your board. Load the latest version of CircuitPython as explained in

this guide (https://adafru.it/BeN) first to ensure a CircuitPython filesystem is initialized

and written to the flash chip. Once you've loaded CircuitPython then you can run the

fatfs_circuitpython example sketch.

To run the sketch load it in the Arduino IDE and upload it to the Feather/Metro/

ItsyBitsy M0 board. Then open the serial monitor at 115200 baud. You should see the

serial monitor display messages as it attempts to read files and write to a file on the

flash chip. Specifically the example will look for a boot.py and main.py file (like what

CircuitPython runs when it starts) and print out their contents. Then it will add a line

to the end of a data.txt file on the board (creating it if it doesn't exist already). After

running the sketch you can reload CircuitPython on the board and open the data.txt

file to read it from CircuitPython!

To understand how to read & write files that are compatible with CircuitPython let's

examine the sketch code. First notice an instance of the Adafruit_M0_Express_Circu

itPython class is created and passed an instance of the flash chip class in the last line

below:

#define FLASH_SS SS1 // Flash chip SS pin.
#define FLASH_SPI_PORT SPI1 // What SPI port is Flash on?

Adafruit_SPIFlash flash(FLASH_SS, &FLASH_SPI_PORT); // Use hardware SPI

// Alternatively you can define and use non-SPI pins!
//Adafruit_SPIFlash flash(SCK1, MISO1, MOSI1, FLASH_SS);

// Finally create an Adafruit_M0_Express_CircuitPython object which gives
// an SD card-like interface to interacting with files stored in CircuitPython's
// flash filesystem.
Adafruit_M0_Express_CircuitPython pythonfs(flash);

By using this Adafruit_M0_Express_CircuitPython class you'll get a filesystem object

that is compatible with reading and writing files on a CircuitPython-formatted flash

chip. This is very important for interoperability between CircuitPython and Arduino as

CircuitPython has specialized partitioning and flash memory layout that isn't

compatible with simpler uses of the library (shown in the other examples).

©Adafruit Industries Page 35 of 150

Once an instance of the Adafruit_M0_Express_CircuitPython class is created (called p

ythonfs in this sketch) you can go on to interact with it just like if it were the SD card

library in Arduino (https://adafru.it/wbw). You can open files for reading & writing,

create directories, delete files and directories and more. Here's how the sketch

checks if a boot.py file exists and prints it out a character at a time:

 // Check if a boot.py exists and print it out.
 if (pythonfs.exists("boot.py")) {
 File bootPy = pythonfs.open("boot.py", FILE_READ);
 Serial.println("Printing boot.py...");
 while (bootPy.available()) {
 char c = bootPy.read();
 Serial.print(c);
 }
 Serial.println();
 }
 else {
 Serial.println("No boot.py found...");
 }

Notice the exists function is called to check if the boot.py file is found, and then the o

pen function is used to open it in read mode. Once a file is opened you'll get a

reference to a File class object which you can read and write from as if it were a Serial

device (again just like the SD card library, all of the same File class functions are

available (https://adafru.it/wbw)). In this case the available function will return the

number of bytes left to read in the file, and the read function will read a character at a

time to print it to the serial monitor.

Writing a file is just as easy, here's how the sketch writes to data.txt:

 // Create or append to a data.txt file and add a new line
 // to the end of it. CircuitPython code can later open and
 // see this file too!
 File data = pythonfs.open("data.txt", FILE_WRITE);
 if (data) {
 // Write a new line to the file:
 data.println("Hello CircuitPython from Arduino!");
 data.close();
 // See the other fatfs examples like fatfs_full_usage and fatfs_datalogging
 // for more examples of interacting with files.
 Serial.println("Wrote a new line to the end of data.txt!");
 }
 else {
 Serial.println("Error, failed to open data file for writing!");
 }

Again the open function is used but this time it's told to open the file for writing. In

this mode the file will be opened for appending (i.e. data added to the end of it) if it

exists, or it will be created if it doesn't exist. Once the file is open print functions like

print and println can be used to write data to the file (just like writing to the serial

monitor). Be sure to close the file when finished writing!

©Adafruit Industries Page 36 of 150

That's all there is to basic file reading and writing. Check out the fatfs_full_usage

example for examples of even more functions like creating directories, deleting files &

directories, checking the size of files, and more! Remember though to interact with

CircuitPython files you need to use the Adafruit_Feather_M0_CircuitPython class as

shown in the fatfs_circuitpython example above!

Format Flash Memory

The fatfs_format example will format the SPI flash with a new blank filesystem. Be

warned this sketch will delete all data on the flash memory, including any Python code

or other data you might have stored! The format sketch is useful if you'd like to wipe

everything away and start fresh, or to help get back in a good state if the memory

should get corrupted for some reason.

Be aware too the fatfs_format and examples below are not compatible with a

CircuitPython-formatted flash chip! If you need to share data between Arduino &

CircuitPython check out the fatfs_circuitpython example above.

To run the format sketch load it in the Arduino IDE and upload it to the M0 board.

 Then open the serial monitor at 115200 baud. You should see the serial monitor

display a message asking you to confirm formatting the flash. If you don't see this

message then close the serial monitor, press the board's reset button, and open the

serial monitor again.

Type OK and press enter in the serial monitor input to confirm that you'd like to format

the flash memory. You need to enter OK in all capital letters!

Once confirmed the sketch will format the flash memory. The format process takes

about a minute so be patient as the data is erased and formatted. You should see a

©Adafruit Industries Page 37 of 150

message printed once the format process is complete. At this point the flash chip will

be ready to use with a brand new empty filesystem.

Datalogging Example

One handy use of the SPI flash is to store data, like datalogging sensor readings. The

fatfs_datalogging example shows basic file writing/datalogging. Open the example in

the Arduino IDE and upload it to your Feather M0 board. Then open the serial

monitor at 115200 baud. You should see a message printed every minute as the

sketch writes a new line of data to a file on the flash filesystem.

To understand how to write to a file look in the loop function of the sketch:

 // Open the datalogging file for writing. The FILE_WRITE mode will open
 // the file for appending, i.e. it will add new data to the end of the file.
 File dataFile = fatfs.open(FILE_NAME, FILE_WRITE);
 // Check that the file opened successfully and write a line to it.
 if (dataFile) {
 // Take a new data reading from a sensor, etc. For this example just
 // make up a random number.
 int reading = random(0,100);
 // Write a line to the file. You can use all the same print functions
 // as if you're writing to the serial monitor. For example to write
 // two CSV (commas separated) values:
 dataFile.print("Sensor #1");
 dataFile.print(",");
 dataFile.print(reading, DEC);
 dataFile.println();
 // Finally close the file when done writing. This is smart to do to make
 // sure all the data is written to the file.
 dataFile.close();
 Serial.println("Wrote new measurement to data file!");
 }

Just like using the Arduino SD card library you create a File object by calling an open

function and pointing it at the name of the file and how you'd like to open it (FILE_WR

ITE mode, i.e. writing new data to the end of the file). Notice however instead of

calling open on a global SD card object you're calling it on a fatfs object created

earlier in the sketch (look at the top after the #define configuration values).

Once the file is opened it's simply a matter of calling print and println functions on the

file object to write data inside of it. This is just like writing data to the serial monitor

and you can print out text, numeric, and other types of data. Be sure to close the file

when you're done writing to ensure the data is stored correctly!

©Adafruit Industries Page 38 of 150

Reading and Printing Files

The fatfs_print_file example will open a file (by default the data.csv file created by

running the fatfs_datalogging example above) and print all of its contents to the serial

monitor. Open the fatfs_print_file example and load it on your Feather M0 board,

then open the serial monitor at 115200 baud. You should see the sketch print out the

contents of data.csv (if you don't have a file called data.csv on the flash look at

running the datalogging example above first).

To understand how to read data from a file look in the setup function of the sketch:

 // Open the file for reading and check that it was successfully opened.
 // The FILE_READ mode will open the file for reading.
 File dataFile = fatfs.open(FILE_NAME, FILE_READ);
 if (dataFile) {
 // File was opened, now print out data character by character until at the
 // end of the file.
 Serial.println("Opened file, printing contents below:");
 while (dataFile.available()) {
 // Use the read function to read the next character.
 // You can alternatively use other functions like readUntil, readString, etc.
 // See the fatfs_full_usage example for more details.
 char c = dataFile.read();
 Serial.print(c);
 }
 }

Just like when writing data with the datalogging example you create a File object by

calling the open function on a fatfs object. This time however you pass a file mode of

FILE_READ which tells the filesystem you want to read data.

After you open a file for reading you can easily check if data is available by calling the

available function on the file, and then read a single character with the read function.

 This makes it easy to loop through all of the data in a file by checking if it's available

and reading a character at a time. However there are more advanced read functions

you can use too--see the fatfs_full_usage example or even the Arduino SD library

documentation (https://adafru.it/ucu) (the SPI flash library implements the same

functions).

Full Usage Example

For a more complete demonstration of reading and writing files look at the fatfs_full_

usage example. This examples uses every function in the library and demonstrates

things like checking for the existence of a file, creating directories, deleting files,

deleting directories, and more.

©Adafruit Industries Page 39 of 150

Remember the SPI flash library is built to have the same functions and interface as the

Arduino SD library (https://adafru.it/ucu) so if you have code or examples that store

data on a SD card they should be easy to adapt to use the SPI flash library, just create

a fatfs object like in the examples above and use its open function instead of the

global SD object's open function. Once you have a reference to a file all of the

functions and usage should be the same between the SPI flash and SD libraries!

Accessing SPI Flash

Arduino doesn't have the ability to show up as a 'mass storage' disk drive. So instead

we must use CircuitPython to do that part for us. Here's the full technique:

Start the bootloader on the Express board. Drag over the latest circuitpython uf2

file

After a moment, you should see a CIRCUITPY drive appear on your hard drive

with boot_out.txt on it

Now go to Arduino and upload the fatfs_circuitpython example sketch from the

Adafruit SPI library. Open the serial console. It will successfully mount the

filesystem and write a new line to data.txt

Back on your computer, re-start the Express board bootloader, and re-drag circu

itpython.uf2 onto the BOOT drive to reinstall circuitpython

Check the CIRCUITPY drive, you should now see data.txt which you can open to

read!

•

•

•

•

•

©Adafruit Industries Page 40 of 150

Once you have your Arduino sketch working well, for datalogging, you can simplify

this procedure by dragging CURRENT.UF2 off of the BOOT drive to make a backup of

the current program before loading circuitpython on. Then once you've accessed the

file you want, re-drag CURRENT.UF2 back onto the BOOT drive to re-install the

Arduino sketch!

Feather HELP!

My ItsyBitsy/Feather stopped working when I unplugged
the USB!

A lot of our example sketches have a

while (!Serial);

line in setup(), to keep the board waiting until the USB is opened. This makes it a

lot easier to debug a program because you get to see all the USB data output. If

you want to run your Feather without USB connectivity, delete or comment out that

line

Even though this FAQ is labeled for Feather, the questions apply to ItsyBitsy's as

well!

©Adafruit Industries Page 41 of 150

My Feather never shows up as a COM or Serial port in the
Arduino IDE

A vast number of Itsy/Feather 'failures' are due to charge-only USB cables

We get upwards of 5 complaints a day that turn out to be due to charge-only

cables!

Use only a cable that you know is for data syncing

If you have any charge-only cables, cut them in half throw them out. We are

serious! They tend to be low quality in general, and will only confuse you and

others later, just get a good data+charge USB cable.

A quality USB port is critical. Avoid plugging into USB keyboards and when

possible use a USB-2 HUB to avoid USB3 issues.

Ack! I "did something" and now when I plug in the Itsy/
Feather, it doesn't show up as a device anymore so I cant
upload to it or fix it...

No problem! You can 'repair' a bad code upload easily. Note that this can happen if

you set a watchdog timer or sleep mode that stops USB, or any sketch that

'crashes' your board

Turn on verbose upload in the Arduino IDE preferences

Plug in Itsy or Feather 32u4/M0, it won't show up as a COM/serial port that's

ok

Open up the Blink example (Examples->Basics->Blink)

Select the correct board in the Tools menu, e.g. Feather 32u4, Feather M0,

Itsy 32u4 or M0 (physically check your board to make sure you have the right

one selected!)

Compile it (make sure that works)

Click Upload to attempt to upload the code

The IDE will print out a bunch of COM Ports as it tries to upload. During this

time, double-click the reset button, you'll see the red pulsing LED that tells

you its now in bootloading mode

The board will show up as the Bootloader COM/Serial port

The IDE should see the bootloader COM/Serial port and upload properly

1.

2.

3.

4.

5.

6.

7.

8.

9.

©Adafruit Industries Page 42 of 150

I can't get the Itsy/Feather USB device to show up - I get
"USB Device Malfunctioning" errors!

This seems to happen when people select the wrong board from the Arduino

Boards menu.

If you have a Feather 32u4 (look on the board to read what it is you have) Make

sure you select Feather 32u4 for ATMega32u4 based boards! Do not use anything

else, do not use the 32u4 breakout board line.

If you have a Feather M0 (look on the board to read what it is you have) Make sure

you select Feather M0 - do not use 32u4 or Arduino Zero

If you have a ItsyBitsy M0 (look on the board to read what it is you have) Make sure

you select ItsyBitsy M0 - do not use 32u4 or Arduino Zero

©Adafruit Industries Page 43 of 150

I'm having problems with COM ports and my Itsy/Feather
32u4/M0

Theres two COM ports you can have with the 32u4/M0, one is the user port and

one is the bootloader port. They are not the same COM port number!

When you upload a new user program it will come up with a user com port,

particularly if you use Serial in your user program.

If you crash your user program, or have a program that halts or otherwise fails, the

user COM port can disappear.

When the user COM port disappears, Arduino will not be able to automatically start

the bootloader and upload new software.

So you will need to help it by performing the click-during upload procedure to re-

start the bootloader, and upload something that is known working like "Blink"

I don't understand why the COM port disappears, this
does not happen on my Arduino UNO!

UNO-type Arduinos have a seperate serial port chip (aka "FTDI chip" or "Prolific

PL2303" etc etc) which handles all serial port capability seperately than the main

chip. This way if the main chip fails, you can always use the COM port.

M0 and 32u4-based Arduinos do not have a seperate chip, instead the main

processor performs this task for you. It allows for a lower cost, higher power

setup...but requires a little more effort since you will need to 'kick' into the

bootloader manually once in a while

I'm trying to upload to my 32u4, getting "avrdude:
butterfly_recv(): programmer is not responding" errors

This is likely because the bootloader is not kicking in and you are accidentally

trying to upload to the wrong COM port

The best solution is what is detailed above: manually upload Blink or a similar

working sketch by hand by manually launching the bootloader

©Adafruit Industries Page 44 of 150

I'm trying to upload to my Feather M0, and I get this error
"Connecting to programmer: .avrdude: butterfly_recv():
programmer is not responding"

You probably don't have Feather M0 selected in the boards drop-down. Make sure

you selected Feather M0.

I'm trying to upload to my Feather and i get this error
"avrdude: ser_recv(): programmer is not responding"

You probably don't have Feather M0 / Feather 32u4 selected in the boards drop-

down. Make sure you selected Feather M0 (or Feather 32u4).

I attached some wings to my Feather and now I can't read
the battery voltage!

Make sure your Wing doesn't use pin #9 which is the analog sense for the lipo

battery!

The yellow LED Is flickering on my Feather, but no battery
is plugged in, why is that?

The charge LED is automatically driven by the Lipoly charger circuit. It will try to

detect a battery and is expecting one to be attached. If there isn't one it may flicker

once in a while when you use power because it's trying to charge a (non-existant)

battery.

It's not harmful, and its totally normal!

The Arduino IDE gives me "Device Descriptor Request Failed"

This can require "manual bootloading".

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that

crashes and doesn't auto-reboot into the bootloader, double-click the RST button to

get back into the bootloader. The red LED will pulse, so you know that its in

bootloader mode. Do the reset button double-press right as the Arduino IDE says its

attempting to upload the sketch, when you see the Yellow Arrow lit and the Uploadin

g... text in the status bar.

©Adafruit Industries Page 45 of 150

 (h

ttps://adafru.it/UJA)

Don't click the reset button before uploading, unlike other bootloaders you want this

one to run at the time Arduino is trying to upload

Arcada Libraries

OK now that you have Arduino IDE set up, drivers installed if necessary and you've

practiced uploading code, you can start installing all the Libraries we'll be using to

program it.

There's a lot of libraries!

Install Libraries

Open up the library manager...

©Adafruit Industries Page 46 of 150

And install the following libraries:

Adafruit Arcada

This library generalizes the hardware for you so you can read the joystick, draw to the

display, read files, etc. without having to worry about the underlying methods

If you aren't running Arduino IDE 1.8.10 or later, you'll need
to install all of the following!

Adafruit NeoPixel

This will let you light up the status LEDs on the front/back

If you use Arduino 1.8.10 or later, the IDE will automagically install all the libraries

you need to run all the Arcada demos when you install Arcada. We strongly

recommend using the latest IDE so you don't miss one of the libraries!

©Adafruit Industries Page 47 of 150

Adafruit FreeTouch

This is the open source version of QTouch for SAMD21 boards

Adafruit Touchscreen

Used by Adafruit Arcada for touchscreen input (required even if your Arcada board

does not have a touchscreen)

Adafruit SPIFlash

This will let you read/write to the onboard FLASH memory with super-fast QSPI

support

Adafruit Zero DMA

This is used by the Graphics Library if you choose to use DMA

Adafruit GFX

This is the graphics library used to draw to the screen

©Adafruit Industries Page 48 of 150

If using an older (pre-1.8.10) Arduino IDE, locate and install Adafruit_BusIO (newer

versions do this one automatically).

Adafruit ST7735

The display on the PyBadge/PyGamer & other Arcada boards

Adafruit ILI9341

The display on the PyPortal & other Arcada boards

Adafruit LIS3DH

For reading the accelerometer data, required even if one is not on the board

Adafruit Sensor

Needed by the LIS3DH Library, required even if one is not on the board

©Adafruit Industries Page 49 of 150

Adafruit ImageReader

For reading bitmaps from SPI Flash or SD and displaying

ArduinoJson

We use this library to read and write configuration files

Adafruit ZeroTimer

We use this library to easily set timers and callbacks on the SAMD processors

Adafruit TinyUSB

This lets us do cool stuff with USB like show up as a Keyboard or Disk Drive

©Adafruit Industries Page 50 of 150

Adafruit WavePlayer

Helps us play .WAV sound files.

SdFat (Adafruit Fork)

The Adafruit fork of the really excellent SD card library that gives a lot more capability

than the default SD library

Audio - Adafruit Fork

Our fork of the Audio library provides a toolkit for building streaming audio projects.

Using the TFT

We've got libraries for using the TFT in Arduino, so its easy to get drawing!

Install Libraries

From the previous page, don't forget to install all those libraries!

©Adafruit Industries Page 51 of 150

Setup

Make sure you've got the Hallowing M0 selected as the board type, and the correct

port as well

Now load up the example at the bottom of this page in a Arduino sketch. Its an

adaptation of our standard graphics test, but you'll note we add some lines that are

specific to the Hallowing.

First, these are the pins that are connected:

// These are 'hard wired'
#define TFT_CS 39
#define TFT_RST 37
#define TFT_DC 38
#define TFT_BACKLIGHT 7

In setup() don't forget to turn the backlight on!

void setup(void) {
 pinMode(TFT_BACKLIGHT, OUTPUT);
 digitalWrite(TFT_BACKLIGHT, HIGH);

You can dim the backlight with analogWrite(TFT_BACKLIGHT, brightness) where

brightess is between 0 (off) and 255 (full on)

Also, rotate the display:

©Adafruit Industries Page 52 of 150

 tft.setRotation(2);

Once you have it all working, you can visit the Adafruit GFX library guide page (https:

//adafru.it/doL) to learn more about all the different shapes you can draw!

Graphics Test Code

/**
 This is a library for several Adafruit displays based on ST77* drivers.

 Works with the HalloWing M0 Express
 ----> http://www.adafruit.com/products/3900

 Check out the links above for our tutorials and wiring diagrams.

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.
 MIT license, all text above must be included in any redistribution
 **/

#include <Adafruit_GFX.h> // Core graphics library

#include <Adafruit_ST7735.h> // Hardware-specific library for ST7735

#include <SPI.h>

#define TFT_CS 39 // Hallowing display control pins: chip select

#define TFT_RST 37 // Display reset

#define TFT_DC 38 // Display data/command select

#define TFT_BACKLIGHT 7 // Display backlight pin

// OPTION 1 (recommended) is to use the HARDWARE SPI pins, which are unique
// to each board and not reassignable.
Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

// OPTION 2 lets you interface the display using ANY TWO or THREE PINS,
// tradeoff being that performance is not as fast as hardware SPI above.
//#define TFT_MOSI 29 // Data out
//#define TFT_SCLK 30 // Clock out
//Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK,
TFT_RST);

float p = 3.1415926;

void setup(void) {
 Serial.begin(9600);
 Serial.print(F("Hello! ST77xx TFT Test"));

 tft.initR(INITR_HALLOWING); // Initialize HalloWing-oriented screen
 pinMode(TFT_BACKLIGHT, OUTPUT);
 digitalWrite(TFT_BACKLIGHT, HIGH); // Backlight on

 Serial.println(F("Initialized"));

 uint16_t time = millis();
 tft.fillScreen(ST77XX_BLACK);
 time = millis() - time;

 Serial.println(time, DEC);
 delay(500);

©Adafruit Industries Page 53 of 150

 // large block of text
 tft.fillScreen(ST77XX_BLACK);
 testdrawtext("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur
adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed
malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae
malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi
lorem. In vestibulum purus a tortor imperdiet posuere. ", ST77XX_WHITE);
 delay(1000);

 // tft print function!
 tftPrintTest();
 delay(4000);

 // a single pixel
 tft.drawPixel(tft.width()/2, tft.height()/2, ST77XX_GREEN);
 delay(500);

 // line draw test
 testlines(ST77XX_YELLOW);
 delay(500);

 // optimized lines
 testfastlines(ST77XX_RED, ST77XX_BLUE);
 delay(500);

 testdrawrects(ST77XX_GREEN);
 delay(500);

 testfillrects(ST77XX_YELLOW, ST77XX_MAGENTA);
 delay(500);

 tft.fillScreen(ST77XX_BLACK);
 testfillcircles(10, ST77XX_BLUE);
 testdrawcircles(10, ST77XX_WHITE);
 delay(500);

 testroundrects();
 delay(500);

 testtriangles();
 delay(500);

 mediabuttons();
 delay(500);

 Serial.println("done");
 delay(1000);
}

void loop() {
 tft.invertDisplay(true);
 delay(500);
 tft.invertDisplay(false);
 delay(500);
}

void testlines(uint16_t color) {
 tft.fillScreen(ST77XX_BLACK);
 for (int16_t x=0; x < tft.width(); x+=6) {
 tft.drawLine(0, 0, x, tft.height()-1, color);
 delay(0);
 }
 for (int16_t y=0; y < tft.height(); y+=6) {
 tft.drawLine(0, 0, tft.width()-1, y, color);
 delay(0);
 }

 tft.fillScreen(ST77XX_BLACK);
 for (int16_t x=0; x < tft.width(); x+=6) {

©Adafruit Industries Page 54 of 150

 tft.drawLine(tft.width()-1, 0, x, tft.height()-1, color);
 delay(0);
 }
 for (int16_t y=0; y < tft.height(); y+=6) {
 tft.drawLine(tft.width()-1, 0, 0, y, color);
 delay(0);
 }

 tft.fillScreen(ST77XX_BLACK);
 for (int16_t x=0; x < tft.width(); x+=6) {
 tft.drawLine(0, tft.height()-1, x, 0, color);
 delay(0);
 }
 for (int16_t y=0; y < tft.height(); y+=6) {
 tft.drawLine(0, tft.height()-1, tft.width()-1, y, color);
 delay(0);
 }

 tft.fillScreen(ST77XX_BLACK);
 for (int16_t x=0; x < tft.width(); x+=6) {
 tft.drawLine(tft.width()-1, tft.height()-1, x, 0, color);
 delay(0);
 }
 for (int16_t y=0; y < tft.height(); y+=6) {
 tft.drawLine(tft.width()-1, tft.height()-1, 0, y, color);
 delay(0);
 }
}

void testdrawtext(char *text, uint16_t color) {
 tft.setCursor(0, 0);
 tft.setTextColor(color);
 tft.setTextWrap(true);
 tft.print(text);
}

void testfastlines(uint16_t color1, uint16_t color2) {
 tft.fillScreen(ST77XX_BLACK);
 for (int16_t y=0; y < tft.height(); y+=5) {
 tft.drawFastHLine(0, y, tft.width(), color1);
 }
 for (int16_t x=0; x < tft.width(); x+=5) {
 tft.drawFastVLine(x, 0, tft.height(), color2);
 }
}

void testdrawrects(uint16_t color) {
 tft.fillScreen(ST77XX_BLACK);
 for (int16_t x=0; x < tft.width(); x+=6) {
 tft.drawRect(tft.width()/2 -x/2, tft.height()/2 -x/2 , x, x, color);
 }
}

void testfillrects(uint16_t color1, uint16_t color2) {
 tft.fillScreen(ST77XX_BLACK);
 for (int16_t x=tft.width()-1; x > 6; x-=6) {
 tft.fillRect(tft.width()/2 -x/2, tft.height()/2 -x/2 , x, x, color1);
 tft.drawRect(tft.width()/2 -x/2, tft.height()/2 -x/2 , x, x, color2);
 }
}

void testfillcircles(uint8_t radius, uint16_t color) {
 for (int16_t x=radius; x < tft.width(); x+=radius*2) {
 for (int16_t y=radius; y < tft.height(); y+=radius*2) {
 tft.fillCircle(x, y, radius, color);
 }
 }
}

©Adafruit Industries Page 55 of 150

void testdrawcircles(uint8_t radius, uint16_t color) {
 for (int16_t x=0; x < tft.width()+radius; x+=radius*2) {
 for (int16_t y=0; y < tft.height()+radius; y+=radius*2) {
 tft.drawCircle(x, y, radius, color);
 }
 }
}

void testtriangles() {
 tft.fillScreen(ST77XX_BLACK);
 uint16_t color = 0xF800;
 int t;
 int w = tft.width()/2;
 int x = tft.height()-1;
 int y = 0;
 int z = tft.width();
 for(t = 0 ; t <= 15; t++) {
 tft.drawTriangle(w, y, y, x, z, x, color);
 x-=4;
 y+=4;
 z-=4;
 color+=100;
 }
}

void testroundrects() {
 tft.fillScreen(ST77XX_BLACK);
 uint16_t color = 100;
 int i;
 int t;
 for(t = 0 ; t <= 4; t+=1) {
 int x = 0;
 int y = 0;
 int w = tft.width()-2;
 int h = tft.height()-2;
 for(i = 0 ; i <= 16; i+=1) {
 tft.drawRoundRect(x, y, w, h, 5, color);
 x+=2;
 y+=3;
 w-=4;
 h-=6;
 color+=1100;
 }
 color+=100;
 }
}

void tftPrintTest() {
 tft.setTextWrap(false);
 tft.fillScreen(ST77XX_BLACK);
 tft.setCursor(0, 30);
 tft.setTextColor(ST77XX_RED);
 tft.setTextSize(1);
 tft.println("Hello World!");
 tft.setTextColor(ST77XX_YELLOW);
 tft.setTextSize(2);
 tft.println("Hello World!");
 tft.setTextColor(ST77XX_GREEN);
 tft.setTextSize(3);
 tft.println("Hello World!");
 tft.setTextColor(ST77XX_BLUE);
 tft.setTextSize(4);
 tft.print(1234.567);
 delay(1500);
 tft.setCursor(0, 0);
 tft.fillScreen(ST77XX_BLACK);
 tft.setTextColor(ST77XX_WHITE);
 tft.setTextSize(0);
 tft.println("Hello World!");

©Adafruit Industries Page 56 of 150

 tft.setTextSize(1);
 tft.setTextColor(ST77XX_GREEN);
 tft.print(p, 6);
 tft.println(" Want pi?");
 tft.println(" ");
 tft.print(8675309, HEX); // print 8,675,309 out in HEX!
 tft.println(" Print HEX!");
 tft.println(" ");
 tft.setTextColor(ST77XX_WHITE);
 tft.println("Sketch has been");
 tft.println("running for: ");
 tft.setTextColor(ST77XX_MAGENTA);
 tft.print(millis() / 1000);
 tft.setTextColor(ST77XX_WHITE);
 tft.print(" seconds.");
}

void mediabuttons() {
 // play
 tft.fillScreen(ST77XX_BLACK);
 tft.fillRoundRect(25, 10, 78, 60, 8, ST77XX_WHITE);
 tft.fillTriangle(42, 20, 42, 60, 90, 40, ST77XX_RED);
 delay(500);
 // pause
 tft.fillRoundRect(25, 90, 78, 60, 8, ST77XX_WHITE);
 tft.fillRoundRect(39, 98, 20, 45, 5, ST77XX_GREEN);
 tft.fillRoundRect(69, 98, 20, 45, 5, ST77XX_GREEN);
 delay(500);
 // play color
 tft.fillTriangle(42, 20, 42, 60, 90, 40, ST77XX_BLUE);
 delay(50);
 // pause color
 tft.fillRoundRect(39, 98, 20, 45, 5, ST77XX_RED);
 tft.fillRoundRect(69, 98, 20, 45, 5, ST77XX_RED);
 // play color
 tft.fillTriangle(42, 20, 42, 60, 90, 40, ST77XX_GREEN);
}

Full Test Sketch

Once you have the TFT working, you can now continue onto a full test sketch, which

will show how to read the light sensor, accelerometer, capacitive touch, and even the

battery voltage! We do this all thru the Arcada library, which allows us to abstract a

wide range of boards, from the PyBadge, to the Hallowing, so you don't have to worry

about pin numbers or exact display parts.

Install Libraries

Don't forget to install all of the Arcada libraries! (https://adafru.it/FV4)

Whew, once all are installed. You can load up the example code, which is in the Arca

da Library -> Full Board Tests -> hallowingm0_arcadatest

©Adafruit Industries Page 57 of 150

Make sure once you've loaded it in, you have both the full_test code and the

additional audio.h code

Upload and try it out! If you need to quickly test a board, here's the UF2 you can load

on

hallowingtest.UF2

https://adafru.it/FV5

Arcada Library

This is a quickstart explaination of what Adafruit Arcada library provides, see the

detailed Doxygen documents for arguments & return values

Initialization

arcadaBegin() must be called first, it will set pin directions, turn off NeoPixels,

and check for connected hardware

•

©Adafruit Industries Page 58 of 150

filesysBeginMSD() will initialize the storage method (SD or SPI flash) and

check if a proper filesystem exists. On SD cards that's a FAT filesystem (so make

sure its formatted). On SPI Flash we use CircuitPython's FAT filesystem, the best

way to format is to load CircuitPython on once. If you're using TinyUSB as your

USB stack, this will also make the disk drive appear on a computer

displayBegin() initializes the display, you will need to turn on the backlight

after this is done - we don't do it for you!

Joystick & Buttons

readJoystickX and readJoystickY read the analog joystick (if there is one)

and returns -512 to 511 with 0 being 'center' (approximately)

readButtons returns a 32 bit mask for each button pressed at the moment of

the function call - right now only the bottom 8 bits are used. Check Adafruit_

Arcada_Def.h for the button mask names. Analog joysticks are checked

against a threshold and 'emulate' a button press

Some boards, like the MONSTER M4SK and HalloWings, do not have a proper joystick

- instead we will return the capacitive touch pads or buttons as if there was a joystick.

For example, the M4SK's three buttons will return 'up', 'A' and 'down' respectively.

After readButtons is called, justPressedButtons will tell you buttons were

pressed as of the readButtons call

Ditto for justReleasedButtons

Backlight, Speaker and Sensors

Enable/disable speaker amplifier (if there is one) with enableSpeaker - this

doesn't affect headphones if there are any

readBatterySensor returns the battery voltage detected. You cannot detect

whether a battery is being charged, only the voltage.

readLightSensor will return 0 for dark, 1023 for bright surrounding light.

setBacklight can set the backlight from 0 (off) to 255 (all the way on)

Alert Boxes

These info boxes and alert display on the screen to let the user know something they

need to do, get ready for, or went wrong. You can have the alert wait for a button

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 59 of 150

press or have it return immediately (then you can delay or wait for something else to

occur)

alertBox is the generic, you can set the message, box and text color, as well

as button press

infoBox is an alertBox where the default button is A and the box color is

white, text color is black

warnBox is an alertBox where the default button is A and the box color is

yellow, text color is black

errorBox is an alertBox where the default button is A and the box color is

red, text color is white

haltBox is an alertBox where the box color is red, text color is white. It will

sit in a busy loop and never return

Arcada Library Docs

Arcada Library Docs (https://adafru.it/FVm)

•

•

•

•

•

©Adafruit Industries Page 60 of 150

Spooky Eyes

Hallowing ships with a pre-loaded example of a human eye that looks around, blinks

and reacts to light.

If you want to put the original spooky eye demo back on your Hallowing, enter

bootloader mode by double-clicking the Reset button (https://adafru.it/C8r) and then

drag this UF2 file over onto HALLOWBOOT:

Spooky_Eye_Human.UF2

https://adafru.it/CmU

There’s a few customized variants as well, such as a fiery dragon eye:

Spooky_Eye_Dragon.UF2

https://adafru.it/CmV

A brown, animal-ish eye with no visible sclera:

Spooky_Eye_NoSclera.UF2

https://adafru.it/CmW

A psychedelic eye from our Eye of Newt guide (https://adafru.it/Cmd):

©Adafruit Industries Page 61 of 150

Spooky_Eye_Newt.UF2

https://adafru.it/CmX

And a Terminator-inspired robotic eye:

Spooky_Eye_Terminator.UF2

https://adafru.it/CFf

Customizing the Spooky Eye Demo

The software controlling Hallowing’s eye is extensively customizable. This requires

some familiarity with the Arduino IDE and, depending on the extent of customizations

you have in mind, perhaps some image editing and using Python scripts on the

command line.

This is all explained in the “Electronic Animated Eyes using Teensy 3.1/3.2 (https://

adafru.it/j6B)” guide (despite the name, it also works on various Adafruit “M0” and

“M4” boards as well, including the Hallowing).

Most of the code there will automatically work on the Hallowing hardware, such as the

display and light sensor. Other Hallowing-specific features, such as the capacitive

touch pads, are not handled by the code…but could be added if you’ve done some

Arduino programming before.

Synchronized Eyes

This page has been made into its own self-contained guide now:

Synchronized Eyes with Two HalloWings (h
ttps://adafru.it/CTz)

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and

learning to program on low-cost microcontroller boards. It makes getting started

easier than ever with no upfront desktop downloads needed. Once you get your

board set up, open any text editor, and get started editing code. It's that simple.

©Adafruit Industries Page 62 of 150

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and

universities. It's a high-level programming language which means it's designed to be

easier to read, write and maintain. It supports modules and packages which means it's

easy to reuse your code for other projects. It has a built in interpreter which means

there are no extra steps, like compiling, to get your code to work. And of course,

Python is Open Source Software which means it's free for anyone to use, modify or

improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already

have Python knowledge, you can easily apply that to using CircuitPython. If you have

no previous experience, it's really simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is

a board with a microcontroller chip that's essentially an itty-bitty all-in-one computer.

The board you're holding is a microcontroller board! CircuitPython is easy to use

because all you need is that little board, a USB cable, and a computer with a USB

connection. But that's only the beginning.

©Adafruit Industries Page 63 of 150

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the

file, and it runs immediately. There is no compiling, no downloading and no

uploading needed.

You're new to programming. CircuitPython is designed with education in mind.

It's easy to start learning how to program and you get immediate feedback from

the board.

Easily update your code. Since your code lives on the disk drive, you can edit it

whenever you like, you can also keep multiple files around for easy

experimentation.

The serial console and REPL. These allow for live feedback from your code and

interactive programming.

File storage. The internal storage for CircuitPython makes it great for data-

logging, playing audio clips, and otherwise interacting with files.

Strong hardware support. There are many libraries and drivers for sensors,

breakout boards and other external components.

It's Python! Python is the fastest-growing programming language. It's taught in

schools and universities. CircuitPython is almost-completely compatible with

Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being

updated. Adafruit welcomes and encourages feedback from the community, and

incorporate it into the development of CircuitPython. That's the core of the open

source concept. This makes CircuitPython better for you and everyone who uses it!

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY flash drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

•

•

•

•

•

•

•

©Adafruit Industries Page 64 of 150

Download the latest version of

CircuitPython for this board via

CircuitPython.org

https://adafru.it/Em7

Click the green box above to download

the latest version of CircuitPython for the

HalloWing. It should be 3.0 or higher,

preferably the latest version. Versions

before 3.0 do not have HalloWing

support.

Download and save it to your desktop (or

wherever is handy).

Plug your Feather M0 into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button next to the

USB connector (magenta arrow) on your

board, and you will see the NeoPixel RGB

LED (green arrow) turn green. If it turns

red, check the USB cable, try another

USB port, etc. Note: The little red LED

next to the USB connector will be dim

red, and the little yellow LED on the

opposite side will flash yellow. That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

If you are doing a Hallowing CIrcuitPython that uses the TFT display, you'll want

to download a different, newer version of CircuitPython that supports the display.

Follow the directions in the Learn Guide you're using.

©Adafruit Industries Page 65 of 150

You will see a new disk drive appear

called HALLOWBOOT.

Drag the hallowing_circuitpython.uf2 file

to HALLOWBOOT.

The LED will flash. Then, the

HALLOWBOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

If you haven't added any code to your

board, the only file that will be present is

boot_out.txt. This is absolutely normal!

It's time for you to add your code.py and

get started!

That's it, you're done! :)

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

©Adafruit Industries Page 66 of 150

Download and Install Mu

Download Mu from https://

codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads

and installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the

lower right corner of the window, next to

the "gear" icon. If the mode says

"Microbit" or something else, click the

Mode button in the upper left, and then

choose "CircuitPython" in the dialog box

that appears.

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

©Adafruit Industries Page 67 of 150

Mu attempts to auto-detect your board

on startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board

and ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

©Adafruit Industries Page 68 of 150

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page (https://adafru.it/Vue) has more details. Otherwise,

make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux after

writing a file if you aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your

editor, and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example (https://adafru.it/UDU).

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 69 of 150

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them,

and they're indented exactly the same

amount. All the lines before that have no

spaces before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 70 of 150

Editing Code

To edit code, open the code.py file on

your CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details on

different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 71 of 150

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY
Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting (https://adafru.it/Den) page

of every board guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

©Adafruit Industries Page 72 of 150

while True:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.t

xt, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

©Adafruit Industries Page 73 of 150

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen

here, letting you know no CircuitPython

board was found and indicating where

your code will be stored until you plug in

a board.

If you are using Windows 7, make sure

you installed the drivers (https://adafru.it/

VuB).

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

©Adafruit Industries Page 74 of 150

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the modemma

nager service might be interfering. Just remove it; it doesn't have much use unless

you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 75 of 150

Serial Console on Linux (https://adafru.it/VAO) for details on how to add yourself to

the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. (https://adafru.it/AAH)

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. (https://adafru.it/

AAI)

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. (https:

//adafru.it/VAO)

Once connected, you'll see something like the following.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board
import digitalio
import time

©Adafruit Industries Page 76 of 150

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello, CircuitPython!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello back to you!")
 led.value = True
 time.sleep(1)
 led.value = False
 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

©Adafruit Industries Page 77 of 150

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 print("Hello back to you!")
 led.value = Tru
 time.sleep(1)
 led.value = False
 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

©Adafruit Industries Page 78 of 150

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

©Adafruit Industries Page 79 of 150

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

©Adafruit Industries Page 80 of 150

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

©Adafruit Industries Page 81 of 150

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

©Adafruit Industries Page 82 of 150

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 83 of 150

You can return to the REPL at any time!

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 84 of 150

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are an excellent reference for how it all should work. In

Python terms, you can place our library files in the lib directory because it's part of the

Python path by default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

©Adafruit Industries Page 85 of 150

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

©Adafruit Industries Page 86 of 150

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

©Adafruit Industries Page 87 of 150

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

•

•

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

©Adafruit Industries Page 88 of 150

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time
import board
import neopixel
import adafruit_lis3dh
import usb_hid
from adafruit_hid.consumer_control import ConsumerControl
from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

•

•

•

•

©Adafruit Industries Page 89 of 150

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL page (http

s://adafru.it/Awz) in this guide, the help("modules") command is discussed. This

command provides a list of all of the built-in modules available in CircuitPython for

your board. So, if you connect to the serial console on your board, and enter the

REPL, you can run help("modules") to see what modules are available for your

board. Then, as you read through the import statements, you can, for the purposes

of figuring out which libraries to load, ignore the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

©Adafruit Industries Page 90 of 150

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.LED)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

©Adafruit Industries Page 91 of 150

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportE

rror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

©Adafruit Industries Page 92 of 150

to resolve this issue. You'll find suggestions on the Troubleshooting page (https://

adafru.it/Den).

Updating CircuitPython Libraries and Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

©Adafruit Industries Page 93 of 150

import board

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

(>>>) and run the following commands:

import board
dir(board)

Here is the output for the QT Py. You may have a different board, and this list will vary,

based on the board.

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL,

TX, RX, SCK, MISO, and MOSI. You see that there are many more entries available in

board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py,

pin A0 is labeled on the physical board silkscreen, but it is available in CircuitPython

as both A0 and D0 . For more information on finding all the names for a given pin,

see the What Are All the Available Pin Names? (https://adafru.it/QkA) section below.

The results of dir(board) for CircuitPython compatible boards will look similar to

the results for the QT Py in terms of the pin names, e.g. A0, D0, etc. However, some

boards, for example, the Metro ESP32-S2, have different styled pin names. Here is the

output for the Metro ESP32-S2.

©Adafruit Industries Page 94 of 150

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa

rd module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

©Adafruit Industries Page 95 of 150

This eliminates the need for the busio module, and simplifies the code. Behind the

scenes, the board.I2C() object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

until you need it, and provides the same object every time you need it. You can call

board.I2C() as many times as you like, and it will always return the same object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, connect to the serial console. Then,

save the following as code.py on your CIRCUITPY drive.

"""CircuitPython Essentials Pin Map Script"""
import microcontroller
import board

board_pins = []
for pin in dir(microcontroller.pin):
 if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):
 pins = []
 for alias in dir(board):
 if getattr(board, alias) is getattr(microcontroller.pin, pin):
 pins.append("board.{}".format(alias))
 if len(pins) > 0:
 board_pins.append(" ".join(pins))
for pins in sorted(board_pins):
 print(pins)

Here is the result when this script is run on QT Py:

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all

boards. They exist if there are board markings for the default pins for those

devices.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your

board documentation/pinout for the default busses.

©Adafruit Industries Page 96 of 150

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

example, the first pin on the board is labeled A0. The first line in the output is board

.A0 board.D0 . This means that you can access pin A0 with both board.A0 and bo

ard.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

an on-board sensor. The Qt Py only has one on-board extra piece of hardware, a

NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

aliases to the microcontroller pin names. If you look at the datasheet for your

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin module. As with board , you can run dir(m

icrocontroller.pin) in the REPL to receive a list of the microcontroller pin names.

©Adafruit Industries Page 97 of 150

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board or digitalio in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here (https://adafru.it/QkB) and the Python-like

modules included here (https://adafru.it/QkC). However, not every module is available

for every board due to size constraints or hardware limitations. How do you find out

what modules are available for your board?

There are two options for this. You can check the support matrix (https://adafru.it/

N2a), and search for your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

©Adafruit Industries Page 98 of 150

Always Run the Latest Version of
CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. (https:

//adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle (http

s://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

I have to continue using CircuitPython 5.x or earlier.
Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version (http

s://adafru.it/Em8) and use the current version of the libraries (https://adafru.it/ENC).

However, if for some reason you cannot update, links to the previous bundles are

available in the FAQ (https://adafru.it/FwY).

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 99 of 150

Bootloader (boardnameBOOT) Drive Not
Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader (https://adafru.it/zbX)installed. The Feather M0 Basic, Feather M0

Adalogger, and similar boards use a regular Arduino-compatible bootloader, which

does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground

Express, press the reset button just once to get the CPLAYBOOT drive to show up.

Pressing it twice will not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here (https://adafru.it/VuB).

It is recommended (https://adafru.it/Amd) that you upgrade to Windows 10 if possible;

an upgrade is probably still free for you. Check here (https://adafru.it/Amd).

©Adafruit Industries Page 100 of 150

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit

Discord () if this does not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive
Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

•

•

•

•

©Adafruit Industries Page 101 of 150

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended (https://adafru.it/Amd) that you upgrade

to Windows 10 if possible; an upgrade is probably still free for you: see this link (https

://adafru.it/V2a).

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool (http

s://adafru.it/RWd). Download and unzip the tool. Unplug all the boards and other USB

devices you want to clean up. Run the tool as Administrator. You will see a listing like

this, probably with many more devices. It is listing all the USB devices that are not

currently attached.

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

©Adafruit Industries Page 102 of 150

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying
Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

©Adafruit Industries Page 103 of 150

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " (https://adafru.it/XDZ)Acr

onis Managed Machine Service Mini" (https://adafru.it/XDZ).

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.disable_autoreload()

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

©Adafruit Industries Page 104 of 150

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing reset

during this time will restart the board and then enter safe mode. On Bluetooth

capable boards, after the yellow blinks, there will be a set of faster blue blinks.

Pressing reset during the BLUE blinks will clear Bluetooth information and start the

device in discoverable mode, so it can be used with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

•

•

•

•

•

©Adafruit Industries Page 105 of 150

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 106 of 150

Serial console showing ValueError:
Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle (https://adafru.it/y8E).

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

©Adafruit Industries Page 107 of 150

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

©Adafruit Industries Page 108 of 150

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version (https://adafru.it/Amd) to do this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal

program.

Type the following into the REPL:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

1.

2.

©Adafruit Industries Page 109 of 150

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

https://adafru.it/AdI

Feather M0 Express

https://adafru.it/AdJ

Feather M4 Express

https://adafru.it/EVK

Metro M0 Express

https://adafru.it/AdK

Metro M4 Express QSPI Eraser

https://adafru.it/EoM

Trellis M4 Express (QSPI)

https://adafru.it/DjD

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 110 of 150

Grand Central M4 Express (QSPI)

https://adafru.it/DBA

PyPortal M4 Express (QSPI)

https://adafru.it/Eca

Circuit Playground Bluefruit (QSPI)

https://adafru.it/Gnc

Monster M4SK (QSPI)

https://adafru.it/GAN

PyBadge/PyGamer QSPI Eraser.UF2

https://adafru.it/GAO

CLUE_Flash_Erase.UF2

https://adafru.it/Jat

Matrix_Portal_M4_(QSPI).UF2

https://adafru.it/Q5B

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

©Adafruit Industries Page 111 of 150

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd). You'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

 1. Download the erase file:

SAMD21 non-Express Boards

https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Em8) .uf2

file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (https://adafru.it/Amd) YYou'll also need to load your

code and reinstall your libraries!

For SAMD21 non-Express boards that do not have a UF2
bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

©Adafruit Industries Page 112 of 150

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (https://adafru.it/Bed),

which will erase and re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-
Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

©Adafruit Industries Page 113 of 150

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal

commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

©Adafruit Industries Page 114 of 150

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !
cp -X file_name.mpy /Volumes/CIRCUITPY/lib
This is safer, and will complain if a lib folder does not exist.
cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

©Adafruit Industries Page 115 of 150

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

©Adafruit Industries Page 116 of 150

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

"Uninstalling" CircuitPython

A lot of our boards can be used with multiple programming languages. For example,

the Circuit Playground Express can be used with MakeCode, Code.org CS

Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a

problem. You can always remove or reinstall CircuitPython whenever you want! Heck,

you can change your mind every day!

There is nothing to uninstall. CircuitPython is "just another program" that is loaded

onto your board. You simply load another program (Arduino or MakeCode) and it will

overwrite CircuitPython.

Backup Your Code

Before replacing CircuitPython, don't forget to make a backup of the code you have

on the CIRCUITPY drive. That means your code.py any other files, the lib folder etc.

You may lose these files when you remove CircuitPython, so backups are key! Just

©Adafruit Industries Page 117 of 150

drag the files to a folder on your laptop or desktop computer like you would with any

USB drive.

Moving Circuit Playground Express to
MakeCode

On the Circuit Playground Express (this currently does NOT apply to Circuit

Playground Bluefruit), if you want to go back to using MakeCode, it's really easy. Visit

makecode.adafruit.com (https://adafru.it/wpC) and find the program you want to

upload. Click Download to download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn

green and the ...BOOT directory shows up.

Then find the downloaded MakeCode .uf2 file and drag it to the CPLAYBOOT drive.

©Adafruit Industries Page 118 of 150

Your MakeCode is now running and CircuitPython has been removed. Going forward

you only have to single click the reset button to get to CPLAYBOOT. This is an

idiosyncrasy of MakeCode.

Moving to Arduino

If you want to use Arduino instead, you just use the Arduino IDE to load an Arduino

program. Here's an example of uploading a simple "Blink" Arduino program, but you

don't have to use this particular program.

Start by plugging in your board, and double-clicking reset until you get the green

onboard LED(s).

Within Arduino IDE, select the matching board, say Circuit Playground Express.

Select the correct matching Port:

©Adafruit Industries Page 119 of 150

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has

uploaded successfully, the serial Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter

bootloader mode. Arduino will automatically reset when you upload.

Welcome to the Community!

©Adafruit Industries Page 120 of 150

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

©Adafruit Industries Page 121 of 150

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (https://adafru.it/KJD).

Everything you need to get started with your new microcontroller and beyond is

available. You can do things like download CircuitPython for your microcontroller (htt

ps://adafru.it/Em8) or download the latest CircuitPython Library bundle (https://

adafru.it/ENC), or check out which single board computers support Blinka (https://

adafru.it/EA8). You can also get to various other CircuitPython related things like

Awesome CircuitPython or the Python for Microcontrollers newsletter. This is all

incredibly useful, but it isn't necessarily community related. So why is it included

here? The Contributing page (https://adafru.it/VD7).

©Adafruit Industries Page 122 of 150

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (https://adafru.it/VD7).

You'll find information pertaining to every Adafruit CircuitPython library GitHub

repository, giving you the opportunity to join the community by finding a contributing

option that works for you.

Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

©Adafruit Industries Page 123 of 150

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

©Adafruit Industries Page 124 of 150

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide (

https://adafru.it/Dkh) to walk you through the entire process. As well, there are always

folks available on Discord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

©Adafruit Industries Page 125 of 150

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

incredibly important to provide the best experience possible for all users.

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page (https://adafru.it/VD7)

is an excellent place to start!

Adafruit GitHub

©Adafruit Industries Page 126 of 150

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (https://adafru.it/tB7), and

the CircuitPython libraries (https://adafru.it/VFv). If you need an account, visit https://

github.com/ (https://adafru.it/d6C) and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues (https://adafru.it/tBb)", and you'll find a list that includes issues labeled

"good first issue (https://adafru.it/Bef)". For the libraries, head over to the Contributing

page Issues list (https://adafru.it/VFv), and use the drop down menu to search for "go

od first issue (https://adafru.it/VFw)". These issues are things that have been identified

as something that someone with any level of experience can help with. These issues

include options like updating documentation, providing feedback, and fixing simple

bugs. If you need help getting started with GitHub, there is an excellent guide on Con

tributing to CircuitPython with Git and GitHub (https://adafru.it/Dkh).

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (https://adafru.it/tBb). For the libraries, file an

issue on the specific library repository on GitHub. Be sure to include the steps to

replicate the issue as well as any other information you think is relevant. The more

detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

©Adafruit Industries Page 127 of 150

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit

has wonderful paid support folks to answer any questions you may have. Whether

your hardware is giving you issues or your code doesn't seem to be working, the

forums are always there for you to ask. You need an Adafruit account to post to the

forums. You can use the same account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython (https://adafru.it/xXA) category under "Supported

Products & Projects" is the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

©Adafruit Industries Page 128 of 150

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs (https://adafru.it/Beg) is a an excellent resource for a more detailed

look at the CircuitPython core and the CircuitPython libraries. This is where you'll find

things like API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation (https://

adafru.it/VFx) page!

UF2 Bootloader Details

Adafruit SAMD21 (M0) and SAMD51 (M4) boards feature an improved bootloader that

makes it easier than ever to flash different code onto the microcontroller. This

bootloader makes it easy to switch between Microsoft MakeCode, CircuitPython and

This is an information page for advanced users who are curious how we get code

from your computer into your Express board!

©Adafruit Industries Page 129 of 150

Arduino.

Instead of needing drivers or a separate program for flashing (say, bossac , jlink

or avrdude), one can simply drag a file onto a removable drive.

The format of the file is a little special. Due to 'operating system woes' you cannot just

drag a binary or hex file (trust us, we tried it, it isn't cross-platform compatible).

Instead, the format of the file has extra information to help the bootloader know

where the data goes. The format is called UF2 (USB Flashing Format). Microsoft

MakeCode generates UF2s for flashing and CircuitPython releases are also available

as UF2. You can also create your own UF2s from binary files using uf2tool, available

here. (https://adafru.it/vPE)

The bootloader is also BOSSA compatible, so it can be used with the Arduino IDE

which expects a BOSSA bootloader on ATSAMD-based boards

For more information about UF2, you can read a bunch more at the MakeCode blog (h

ttps://adafru.it/w5A), then check out the UF2 file format specification. (https://

adafru.it/vPE)

Visit Adafruit's fork of the Microsoft UF2-samd bootloader GitHub repository (https://

adafru.it/Beu) for source code and releases of pre-built bootloaders on CircuitPython.

org (https://adafru.it/Em8).

The bootloader is not needed when changing your CircuitPython code. Its only

needed when upgrading the CircuitPython core or changing between

CircuitPython, Arduino and Microsoft MakeCode.

©Adafruit Industries Page 130 of 150

Entering Bootloader Mode

The first step to loading new code onto your board is triggering the bootloader. It is

easily done by double tapping the reset button. Once the bootloader is active you will

see the small red LED fade in and out and a new drive will appear on your computer

with a name ending in BOOT. For example, feathers show up as FEATHERBOOT,

while the new CircuitPlayground shows up as CPLAYBOOT, Trinket M0 will show up

as TRINKETBOOT, and Gemma M0 will show up as GEMMABOOT

Furthermore, when the bootloader is active, it will change the color of one or more

onboard neopixels to indicate the connection status, red for disconnected and green

for connected. If the board is plugged in but still showing that its disconnected, try a

different USB cable. Some cables only provide power with no communication.

For example, here is a Feather M0 Express running a colorful Neopixel swirl. When

the reset button is double clicked (about half second between each click) the

NeoPixel will stay green to let you know the bootloader is active. When the reset

button is clicked once, the 'user program' (NeoPixel color swirl) restarts.

©Adafruit Industries Page 131 of 150

If the bootloader couldn't start, you will get a red NeoPixel LED.

That could mean that your USB cable is no good, it isn't connected to a computer, or

maybe the drivers could not enumerate. Try a new USB cable first. Then try another

port on your computer!

Once the bootloader is running, check your computer. You should see a USB Disk

drive...

©Adafruit Industries Page 132 of 150

Once the bootloader is successfully connected you can open the drive and browse

the virtual filesystem. This isn't the same filesystem as you use with CircuitPython or

Arduino. It should have three files:

 CURRENT.UF2 - The current contents of the microcontroller flash.

 INDEX.HTM - Links to Microsoft MakeCode.

 INFO_UF2.TXT - Includes bootloader version info. Please include it on bug

reports.

Using the Mass Storage Bootloader

To flash something new, simply drag any UF2 onto the drive. After the file is finished

copying, the bootloader will automatically restart. This usually causes a warning about

an unsafe eject of the drive. However, its not a problem. The bootloader knows when

everything is copied successfully.

•

•

•

©Adafruit Industries Page 133 of 150

You may get an alert from the OS that the file is being copied without it's properties.

You can just click Yes

You may also get get a complaint that the drive was ejected without warning. Don't

worry about this. The drive only ejects once the bootloader has verified and

completed the process of writing the new code

Using the BOSSA Bootloader

As mentioned before, the bootloader is also compatible with BOSSA, which is the

standard method of updating boards when in the Arduino IDE. It is a command-line

tool that can be used in any operating system. We won't cover the full use of the bos

sac tool, suffice to say it can do quite a bit! More information is available at ShumaTec

h (https://adafru.it/vQa).

©Adafruit Industries Page 134 of 150

Windows 7 Drivers

If you are running Windows 7 (or, goodness, something earlier?) You will need a Serial

Port driver file. Windows 10 users do not need this so skip this step.

You can download our full driver package here:

Download Latest Adafruit Driver

Installer

https://adafru.it/AB0

Download and run the installer. We recommend just selecting all the serial port drivers

available (no harm to do so) and installing them.

Verifying Serial Port in Device Manager

If you're running Windows, its a good idea to verify the device showed up. Open your

Device Manager from the control panel and look under Ports (COM & LPT) for a

device called Feather M0 or Circuit Playground or whatever!

©Adafruit Industries Page 135 of 150

If you see something like this, it means you did not install the drivers. Go back and try

again, then remove and re-plug the USB cable for your board

©Adafruit Industries Page 136 of 150

Running bossac on the command line

If you are using the Arduino IDE, this step is not required. But sometimes you want to

read/write custom binary files, say for loading CircuitPython or your own code. We

recommend using bossac v 1.7.0 (or greater), which has been tested. The Arduino

branch is most recommended (https://adafru.it/vQb).

You can download the latest builds here. (https://adafru.it/s1B) The mingw32 version

is for Windows, apple-darwin for Mac OSX and various linux options for Linux.

Once downloaded, extract the files from the zip and open the command line to the

directory with bossac .

With bossac version 1.9 or later, you must give an --offset parameter on the

command line to specify where to start writing the firmware in flash memory. This

With bossac versions 1.9 or later, you must use the --offset parameter on the

command line, and it must have the correct value for your board.

©Adafruit Industries Page 137 of 150

parameter was added in bossac 1.8.0 with a default of 0x2000 , but starting in 1.9, the

default offset was changed to 0x0000 , which is not what you want in most cases. If

you omit the argument for bossac 1.9 or later, you will probably see a "Verify Failed"

error from bossac. Remember to change the option for -p or --port to match the

port on your Mac.

Replace the filename below with the name of your downloaded .bin : it will vary

based on your board!

Using bossac Versions 1.7.0, 1.8

There is no --offset parameter available. Use a command line like this:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-bo

ardname-version.bin

For example,

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-

feather_m0_express-3.0.0.bin

Using bossac Versions 1.9 or Later

For M0 boards, which have an 8kB bootloader, you must specify -offset=0x2000 ,

for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x2000 adafruit-

circuitpython-feather_m0_express-3.0.0.bin

For M4 boards, which have a 16kB bootloader, you must specify -offset=0x4000 ,

for example:

bossac -p=/dev/cu.usbmodem14301 -e -w -v -R --offset=0x4000 adafruit-

circuitpython-feather_m4_express-3.0.0.bin

This will e rase the chip, w rite the given file, v erify the write and R eset the board.

On Linux or MacOS you may need to run this command with sudo ./bossac ... , or

add yourself to the dialout group first.

©Adafruit Industries Page 138 of 150

Updating the bootloader

The UF2 bootloader is relatively new and while we've done a ton of testing, it may

contain bugs. Usually these bugs effect reliability rather than fully preventing the

bootloader from working. If the bootloader is flaky then you can try updating the

bootloader itself to potentially improve reliability.

If you're using MakeCode on a Mac, you need to make sure to upload the bootloader

to avoid a serious problem with newer versions of MacOS. See instructions and more

details here (https://adafru.it/ECU).

In general, you shouldn't have to update the bootloader! If you do think you're having

bootloader related issues, please post in the forums or discord.

Updating the bootloader is as easy as flashing CircuitPython, Arduino or MakeCode.

Simply enter the bootloader as above and then drag the update bootloader uf2 file

below. This uf2 contains a program which will unlock the bootloader section, update

the bootloader, and re-lock it. It will overwrite your existing code such as

CircuitPython or Arduino so make sure everything is backed up!

After the file is copied over, the bootloader will be updated and appear again. The IN

FO_UF2.TXT file should show the newer version number inside.

For example:

UF2 Bootloader v2.0.0-adafruit.5 SFHWRO

Model: Metro M0

Board-ID: SAMD21G18A-Metro-v0

Lastly, reload your code from Arduino or MakeCode or flash the latest CircuitPython

core (https://adafru.it/Em8).

©Adafruit Industries Page 139 of 150

Below are the latest updaters for various boards. The latest versions can always be

found here (https://adafru.it/Bmg). Look for the update-bootloader... files, not

the bootloader... files.

Circuit Playground Express V3.7.0

update-bootloader.uf2

https://adafru.it/JcN

Feather M0 Express v3.7.0 update-

bootloader.uf2

https://adafru.it/JcO

Metro M0 Express v3.7.0 update-

bootloader.uf2

https://adafru.it/JcR

Gemma M0 v3.7.0 update-

bootloader.uf2

https://adafru.it/JcU

Trinket M0 v3.7.0 update-

bootloader.uf2

https://adafru.it/JcX

Itsy Bitsy M0 v3.7.0 update-

bootloader.uf2

https://adafru.it/Jc-

Grand Central M4 v3.7.0 update-

bootloader.uf2

https://adafru.it/Jd2

Latest version of update-

bootloader.uf2 for other boards.

Make sure you pick the right one.

https://adafru.it/Bmg

©Adafruit Industries Page 140 of 150

Getting Rid of Windows Pop-ups

If you do a lot of development on Windows with the UF2 bootloader, you may get

annoyed by the constant "Hey you inserted a drive what do you want to do" pop-ups.

Go to the Control Panel. Click on the

Hardware and Sound header

Click on the Autoplay header

Uncheck the box at the top, labeled Use

Autoplay for all devices

©Adafruit Industries Page 141 of 150

Making your own UF2

Making your own UF2 is easy! All you need is a .bin file of a program you wish to flash

and the Python conversion script (https://adafru.it/vZb). Make sure that your program

was compiled to start at 0x2000 (8k) for M0 boards or 0x4000 (16kB) for M4 boards.

The bootloader takes up the first 8kB (M0) or 16kB (M4). CircuitPython's linker script (h

ttps://adafru.it/CXh) is an example on how to do that.

Once you have a .bin file, you simply need to run the Python conversion script over it.

Here is an example from the directory with uf2conv.py. This command will produce a f

irmware.uf2 file in the same directory as the source firmware.bin. The uf2 can then be

flashed in the same way as above.

For programs with 0x2000 offset (default)
uf2conv.py -c -o build-circuitplayground_express/firmware.uf2 build-
circuitplayground_express/firmware.bin

For programs needing 0x4000 offset (M4 boards)
uf2conv.py -c -b 0x4000 -o build-metro_m4_express/firmware.uf2 build-
metro_M4_express/firmware.bin

Installing the bootloader on a fresh/bricked
board

If you somehow damaged your bootloader or maybe you have a new board, you can

use a JLink to re-install it.

Here's a Learn Guide explaining how to fix the bootloader on a variety of boards using

Atmel Studio (https://adafru.it/F5f)

Here's a short writeup by turbinenreiter on how to do it for the Feather M4 (but

adaptable to other boards) (https://adafru.it/ven)

Downloads

Files

LIS3DH datasheet (https://adafru.it/jwe)

LIS3DH app note (https://adafru.it/jwf)

ST7735R display driver datasheet (https://adafru.it/aP9)

•

•

•

©Adafruit Industries Page 142 of 150

Raw 1.44" TFT Datasheet (https://adafru.it/dYA)

EagleCAD PCB files on GitHub (https://adafru.it/C8t)

Fritzing object in Adafruit Fritzing Library (https://adafru.it/aP3)

Schematic & Fabrication Print

•

•

•

©Adafruit Industries Page 143 of 150

Troubleshooting

TFT Screen Adhesive

The TFT screen on the HalloWing can become un-adhered if it is bumped or wiggled

too much (or left in a very hot Jeep near the windshield in the hot southern California

sun, for a totally hypothetical example that didn't necessarily happen to the author).

Fixing this is pretty easy -- you can use double-stick tape, E6000 glue, or Sugru to fix

it back in place. Here are some action photos of these fixes.

©Adafruit Industries Page 144 of 150

©Adafruit Industries Page 145 of 150

Double Stick Tape

Cut three thin slices of double stick tape,

then place them around the edges of the

backlight.

Press the screen down and hold for a few

seconds to adhere.

©Adafruit Industries Page 146 of 150

E6000 Glue

This is strong glue and is even better than tape if you plan to leave the HalloWing

screen exposed on a costume without the lens and cover.

Use a toothpick or skewer to place small

dabs of the glue around the perimeter of

the backlight.

Press the screen down and hold for a few

seconds, then allow to cure overnight.

©Adafruit Industries Page 147 of 150

©Adafruit Industries Page 148 of 150

Sugru

You can go all out and create a protective frame using Sugru (https://adafru.it/ekR)

moldable silicone rubber.

Open a sachet of Sugru and tear off a

small ball of it.

Roll the ball into a small cylinder and

press up against one side of teh board

and screen.

Repeat for the other side.

Allow Sugru to cure overnight.

©Adafruit Industries Page 149 of 150

Diagnostics

Want to see some stats on your HalloWing? Double-click the board's reset button to

get to bootloader mode, then drag the HallowWingM4_Diagnostics.UF2 onto the

HALLOWBOOT drive!

This UF2 is for the Hallowing M4

HALLOWING M4 DIAGNOSTIC.UF2

https://adafru.it/G6F

If you have the Hallowing M0 use this UF2

hallowing m0 test.UF2

https://adafru.it/QDT

©Adafruit Industries Page 150 of 150

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Boards & Kits - ARM category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

SAFETI-HSK-RM48 PICOHOBBITFL CC-ACC-MMK-2443 TWR-MC-FRDMKE02Z EVALSPEAR320CPU EVB-SCMIMX6SX

MAX32600-KIT# TMDX570LS04HDK TXSD-SV70 OM13080UL EVAL-ADUC7120QSPZ OM13082UL TXSD-SV71

YGRPEACHNORMAL OM13076UL PICODWARFFL YR8A77450HA02BG 3580 32F3348DISCOVERY ATTINY1607 CURIOSITY

NANO PIC16F15376 CURIOSITY NANO BOARD PIC18F47Q10 CURIOSITY NANO VISIONSTK-6ULL V.2.0 80-001428 DEV-17717

EAK00360 YR0K77210B000BE RTK7EKA2L1S00001BE MAX32651-EVKIT# SLN-VIZN-IOT ETTUS USRP B200MINI USB-202

MULTIFUNCTION DAQ DEVICE USB-205 MULTIFUNCTION DAQ DEVICE ALLTHINGSTALK LTE-M RAPID DEV. KIT LV18F V6

DEVELOPMENT SYSTEM READY FOR AVR BOARD READY FOR PIC BOARD READY FOR PIC (DIP28) EVB-VF522R3

AVRPLC16 V6 PLC SYSTEM MIKROLAB FOR AVR XL MIKROLAB FOR PIC L MINI-AT BOARD - 5V MINI-M4 FOR STELLARIS

MOD-09.Z BUGGY + CLICKER 2 FOR PIC32MX + BLUETOOT 1410 LETS MAKE PROJECT PROGRAM. RELAY PIC LETS MAKE -

VOICE CONTROLLED LIGHTS LPC-H2294

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/embedded-development-tools/embedded-processor-development-kits/development-boards-kits-arm
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/texasinstruments/safetihskrm48
https://www.x-on.com.au/mpn/technexion/picohobbitfl
https://www.x-on.com.au/mpn/digiinternational/ccaccmmk2443
https://www.x-on.com.au/mpn/nxp/twrmcfrdmke02z
https://www.x-on.com.au/mpn/stmicroelectronics/evalspear320cpu
https://www.x-on.com.au/mpn/nxp/evbscmimx6sx
https://www.x-on.com.au/mpn/maxim/max32600kit
https://www.x-on.com.au/mpn/texasinstruments/tmdx570ls04hdk
https://www.x-on.com.au/mpn/ka-ro/txsdsv70
https://www.x-on.com.au/mpn/nxp/om13080ul
https://www.x-on.com.au/mpn/analogdevices/evaladuc7120qspz
https://www.x-on.com.au/mpn/nxp/om13082ul
https://www.x-on.com.au/mpn/ka-ro/txsdsv71
https://www.x-on.com.au/mpn/renesas/ygrpeachnormal
https://www.x-on.com.au/mpn/nxp/om13076ul
https://www.x-on.com.au/mpn/technexion/picodwarffl
https://www.x-on.com.au/mpn/renesas/yr8a77450ha02bg
https://www.x-on.com.au/mpn/adafruit/3580
https://www.x-on.com.au/mpn/stmicroelectronics/32f3348discovery
https://www.x-on.com.au/mpn/microchip/attiny1607curiositynano
https://www.x-on.com.au/mpn/microchip/attiny1607curiositynano
https://www.x-on.com.au/mpn/microchip/pic16f15376curiositynanoboard
https://www.x-on.com.au/mpn/microchip/pic18f47q10curiositynano
https://www.x-on.com.au/mpn/somlabs/visionstk6ullv20
https://www.x-on.com.au/mpn/criticallink/80001428
https://www.x-on.com.au/mpn/sparkfun/dev17717
https://www.x-on.com.au/mpn/embeddedartists/eak00360
https://www.x-on.com.au/mpn/renesas/yr0k77210b000be
https://www.x-on.com.au/mpn/renesas/rtk7eka2l1s00001be
https://www.x-on.com.au/mpn/maxim/max32651evkit
https://www.x-on.com.au/mpn/nxp/slnvizniot
https://www.x-on.com.au/mpn/digilent/ettususrpb200mini
https://www.x-on.com.au/mpn/digilent/usb202multifunctiondaqdevice
https://www.x-on.com.au/mpn/digilent/usb202multifunctiondaqdevice
https://www.x-on.com.au/mpn/digilent/usb205multifunctiondaqdevice
https://www.x-on.com.au/mpn/alsoholdingag/allthingstalkltemrapiddevkit
https://www.x-on.com.au/mpn/mikroelektronika/lv18fv6developmentsystem
https://www.x-on.com.au/mpn/mikroelektronika/lv18fv6developmentsystem
https://www.x-on.com.au/mpn/mikroelektronika/readyforavrboard
https://www.x-on.com.au/mpn/mikroelektronika/readyforpicboard
https://www.x-on.com.au/mpn/mikroelektronika/readyforpicdip28
https://www.x-on.com.au/mpn/nxp/evbvf522r3
https://www.x-on.com.au/mpn/mikroelektronika/avrplc16v6plcsystem
https://www.x-on.com.au/mpn/mikroelektronika/mikrolabforavrxl
https://www.x-on.com.au/mpn/mikroelektronika/mikrolabforpicl
https://www.x-on.com.au/mpn/mikroelektronika/miniatboard5v
https://www.x-on.com.au/mpn/mikroelektronika/minim4forstellaris
https://www.x-on.com.au/mpn/modulowo/mod09z
https://www.x-on.com.au/mpn/mikroelektronika/buggyclicker2forpic32mxbluetoot
https://www.x-on.com.au/mpn/adafruit/1410
https://www.x-on.com.au/mpn/mikroelektronika/letsmakeprojectprogramrelaypic
https://www.x-on.com.au/mpn/mikroelektronika/letsmakevoicecontrolledlights
https://www.x-on.com.au/mpn/mikroelektronika/letsmakevoicecontrolledlights
https://www.x-on.com.au/mpn/olimex/lpch2294

