

UNTZtrument: a Trellis MIDI Instrument

Created by Phillip Burgess

https://learn.adafruit.com/untztrument-trellis-midi-instrument

Last updated on 2021-11-15 06:13:41 PM EST

©Adafruit Industries Page 1 of 35

3

4

5

6

7

12

12

13

22

22

23

24

25

25

26

26

30

31

34

Table of Contents

Overview

• What UNTZtrument is:

• What UNTZtrument is not:

First Steps

• Let’s Get Started!

• Introducing Adafruit Trellis

• Troubleshooting

Assemble Case

Software

• Installing Arduino Libraries

• Uploading Code

• Host-Side Software

• Using the UNTZtrument_Hello_World Example

• Using the UNTZtrument_Step_Seq Example

Hacking

• Hardware Considerations

• Software Considerations

• Using the UNTZtrument Arduino Library

Downloads

©Adafruit Industries Page 2 of 35

Overview

Build and customize your very own open-source button grid controller with UNTZtru

ment! This DIY kit comes with delicious translucent button pads, driver boards,

diffused white LEDS and a custom laser cut enclosure. The result is a sturdy and

elegant but also super-hackable controller for music, video…or something else???

We designed this kit for ease of use and ultimate flexibility. All you need is an Arduino

Leonardo, basic soldering tools and an afternoon. Once assembled and programmed

with the Arduino IDE, this box turns into a USB MIDI device that works with any

computer and has 64 buttons (128 on the HELLA UNTZtrument) with individually-

controllable LEDs. Our example programs send simple MIDI Note On and Off

messages, but with a little programming ingenuity you can send and receive any kind

of MIDI command. Since its USB MIDI it can work instantly with just about all synth

software. Don’t like MIDI? The Arduino Leonardo can also emulate a USB keyboard or

plain old USB serial.

Since it's Arduino-powered, adding more stuff like accelerometers, potentiometers,

rotary encoders, etc. is straight-forward using existing libraries available on the

Internets.

©Adafruit Industries Page 3 of 35

HELLA UNTZtrument ups the ante with

128 LED-backed buttons. It’s huge!

What UNTZtrument is:

UNTZtrument is a 64- or 128-button MIDI device that works alongside music

software on your computer.

It’s a kit, requiring some soldering, a few tools and a little prior experience with

the Arduino microcontroller.

UNTZtrument is open source. The software is free and you can mix it up to add

your own new features, or use code that others have written.

•

•

•

©Adafruit Industries Page 4 of 35

What UNTZtrument is not:

UNTZtrument is not a self-contained musical instrument. It generates no audio

and must be connected via USB to a computer to either create sounds or

forward MIDI data to a synthesizer.

UNTZtrument is not a Monome (or Arduinome), but looks similar. Those are seri

al USB devices requiring a software bridge to the Max visual programming

language. UNTZtrument speaks MIDI, which is native to most music software.*

* UNTZtrument could certainly be adapted to be compatible with these…yay for open

source…but we’ve found said bridge software to currently be quite finicky. Using MIDI

now doesn’t preclude using serial for other things later…we might revisit this as the

situation evolves.

•

•

©Adafruit Industries Page 5 of 35

Here Collin Cunningham explains the basics of MIDI:

First Steps

UNTZtrument is based on Adafruit’s

Trellis, a 4x4 backlit keypad kit.

©Adafruit Industries Page 6 of 35

Four Trellises are combined to make a

single large 8x8 matrix for UNTZtrument.

The HELLA UNTZtrument has eight

Trellises in a 16x8 matrix!

Normally you have to buy three separate

parts for each Trellis (PCB, elastomer

keypad and LED pack), but the

UNTZtrument kits have everything you

need.

We selected white LEDs for the

UNTZtrument kits. If you have a large

stash of 3mm LEDs in some other color

you can certainly use those instead.

You will also need an Arduino Leonardo microcontroller board, either the regular

version (https://adafru.it/dy8) or the headerless variety (https://adafru.it/dy9) if you

want permanent connections.

UNTZtrument will not work with the Arduino Uno, Mega or other boards. Must be the

Arduino Leonardo, or a 100% compatible board based on the ATmega32U4

microcontroller. Because MIDI.

Additionally, you’ll need some wire (22 gauge solid-core (https://adafru.it/dya) wire is

ideal, but stranded can work in a pinch), a soldering iron & solder, basic hand tools

and a Micro USB cable.

Let’s Get Started!

So, as a first step to building your UNTZtrument kit, work through our introductory

Trellis guide (https://adafru.it/dxx) first. But with a few important changes:

Arduino Leonardo. Period.

©Adafruit Industries Page 7 of 35

Because UNTZtrument is based around

the Arduino Leonardo, it requires slightly

different wiring: Use the SDA and SCL

pins instead of A4 and A5 as shown in

the guide.

Looking at the back of the tiled Trellis

boards…with the text upright, in the

normal orientation for reading…connect

the wires to the header along the top

edge, toward the right. They should be

about 6 inches (15 cm) long, or a little

longer.

On the HELLA UNTZtrument — a 4x2

assembly of Trellises — connect the wires

to the third header along the top edge,

not the rightmost fourth header.

©Adafruit Industries Page 8 of 35

Try pointing the wires “inward” rather

than off the edge of the board. This

makes it easier to fit in the case.

The INT pin is not used by

UNTZtrument and does not need to be

connected.

When setting the board addresses (by

bridging the solder points on the back),

use the values shown here.

Using a different order is not

catastrophic, you’ll just need to edit the

code to match. Following this standard

makes it easier to share code with other

UNTZtrument users.

Check the orientation of the boards and

use the large Adafruit silkscreen logo to

make sure you have them oriented right

and the correct addresses set.

Here’s the address map for the HELLA

UNTZtrument.

Use the code below for testing your UNTZtrument matrix rather than the code in the

Trellis guide; it’s already set up for the tiled matrix.

For the HELLA UNTZtrument, change NUMTRELLIS to 8.

©Adafruit Industries Page 9 of 35

/***
 This is a test example for the Adafruit Trellis w/HT16K33.
 Reads buttons and sets/clears LEDs in a loop.
 "momentary" mode lights only when a button is pressed.
 "latching" mode toggles LED on/off when pressed.
 4 or 8 matrices can be used. #define NUMTRELLIS to the
 number in use.

 Designed specifically to work with the Adafruit Trellis
 ----> https://www.adafruit.com/products/1616
 ----> https://www.adafruit.com/products/1611

 Adafruit invests time and resources providing this
 open source code, please support Adafruit and open-source
 hardware by purchasing products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.
 MIT license, all text above must be included in any redistribution
 ***/

#include <Wire.h>
#include "Adafruit_Trellis.h"

#define NUMTRELLIS 4 // **** SET # OF TRELLISES HERE

#define MOMENTARY 0
#define LATCHING 1

#define MODE LATCHING // **** SET MODE HERE

Adafruit_Trellis matrix[NUMTRELLIS] = {
 Adafruit_Trellis(), Adafruit_Trellis(),
 Adafruit_Trellis(), Adafruit_Trellis()
#if NUMTRELLIS > 4
 ,Adafruit_Trellis(), Adafruit_Trellis(),
 Adafruit_Trellis(), Adafruit_Trellis()
#endif
};

Adafruit_TrellisSet trellis = Adafruit_TrellisSet(
 &matrix[0], &matrix[1], &matrix[2], &matrix[3]
#if NUMTRELLIS > 4
 ,&matrix[4], &matrix[5], &matrix[6], &matrix[7]
#endif
);

#define numKeys (NUMTRELLIS * 16)

// Connect Trellis Vin to 5V and Ground to ground.
// Connect I2C SDA pin to your Arduino SDA line.
// Connect I2C SCL pin to your Arduino SCL line.
// All Trellises share the SDA, SCL and INT pin!
// Even 8 tiles use only 3 wires max.

void setup() {
 Serial.begin(9600);
 Serial.println("Trellis Demo");

 // begin() with the addresses of each panel.
 // I find it easiest if the addresses are in order.
 trellis.begin(
 0x70, 0x71, 0x72, 0x73
#if NUMTRELLIS > 4
 ,0x74, 0x75, 0x76, 0x77
#endif
);

 // light up all the LEDs in order

©Adafruit Industries Page 10 of 35

 for (uint8_t i=0; i<numKeys; i++) {
 trellis.setLED(i);
 trellis.writeDisplay();
 delay(50);
 }
 // then turn them off
 for (uint8_t i=0; i<numKeys; i++) {
 trellis.clrLED(i);
 trellis.writeDisplay();
 delay(50);
 }
}

void loop() {
 delay(30); // 30ms delay is required, dont remove me!

 if (MODE == MOMENTARY) {
 // If a button was just pressed or released...
 if (trellis.readSwitches()) {
 // go through every button
 for (uint8_t i=0; i<numKeys; i++) {
�￰ // if it was pressed, turn it on
�￰ if (trellis.justPressed(i)) {
�￰ Serial.print("v"); Serial.println(i);
�￰ trellis.setLED(i);
�￰ }
�￰ // if it was released, turn it off
�￰ if (trellis.justReleased(i)) {
�￰ Serial.print("^"); Serial.println(i);
�￰ trellis.clrLED(i);
�￰ }
 }
 // tell the trellis to set the LEDs we requested
 trellis.writeDisplay();
 }
 }

 if (MODE == LATCHING) {
 // If a button was just pressed or released...
 if (trellis.readSwitches()) {
 // go through every button
 for (uint8_t i=0; i<numKeys; i++) {
 // if it was pressed...
�￰ if (trellis.justPressed(i)) {
�￰ Serial.print("v"); Serial.println(i);
�￰ // Alternate the LED
�￰ if (trellis.isLED(i))
�￰ trellis.clrLED(i);
�￰ else
�￰ trellis.setLED(i);
 }
 }
 // tell the trellis to set the LEDs we requested
 trellis.writeDisplay();
 }
 }
}

So…with those changes in mind…here’s a link to the starter guide:

©Adafruit Industries Page 11 of 35

Introducing Adafruit Trellis (https://adafru.it/dxx)

Don’t continue with the UNTZtrument guide until you have a tested and working 8x8

or 16x8 Trellis.

Troubleshooting

Some of the LEDs don’t light up!

If the positions are somewhat random: some LEDs might have been installed

backwards, or might’ve been damaged from excessive heat. Happens all the

time, not to worry. This is why we include lots of spares. De-solder the

problem LEDs and clean up the holes using a solder sucker, then replace

them with new ones (in the correct orientation).

If it’s a complete quadrant of the 8x8 Trellis, the address jumpers on the back

of the board might be improperly set. Refer to the diagram above.

None of the LEDs light up!

Might be the wiring. The Arduino Leonardo requires the use of different pins when

communicating with the Trellis boards, or you might just have the wires swapped.

Refer to the diagram above.

The wires keep snapping off the board!

Wires shearing off are usually due to where the solder has not fully wetted the pad

and flowed smoothly between the pad and wire. Make sure you’re fully heating the

pad and wire first adding solder… melt solder on the tip of the iron and then carry it

to the wire, that’s a recipe for failure.

I can’t fit the wires into the Arduino sockets!

It’s a little easier to build UNTZtrument with solid-core wire (it slides right into the

Arduino headers), but sometimes stranded is all you’ve got. Too-fat wires can

happen if you’ve tinned the tip of a stranded wire with excessive solder…

•

•

©Adafruit Industries Page 12 of 35

When tinning stranded wires (to prevent

fraying and shorts), use just a tiny bit of

solder, and make sure it fully flows into

the strands. Sometimes you’ll want to clip

off the very tip of the wire if the iron left a

glop or spike there.

The Adafruit Guide to Excellent Soldering (https://adafru.it/dxy) has lots of advice for

common soldering problems.

Assemble Case

Start by peeling the backing paper off

both sides of all the laser-cut parts. It’s

easiest to start at a corner, catching the

edge of the paper with a fingernail.

The laser-cutting process sometimes leaves a little paper soot at the edges. If you

like, you can wash these off with soap and water, just be absolutely certain that all the

parts are completely dry before proceeding!

Reminder: don’t proceed until you have a fully tested and working Trellis +

Leonardo on your desk. It's not easy to debug soldering once its inside the case!

You should have a tested and fully working Trellis (without case) at this point.

Don’t proceed until you’ve reached that milestone.

©Adafruit Industries Page 13 of 35

All told, there should be 13 laser-cut parts

(15 for HELLA UNTZtrument). Most are

clear except for the one black grid piece.

Your kit should also include the following

hardware:

Eleven (11) nylon screws

Three (3) nylon nuts

Three (3) 1/8" board spacers

Four (4) 1" threaded standoffs

One set of 4 peel-and-stick rubber

feet

HELLA UNTZtrument has 2 more

standoffs and 4 more screws for the

wider case.

If any parts are missing or damaged,

contact support@adafruit.com to arrange

for a replacement.

You’ve already assembled and tested the Trellis and Arduino Leonardo boards;

they’re implied but not listed in the above inventory.

We’ll start with the base piece…it’s one of

the large squares, the one without the

waffle grid.

This piece has the Arduino footprint

scored on one face. This helps identify

the top surface.

•

•

•

•

•

©Adafruit Industries Page 14 of 35

Turn the base over and install three

screws in the Arduino footprint area.

This piece needs to be turned back over

for additional work. You can either put a

little masking tape over the head of each

screw to hold them in place…or, if you’re

dextrous, grip the three screws from the

other side as you turn it over.

Set the base piece down so the screws

are now pointed up.

Add a 1/8" nylon standoff over each

screw.

Install the Arduino board with the

mounting holes over these three screws

(there’s a fourth hole, but we’re not using

it here).

Add a nut to each screw. There will

probably be some mechanical

interference from nearby headers and

parts…that’s okay, you just need to get

the nuts started.

Now turn the base over, remove the tape

(if used) and gently tighten the three

screws with a small screwdriver.

©Adafruit Industries Page 15 of 35

The standoffs are easier, we can do them

one at a time. No need for tape.

Insert a screw into one of the four corner

holes. Come up from the underside, as

you did with the Arduino. Catch the

screw in the threads of the standoff and

turn it into place. Finger pressure is

usually sufficient, or you can gently use a

screwdriver.

Repeat until all four standoffs are

installed (six for HELLA UNTZtrument).

You should then be able to set the base

down with the Arduino and standoffs all

on the top side.

©Adafruit Industries Page 16 of 35

Next we’ll install the vertical and

horizontal braces.

The vertical braces (which run parallel to

the Arduino’s longer axis) all look similar,

but notice the “nubs” on the bottom are

different: one, two, one. These fit into

corresponding slots on the base. (On the

HELLA UNTZtrument, there are five

vertical braces — again, they’re keyed to

only fit specific positions).

The horizontal braces now slot into

notches on the verticals. Each of these is

a different shape. The thinnest one is

designed to clear the Arduino’s power

jack. The slightly thicker (but still pretty

thin) brace goes down the middle, while

the full-thickness one is at the bottom.

©Adafruit Industries Page 17 of 35

The four side pieces are almost

identical…except for one which has a

notch for the Arduino’s USB port. Install

this side first. Align the bottom tabs with

the slots in the base and tilt it up into

place. If the USB port is covered, you’ve

got it backwards — turn it around and try

again.

Once the first side is in place, the

alignment of the remaining three should

be straightforward.

©Adafruit Industries Page 18 of 35

Now get the Trellis board ready. Remove

the rubber buttons for the time being and

turn the board face-down.

Orientation is important. Once installed,

the top edge of the Trellis will face be

aligned with the Arduino’s USB port.

Insert the power and signal wires from

the Trellis to the headers on the Arduino:

5V from Trellis to 5V on Arduino

GND from Trellis to any GND on

Arduino

SCL from Trellis to SCL on Arduino

(this pin is nearest the mounting

hole with no screw through it)

SDA from Trellis to SDA on Arduino

(this is the second pin, next to SCL)

The INT pin is not used for this project;

no connection is necessary.

Now the Trellis gets turned over, LED

side up, and is lowered into place in the

case. You’ll see the horizontal and

vertical braces have notches into which

the board neatly fits.

The wires will fight you at this stage,

either pushing back against the trellis or

springing out of the Arduino sockets. This

part goes a little easier if you bend a

couple zig-zag kinks in the wires,

keeping them all within that quadrant of

the case. Be patient and put each wire

back in place if they pop out.

If your wires are connected to a different

location on the Trellis, that’s okay…the

braces have notches to allow wires to run

from quadrant to quadrant.

•

•

•

•

©Adafruit Industries Page 19 of 35

Once the Trellis is in place, you’ll

probably need to hold it down as the

wires press against it. This is normal.

While still holding this down, install the

rubber button elastomers over the Trellis,

aligning the “nubs” with the

corresponding holes in the board. You’ll

need to scoot these around a little until

they all sit flush.

Install the clear top “waffle” piece. Since

you’ll still be holding the Trellis down,

start from one edge, aligning the notches

with the tabs on the side pieces, and

swing this down into place as you

remove your other hand.

When everything is aligned and sits flush,

you can place the black surface piece

over this.

©Adafruit Industries Page 20 of 35

Install four corner screws through both

top waffles and into the standoffs.

Turn the whole thing over and peel-and-

stick the four rubber feet near the

corners.

©Adafruit Industries Page 21 of 35

Turn it back over and you’re ready to

rock! Plug in a USB micro B cable and

we’ll turn our attention back to the

computer…

Software

Getting an Arduino talking MIDI over USB has traditionally been a bag of hurt, but

thanks to a few smart folks it can now be accomplished with the right bits of software.

You’ll start with a plain vanilla Arduino software installation, version 1.6.9 or later. This

can be downloaded from the Arduino web site (https://adafru.it/aHs). Do not use the

1.5.x beta software for this, nor older releases!

Installing Arduino Libraries

Open up your Arduino IDE and open the Manage Libraries... dialog under the

Sketch→Include Library menu:

If you don't see the Manage Libraries option, make sure you downloaded the

Arduino IDE from arduino.cc! Older versions and derivatives of the IDE may not

have it.

©Adafruit Industries Page 22 of 35

You will need to install the following libraries using the Library Manager:

MIDIUSB

Adafruit Trellis

Adafruit UNTZtrument

Uploading Code

There’s still a little song and dance to be done, but it’s easier than MIDI The Old Way™.

First, select Arduino Leonardo from the Tools→Board menu.

•

•

•

©Adafruit Industries Page 23 of 35

Now, from the Tools→Serial Port menu, select the port corresponding to the Arduino

Leonardo board.

Open one of the UNTZtrument example sketches in the File→Examples menu. If using

a HELLA UNTZtrument (16x8), add this line near the top of the code:

#define HELLA

You don’t need this change for a regular 8x8 UNTZtrument.

Before uploading the code to the board, unplug and re-plug the USB cable to restart

the bootloader again. There’s a 10 second window to then click Upload. If you miss it

on the first try, just try again with the cable-replugging and uploading.

There’s just one more piece we’ll need to finish the setup…

Host-Side Software

UNTZtrument issues MIDI data over USB. Now you’ll need software on the computer

at the other end of that cable.

This requires either a software synthesizer — a program that generates sounds using

your computer’s audio hardware — or a MIDI patchbay utility, which forwards the MIDI

data to a hardware synthesizer.

©Adafruit Industries Page 24 of 35

If you’ve done music on your computer before, you probably already have one or

both of these tools. Otherwise, there are a ton of options out there, many of them

free. For example, on Windows there’s the freeware Firebird2. Mac has the very basic

SimpleSynth or the soup-to-nuts GarageBand. Even Linux has options. Google around

for “software synthesizer”, “free” and “Windows”, “Mac” or “Linux” and see what you

find.

There are so many options, we can’t walk you through this for every app or operating

system. It’s usually pretty straightforward though, we’re confident you can find

something and get it installed and running.

Using the UNTZtrument_Hello_World Example

If you haven’t already uploaded this example, run the Arduino IDE, open this sketch

and select “Arduino Leonardo” from the Tools→Board menu and “MIDI” from the

Tools→USB Type menu. Unplug and replug the USB cable from the device and then

quickly press the Upload button (if this fails the first time, try again, there’s about a 10

second window for uploading the code).

(Remember, you’ll need to add one line as previously described if using a HELLA

UNTZtrument.)

This is a minimal Trellis-and-MIDI example that simply maps each button to a different

MIDI note…lowest at the top-left, highest at the bottom right. It’s not trying to mimic a

specific instrument, nor is there any relationship between rows and octaves or such.

It’s basically to test communication between the device and synthesizer.

Using the UNTZtrument_Step_Seq Example

This is a simple example of a step sequencer, sometimes used for creating rhythms.

Each of the eight horizontal rows of the matrix corresponds to a different sound, while

the eight vertical columns are scanned in sequence…anywhere there’s an intersection

(a pixel that’s previously been lit by pressing its button) you’ll get a sound.

Popular among electronic dance music. Hence the name, UNTZtrument.

©Adafruit Industries Page 25 of 35

Hacking

UNTZtrument is just the start. We hope you’ll hack it to your heart’s content. Some

ideas:

New types of MIDI musical instruments or sequencers.

Beyond music…UNTZtrument could trigger video clips and effects for live

“veejay” performances.

The Arduino Leonardo can also act as a HID keyboard or mouse…how about a

game controller or an assistive device?

Not just code…there’s a little space for hardware hacking as well:

Encoders or potentiometers could be added to control different music

parameters (volume, tempo, etc.).

A popular mod for the Arduinome (an inspiration for the UNTZtrument) is an

accelerometer, for more expressive performance.

“Bling it up” with internal LEDs.

UNTZtrument hacking is not for the meek; it requires patience, tools and a willingness

to improvise. Tolerances inside the case are very tight. If you’ve done “circuit

bending” before (modifying electronic instruments), you can probably handle this.

Hardware Considerations

SDA and SCL are connected to digital pins 2 and 3 on the Arduino Leonardo. Those

pins are not available as inputs or outputs. Everything else is fair game!

A USB port provides current up to 500 milliamps. UNTZtrument uses about 150 mA,

allowing up to 350 mA for your own additions (but aim a little lower to play it safe).

That’s enough for a few NeoPixels or other LEDs, or a small piezo buzzer or vibration

motor for feedback. HELLA UNTZtrument uses close to 300 mA, so there’s about 200

mA available for adding your own bling.

Small slots between each of the “cells” in the UNTZtrument case can be used for

routing wires. Unruly wiring can be kept at bay with some clear tape or a dot of hot

glue.

•

•

•

•

•

•

©Adafruit Industries Page 26 of 35

There are three available GND pins on the Arduino board, one of which is used by the

Trellis. Because we’re using USB for power, both 5V and VIN provide 5 Volts (VIN is

normally the higher unregulated voltage from the DC jack, but that’s not being used

here); UNTZtrument uses one of these 5V pins, leaving the other available. If you

need to split power in more directions, 3-way (https://adafru.it/dyi) and 5-way (https://

adafru.it/dyj) block connectors are available, as are smaller 2-way cold splices (http://

adafru.it/1494).

Acrylic requires special techniques for

drilling; normal drill bits will crack it! This

optional plastic part (separately available

from Adafruit) (http://adafru.it/1945) has

cutouts for adding encoders or

potentiometers.

Three sides of UNTZtrument are

identical, so you can add controls to any

(or all) sides. On the HELLA

UNTZtrument, these fit only on the left

and right sides, or there’s a longer front

part specifically for the HELLA (https://

adafru.it/dIV).

If you have access to a laser cutter, the

UNTZtrument case design can be

downloaded from the last page of this

guide, so you can make any special

cutouts you like!

©Adafruit Industries Page 27 of 35

If adding more than one potentiometer,

the legs must be bent back to fit inside

the case. If two potentiometers are

installed in the same quadrant, they

install back-to-back.

Potentiometers don’t care which outer

leg is ground or +V, but the choice does

affect which direction has increasing

output.

If you want increasing values when

turning clockwise, and if using the 10K

pots in the Adafruit shop (https://adafru.it/

dzq), wire them as shown here.

Other pots may behave differently. If the

output is reversed from what you wanted,

just swap the outer connections, or

compensate in code using the map()

function.

©Adafruit Industries Page 28 of 35

If using rotary encoders, we have the

opposite problem when fitting in the

case: rather than bending the legs back,

we need to splay them outward.

You need to be REALLY CAREFUL when

doing this. DO NOT straighten the

existing bends — the legs will crack off!

Instead, add extra bends a little further

down.

Whatever controls you add, you’ll then

need to get really creative with routing

wires. Narrow gauge (24 or 26 AWG) fits

in tight spaces a little better.

Potentiometers especially are a tight

squeeze.

In the second photo you can see all of

the hackishness that was required for

one project. A clamp provides a

temporary hold while working. Hot glue

keeps loose wires at bay. Cold splices

provide multiple +5V and GND

connections.

©Adafruit Industries Page 29 of 35

Software Considerations

If adding I2C devices (such as certain accelerometers or other sensors), be aware that

our example code does a crass thing to activate 400 KHz I2C (this makes the LED

updates a bit more responsive), and it might not be compatible with other devices

you’re interfacing. If this creates a problem, one option is simply to disable this line of

code, reverting to the standard 100 KHz communication.

On 8-bit AVR boards, the offending line, commented out, would be:

// TWBR = 12;

On 32-bit SAMD-based boards (e.g. M0), the line in question is:

// Wire.setClock(400000L);

Another option (on AVR) is to save the original value of the TWBR register in a global

variable following initialization, then set it to the 100 or 400 KHz rates as needed.

Global variable, before setup():

uint8_t i2c_save;

In setup() function, after trellis.begin():

i2c_save = TWBR; // Original 100 KHz value

In loop() or other functions:

TWBR = 12; // 400 KHz
untztrument.writeDisplay();
…
TWBR = i2c_save; // 100 KHz
// Read/write other I2C devices here

These are architecture-specific hacks! If you’re thinking of adapting the

UNTZtrument code to any other microcontroller, don’t do this, it’s non-portable and

may be more trouble than it’s worth.

©Adafruit Industries Page 30 of 35

Using the UNTZtrument Arduino Library

The Adafruit_UNTZtrument library (https://adafru.it/dXW) provides a few utilities to

help with creating UNTZtrument-specific sketches. We foresee every application

being quite distinctive, so the library is pretty minimal and doesn’t impose a lot of

policy.

To use the library, you need to include three header files:

#include <Wire.h>
#include <Adafruit_Trellis.h>
#include <Adafruit_UNTZtrument.h>

The first enables I2C communication. Second is the core Trellis library for reading

button presses and changing the LEDs. The third has our UNTZtrument-specific

utilities.

The Adafruit_UNTZtrument library contains two object classes. The first is called Ada

fruit_UNTZtrument and is simply a slight extension of the Adafruit_TrellisSet class

from the Adafruit_Trellis library…in fact, declaring and initializing the

Adafruit_UNTZtrument object is identical to a TrellisSet:

Adafruit_Trellis T[4];
Adafruit_UNTZtrument untztrument(&T[0], &T[1], &T[2], &T[3]);
const uint8_t addr[] = { 0x70, 0x71, 0x72, 0x73 };
void setup() {
 untztrument.begin(addr[0], addr[1], addr[2], addr[3]);
}

Four Adafruit_Trellis objects are declared (eight for a HELLA UNTZtrument) and

passed to the UNTZtrument constructor. Their I2C addresses are passed to the

begin() function in setup(). All the same Adafruit_Trellis or Adafruit_TrellisSet functions

are then available to the Adafruit_UNTZtrument object.

The Adafruit_UNTZtrument object provides two new functions for converting between

button/LED index numbers (as normally used by the Trellis library) and (X,Y)

coordinates (more useful for programs like the step sequencer).

i2xy() converts a Trellis button or LED index (0–63 for an 8x8 UNTZtrument, or 0–127

for a HELLA UNTZtrument) to separate X (column) and Y (row) values. You must

provide the addresses of two unsigned char (or uint8_t) variables to store the results:

©Adafruit Industries Page 31 of 35

uint8_t x, y;
untztrument.i2xy(i, &x, &y);

xy2i() is the complementary function, converting an X (column) and Y (row) pair to a

button/LED index:

uint8_t i = untztrument.xy2i(x, y);

Adafruit_UNTZtrument also provides the enc object for interfacing quadrature

encoders. Unlike analog potentiometers (which have a set range of 0–1023 using

analogRead()), encoders are more flexible (and they can spin around and around, no

end stops).

Each encoder requires two pins (sometimes called the “A” and “B” channels). The

third pin connects to GND. The shaft “click” function of some encoders is not explicitly

handled by the library…but it works just like any normally-open contact switch and is

pretty straightforward to code for.

Do not connect encoders to Leonardo pins 2 or 3 — those link up to the SDA and SCL

pins required for I2C communication. Anything else is fair game though (even pins 0

and 1, which Arduino Uno coders often have to avoid).

To use an encoder, just pass the index of the A and B pins to the constructor:

// You can declare encoders onesy-twosey:
enc e(4, 5);

// Or create a whole array of them:
enc e[] = {
 enc(4, 5),
 enc(6, 7),
 enc(8, 9),
 enc(12, A2) };

The encoder pins do not need to be sequential, nor are they limited to pin-change-

interrupt pins. Any two pins will do.

An optional third parameter to the enc() constructor enables or disables the Arduino’s

internal pull-up resistor on that pin. Some encoders (such as the ones previously

shown) use the pull-ups…this is the default case and the third parameter is not

needed. Others (“active” encoders, requiring a 5V connection) drive their output high

or low on their own; the pull-up is not needed. Pass a third parameter of false when

using these. This is rare.

In your setup() function, you must initialize the encoders as follows:

©Adafruit Industries Page 32 of 35

void setup() {
 // Initialize any/all previously-declared encoders:
 enc::begin();
}

The encoders need to be frequently polled in order to update their values (this is the

downside to not using interrupt pins). There are a couple of ways to do this. Simplest

is just to put this line in your loop() function:

void loop() {
 enc::poll();
}

You only need one of these; it’s not necessary to poll every encoder individually, it

handles the lot.

This requires the loop() function to iterate quickly. But if your program occasionally

has to do something more time-consuming, the encoders may “lose counts” (the

value won’t change as the knob is turned). To avoid this, you can use a timer interrupt

to call enc::poll() at regular intervals (e.g. once per millisecond). This requires some

homework…the library does not provide this — timers are a limited resource and

every application or timer library sets its own rule for these — so you’ll have to wrap a

bit of your own code around it.

To read the value from an encoder, use the getValue() function:

// Reading from one encoder named "e":
int16_t bpm = e.getValue();

// Reading one encoder in an enc array:
int16_t bpm = e[0].getValue();

The value is a signed 16-bit integer value. By default, this allows a range from -32768

to +32767. The range can be limited using the setBounds() function:

// Limit encoder "e" to 0-100 (inclusive):
e.setBounds(0, 100);

An optional third parameter sets whether the value stops (further turns won’t further

change the value) or “wraps around” (turning past the upper limit returns the value to

the lower limit, and vice-versa). Pass true to enable wrap-around, otherwise pass false

(or just leave off the third parameter — false is the default behavior).

The value of an encoder can be set or changed with the setValue() function:

e.setValue(42);

©Adafruit Industries Page 33 of 35

When setting bounds, if the current value of the encoder falls outside the requested

range it will be clipped or wrapped as appropriate. Therefore, if you need to change

both the range and value of an encoder, it’s recommended to set the range first:

e.setBounds(0, 100);
e.setValue(42);

Some encoders have detents — little clicky stops you can feel as the knob is turned.

With the Adafruit encoders, there are four “counts” per detent…that is, it tends to stop

on the values 0, 4, 8, 12, etc. But maybe you’re using other encoders that spin freely.

The library doesn’t dictate the use of encoders with detents, so you may want to

compensate in code by setting a 4X larger range and dividing the value read by 4 (or

whatever detent size your specific encoder uses).

For example, let’s suppose we wanted an encoder for setting a tempo between 60

and 480 beats per minute (240 by default). We’re using an Adafruit encoder or

another type with the 4-count detents, so the relevant parts of our code might look

like this:

enc e(4, 5); // Encoder on pins 4 & 5

// in setup():
e.setBounds(60 * 4, 480 * 4 + 3);
e.setValue(240 * 4);

// in loop():
bpm = e.getValue() / 4;

This then provides the expected one step per detent.

I instinctively always want to say détente, but no, that’s a different word for a different

thing. Detent. De-tent, like having one’s tent removed. Even Wikipedia notes this

confusion. (https://adafru.it/dzD) :)

Downloads

You can laser cut your own enclosure — or make modifications with the following

vector files — from 1/8" (3mm) acrylic in any colors you wish!

This ZIP file contains three .SVG files for the 8x8 UNTZtrument:

Untztrument-8x8.zip

https://adafru.it/DGV

©Adafruit Industries Page 34 of 35

“untztrument-8x8-clear.svg” and “untztrument-8x8-black.svg” are the main two files

we use when producing an 8x8 UNTZtrument in clear and black acrylic, respectively

…of course you can use whatever colors you choose (fluorescent acrylic is pretty rad).

A third file, “untztrument-8x8-opt-cutouts,” is an optional piece that can be used for

adding pots or encoders to the bottom edge, typically using the same material

chosen for the “clear” file.

This ZIP file contains three .SVG files for the 16x8 HELLA UNTZtrument:

Untztrument-16x8.zip

https://adafru.it/DGW

These files are what we use when producing a 16x8 HELLA UNTZtrument…

“untztrument-16x8-black.svg” for the black top layer (or use whatever color you

like).

“untztrument-16x8-clear-1.svg” is the first of two “clear” files…this one has the

two large flat pieces comprising the upper and lower sandwich layers.

“untztrument-16x8-clear-2.svg” is the second of two “clear” files…this is all the

side pieces and internal cross supports, including an optional piece with pot/

encoder cutouts (not a separate file like the 8x8 version).

You can find CAD files for Trellis elastomers and PCBs on github (https://adafru.it/cZh)

•

•

•

©Adafruit Industries Page 35 of 35

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Educational Kits category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

1805 4771 CS-SNEKBOARD-03 1116 1465 1834 1972 1999 2474 2798 DFR0089 DFR0107 FIT0004 FIT0045 FIT0046 FIT0415

KIT0019 KIT0020 SER0030 KIT-14501 3356 KIT0117 STEM-01 KIT-12963 KIT-14515 TOL-11784 KIT-10212 3417 3602 3850 419

572 801 1135 1148 1171 1842 1844 1968 2310 2668 3036 3093 3343 3791 3928 3957 4013 4103 4253

https://www.x-on.com.au/category/tools-supplies/maker-diy-educational/educational-kits
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/adafruit/1805
https://www.x-on.com.au/mpn/adafruit/4771
https://www.x-on.com.au/mpn/crowdsupply/cssnekboard03
https://www.x-on.com.au/mpn/adafruit/1116
https://www.x-on.com.au/mpn/adafruit/1465
https://www.x-on.com.au/mpn/adafruit/1834
https://www.x-on.com.au/mpn/adafruit/1972
https://www.x-on.com.au/mpn/adafruit/1999
https://www.x-on.com.au/mpn/adafruit/2474
https://www.x-on.com.au/mpn/adafruit/2798
https://www.x-on.com.au/mpn/dfrobot/dfr0089
https://www.x-on.com.au/mpn/dfrobot/dfr0107
https://www.x-on.com.au/mpn/dfrobot/fit0004
https://www.x-on.com.au/mpn/dfrobot/fit0045
https://www.x-on.com.au/mpn/dfrobot/fit0046
https://www.x-on.com.au/mpn/dfrobot/fit0415
https://www.x-on.com.au/mpn/dfrobot/kit0019
https://www.x-on.com.au/mpn/dfrobot/kit0020
https://www.x-on.com.au/mpn/dfrobot/ser0030
https://www.x-on.com.au/mpn/sparkfun/kit14501
https://www.x-on.com.au/mpn/adafruit/3356
https://www.x-on.com.au/mpn/dfrobot/kit0117
https://www.x-on.com.au/mpn/oseppelectronics/stem01
https://www.x-on.com.au/mpn/sparkfun/kit12963
https://www.x-on.com.au/mpn/sparkfun/kit14515
https://www.x-on.com.au/mpn/sparkfun/tol11784
https://www.x-on.com.au/mpn/sparkfun/kit10212
https://www.x-on.com.au/mpn/adafruit/3417
https://www.x-on.com.au/mpn/adafruit/3602
https://www.x-on.com.au/mpn/adafruit/3850
https://www.x-on.com.au/mpn/adafruit/419
https://www.x-on.com.au/mpn/adafruit/572
https://www.x-on.com.au/mpn/adafruit/801
https://www.x-on.com.au/mpn/adafruit/1135
https://www.x-on.com.au/mpn/adafruit/1148
https://www.x-on.com.au/mpn/adafruit/1171
https://www.x-on.com.au/mpn/adafruit/1842
https://www.x-on.com.au/mpn/adafruit/1844
https://www.x-on.com.au/mpn/adafruit/1968
https://www.x-on.com.au/mpn/adafruit/2310
https://www.x-on.com.au/mpn/adafruit/2668
https://www.x-on.com.au/mpn/adafruit/3036
https://www.x-on.com.au/mpn/adafruit/3093
https://www.x-on.com.au/mpn/adafruit/3343
https://www.x-on.com.au/mpn/adafruit/3791
https://www.x-on.com.au/mpn/adafruit/3928
https://www.x-on.com.au/mpn/adafruit/3957
https://www.x-on.com.au/mpn/adafruit/4013
https://www.x-on.com.au/mpn/adafruit/4103
https://www.x-on.com.au/mpn/adafruit/4253

