

Adafruit LED Backpacks

Created by lady ada

https://learn.adafruit.com/adafruit-led-backpack

Last updated on 2021-11-15 05:47:27 PM EST

©Adafruit Industries Page 1 of 139

7

9

9

13

13

15

15

16

16

17

17

18

18

19

19

19

20

20

20

20

21

21

22

23

26

28

15

16

16

30

17

18

18

19

32

19

20

20

20

Table of Contents

Overview

1.2" 8x8 Matrix

Assembly

Arduino Setup

• Mini 8x8 Matrix Software

CircuitPython Wiring and Setup

• Wiring

• Library Setup

• Bundle Install

Python Wiring and Setup

• Wiring

• Setup

• Python Installation of HT16K33 Library

• Pillow Library

CircuitPython and Python Usage

• Initialization

• Setting the Brightness

• Setting the Blink Rate

• Setting Individual Pixels

• Filling the Entire Matrix

• Shifting the Matrix

• Displaying an Image (Pillow Only)

0.8" 8x8 Matrix

Assembly

Arduino Wiring and Setup

CircuitPython Wiring and Setup

• Wiring

• Library Setup

• Bundle Install

Python Wiring and Setup

• Wiring

• Setup

• Python Installation of HT16K33 Library

• Pillow Library

CircuitPython and Python Usage

• Initialization

• Setting the Brightness

• Setting the Blink Rate

• Setting Individual Pixels

©Adafruit Industries Page 2 of 139

20

21

21

35

36

36

39

39

40

40

41

41

42

42

42

43

43

43

44

44

44

44

45

46

47

47

51

51

51

51

52

53

53

55

56

56

57

57

57

58

59

59

60

60

60

• Filling the Entire Matrix

• Shifting the Matrix

• Displaying an Image (Pillow Only)

1.2" 16x8 Matrix

Arduino Setup

• 16x8 Matrix Software

CircuitPython Wiring and Setup

• Wiring

• Library Setup

• Bundle Install

Python Wiring and Setup

• Wiring

• Setup

• Python Installation of HT16K33 Library

• Pillow Library

CircuitPython and Python Usage

• Initialization

• Setting the Brightness

• Setting the Blink Rate

• Setting Individual Pixels

• Filling the Entire Matrix

• Shifting the Matrix

• Displaying an Image (Pillow Only)

0.54" Alphanumeric

Assembly

• Attaching the Backpack

• Attaching Header

• Prepare the header strip:

• Add the Backpack:

Arduino Wiring and Setup

• Downloading the Arduino Library

• Wiring!

• Load Demo

• Library Reference

• ASCII data

• Writing Data

CircuitPython Wiring and Setup

• Wiring

• Library Setup

• Bundle Install

Python Wiring and Setup

• Wiring

• Setup

• Python Installation of HT16K33 Library

• Pillow Library

©Adafruit Industries Page 3 of 139

61

61

61

62

62

62

62

62

63

64

64

65

65

66

69

69

72

72

73

73

74

74

75

75

75

76

76

76

77

77

77

77

77

78

79

79

79

80

80

81

85

85

85

86

86

CircuitPython and Python Usage

• Initialization

• Setting the Brightness

• Setting the Blink Rate

• Printing Text

• Printing Numbers

• Printing Hexidecimal Values

• Setting Individual Characters

• Setting Individual Segments

• Filling all Segments

• Scrolling Display Manually

• Displaying an Automatic Scrolling Marquee

0.56" 7-Segment Backpack

Assembly

Arduino Setup

• Seven-Segment Backpack Firmware

CircuitPython Wiring and Setup

• Wiring

• Library Setup

• Bundle Install

Python Wiring and Setup

• Wiring

• Setup

• Python Installation of HT16K33 Library

• Pillow Library

CircuitPython and Python Usage

• Initialization

• Setting the Brightness

• Setting the Blink Rate

• Printing Text

• Printing Numbers

• Printing Hexidecimal Values

• Setting Individual Characters

• Setting Individual Segments

• Filling all Segments

• Scrolling Display Manually

• Displaying the Colon

• Displaying an Automatic Scrolling Marquee

1.2" 7-segment Backpack

Assembly

Arduino Wiring and Setup

• Arduino Wiring - R3 and later

• Arduino Due and Other 3.3v Processors

• Arduino "Classic" Wiring

• Seven-Segment Backpack Firmware

©Adafruit Industries Page 4 of 139

88

88

89

89

90

90

91

91

92

92

92

93

93

93

93

94

94

94

95

95

96

96

96

97

97

98

101

104

104

105

105

106

106

107

107

107

108

108

108

109

109

110

110

110

111

CircuitPython Wiring and Setup

• Wiring

• Library Setup

• Bundle Install

Python Wiring and Setup

• Wiring

• Setup

• Python Installation of HT16K33 Library

• Pillow Library

CircuitPython and Python Usage

• Initialization

• Setting the Brightness

• Setting the Blink Rate

• Printing Text

• Printing Numbers

• Printing Hexidecimal Values

• Setting Individual Characters

• Setting Individual Segments

• Filling all Segments

• Scrolling Display Manually

• Displaying the Colon

• Setting the Left-Side Dots

• Setting the AM/PM Indicator

• Displaying an Automatic Scrolling Marquee

Bi-Color 8x8 Matrix

Assembly

Arduino Setup

CircuitPython Wiring and Setup

• Wiring

• Library Setup

• Bundle Install

Python Wiring and Setup

• Wiring

• Setup

• Python Installation of HT16K33 Library

• Pillow Library

CircuitPython and Python Usage

• Initialization

• Setting the Brightness

• Setting the Blink Rate

• Setting Individual Pixels

• Filling the Entire Matrix

• Shifting the Matrix

• Displaying an Image (Pillow Only)

Bi-Color 24 Bargraph

©Adafruit Industries Page 5 of 139

112

116

117

120

120

121

121

122

122

123

123

124

124

124

125

125

125

125

126

127

127

128

129

130

131

131

132

132

133

134

135

136

137

137

138

139

Assembly

• Soldering on breadboard pins

Arduino Wiring and Setup

CircuitPython Wiring and Setup

• Wiring

• Library Setup

• Bundle Install

Python Wiring and Setup

• Wiring

• Setup

• Python Installation of HT16K33 Library

CircuitPython and Python Usage

• Initialization

• Setting the Brightness

• Setting the Blink Rate

• Setting Individual Bars

• Filling the Entire Bargraph

Connecting Multiple Backpacks

• Wire it Up

• Configure the Address

Changing I2C Address

• Changing Addresses

• Changing the address in your code

F.A.Q.

Downloads

• Software

• Files

• HT16K33 8x16 LED Backpack Breakout

• 8x8 0.8" LED Backpack

• 8x8 1.2" LED Backpack

• 8x8 1.2" Bi-Color LED Backpack

• 16x8 1.2" LED Backpacks

• Quad 0.56" 7-Segment

• Quad 0.54" 14-segment Alphanumeric

• Quad 1.2" 7-Segment

• Bicolor 24-Bargraph

©Adafruit Industries Page 6 of 139

Overview

What's better than a single LED? Lots of LEDs! A fun way to make a small display is to

use an 8x8 matrix (https://adafru.it/aLG) or a 4-digit 7-segment display (https://

adafru.it/aLH). Matrices like these are 'multiplexed' - so to control 64 LEDs you need

16 pins. That's a lot of pins, and there are driver chips like the MAX7219 (http://

adafru.it/453) that can control a matrix for you but there's a lot of wiring to set up and

they take up a ton of space. Here at Adafruit we feel your pain! After all, wouldn't it be

awesome if you could control a matrix without tons of wiring? That's where these

adorable LED matrix backpacks come in.

We have them in quite a few flavors!

Adorable Mini 8x8 (https://adafru.it/ttf)

Classic 1.2" 8x8 (round and square dots) (https://adafru.it/ttA)

Mini 1.2" 16x8 (round and square dots) (https://adafru.it/JpF)

4-digit 0.56" 7-segment (https://adafru.it/ttB)

4-digit 1.2" 7-segment (https://adafru.it/ttC)

4-digit 0.54" 14-segment Alphanumeric (https://adafru.it/ttD)

Bi-color 8x8 (http://adafru.it/902)

Bi-color Bargraph (http://adafru.it/1721)

•

•

•

•

•

•

•

•

©Adafruit Industries Page 7 of 139

The matrices use a driver chip that does all the heavy lifting for you: They have a built

in clock so they multiplex the display. They use constant-current drivers for ultra-

bright, consistent color (the images above are photographed at the dimmest setting

to avoid overloading our camera!), 1/16 step display dimming, all via a simple I2C

interface. The backpacks come with address-selection jumpers so you can connect

up to four mini 8x8's or eight 7-segments (or a combination, such as four mini 8x8's

and four 7-segments, etc) on a single I2C bus.

The product kit comes with a fully tested and assembled LED backpack, a 4-pin

header and the matrix of your choice. A bit of soldering is required to attach the

matrix onto the backpack but it's very easy to do and only takes about 5 minutes.

©Adafruit Industries Page 8 of 139

Of course, in classic Adafruit fashion, we also have a detailed tutorial showing you

how to solder, wire and control the display. We even wrote a very nice library for the

backpacks so you can get running in under half an hour, displaying images on the

matrix or numbers on the 7-segment. If you've been eyeing matrix displays but

hesitated because of the complexity, his is the solution you've been looking for!

1.2" 8x8 Matrix

This version of the LED backpack is designed for the 1.2" 8x8 matrices. They measure

only 1.2"x1.2" so its a shame to use a massive array of chips to control it. This

backpack solves the annoyance of using 16 pins or a bunch of chips by having an I2C

constant-current matrix controller sit neatly on the back of the PCB. The controller

chip takes care of everything, drawing all 64 LEDs in the background. All you have to

do is write data to it using the 2-pin I2C interface. There are two address select pins

so you can select one of 8 addresses to control up to 8 of these on a single 2-pin I2C

bus (as well as whatever other I2C chips or sensors you like). The driver chip can 'dim'

the entire display from 1/16 brightness up to full brightness in 1/16th steps. It cannot

dim individual LEDs, only the entire display at once.

Assembly

These instruction apply to the 1.2" Matrix only! If you have a Bi-Color or 0.8"

square matrix, follow the links on the left side of the page.

©Adafruit Industries Page 9 of 139

When you buy a pack from Adafruit, it

comes with the fully tested and

assembled backpack as well as a 8x8

matrix in one of the colors we provide

(say, red, yellow or green). You'll need to

solder the matrix onto the backpack but

its an easy task.

WATCH OUT! THE MATRIX MUST BE

INSTALLED THE RIGHT WAY!

First look for the line of text on the side

of the LED matrix

WATCH OUT! THE MATRIX MUST BE

INSTALLED THE RIGHT WAY!

Find the corner of the backpack with a

filled in dot. Make sure that the text on

the side of the matrix is on the same side

as the filled dot

©Adafruit Industries Page 10 of 139

WATCH OUT! THE MATRIX MUST BE

INSTALLED THE RIGHT WAY!

Slide the matrix into the backpack and

flip it over. Triple check that the text is on

the same side as the From Adafruit text

Solder in all 16 pins

Then clip the matrix leads short

©Adafruit Industries Page 11 of 139

Now you're ready to wire it up to a

microcontroller. We'll assume you want to

use a 4pin header. You can also of course

solder wires directly. Place a 4-pin piece

of header with the LONG pins down into

the breadboard.

Place the soldered backpack on top of

the header.

Solder the four pins

That's it! now you're ready to run the firmware!

©Adafruit Industries Page 12 of 139

Arduino Setup

Mini 8x8 Matrix Software

We wrote a basic library to help you work with the mini 8x8 matrix backpack. The

library is written for the Arduino and will work with any Arduino as it just uses the I2C

pins. The code is very portable and can be easily adapted to any I2C-capable micro.

Wiring to the matrix is really easy

Connect CLK to the I2C clock - on Arduino UNO thats Analog #5, on the

Leonardo its Digital #3, on the Mega its digital #21

Connect DAT to the I2C data - on Arduino UNO thats Analog #4, on the

Leonardo its Digital #2, on the Mega its digital #20

Connect GND to common ground

Connect VCC+ to power - 5V is best but 3V also seems to work for 3V

microcontrollers.

Next, download the Adafruit LED Backpack library and the Adafruit GFX library from

the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit LED Backpack library and install it

Search for the Adafruit GFX library and install it

•

•

•

•

©Adafruit Industries Page 13 of 139

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

You should now be able to select the File->Examples->Adafruit_LEDBackpack-

>matrix88 example sketch. Upload it to your Arduino as usual. You should see a basic

test program that goes through a bunch of different drawing routine

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

Once you're happy that the matrix works, you can write your own sketches. The 8x8

matrix supports everything the Adafruit GFX library - drawing pixels, lines, rectancles,

circles, triangles, roundrects, and small bitmaps. For more details check out the GFX

page which will detail all of the GFX routines (https://adafru.it/aPx).

All the drawing routines only change the display memory kept by the Arduino. Don't

forget to call writeDisplay() after drawing to 'save' the memory out to the matrix via

I2C.

©Adafruit Industries Page 14 of 139

There are also a few small routines that are special to the matrix:

setBrightness(brighness)- will let you change the overall brightness of the entire

display. 0 is least bright, 15 is brightest and is what is initialized by the display

when you start. You can call this function at any time to change the brightness of

the -entire- display

blinkRate(rate) - You can blink the entire display. 0 is no blinking. 1, 2 or 3 is for

display blinking.You can call this function at any time to change the blink rate of

the -entire- display

The default orientation for graphics

commands on this display places pixel

(0,0) at the top-left when the header is at

the left and Adafruit logo at the right. To

use the matrix as shown above (header

at top, logo at bottom), call

matrix.setRotation(3) before issuing

graphics commands.

CircuitPython Wiring and Setup

Wiring

It's easy to use LED Matrices with CircuitPython and the Adafruit CircuitPython

HT16K33 (https://adafru.it/u1E) library. This module allows you to easily write

CircuitPython code to control the display.

You can use this sensor with any CircuitPython microcontroller board.

We'll cover how to wire the LED Matrix to your CircuitPython microcontroller board.

First assemble your LED Matrix.

Connect the LED Matrix to your microcontroller board as shown below.

•

•

©Adafruit Industries Page 15 of 139

Microcontroller 3V to LED Matrix

VIN

Microcontroller GND to LED

Matrix GND

Microcontroller SCL to LED

Matrix SCL

Microcontroller SDA to LED

Matrix SDA

Download Fritzing Object

https://adafru.it/Ify

Library Setup

To use the LED backpack with your Adafruit CircuitPython (https://adafru.it/BlM) board

you'll need to install the Adafruit_CircuitPython_HT16K33 (https://adafru.it/u1E) library

on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board. Next you'll need to install the necessary libraries to use

the hardware--read below and carefully follow the referenced steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx).

Bundle Install

For express boards that have extra flash storage, like the Feather/Metro M0 express

and Circuit Playground express, you can easily install the necessary libraries with Ad

afruit's CircuitPython bundle (https://adafru.it/zdx). This is an all-in-one package that

includes the necessary libraries to use the LED backpack display with CircuitPython.

For details on installing the bundle, read about CircuitPython Libraries (https://

adafru.it/ABU).

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries (https://adafru.it

/ABU) from the bundle:

adafruit_ht16k33

•

•

•

•

•

©Adafruit Industries Page 16 of 139

adafruit_bus_device

If your board supports USB mass storage, like the M0-based boards, then simply drag

the files to the board's file system. Note on boards without external SPI flash, like a

Feather M0 or Trinket/Gemma M0, you might run into issues on Mac OSX with hidden

files taking up too much space when drag and drop copying, see this page for a

workaround (https://adafru.it/u1d).

Before continuing make sure your board's lib folder or root filesystem has at least

the adafruit_ht16k33 and adafruit_bus_device folders/modules copied over.

Python Wiring and Setup

Wiring

It's easy to use LED Matrices with Python and the Adafruit CircuitPython HT16K33 (htt

ps://adafru.it/u1E) library. This library allows you to easily write Python code to control

the display.

We'll cover how to wire the LED Matrix to your Raspberry Pi. First assemble your LED

Matrix.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the LED Matrix as shown below to your Raspberry Pi.

•

©Adafruit Industries Page 17 of 139

Raspberry Pi 3.3V to LED Matrix VIN

Raspberry Pi GND to LED

Matrix GND

Raspberry Pi SCL to LED Matrix SCL

Raspberry Pi SDA to LED

Matrix SDA

Download Fritzing Object

https://adafru.it/Ifz

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of HT16K33 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ht16k33

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

•

•

•

•

•

•

©Adafruit Industries Page 18 of 139

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

CircuitPython and Python Usage

The following section will show how to control the LED backpack from the board's

Python prompt / REPL. You'll walk through how to control the LED display and learn

how to use the CircuitPython module built for the display.

First connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Initialization

First you'll need to initialize the I2C bus for your board. It's really easy, first import the

necessary modules. In this case, we'll use board and Matrix8x8 .

Then just use board.I2C() to create the I2C instance using the default SCL and

SDA pins (which will be marked on the boards pins if using a Feather or similar

Adafruit board).

Then to initialize the matrix, you just pass i2c in.

import board

from adafruit_ht16k33.matrix import Matrix8x8

i2c = board.I2C()

matrix = Matrix8x8(i2c)

If you bridged the address pads on the back of the display, you could pass in the

address. The addresses for the HT16K33 can range between 0x70 and 0x77

depending on which pads you have bridged, with 0x70 being used if you haven't

•

©Adafruit Industries Page 19 of 139

bridged any of them. For instance, if you bridge only the A0 pad, you would use

0x71 like this:

matrix = Matrix8x8(i2c, address=0x71)

Setting the Brightness

You can set the brightness of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/16 increments betw

een 0 and 1.0 with 1.0 being the brightest. So to set the display to half brightness, you

would use the following:

display.brightness = 0.5

Setting the Blink Rate

You can set the blink rate of the display, but changing it will set the brightness of the

entire display and not individual pixels. If can be adjusted in 1/4 increments between 0

and 3 with 3 being the fastest blinking. So to set the display to blink at full speed, you

would use the following:

display.blink_rate = 3

Setting Individual Pixels

To set individual pixels to on, you simply treat the matrix object as a

multidimensional list and set it to 1.

matrix[0, 0] = 1

matrix[4, 4] = 1

matrix[7, 7] = 1

Filling the Entire Matrix

To fill the entire matrix, just use the fill() function and pass in either 0 or 1 depending

on whether you want all pixels off or on. For instance, if you wanted to set everything

to on, you would use:

matrix.fill(1)

©Adafruit Industries Page 20 of 139

Shifting the Matrix

To shift the pixels on the matrix, there are 5 functions you can use. The main function,

called shift(), is used to shift the pixels, up, down, left, right, or even diagonally. By

passing a positive number, it will shift the pixels right/up and passing a negative

number will shift them left/down. For instance:

matrix.shift(2, 0)�￰ # shift pixels to the right by 2

matrix.shift(-1, 0)�￰ # shift pixels to the left by 1

matrix.shift(0, -3)�￰ # shift pixels down by 3

matrix.shift(-2, 2)�￰ # shift pixels left by 2 and up by 2

You can pass True as a third parameter to loop all the pixels that get shifted off over

to the other side.

matrix.shift(2, 0, True)�￰ # loop pixels to the right by 2

matrix.shift(-1, 0, True)�￰ # loop pixels to the left by 1

matrix.shift(0, -3, True)�￰ # loop pixels down by 3

matrix.shift(-2, 2, True)�￰ # loop pixels left by 2 and up by 2

Additionally, there are a few convenience functions that will shift the pixels by one.

These can also be passed a value of True to loop the pixels.

matrix.shift_up()�￰ �￰# Shift pixels up

matrix.shift_left()�￰ �￰# Shift pixels left

matrix.shift_down()�￰ �￰# Shift pixels down

matrix.shift_right()�￰ �￰# Shift pixels right

matrix.shift_up(True)�￰ �￰# Loop pixels up

matrix.shift_left(True)�￰ # Loop pixels left

matrix.shift_down(True)�￰ # Loop pixels down

matrix.shift_right(True)�￰ # Loop pixels right

Displaying an Image (Pillow Only)

Additionally, when using with the Raspberry Pi, you can use the Pillow library to

display an image to the Matrix. The image will need to be the same exact size as the

Matrix. In this case, it should be 8x8 pixels. As an example, you can save the image

below as myimage.png.

Download Image

https://adafru.it/ICR

©Adafruit Industries Page 21 of 139

Then if you want to display the image called myimage.png, you would use something

like this:

import board

from PIL import Image

from adafruit_ht16k33 import matrix

matrix = matrix.Matrix8x8(board.I2C())

image = Image.open("myimage.png")

matrix.image(image)

0.8" 8x8 Matrix

This version of the LED backpack is designed for these very cute miniature 8x8

matrices. They measure only 0.8"x0.8" so its a shame to use a massive array of chips

to control it. This backpack solves the annoyance of using 16 pins or a bunch of chips

by having an I2C constant-current matrix controller sit neatly on the back of the PCB.

The controller chip takes care of everything, drawing all 64 LEDs in the background.

All you have to do is write data to it using the 2-pin I2C interface. There are two

address select pins so you can select one of 4 addresses to control up to 4 of these

on a single 2-pin I2C bus (as well as whatever other I2C chips or sensors you like).

The driver chip can 'dim' the entire display from 1/16 brightness up to full brightness in

1/16th steps. It cannot dim individual LEDs, only the entire display at once.

©Adafruit Industries Page 22 of 139

Assembly

When you buy a pack from Adafruit, it

comes with the fully tested and

assembled backpack as well as a 8x8

matrix in one of the colors we provide

(say, red, yellow or green). You'll need to

solder the matrix onto the backpack but

its an easy task.

These instruction apply to the 0.8" Matrix only! If you have a Bi-Color or 1.2"

square matrix, follow the links on the left side of the page.

©Adafruit Industries Page 23 of 139

Remove the parts from packaging and

place the LED matrix OVER the silkscreen

side. It can go 'either way' - the matrix is

symmetric so as long as it goes onto the

front it will work in any orientation. Do

not solder the matrix over the chip on the

back of the backpack - it will not work

then!

Turn the backpack over so its sitting flat

on the matrix.

Solder all 16 pins.

©Adafruit Industries Page 24 of 139

Clip the long pins.

Now you're ready to wire it up to a

microcontroller. We'll assume you want to

use a 4pin header. You can also of course

solder wires directly. Place a 4-pin piece

of header with the LONG pins down into

the breadboard.

©Adafruit Industries Page 25 of 139

Place the soldered backpack on top of

the header.

Solder 'em!

That's it! now you're ready to run the firmware!

Arduino Wiring and Setup

We wrote a basic library to help you work with the mini 8x8 matrix backpack. The

library is written for the Arduino and will work with any Arduino as it just uses the I2C

pins. The code is very portable and can be easily adapted to any I2C-capable micro.

Wiring to the matrix is really easy

Connect CLK to the I2C clock - on Arduino UNO thats Analog #5, on the

Leonardo its Digital #3, on the Mega its digital #21

Connect DAT to the I2C data - on Arduino UNO thats Analog #4, on the

Leonardo its Digital #2, on the Mega its digital #20

Connect GND to common ground

Connect VCC+ to power - 5V is best but 3V also seems to work for 3V

microcontrollers.

•

•

•

•

©Adafruit Industries Page 26 of 139

Next, download the Adafruit LED Backpack library and the Adafruit GFX library from

the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit LED Backpack library and install it

Search for the Adafruit GFX library and install it

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

Once you've restarted you should be able to select the File->Examples-

>Adafruit_LEDBackpack->matrix88 example sketch. Upload it to your Arduino as

usual. You should see a basic test program that goes through a bunch of different

drawing routines

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

©Adafruit Industries Page 27 of 139

Once you're happy that the matrix works, you can write your own sketches. The 8x8

matrix supports everything the Adafruit GFX library - drawing pixels, lines, rectancles,

circles, triangles, roundrects, and small bitmaps. For more details check out the GFX

page which will detail all of the GFX routines (https://adafru.it/aPx).

All the drawing routines only change the display memory kept by the Arduino. Don't

forget to call writeDisplay() after drawing to 'save' the memory out to the matrix via

I2C.

There are also a few small routines that are special to the matrix:

setBrightness(brighness)- will let you change the overall brightness of the entire

display. 0 is least bright, 15 is brightest and is what is initialized by the display

when you start

blinkRate(rate) - You can blink the entire display. 0 is no blinking. 1, 2 or 3 is for

display blinking.

CircuitPython Wiring and Setup

Wiring

It's easy to use LED Matrices with CircuitPython and the Adafruit CircuitPython

HT16K33 (https://adafru.it/u1E) library. This module allows you to easily write

CircuitPython code to control the display.

•

•

©Adafruit Industries Page 28 of 139

You can use this sensor with any CircuitPython microcontroller board.

We'll cover how to wire the LED Matrix to your CircuitPython microcontroller board.

First assemble your LED Matrix.

Connect the LED Matrix to your microcontroller board as shown below.

Microcontroller 3V to LED Matrix

VIN

Microcontroller GND to LED

Matrix GND

Microcontroller SCL to LED

Matrix SCL

Microcontroller SDA to LED

Matrix SDA

Download Fritzing Object

https://adafru.it/Ify

Library Setup

To use the LED backpack with your Adafruit CircuitPython (https://adafru.it/BlM) board

you'll need to install the Adafruit_CircuitPython_HT16K33 (https://adafru.it/u1E) library

on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board. Next you'll need to install the necessary libraries to use

the hardware--read below and carefully follow the referenced steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx).

Bundle Install

For express boards that have extra flash storage, like the Feather/Metro M0 express

and Circuit Playground express, you can easily install the necessary libraries with Ad

afruit's CircuitPython bundle (https://adafru.it/zdx). This is an all-in-one package that

includes the necessary libraries to use the LED backpack display with CircuitPython.

For details on installing the bundle, read about CircuitPython Libraries (https://

adafru.it/ABU).

•

•

•

•

©Adafruit Industries Page 29 of 139

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries (https://adafru.it

/ABU) from the bundle:

adafruit_ht16k33

adafruit_bus_device

If your board supports USB mass storage, like the M0-based boards, then simply drag

the files to the board's file system. Note on boards without external SPI flash, like a

Feather M0 or Trinket/Gemma M0, you might run into issues on Mac OSX with hidden

files taking up too much space when drag and drop copying, see this page for a

workaround (https://adafru.it/u1d).

Before continuing make sure your board's lib folder or root filesystem has at least

the adafruit_ht16k33 and adafruit_bus_device folders/modules copied over.

Python Wiring and Setup

Wiring

It's easy to use LED Matrices with Python and the Adafruit CircuitPython HT16K33 (htt

ps://adafru.it/u1E) library. This library allows you to easily write Python code to control

the display.

We'll cover how to wire the LED Matrix to your Raspberry Pi. First assemble your LED

Matrix.

•

•

©Adafruit Industries Page 30 of 139

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the LED Matrix as shown below to your Raspberry Pi.

Raspberry Pi 3.3V to LED Matrix VIN

Raspberry Pi GND to LED

Matrix GND

Raspberry Pi SCL to LED Matrix SCL

Raspberry Pi SDA to LED

Matrix SDA

Download Fritzing Object

https://adafru.it/Ifz

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of HT16K33 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ht16k33

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

•

•

•

•

•

©Adafruit Industries Page 31 of 139

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

CircuitPython and Python Usage

The following section will show how to control the LED backpack from the board's

Python prompt / REPL. You'll walk through how to control the LED display and learn

how to use the CircuitPython module built for the display.

First connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Initialization

First you'll need to initialize the I2C bus for your board. It's really easy, first import the

necessary modules. In this case, we'll use board and Matrix8x8 .

Then just use board.I2C() to create the I2C instance using the default SCL and

SDA pins (which will be marked on the boards pins if using a Feather or similar

Adafruit board).

Then to initialize the matrix, you just pass i2c in.

import board

from adafruit_ht16k33.matrix import Matrix8x8

i2c = board.I2C()

matrix = Matrix8x8(i2c)

•

•

©Adafruit Industries Page 32 of 139

If you bridged the address pads on the back of the display, you could pass in the

address. The addresses for the HT16K33 can range between 0x70 and 0x77

depending on which pads you have bridged, with 0x70 being used if you haven't

bridged any of them. For instance, if you bridge only the A0 pad, you would use

0x71 like this:

matrix = Matrix8x8(i2c, address=0x71)

Setting the Brightness

You can set the brightness of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/16 increments betw

een 0 and 1.0 with 1.0 being the brightest. So to set the display to half brightness, you

would use the following:

display.brightness = 0.5

Setting the Blink Rate

You can set the blink rate of the display, but changing it will set the brightness of the

entire display and not individual pixels. If can be adjusted in 1/4 increments between 0

and 3 with 3 being the fastest blinking. So to set the display to blink at full speed, you

would use the following:

display.blink_rate = 3

Setting Individual Pixels

To set individual pixels to on, you simply treat the matrix object as a

multidimensional list and set it to 1.

matrix[0, 0] = 1

matrix[4, 4] = 1

matrix[7, 7] = 1

©Adafruit Industries Page 33 of 139

Filling the Entire Matrix

To fill the entire matrix, just use the fill() function and pass in either 0 or 1 depending

on whether you want all pixels off or on. For instance, if you wanted to set everything

to on, you would use:

matrix.fill(1)

Shifting the Matrix

To shift the pixels on the matrix, there are 5 functions you can use. The main function,

called shift(), is used to shift the pixels, up, down, left, right, or even diagonally. By

passing a positive number, it will shift the pixels right/up and passing a negative

number will shift them left/down. For instance:

matrix.shift(2, 0)�￰ # shift pixels to the right by 2

matrix.shift(-1, 0)�￰ # shift pixels to the left by 1

matrix.shift(0, -3)�￰ # shift pixels down by 3

matrix.shift(-2, 2)�￰ # shift pixels left by 2 and up by 2

You can pass True as a third parameter to loop all the pixels that get shifted off over

to the other side.

matrix.shift(2, 0, True)�￰ # loop pixels to the right by 2

matrix.shift(-1, 0, True)�￰ # loop pixels to the left by 1

matrix.shift(0, -3, True)�￰ # loop pixels down by 3

matrix.shift(-2, 2, True)�￰ # loop pixels left by 2 and up by 2

Additionally, there are a few convenience functions that will shift the pixels by one.

These can also be passed a value of True to loop the pixels.

matrix.shift_up()�￰ �￰# Shift pixels up

matrix.shift_left()�￰ �￰# Shift pixels left

matrix.shift_down()�￰ �￰# Shift pixels down

matrix.shift_right()�￰ �￰# Shift pixels right

matrix.shift_up(True)�￰ �￰# Loop pixels up

matrix.shift_left(True)�￰ # Loop pixels left

matrix.shift_down(True)�￰ # Loop pixels down

matrix.shift_right(True)�￰ # Loop pixels right

Displaying an Image (Pillow Only)

Additionally, when using with the Raspberry Pi, you can use the Pillow library to

display an image to the Matrix. The image will need to be the same exact size as the

©Adafruit Industries Page 34 of 139

Matrix. In this case, it should be 8x8 pixels. As an example, you can save the image

below as myimage.png.

Download Image

https://adafru.it/ICR

Then if you want to display the image called myimage.png, you would use something

like this:

import board

from PIL import Image

from adafruit_ht16k33 import matrix

matrix = matrix.Matrix8x8(board.I2C())

image = Image.open("myimage.png")

matrix.image(image)

1.2" 16x8 Matrix

With the 16x8 LED Matrix we've doubled your project's matrix capacity by making it

super easy to get two separate 8x8 matrices onto one handy board! This version of

the LED backpack is designed for two of the 1.2" 8x8 matrices. They measure only

1.2"x1.2" so its a shame to use a massive array of chips to control it. This backpack

solves the annoyance of using 32 pins or a bunch of chips by having an I2C constant-

current matrix controller sit neatly on the back of the PCB. The controller chip takes

©Adafruit Industries Page 35 of 139

care of everything, drawing all 128 LEDs in the background. All you have to do is write

data to it using the 2-pin I2C interface. There are two address select pins so you can

select one of 8 addresses to control up to 8 of these on a single 2-pin I2C bus (as

well as whatever other I2C chips or sensors you like). The driver chip can 'dim' the

entire display from 1/16 brightness up to full brightness in 1/16th steps. It cannot dim

individual LEDs, only the entire display at once.

Arduino Setup

16x8 Matrix Software

We wrote a basic library to help you work with the 16x8 matrix backpack. The library is

written for the Arduino and will work with any Arduino as it just uses the I2C pins. The

code is very portable and can be easily adapted to any I2C-capable micro.

Wiring to the matrix is really easy

Connect CLK to the I2C clock - on Arduino UNO thats Analog #5, on the

Leonardo its Digital #3, on the Mega its digital #21

Connect DAT to the I2C data - on Arduino UNO thats Analog #4, on the

Leonardo its Digital #2, on the Mega its digital #20

Connect GND to common ground

Connect VCC+ to power - 5V is best but 3V also seems to work for 3V

microcontrollers.

•

•

•

•

©Adafruit Industries Page 36 of 139

Next, download the Adafruit LED Backpack library and the Adafruit GFX library from

the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit LED Backpack library and install it

Search for the Adafruit GFX library and install it

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

You should now be able to select the File->Examples->Adafruit_LEDBackpack-

>matrix88 example sketch. Upload it to your Arduino as usual. You should see a basic

test program that goes through a bunch of different drawing routine

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

©Adafruit Industries Page 37 of 139

Once you're happy that the matrix works, you can write your own sketches. The 8x8

matrix supports everything the Adafruit GFX library - drawing pixels, lines, rectancles,

circles, triangles, roundrects, and small bitmaps. For more details check out the GFX

page which will detail all of the GFX routines (https://adafru.it/aPx).

All the drawing routines only change the display memory kept by the Arduino. Don't

forget to call writeDisplay() after drawing to 'save' the memory out to the matrix via

I2C.

There are also a few small routines that are special to the matrix:

setBrightness(brighness)- will let you change the overall brightness of the entire

display. 0 is least bright, 15 is brightest and is what is initialized by the display

when you start. You can call this function at any time to change the brightness of

the -entire- display

blinkRate(rate) - You can blink the entire display. 0 is no blinking. 1, 2 or 3 is for

display blinking.You can call this function at any time to change the blink rate of

the -entire- display

•

•

©Adafruit Industries Page 38 of 139

The default orientation for graphics

commands on this display places pixel

(0,0) at the top-left when the header is at

the left and Adafruit logo at the right. To

use the matrix as shown above (header

at top, logo at bottom), call

matrix.setRotation(3) before issuing

graphics commands.

CircuitPython Wiring and Setup

Wiring

It's easy to use LED Matrices with CircuitPython and the Adafruit CircuitPython

HT16K33 (https://adafru.it/u1E) library. This module allows you to easily write

CircuitPython code to control the display.

You can use this sensor with any CircuitPython microcontroller board.

We'll cover how to wire the LED Matrix to your CircuitPython microcontroller board.

First assemble your LED Matrix.

Connect the LED Matrix to your microcontroller board as shown below.

Microcontroller 3V to LED Matrix

VIN

Microcontroller GND to LED

Matrix GND

Microcontroller SCL to LED

Matrix SCL

Microcontroller SDA to LED

Matrix SDA

Download Fritzing Object

https://adafru.it/IB5

•

•

•

•

©Adafruit Industries Page 39 of 139

Library Setup

To use the LED backpack with your Adafruit CircuitPython (https://adafru.it/BlM) board

you'll need to install the Adafruit_CircuitPython_HT16K33 (https://adafru.it/u1E) library

on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board. Next you'll need to install the necessary libraries to use

the hardware--read below and carefully follow the referenced steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx).

Bundle Install

For express boards that have extra flash storage, like the Feather/Metro M0 express

and Circuit Playground express, you can easily install the necessary libraries with Ad

afruit's CircuitPython bundle (https://adafru.it/zdx). This is an all-in-one package that

includes the necessary libraries to use the LED backpack display with CircuitPython.

For details on installing the bundle, read about CircuitPython Libraries (https://

adafru.it/ABU).

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries (https://adafru.it

/ABU) from the bundle:

adafruit_ht16k33

adafruit_bus_device

If your board supports USB mass storage, like the M0-based boards, then simply drag

the files to the board's file system. Note on boards without external SPI flash, like a

Feather M0 or Trinket/Gemma M0, you might run into issues on Mac OSX with hidden

files taking up too much space when drag and drop copying, see this page for a

workaround (https://adafru.it/u1d).

Before continuing make sure your board's lib folder or root filesystem has at least

the adafruit_ht16k33 and adafruit_bus_device folders/modules copied over.

•

•

©Adafruit Industries Page 40 of 139

Python Wiring and Setup

Wiring

It's easy to use LED Matrices with Python and the Adafruit CircuitPython HT16K33 (htt

ps://adafru.it/u1E) library. This library allows you to easily write Python code to control

the display.

We'll cover how to wire the LED Matrix to your Raspberry Pi. First assemble your LED

Matrix.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the LED Matrix as shown below to your Raspberry Pi.

Raspberry Pi 3.3V to LED Matrix VIN

Raspberry Pi GND to LED

Matrix GND

Raspberry Pi SCL to LED Matrix SCL

Raspberry Pi SDA to LED

Matrix SDA

•

•

•

•

©Adafruit Industries Page 41 of 139

Download Fritzing Object

https://adafru.it/IB6

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of HT16K33 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ht16k33

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

•

•

•

©Adafruit Industries Page 42 of 139

CircuitPython and Python Usage

The following section will show how to control the LED backpack from the board's

Python prompt / REPL. You'll walk through how to control the LED display and learn

how to use the CircuitPython module built for the display.

First connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Initialization

First you'll need to initialize the I2C bus for your board. It's really easy, first import the

necessary modules. In this case, we'll use board and MatrixBackpack16x8 .

Then just use board.I2C() to create the I2C instance using the default SCL and

SDA pins (which will be marked on the boards pins if using a Feather or similar

Adafruit board).

Then to initialize the matrix, you just pass i2c in.

import board

from adafruit_ht16k33.matrix import MatrixBackpack16x8

i2c = board.I2C()

matrix = MatrixBackpack16x8(i2c)

If you bridged the address pads on the back of the display, you could pass in the

address. The addresses for the HT16K33 can range between 0x70 and 0x77

depending on which pads you have bridged, with 0x70 being used if you haven't

bridged any of them. For instance, if you bridge only the A0 pad, you would use

0x71 like this:

matrix = MatrixBackpack16x8(i2c, address=0x71)

Setting the Brightness

You can set the brightness of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/16 increments betw

een 0 and 1.0 with 1.0 being the brightest. So to set the display to half brightness, you

would use the following:

©Adafruit Industries Page 43 of 139

display.brightness = 0.5

Setting the Blink Rate

You can set the blink rate of the display, but changing it will set the brightness of the

entire display and not individual pixels. If can be adjusted in 1/4 increments between 0

and 3 with 3 being the fastest blinking. So to set the display to blink at full speed, you

would use the following:

display.blink_rate = 3

Setting Individual Pixels

To set individual pixels to on, you simply treat the matrix object as a

multidimensional list and set it to 1.

matrix[0, 0] = 1

matrix[4, 4] = 1

matrix[7, 7] = 1

Filling the Entire Matrix

To fill the entire matrix, just use the fill() function and pass in either 0 or 1 depending

on whether you want all pixels off or on. For instance, if you wanted to set everything

to on, you would use:

matrix.fill(1)

Shifting the Matrix

To shift the pixels on the matrix, there are 5 functions you can use. The main function,

called shift(), is used to shift the pixels, up, down, left, right, or even diagonally. By

passing a positive number, it will shift the pixels right/up and passing a negative

number will shift them left/down. For instance:

matrix.shift(2, 0)�￰ # shift pixels to the right by 2

matrix.shift(-1, 0)�￰ # shift pixels to the left by 1

matrix.shift(0, -3)�￰ # shift pixels down by 3

matrix.shift(-2, 2)�￰ # shift pixels left by 2 and up by 2

©Adafruit Industries Page 44 of 139

You can pass True as a third parameter to loop all the pixels that get shifted off over

to the other side.

matrix.shift(2, 0, True)�￰ # loop pixels to the right by 2

matrix.shift(-1, 0, True)�￰ # loop pixels to the left by 1

matrix.shift(0, -3, True)�￰ # loop pixels down by 3

matrix.shift(-2, 2, True)�￰ # loop pixels left by 2 and up by 2

Additionally, there are a few convenience functions that will shift the pixels by one.

These can also be passed a value of True to loop the pixels.

matrix.shift_up()�￰ �￰# Shift pixels up

matrix.shift_left()�￰ �￰# Shift pixels left

matrix.shift_down()�￰ �￰# Shift pixels down

matrix.shift_right()�￰ �￰# Shift pixels right

matrix.shift_up(True)�￰ �￰# Loop pixels up

matrix.shift_left(True)�￰ # Loop pixels left

matrix.shift_down(True)�￰ # Loop pixels down

matrix.shift_right(True)�￰ # Loop pixels right

Here's what shifting a smiley face to the right looks like:

Displaying an Image (Pillow Only)

Additionally, when using with the Raspberry Pi, you can use the Pillow library to

display an image to the Matrix. The image will need to be the same exact size as the

Matrix. In this case, it should be 16x8 pixels. As an example, you can save the image

below as myimage.png.

Download Image

https://adafru.it/ICS

©Adafruit Industries Page 45 of 139

Then if you want to display the image called myimage.png, you would use something

like this:

import board

from PIL import Image

from adafruit_ht16k33 import matrix

matrix = matrix.MatrixBackpack16x8(board.I2C())

image = Image.open("myimage.png")

matrix.image(image)

0.54" Alphanumeric

This version of the LED backpack is designed for two dual 14-segment "Alphanumeric"

displays. These 14-segment displays normally require 18 pins (4 'characters' and 14

total segments each) This backpack solves the annoyance of using 18 pins or a bunch

of chips by having an I2C constant-current matrix controller sit neatly on the back of

the PCB. The controller chip takes care of everything, drawing all the LEDs in the

background. All you have to do is write data to it using the 2-pin I2C interface.

There are three address select pins so you can select one of 8 addresses to control

up to 8 of these on a single 2-pin I2C bus (as well as whatever other I2C chips or

sensors you like). The driver chip can 'dim' the entire display from 1/16 brightness up

to full brightness in 1/16th steps. It cannot dim individual LEDs, only the entire display

at once.

©Adafruit Industries Page 46 of 139

Assembly

Attaching the Backpack

When you buy a pack from Adafruit, it

comes with the fully tested and

assembled backpack as well as two dual

14-segment display in one of the colors

we provide (say, red, yellow, blue or

green). You'll need to solder the matrix

onto the backpack but it's an easy task.

©Adafruit Industries Page 47 of 139

Remove the parts from packaging and

place the LED matrices OVER the

silkscreen side. DO NOT PUT THE

DISPLAY ON UPSIDE DOWN OR IT

WONT WORK!! Check the image below to

make sure the 'decimal point' dots are on

the bottom, matching the silkscreen.

Turn the backpack over so it is sitting flat

on the matrix.

©Adafruit Industries Page 48 of 139

Solder all of the pins!

©Adafruit Industries Page 49 of 139

Clip the long pins.

Check your work, making sure each pin

is nicely soldered, and there's no cold

solder joints or shorted pins

©Adafruit Industries Page 50 of 139

Attaching Header

Prepare the header strip:
Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

Add the Backpack:
Place the backpack board over the pins

so that the short pins poke through the

breakout pads

Solder all 5 pins!

That's it! now you're ready to run the firmware on your Arduino!

Arduino Wiring and Setup

©Adafruit Industries Page 51 of 139

Downloading the Arduino Library

We wrote a basic library to help you work with the alphanumeric backpack. The

library is written for the Arduino and will work with any Arduino as it just uses the I2C

pins. The code is very portable and can be easily adapted to any I2C-capable micro.

Begin by downloading our Adafruit LED Backpack library (https://adafru.it/aLI)and the

Adafruit GFX library (https://adafru.it/aJa) from the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit LED Backpack library and install it

Search for the Adafruit GFX library and install it

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

©Adafruit Industries Page 52 of 139

Wiring!

Nex up, let's wire it up to an Arduino. We'll be using an Arduino.

Connect CLK to the I2C clock - on Arduino UNO thats Analog #5, on the

Leonardo it's Digital #3, on the Mega it's digital #21

Connect DAT to the I2C data - on Arduino UNO thats Analog #4, on the

Leonardo it's Digital #2, on the Mega it's digital #20

Connect GND to common ground

Connect VCC+ to power - 5V is best but 3V will work if that's all you've got (it

will be dimmer)

Connect Vi2c to your microcontroller's logic level (3-5V) - If you're using an

Arduino, this is almost certainly 5V. If its a 3V Arduino such as a Due, connect it

to 3V

Both Vi2c and Vcc MUST be connected to 3 to 5VDC! Vcc is for the LED driver power,

Vi2c is what sets the logic level for communication to the chip.

Load Demo

Restart the Arduino IDE and load up the File->Adafruit_LEDBackpack->quadalphanum

demo

•

•

•

•

•

©Adafruit Industries Page 53 of 139

Upload to your Arduino, and open up the Serial console at 9600 baud speed. You'll

see each digit light up all the segments, then the display will scroll through the 'font

table' showing every character that it knows how to display. Finally, you'll get a notice

to start typing into the serial console. Type a message and hit return, you'll see it

scroll onto the display!

©Adafruit Industries Page 54 of 139

Library Reference

For the quad displays, we have a special object that can handle ascii data for easy

printing.

You can create the object with

Adafruit_AlphaNum4 alpha4 = Adafruit_AlphaNum4();

There's no arguments or pins because the backpacks use the fixed I2C pins.

By default, the address is 0x70, but you can pass in the I2C address used when you

initialize the display with begin

alpha4.begin(0x70); // pass in the address

Next up, the segments can be turned on/off for each digit by writing the 'raw' bitmap

you want, for example, all the LEDs off on digit #3 is

alpha4.writeDigitRaw(3, 0x0);

All the segments on for digit #0 is

alpha4.writeDigitRaw(0, 0x3FFF);

This is the segment map:

©Adafruit Industries Page 55 of 139

the 16 bit digit you pass in for raw image has this mapping:

0 DP N M L K J H G2 G1 F E D C B A

The first bit isn't used, you can make it 0 or 1

To turn on just the A segment, use 0x0001

To turn on just the G1 segment, use 0x0040

ASCII data

If you're just looking to print 'text' you can use our font table, just pass in an ASCII

character!

For example, to set digit #0 to A call:

alpha4.writeDigitAscii(0, 'A')

Writing Data

Don't forget to 'write' the data to the display with

alpha4.writeDisplay();

That's what actually 'sets' the data onto the LEDs!

©Adafruit Industries Page 56 of 139

CircuitPython Wiring and Setup

Wiring

It's easy to use LED AlphaNumeric Displays with CircuitPython and the Adafruit

CircuitPython HT16K33 (https://adafru.it/u1E) library. This module allows you to easily

write CircuitPython code to control the display.

You can use this sensor with any CircuitPython microcontroller board.

We'll cover how to wire the AlphaNumeric Display to your CircuitPython

microcontroller board. First assemble your AlphaNumeric Display.

Connect the AlphaNumeric Display to your microcontroller board as shown below.

Microcontroller 3V to AlphaNumeric

Display I2C VIN

Microcontroller 3V to AlphaNumeric

Display VIN

Microcontroller GND to

AlphaNumeric Display GND

Microcontroller SCL to

AlphaNumeric Display SCL

Microcontroller SDA to

AlphaNumeric Display SDA

Download Fritzing Object

https://adafru.it/IB7

Library Setup

To use the LED backpack with your Adafruit CircuitPython (https://adafru.it/BlM) board

you'll need to install the Adafruit_CircuitPython_HT16K33 (https://adafru.it/u1E) library

on your board.

•

•

•

•

•

©Adafruit Industries Page 57 of 139

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board. Next you'll need to install the necessary libraries to use

the hardware--read below and carefully follow the referenced steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx).

Bundle Install

For express boards that have extra flash storage, like the Feather/Metro M0 express

and Circuit Playground express, you can easily install the necessary libraries with Ad

afruit's CircuitPython bundle (https://adafru.it/zdx). This is an all-in-one package that

includes the necessary libraries to use the LED backpack display with CircuitPython.

For details on installing the bundle, read about CircuitPython Libraries (https://

adafru.it/ABU).

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries (https://adafru.it

/ABU) from the bundle:

adafruit_ht16k33

adafruit_bus_device

If your board supports USB mass storage, like the M0-based boards, then simply drag

the files to the board's file system. Note on boards without external SPI flash, like a

Feather M0 or Trinket/Gemma M0, you might run into issues on Mac OSX with hidden

files taking up too much space when drag and drop copying, see this page for a

workaround (https://adafru.it/u1d).

Before continuing make sure your board's lib folder or root filesystem has at least

the adafruit_ht16k33 and adafruit_bus_device folders/modules copied over.

•

•

©Adafruit Industries Page 58 of 139

Python Wiring and Setup

Wiring

It's easy to use AlphaNumeric Displays with Python and the Adafruit CircuitPython

HT16K33 (https://adafru.it/u1E) library. This library allows you to easily write Python

code to control the display.

We'll cover how to wire the AlphaNumeric Display to your Raspberry Pi. First

assemble your AlphaNumeric Display.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the AlphaNumeric Display as shown below to your Raspberry Pi.

Raspberry Pi 3.3V to AlphaNumeric

Display I2C VIN

Raspberry Pi 3.3V to AlphaNumeric

Display VIN

Raspberry Pi GND to AlphaNumeric

Display GND

Raspberry Pi SCL to AlphaNumeric

Display SCL

Raspberry Pi SDA to AlphaNumeric

Display SDA

•

•

•

•

•

©Adafruit Industries Page 59 of 139

Download Fritzing Object

https://adafru.it/IB8

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of HT16K33 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ht16k33

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

•

•

•

©Adafruit Industries Page 60 of 139

CircuitPython and Python Usage

The following section will show how to control the LED backpack from the board's

Python prompt / REPL. You'll walk through how to control the LED display and learn

how to use the CircuitPython module built for the display.

First connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Initialization

First you'll need to initialize the I2C bus for your board. It's really easy, first import the

necessary modules. In this case, we'll use board and Seg14x4 .

Then just use board.I2C() to create the I2C instance using the default SCL and

SDA pins (which will be marked on the boards pins if using a Feather or similar

Adafruit board).

Then to initialize the display, you just pass i2c in.

import board

from adafruit_ht16k33.segments import Seg14x4

i2c = board.I2C()

display = Seg14x4(i2c)

If you bridged the address pads on the back of the display, you could pass in the

address. The addresses for the HT16K33 can range between 0x70 and 0x77

depending on which pads you have bridged, with 0x70 being used if you haven't

bridged any of them. For instance, if you bridge only the A0 pad, you would use

0x71 like this:

display = Seg14x4(i2c, address=0x71)

Setting the Brightness

You can set the brightness of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/16 increments betw

een 0 and 1.0 with 1.0 being the brightest. So to set the display to half brightness, you

would use the following:

©Adafruit Industries Page 61 of 139

display.brightness = 0.5

Setting the Blink Rate

You can set the blink rate of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/4 increments betw

een 0 and 3 with 3 being the fastest blinking. So to set the display to blink at full

speed, you would use the following:

display.blink_rate = 3

Printing Text

To print text to the display, you just use the print function. So if we want to print ABCD,

we would use the following:

display.print("ABCD")

Printing Numbers

Printing numbers is done similar to printing text, except without the quotes, though

you can still print numbers in a string as well.

display.print(1234)

Printing Hexidecimal Values

To print hexidecimal values, you use the print_hex function:

display.print_hex(0x1A2B)

Setting Individual Characters

To set individual characters, you simply treat the display object as a list and set it

to the value that you would like.

display[0] = '1'

display[1] = '2'

©Adafruit Industries Page 62 of 139

display[2] = 'A'

display[3] = 'B'

Setting Individual Segments

To set individual segments to turn on or off, you would use the set_digit_raw function

to pass the digit that you want to change and the bitmask. This can be really useful

for creating your own characters. The bitmask corresponds to the following diagram.

The highest bit is not used, so an X represents that spot to indicate that.

The bitmask is a 16-bit number that can be passed in as a single Hexidecimal,

Decimal, or binary number. It can also be passed in as a list or tuple containing 2

separate 8-bit numbers. Here are some of the ways to set the digits. All of these

different methods create a box with an X in the center:

display.set_digit_raw(0, 0x2D3F)

display.set_digit_raw(1, 0b0010110100111111)

display.set_digit_raw(2, (0b00101101, 0b00111111))

display.set_digit_raw(3, [0x2D, 0x3F])

©Adafruit Industries Page 63 of 139

Filling all Segments

To fill the entire display, just use the fill() function and pass in either 0 or 1 depending

on whether you want all segments off or on. For instance, if you wanted to set

everything to on, you would use:

display.fill(1)

Scrolling Display Manually

If you want to scroll the displayed data to the left, you can use the scroll()

function. You can pass in the number of places that you want to scroll. The right-most

digit will remain unchanged and you will need to set that manually. After scrolling, you

will need to call the show function. For example if you wanted to print an A and then

scroll it over to spaces, you would do the following.

display.print("A")

display.scroll(2)

display[3] = " "

display.show()

©Adafruit Industries Page 64 of 139

Displaying an Automatic Scrolling Marquee

To make displaying long text easier, we've added a marquee function. You just pass it

the full string. Optionally, you can pass it the amount of delay between each

character:

display.marquee("This is a really long string ")

By default it is 0.25 seconds, but you can change this by providing a second

parameter. You can optionally pass False for a third parameter if you would not like

to have it loop. So if you wanted each character to display for half a second and didn't

want it to loop, you would use the following:

display.marquee('This is a really long string ', 0.5, False)

0.56" 7-Segment Backpack

This version of the LED backpack is designed for these big bright 7-segment displays.

These 7-segment displays normally require 13 pins (5 'characters' and 8 total

segments each) This backpack solves the annoyance of using 13 pins or a bunch of

chips by having an I2C constant-current matrix controller sit neatly on the back of the

PCB. The controller chip takes care of everything, drawing all the LEDs in the

background. All you have to do is write data to it using the 2-pin I2C interface. There

are three address select pins so you can select one of 8 addresses to control up to 8

of these on a single 2-pin I2C bus (as well as whatever other I2C chips or sensors you

like). The driver chip can 'dim' the entire display from 1/16 brightness up to full

brightness in 1/16th steps. It cannot dim individual LEDs, only the entire display at

once.

©Adafruit Industries Page 65 of 139

Assembly

When you buy a pack from Adafruit, it

comes with the fully tested and

assembled backpack as well as a 7-

segment display in one of the colors we

provide (say, red, yellow, blue or green).

You'll need to solder the matrix onto the

backpack but it's an easy task.

Remove the parts from packaging and

place the LED matrix OVER the silkscreen

side. DO NOT PUT THE DISPLAY ON

UPSIDE DOWN OR IT WONT WORK!!

Check the image below to make sure the

'decimal point' dots are on the bottom,

matching the silkscreen.

©Adafruit Industries Page 66 of 139

Turn the backpack over so it is sitting flat

on the matrix.

Solder all 14 pins.

©Adafruit Industries Page 67 of 139

Clip the long pins.

Now you're ready to wire it up to a

microcontroller. We'll assume you want to

use a 4pin header. You can also of course

solder wires directly. Place a 4-pin piece

of header with the LONG pins down into

the breadboard.

©Adafruit Industries Page 68 of 139

Place the soldered backpack on top of

the header and Solder 'em!

That's it! now you're ready to run the firmware!

Arduino Setup

Seven-Segment Backpack Firmware

We wrote a basic library to help you work with the 7-segment backpack. The library is

written for the Arduino and will work with any Arduino as it just uses the I2C pins. The

code is very portable and can be easily adapted to any I2C-capable micro.

Wiring to the matrix is really easy

Connect CLK to the I2C clock - on Arduino UNO thats Analog #5, on the

Leonardo it's Digital #3, on the Mega it's digital #21

Connect DAT to the I2C data - on Arduino UNO thats Analog #4, on the

Leonardo it's Digital #2, on the Mega it's digital #20

Connect GND to common ground

Connect VCC+ to power - 5V is best but 3V also seems to work for 3V

microcontrollers.

Next, download the Adafruit LED Backpack library and the Adafruit GFX library from

the Arduino library manager.

Open up the Arduino library manager:

•

•

•

•

©Adafruit Industries Page 69 of 139

Search for the Adafruit LED Backpack library and install it

Search for the Adafruit GFX library and install it

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

Once you've restarted you should be able to select the

File>Examples>Adafruit_LEDBackpack>sevenseg example sketch. Upload it to your

Arduino as usual. You should see a basic test program that goes through a bunch of

different routines.

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

©Adafruit Industries Page 70 of 139

Once you're happy that the matrix works, you can write your own sketches.

There's a few ways you can draw to the display. The easiest is to just call print - just

like you do with Serial

print(variable,HEX) - this will print a hexidecimal number, from 0000 up to FFFF

print(variable,DEC) or print(variable) - this will print a decimal integer, from 0000

up to 9999

If you need more control, you can call writeDigitNum(location, number) - this will write

the number (0-9) to a single location. Location #0 is all the way to the left, location #2

is the colon dots so you probably want to skip it, location #4 is all the way to the right.

If you want a decimal point, call writeDigitNum(location, number, true) which will paint

the decimal point. To draw the colon, usedrawColon(true or false)

If you want even more control, you can call writeDigitRaw(location,bitmask) to draw a

raw 8-bit mask (as stored in a uint8_t) to that location.

All the drawing routines only change the display memory kept by the Arduino. Don't

forget to call writeDisplay() after drawing to 'save' the memory out to the matrix via

I2C.

•

•

©Adafruit Industries Page 71 of 139

There are also a few small routines that are special to the backpack:

setBrightness(brightness)- will let you change the overall brightness of the entire

display. 0 is least bright, 15 is brightest and is what is initialized by the display

when you start

blinkRate(rate) - You can blink the entire display. 0 is no blinking. 1, 2 or 3 is for

display blinking.

CircuitPython Wiring and Setup

Wiring

It's easy to use LED 7-Segment Displays with CircuitPython and the Adafruit

CircuitPython HT16K33 (https://adafru.it/u1E) library. This module allows you to easily

write CircuitPython code to control the display.

You can use this sensor with any CircuitPython microcontroller board.

We'll cover how to wire the 7-Segment Display to your CircuitPython microcontroller

board. First assemble your 7-Segment Display.

Connect the 7-Segment Display to your microcontroller board as shown below.

Microcontroller 3V to 7-Segment

Display VIN

Microcontroller GND to 7-Segment

Display GND

Microcontroller SCL to 7-Segment

Display SCL

Microcontroller SDA to 7-Segment

Display SDA

Download Fritzing Object

https://adafru.it/ICk

•

•

•

•

•

•

©Adafruit Industries Page 72 of 139

Library Setup

To use the LED backpack with your Adafruit CircuitPython (https://adafru.it/BlM) board

you'll need to install the Adafruit_CircuitPython_HT16K33 (https://adafru.it/u1E) library

on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board. Next you'll need to install the necessary libraries to use

the hardware--read below and carefully follow the referenced steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx).

Bundle Install

For express boards that have extra flash storage, like the Feather/Metro M0 express

and Circuit Playground express, you can easily install the necessary libraries with Ad

afruit's CircuitPython bundle (https://adafru.it/zdx). This is an all-in-one package that

includes the necessary libraries to use the LED backpack display with CircuitPython.

For details on installing the bundle, read about CircuitPython Libraries (https://

adafru.it/ABU).

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries (https://adafru.it

/ABU) from the bundle:

adafruit_ht16k33

adafruit_bus_device

If your board supports USB mass storage, like the M0-based boards, then simply drag

the files to the board's file system. Note on boards without external SPI flash, like a

Feather M0 or Trinket/Gemma M0, you might run into issues on Mac OSX with hidden

files taking up too much space when drag and drop copying, see this page for a

workaround (https://adafru.it/u1d).

Before continuing make sure your board's lib folder or root filesystem has at least

the adafruit_ht16k33 and adafruit_bus_device folders/modules copied over.

•

•

©Adafruit Industries Page 73 of 139

Python Wiring and Setup

Wiring

It's easy to use 7-Segment Displays with Python and the Adafruit CircuitPython

HT16K33 (https://adafru.it/u1E) library. This library allows you to easily write Python

code to control the display.

We'll cover how to wire the 7-Segment Display to your Raspberry Pi. First assemble

your 7-Segment Display.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the 7-Segment Display as shown below to your Raspberry Pi.

Raspberry Pi 3.3V to 7-Segment

Display VIN

Raspberry Pi GND to 7-Segment

Display GND

Raspberry Pi SCL to 7-Segment

Display SCL

Raspberry Pi SDA to 7-Segment

Display SDA

•

•

•

•

©Adafruit Industries Page 74 of 139

Download Fritzing Object

https://adafru.it/ICl

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of HT16K33 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ht16k33

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

•

•

•

©Adafruit Industries Page 75 of 139

CircuitPython and Python Usage

The following section will show how to control the LED backpack from the board's

Python prompt / REPL. You'll walk through how to control the LED display and learn

how to use the CircuitPython module built for the display.

First connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Initialization

First you'll need to initialize the I2C bus for your board. It's really easy, first import the

necessary modules. In this case, we'll use board and Seg7x4 .

Then just use board.I2C() to create the I2C instance using the default SCL and

SDA pins (which will be marked on the boards pins if using a Feather or similar

Adafruit board).

Then to initialize the display, you just pass i2c in.

import board

from adafruit_ht16k33.segments import Seg7x4

i2c = board.I2C()

display = Seg7x4(i2c)

If you bridged the address pads on the back of the display, you could pass in the

address. The addresses for the HT16K33 can range between 0x70 and 0x77

depending on which pads you have bridged, with 0x70 being used if you haven't

bridged any of them. For instance, if you bridge only the A0 pad, you would use

0x71 like this:

display = Seg7x4(i2c, address=0x71)

Setting the Brightness

You can set the brightness of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/16 increments betw

een 0 and 1.0 with 1.0 being the brightest. So to set the display to half brightness, you

would use the following:

©Adafruit Industries Page 76 of 139

display.brightness = 0.5

Setting the Blink Rate

You can set the blink rate of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/4 increments betw

een 0 and 3 with 3 being the fastest blinking. So to set the display to blink at full

speed, you would use the following:

display.blink_rate = 3

Printing Text

To print text to the display, you just use the print function. For the 7-segment display,

valid characters are 0-9, letters A-F, a period, and a hyphen. So if we want to print

ABCD, we would use the following:

display.print("ABCD")

Printing Numbers

Printing numbers is done similar to printing text, except without the quotes, though

you can still print numbers in a string as well.

display.print(1234)

Printing Hexidecimal Values

To print hexidecimal values, you use the print_hex function:

display.print_hex(0x1A2B)

Setting Individual Characters

To set individual characters, you simply treat the display object as a list and set it

to the value that you would like.

©Adafruit Industries Page 77 of 139

display[0] = '1'

display[1] = '2'

display[2] = 'A'

display[3] = 'B'

Setting Individual Segments

To set individual segments to turn on or off, you would use the set_digit_raw function

to pass the digit that you want to change and the bitmask. This can be really useful

for creating your own characters. The bitmask corresponds to the following diagram:

The bitmask is a single 8-bit number that can be passed in as a single Hexidecimal,

Decimal, or binary number. This will use a couple different methods to display

8.8.EE :

display.set_digit_raw(0, 0xFF)

display.set_digit_raw(1, 0b11111111)

display.set_digit_raw(2, 0x79)

display.set_digit_raw(3, 0b01111001)

©Adafruit Industries Page 78 of 139

Filling all Segments

To fill the entire display, just use the fill() function and pass in either 0 or 1 depending

on whether you want all segments off or on. For instance, if you wanted to set

everything to on, you would use:

display.fill(1)

Scrolling Display Manually

If you want to scroll the displayed data to the left, you can use the scroll()

function. You can pass in the number of places that you want to scroll. The right-most

digit will remain unchanged and you will need to set that manually. After scrolling, you

will need to call the show function. For example if you wanted to print an A and then

scroll it over to spaces, you would do the following.

display.print("A")

display.scroll(2)

display[3] = " "

display.show()

Displaying the Colon

There are a couple of different ways to display a colon on the 7-segment display. The

first and easiest way is to use the print function:

©Adafruit Industries Page 79 of 139

display.print("12:30")

The other way to control it is to access the colon with the colon property and set it to

True or False :

display.colon = False

Displaying an Automatic Scrolling Marquee

To make displaying long text easier, we've added a marquee function. You just pass it

the full string. Optionally, you can pass it the amount of delay between each

character. This may be useful for displaying an IP address, a phone number, or other

numeric data:

display.marquee('192.168.100.102... ')

By default it is 0.25 seconds, but you can change this by providing a second

parameter. You can optionally pass False for a third parameter if you would not like

to have it loop. So if you wanted each character to display for half a second and didn't

want it to loop, you would use the following:

display.marquee('192.168.100.102... ', 0.5, False)

1.2" 7-segment Backpack

These backpacks drive the massive 1.2" 7-segment modules. With 2 leds per segment

these make a gorgeous and impressive display. The 7-segment displays normally

require 16 pins to drive. This backpack uses an I2C constant-current matrix controller

©Adafruit Industries Page 80 of 139

on the back of the PCB, so you only need 2 pins to drive it!

The controller chip takes care of multiplexing all the LEDs in the background. All you

have to do is write data to it using the 2-pin I2C interface. There are three address

select pins so you can select one of 8 addresses to control up to 8 of these on a

single 2-pin I2C bus (as well as whatever other I2C chips or sensors you like). The

driver chip can 'dim' the entire display from 1/16 brightness up to full brightness in

1/16th steps. It cannot dim individual LEDs, only the entire display at once.

Assembly

When you buy a pack from Adafruit, it

comes with the fully tested and

assembled backpack as well as a 7-

segment display in one of the colors we

provide (say, red, yellow, blue or green).

You'll need to solder the matrix onto the

backpack but its an easy task.

©Adafruit Industries Page 81 of 139

Remove the parts from packaging and

place the LED matrix OVER the silkscreen

side. DO NOT PUT THE DISPLAY ON

UPSIDE DOWN OR IT WONT WORK!!

Check the image below to make sure the

'decimal point' dots are in the same

location as the ones on the silkscreen.

Turn the backpack over so its sitting flat

on the matrix and ready to solder.

©Adafruit Industries Page 82 of 139

Then solder each pin. There are 8 on

each end for a total of 16.

That completes the basic assembly. For use on a breadboard, you will want to also

install a 5-pin header on the edge of the board.

Clip the long pins close to the board.

©Adafruit Industries Page 83 of 139

Cut the header strip to length if

necessary and insert LONG pins down

into the breadboard.

Then solder all 5 pins.

©Adafruit Industries Page 84 of 139

Arduino Wiring and Setup

Now you are ready to wire it to your microcontroller. The required connections are:

"D" - I2C Data Pin (SDA)

"C" - I2C Clock Pin (SCL)

"+" - 5v. (Will not run on 3.3v!)

"-" - GND

"IO" - I2C bus voltage.

Due to the size of this display, there are 2 LEDs in series for each segment. Because

of this, the display requires 5v to run. It will not run on 3.3v.

For use with 3.3v processors, connect the IO pin to 3.3v. This will keep the I2C bus

signals at a safe level for your processor.

With 5v processors like the Arduino UNO, this pin can be connected to either 5v or

3.3v. (use 3.3v if there will be other 3.3v devices on the bus)

Arduino Wiring - R3 and

later
Connect:

D -> SDA

C -> SCL

+ -> 5v

- -> GND

IO -> jumper to + for 5v.

Arduino Due and Other 3.3v

Processors
Connect:

D -> SDA

C -> SCL

+ -> 5v

- -> GND

IO -> 3.3v

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 85 of 139

Arduino "Classic" Wiring
Connect:

D -> Analog-4 or Digital 20 for the

Mega

C -> Analog-5 or Digital 21 for the

Mega

+ -> 5v

- -> GND

IO -> jumper to + for 5v.

OK, now on to the firmware!

Seven-Segment Backpack Firmware

Our 7-segment backpack library makes it easy to program these displays. The library

is written for the Arduino and will work with any Arduino as it just uses the I2C pins.

The code is very portable and can be easily adapted to any I2C-capable micro.

Download the Adafruit LED Backpack library and the Adafruit GFX library from the

Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit LED Backpack library and install it

Search for the Adafruit GFX library and install it

•

•

•

•

•

©Adafruit Industries Page 86 of 139

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

You should now be able to select the

File>Examples>Adafruit_LEDBackpack>sevenseg example sketch. Upload it to your

Arduino as usual. You should see a "sevenseg" example sketch that will demonstrate

various capabilities of the library and the display.

Once you're happy that the matrix works, you can write your own sketches.

There's a few ways you can draw to the display. The easiest is to just call print - just

like you do with Serial

print(variable,HEX) - this will print a hexidecimal number, from 0000 up to FFFF

print(variable,DEC) or print(variable) - this will print a decimal integer, from 0000

up to 9999

If you need more control, you can call writeDigitNum(location, number) - this will write

the number (0-9) to a single location. Location #0 is all the way to the left, location #2

is the colon dots so you probably want to skip it, location #4 is all the way to the right.

•

•

©Adafruit Industries Page 87 of 139

To control the colon and decimal points, use the writeDigitRaw(location, bitmap)

function. (Note that both dots of the center colon are wired together internal to the

display, so it is not possible to address them separately.) Specify 2 for the location

and the bits are mapped as follows:

0x02 - center colon (both dots)

0x04 - left colon - lower dot

0x08 - left colon - upper dot

0x10 - decimal point

If you want a decimal point, call writeDigitNum(location, number, true) which will paint

the decimal point. To draw the colon, use drawColon(true or false)

If you want full control of the segments in all digits, you can call writeDigitRaw(locatio

n,bitmask) to draw a raw 8-bit mask (as stored in a uint8_t) to anylocation.

All the drawing routines only change the display memory kept by the Arduino. Don't

forget to call writeDisplay() after drawing to 'save' the memory out to the matrix via

I2C.

There are also a few small routines that are special to the backpack:

setBrightness(brighness)- will let you change the overall brightness of the entire

display. 0 is least bright, 15 is brightest and is what is initialized by the display

when you start

blinkRate(rate) - You can blink the entire display. 0 is no blinking. 1, 2 or 3 is for

display blinking.

CircuitPython Wiring and Setup

Wiring

It's easy to use LED 7-Segment Displays with CircuitPython and the Adafruit

CircuitPython HT16K33 (https://adafru.it/u1E) library. This module allows you to easily

write CircuitPython code to control the display.

You can use this sensor with any CircuitPython microcontroller board.

•

•

•

•

•

•

©Adafruit Industries Page 88 of 139

We'll cover how to wire the 7-Segment Display to your CircuitPython microcontroller

board. First assemble your 7-Segment Display.

Connect the 7-Segment Display to your microcontroller board as shown below.

Microcontroller 3.3V to 7-Segment

Display IO

Microcontroller 5V to 7-Segment

Display VIN

Microcontroller GND to 7-Segment

Display GND

Microcontroller SCL to 7-Segment

Display SCL

Microcontroller SDA to 7-Segment

Display SDA

Download Fritzing Object

https://adafru.it/ICO

Library Setup

To use the LED backpack with your Adafruit CircuitPython (https://adafru.it/BlM) board

you'll need to install the Adafruit_CircuitPython_HT16K33 (https://adafru.it/u1E) library

on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board. Next you'll need to install the necessary libraries to use

the hardware--read below and carefully follow the referenced steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx).

Bundle Install

For express boards that have extra flash storage, like the Feather/Metro M0 express

and Circuit Playground express, you can easily install the necessary libraries with Ad

afruit's CircuitPython bundle (https://adafru.it/zdx). This is an all-in-one package that

includes the necessary libraries to use the LED backpack display with CircuitPython.

For details on installing the bundle, read about CircuitPython Libraries (https://

adafru.it/ABU).

•

•

•

•

•

©Adafruit Industries Page 89 of 139

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries (https://adafru.it

/ABU) from the bundle:

adafruit_ht16k33

adafruit_bus_device

If your board supports USB mass storage, like the M0-based boards, then simply drag

the files to the board's file system. Note on boards without external SPI flash, like a

Feather M0 or Trinket/Gemma M0, you might run into issues on Mac OSX with hidden

files taking up too much space when drag and drop copying, see this page for a

workaround (https://adafru.it/u1d).

Before continuing make sure your board's lib folder or root filesystem has at least

the adafruit_ht16k33 and adafruit_bus_device folders/modules copied over.

Python Wiring and Setup

Wiring

It's easy to use 7-Segment Displays with Python and the Adafruit CircuitPython

HT16K33 (https://adafru.it/u1E) library. This library allows you to easily write Python

code to control the display.

We'll cover how to wire the 7-Segment Display to your Raspberry Pi. First assemble

your 7-Segment Display.

•

•

©Adafruit Industries Page 90 of 139

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the 7-Segment Display as shown below to your Raspberry Pi.

Raspberry Pi 3.3V to 7-Segment

Display IO

Raspberry Pi 5V to 7-Segment

Display VIN

Raspberry Pi GND to 7-Segment

Display GND

Raspberry Pi SCL to 7-Segment

Display SCL

Raspberry Pi SDA to 7-Segment

Display SDA

Download Fritzing Object

https://adafru.it/ICn

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of HT16K33 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ht16k33

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

•

•

•

•

•

•

©Adafruit Industries Page 91 of 139

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

CircuitPython and Python Usage

The following section will show how to control the LED backpack from the board's

Python prompt / REPL. You'll walk through how to control the LED display and learn

how to use the CircuitPython module built for the display.

First connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Initialization

First you'll need to initialize the I2C bus for your board. It's really easy, first import the

necessary modules. In this case, we'll use board and BigSeg7x4 .

Then just use board.I2C() to create the I2C instance using the default SCL and

SDA pins (which will be marked on the boards pins if using a Feather or similar

Adafruit board).

Then to initialize the display, you just pass i2c in.

import board

from adafruit_ht16k33.segments import BigSeg7x4

i2c = board.I2C()

display = BigSeg7x4(i2c)

•

•

©Adafruit Industries Page 92 of 139

If you bridged the address pads on the back of the display, you could pass in the

address. The addresses for the HT16K33 can range between 0x70 and 0x77

depending on which pads you have bridged, with 0x70 being used if you haven't

bridged any of them. For instance, if you bridge only the A0 pad, you would use

0x71 like this:

display = BigSeg7x4(i2c, address=0x71)

Setting the Brightness

You can set the brightness of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/16 increments betw

een 0 and 1.0 with 1.0 being the brightest. So to set the display to half brightness, you

would use the following:

display.brightness = 0.5

Setting the Blink Rate

You can set the blink rate of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/4 increments betw

een 0 and 3 with 3 being the fastest blinking. So to set the display to blink at full

speed, you would use the following:

display.blink_rate = 3

Printing Text

To print text to the display, you just use the print function. For the 7-segment display,

valid characters are 0-9, letters A-F, and a hyphen. So if we want to print ABCD, we

would use the following:

display.print("ABCD")

Printing Numbers

Printing numbers is done similar to printing text, except without the quotes, though

you can still print numbers in a string as well.

©Adafruit Industries Page 93 of 139

display.print(1234)

Printing Hexidecimal Values

To print hexidecimal values, you use the print_hex function:

display.print_hex(0x1A2B)

Setting Individual Characters

To set individual characters, you simply treat the display object as a list and set it

to the value that you would like.

display[0] = '1'

display[1] = '2'

display[2] = 'A'

display[3] = 'B'

Setting Individual Segments

To set individual segments to turn on or off, you would use the set_digit_raw function

to pass the digit that you want to change and the bitmask. This can be really useful

for creating your own characters. The bitmask corresponds to the following diagram.

The highest bit is not used, so an X represents that spot to indicate that.

©Adafruit Industries Page 94 of 139

The bitmask is a single 8-bit number that can be passed in as a single Hexidecimal,

Decimal, or binary number. This will use a couple different methods to display 8E8E :

display.set_digit_raw(0, 0xFF)

display.set_digit_raw(1, 0b11111111)

display.set_digit_raw(2, 0x79)

display.set_digit_raw(3, 0b01111001)

Filling all Segments

To fill the entire display, just use the fill() function and pass in either 0 or 1 depending

on whether you want all segments off or on. For instance, if you wanted to set

everything to on, you would use:

display.fill(1)

Scrolling Display Manually

If you want to scroll the displayed data to the left, you can use the scroll()

function. You can pass in the number of places that you want to scroll. The right-most

digit will remain unchanged and you will need to set that manually. After scrolling, you

will need to call the show function. For example if you wanted to print an A and then

scroll it over to spaces, you would do the following.

©Adafruit Industries Page 95 of 139

display.print("A")

display.scroll(2)

display[3] = " "

display.show()

Displaying the Colon

There are a couple of different ways to display a colon on the 7-segment display. The

first and easiest way is to use the print function:

display.print("12:30")

The other way to control it is to access the colon with the colon property and set it to

True or False :

display.colon[0] = False

Setting the Left-Side Dots

There are a couple of different ways to set the left-side dots on the large 7-segment

display. The first way is to use the colon property like above:

display.colon[1] = False

If you would like to set the dots individually, you can do that using the top_left_dot

and bottom_left_dot properties and set them to True or False :

display.top_left_dot = True

display.bottom_left_dot = True

Setting the AM/PM Indicator

If you would like to set the upper-right dot, you can do this using the ampm property:

display.ampm = True

©Adafruit Industries Page 96 of 139

Displaying an Automatic Scrolling Marquee

To make displaying long text easier, we've added a marquee function. You just pass it

the full string. Optionally, you can pass it the amount of delay between each

character. This may be useful for displaying a phone number, words using only letters

A-F, or other numeric data:

display.marquee('Deadbeef ')

By default it is 0.25 seconds, but you can change this by providing a second

parameter. You can optionally pass False for a third parameter if you would not like

to have it loop. So if you wanted each character to display for half a second and didn't

want it to loop, you would use the following:

display.marquee('Deadbeef', 0.5, False)

Bi-Color 8x8 Matrix

This version of the LED backpack is designed for these bright and colorful

square=pixeled 8x8 matrices. They have 64 red and 64 green LEDs inside, for a total

of 128 LEDs controlled as a 8x16 matrix. This backpack solves the annoyance of using

24 pins or a bunch of chips by having an I2C constant-current matrix controller sit

neatly on the back of the PCB. The controller chip takes care of everything, drawing

all 128 LEDs in the background. All you have to do is write data to it using the 2-pin

I2C interface. There are three address select pins so you can select one of 8

addresses to control up to 8 of these on a single 2-pin I2C bus (as well as whatever

other I2C chips or sensors you like). The driver chip can 'dim' the entire display from

©Adafruit Industries Page 97 of 139

1/16 brightness up to full brightness in 1/16th steps. It cannot dim individual LEDs, only

the entire display at once.

Assembly

When you buy a pack from Adafruit, it

comes with the fully tested and

assembled backpack as well as a 8x8

matrix. You'll need to solder the matrix

onto the backpack but its an easy task.

Pay close attention to the instructions for positioning the matrix. It must be

oriented correctly to work and is almost impossible to remove it once it has been

soldered to the backpack!

©Adafruit Industries Page 98 of 139

Remove the parts from packaging and

place the LED matrix OVER the silkscreen

side.

The matrix must be soldered on the

correct orientation or it will not work!

Check for the side of the matrix that has

printing on it. Then look for the front of

the PCB that has a circle instead of a

square in the corner and line those up as

shown on the left

Do not solder the matrix over the chip on

the back of the backpack - it will not work

then!

Turn the backpack over so its sitting flat

on the matrix.

Solder all 24 pins.

©Adafruit Industries Page 99 of 139

Clip the long pins

Now you're ready to wire it up to a

microcontroller. We'll assume you want to

use a 4pin header. You can also of course

solder wires directly. Place a 4-pin piece

of header with the LONG pins down into

the breadboard.

©Adafruit Industries Page 100 of 139

Place the soldered backpack on top of

the header.

Solder 'em!

Arduino Setup

We wrote a basic library to help you work with the bi-color 8x8 matrix backpack. The

library is written for the Arduino and will work with any Arduino as it just uses the I2C

pins. The code is very portable and can be easily adapted to any I2C-capable micro.

Wiring to the matrix is really easy

Connect CLK to the I2C clock - on Arduino UNO thats Analog #5, on the

Leonardo its Digital #3, on the Mega its digital #21

Connect DAT to the I2C data - on Arduino UNO thats Analog #4, on the

Leonardo its Digital #2, on the Mega its digital #20

Connect GND to common ground

Connect VCC+ to power - 5V is best but 3V also seems to work for 3V

microcontrollers.

Next, download the Adafruit LED Backpack library and the Adafruit GFX library from

the Arduino library manager.

•

•

•

•

©Adafruit Industries Page 101 of 139

Open up the Arduino library manager:

Search for the Adafruit LED Backpack library and install it

Search for the Adafruit GFX library and install it

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

Once you've restarted you should be able to select the File->Examples-

>Adafruit_LEDBackpack->bicolor88 example sketch. Upload it to your Arduino as

usual. You should see a basic test program that goes through a bunch of different

drawing routines.

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

©Adafruit Industries Page 102 of 139

Once you're happy that the matrix works, you can write your own sketches. The 8x8

matrix supports everything the Adafruit GFX library - drawing pixels, lines, rectangles,

circles, triangles, roundrects, and small bitmaps. For more details check out the GFX

page which will detail all of the GFX routines (https://adafru.it/aPx).

All the drawing routines only change the display memory kept by the Arduino. Don't

forget to call writeDisplay() after drawing to 'save' the memory out to the matrix via

I2C.

There are also a few small routines that are special to the matrix:

setBrightness(brightness)- will let you change the overall brightness of the entire

display. 0 is least bright, 15 is brightest and is what is initialized by the display

when you start

blinkRate(rate) - You can blink the entire display. 0 is no blinking. 1, 2 or 3 is for

display blinking.

•

•

©Adafruit Industries Page 103 of 139

The default orientation for graphics

commands on this display places pixel

(0,0) at the top-left when the header is at

the left and Adafruit logo at the right. To

use the matrix as shown above (header

at top, logo at bottom), call

matrix.setRotation(3) before issuing

graphics commands.

CircuitPython Wiring and Setup

Wiring

It's easy to use LED Matrices with CircuitPython and the Adafruit CircuitPython

HT16K33 (https://adafru.it/u1E) library. This module allows you to easily write

CircuitPython code to control the display.

You can use this sensor with any CircuitPython microcontroller board.

We'll cover how to wire the LED Matrix to your CircuitPython microcontroller board.

First assemble your LED Matrix.

Connect the LED Matrix to your microcontroller board as shown below.

Microcontroller 3V to LED Matrix

VIN

Microcontroller GND to LED

Matrix GND

Microcontroller SCL to LED

Matrix SCL

Microcontroller SDA to LED

Matrix SDA

Download Fritzing Object

https://adafru.it/ICo

•

•

•

•

©Adafruit Industries Page 104 of 139

Library Setup

To use the LED backpack with your Adafruit CircuitPython (https://adafru.it/BlM) board

you'll need to install the Adafruit_CircuitPython_HT16K33 (https://adafru.it/u1E) library

on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board. Next you'll need to install the necessary libraries to use

the hardware--read below and carefully follow the referenced steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx).

Bundle Install

For express boards that have extra flash storage, like the Feather/Metro M0 express

and Circuit Playground express, you can easily install the necessary libraries with Ad

afruit's CircuitPython bundle (https://adafru.it/zdx). This is an all-in-one package that

includes the necessary libraries to use the LED backpack display with CircuitPython.

For details on installing the bundle, read about CircuitPython Libraries (https://

adafru.it/ABU).

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries (https://adafru.it

/ABU) from the bundle:

adafruit_ht16k33

adafruit_bus_device

If your board supports USB mass storage, like the M0-based boards, then simply drag

the files to the board's file system. Note on boards without external SPI flash, like a

Feather M0 or Trinket/Gemma M0, you might run into issues on Mac OSX with hidden

files taking up too much space when drag and drop copying, see this page for a

workaround (https://adafru.it/u1d).

Before continuing make sure your board's lib folder or root filesystem has at least

the adafruit_ht16k33 and adafruit_bus_device folders/modules copied over.

•

•

©Adafruit Industries Page 105 of 139

Python Wiring and Setup

Wiring

It's easy to use LED Matrices with Python and the Adafruit CircuitPython HT16K33 (htt

ps://adafru.it/u1E) library. This library allows you to easily write Python code to control

the display.

We'll cover how to wire the LED Matrix to your Raspberry Pi. First assemble your LED

Matrix.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the LED Matrix as shown below to your Raspberry Pi.

Raspberry Pi 3.3V to LED Matrix VIN

Raspberry Pi GND to LED

Matrix GND

Raspberry Pi SCL to LED Matrix SCL

Raspberry Pi SDA to LED

Matrix SDA

•

•

•

•

©Adafruit Industries Page 106 of 139

Download Fritzing Object

https://adafru.it/ICp

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of HT16K33 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ht16k33

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

•

•

•

©Adafruit Industries Page 107 of 139

CircuitPython and Python Usage

The following section will show how to control the LED backpack from the board's

Python prompt / REPL. You'll walk through how to control the LED display and learn

how to use the CircuitPython module built for the display.

First connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Initialization

First you'll need to initialize the I2C bus for your board. It's really easy, first import the

necessary modules. In this case, we'll use board and Matrix8x8x2 .

Then just use board.I2C() to create the I2C instance using the default SCL and

SDA pins (which will be marked on the boards pins if using a Feather or similar

Adafruit board).

Then to initialize the matrix, you just pass i2c in.

import board

from adafruit_ht16k33.matrix import Matrix8x8x2

i2c = board.I2C()

matrix = Matrix8x8x2(i2c)

If you bridged the address pads on the back of the display, you could pass in the

address. The addresses for the HT16K33 can range between 0x70 and 0x77

depending on which pads you have bridged, with 0x70 being used if you haven't

bridged any of them. For instance, if you bridge only the A0 pad, you would use

0x71 like this:

matrix = Matrix8x8x2(i2c, address=0x71)

Setting the Brightness

You can set the brightness of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/16 increments betw

een 0 and 1.0 with 1.0 being the brightest. So to set the display to half brightness, you

would use the following:

©Adafruit Industries Page 108 of 139

display.brightness = 0.5

Setting the Blink Rate

You can set the blink rate of the display, but changing it will set the brightness of the

entire display and not individual pixels. If can be adjusted in 1/4 increments between 0

and 3 with 3 being the fastest blinking. So to set the display to blink at full speed, you

would use the following:

display.blink_rate = 3

Setting Individual Pixels

To set individual pixels to specific colors, you simply treat the matrix object as a

multidimensional list and set it to matrix.LED_RED , matrix.LED_GREEN ,

matrix.LED_YELLOW or matrix.LED_OFF .

matrix[0, 0] = matrix.LED_RED

matrix[4, 4] = matrix.LED_GREEN

matrix[7, 7] = matrix.LED_YELLOW

matrix[7, 0] = matrix.LED_OFF

©Adafruit Industries Page 109 of 139

Filling the Entire Matrix

To fill the entire matrix, just use the fill() function and pass in the color you want to set

it to. For instance, if you wanted to set everything to green, you would use:

matrix.fill(matrix.LED_GREEN)

Shifting the Matrix

To shift the pixels on the matrix, there are 5 functions you can use. The main function,

called shift(), is used to shift the pixels, up, down, left, right, or even diagonally. By

passing a positive number, it will shift the pixels right/up and passing a negative

number will shift them left/down. For instance:

matrix.shift(2, 0)�￰ # shift pixels to the right by 2

matrix.shift(-1, 0)�￰ # shift pixels to the left by 1

matrix.shift(0, -3)�￰ # shift pixels down by 3

matrix.shift(-2, 2)�￰ # shift pixels left by 2 and up by 2

You can pass True as a third parameter to loop all the pixels that get shifted off over

to the other side.

matrix.shift(2, 0, True)�￰ # loop pixels to the right by 2

matrix.shift(-1, 0, True)�￰ # loop pixels to the left by 1

matrix.shift(0, -3, True)�￰ # loop pixels down by 3

matrix.shift(-2, 2, True)�￰ # loop pixels left by 2 and up by 2

Additionally, there are a few convenience functions that will shift the pixels by one.

These can also be passed a value of True to loop the pixels.

matrix.shift_up()�￰ �￰# Shift pixels up

matrix.shift_left()�￰ �￰# Shift pixels left

matrix.shift_down()�￰ �￰# Shift pixels down

matrix.shift_right()�￰ �￰# Shift pixels right

matrix.shift_up(True)�￰ �￰# Loop pixels up

matrix.shift_left(True)�￰ # Loop pixels left

matrix.shift_down(True)�￰ # Loop pixels down

matrix.shift_right(True)�￰ # Loop pixels right

Displaying an Image (Pillow Only)

Additionally, when using with the Raspberry Pi, you can use the Pillow library to

display an image to the Matrix. The image will need to be the same exact size as the

Matrix and should include pure Green, Red, or Yellow. Anything else will be

©Adafruit Industries Page 110 of 139

considered to be off. In this case, it should be 8x8 pixels. As an example, you can

save the image below as myimage.png.

Download Image

https://adafru.it/ICQ

Then if you want to display the image called myimage.png, you would use something

like this:

import board

from PIL import Image

from adafruit_ht16k33 import matrix

matrix = matrix.Matrix8x8x2(board.I2C())

image = Image.open("myimage.png")

matrix.image(image)

Bi-Color 24 Bargraph

This version of the LED backpack is designed for these bright and colorful bi-color

bargraph modules. Each module has 12 red and 12 green LEDs inside, for a total of 24

LEDs controlled as a 1x12 matrix. We put two modules on each backpack for a 24-bar

long bargraph (48 total LEDs).

This backpack solves the annoyance of using lots of pins or a bunch of chips by

having an I2C constant-current matrix controller sit neatly on the back of the PCB. The

©Adafruit Industries Page 111 of 139

controller chip takes care of everything, drawing all 48 LEDs in the background. All

you have to do is write data to it using the 2-pin I2C interface. There are three

address select pins so you can select one of 8 addresses to control up to 8 of these

on a single 2-pin I2C bus (as well as whatever other I2C chips or sensors you like).

The driver chip can 'dim' the entire display from 1/16 brightness up to full brightness in

1/16th steps. It cannot dim individual LEDs, only the entire display at once.

Assembly

Remove the parts from packaging and place the LED bargraphs over the outlines on

the top of the PCB.

The bargraph must be soldered on the correct orientation or it will not work! Check

for the side of the bargraph that has printing on it. Then look for the outline on the

PCB that has "Text on this side" marked!

Do not solder the matrix onto the back of the PCB, it won't work either!

Pay close attention to the instructions for positioning the bargraphs. They must

be oriented correctly to work and is almost impossible to remove them once

soldered to the backpack!

©Adafruit Industries Page 112 of 139

To keep the two bargraphs lined up nicely, you can use a little masking or scotch tape

on the bargraph modules, tape them so they are in a straight line. There is a little play

during soldering so if you don't do this the two modules may not be in a perfect line.

©Adafruit Industries Page 113 of 139

Turn over the PCB and bend opposite-

corner pins of the modules out so that

the modules are fixed in place against

the PCB. Now is a good time to do a last

check that you oriented the modules the

right way!

Solder all the module pins in!

©Adafruit Industries Page 114 of 139

OK nice work!

Once soldered, clip each pin. They're

quite short and the pins are thicker than

usual, so do this over/inside a trash bin

so that the pins don't fly off and it you or

your pets.

©Adafruit Industries Page 115 of 139

Everything should be neat and clipped,

you're done!

Soldering on breadboard pins

This is an optional step - you only need to do this step if you're planning on using the

bargraph in a breadboard. Chances are you may want to solder wires directly to the

pads instead, so you can mount the bargraph elsewhere. Anyhow, skip this step if its

not for you!

Break off a piece of male header, 4 pins

long. Plug the long ends into a solderless

breadboard.

Place the PCB on top. you may need to

support it a little since its quite long.

©Adafruit Industries Page 116 of 139

Solder these 4 pins too, since you're

good at it now this should be easy.

Arduino Wiring and Setup

We wrote a basic library to help you work with the bi-color bargraph backpack. The

library is written for the Arduino and will work with any Arduino as it just uses the I2C

pins. The code is very portable and can be easily adapted to any I2C-capable micro.

Wiring to the bargraph is really easy

Connect SCL to the I2C clock - on Arduino UNO thats Analog #5, on the

Leonardo its Digital #3, on the Mega its digital #21

Connect SDA to the I2C data - on Arduino UNO thats Analog #4, on the

Leonardo its Digital #2, on the Mega its digital #20

Connect GND to common ground

Connect VCC to power - 5V is best but 3V also seems to work for 3V

microcontrollers.

•

•

•

•

©Adafruit Industries Page 117 of 139

Next, download the Adafruit LED Backpack library and the Adafruit GFX library from

the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit LED Backpack library and install it

Search for the Adafruit GFX library and install it

©Adafruit Industries Page 118 of 139

If using an earlier version of the Arduino IDE (prior to 1.8.10), also locate and install Ad

afruit_BusIO (newer versions will install this dependency automatically).

Once you've restarted you should be able to select the File->Examples-

>Adafruit_LEDBackpack->bargraph24 example sketch. Upload it to your Arduino as

usual. You should see a basic test program that tests all the LEDs with different colors.

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

Using the library interface is very easy. Start by creating the object with

Adafruit_24bargraph bar = Adafruit_24bargraph();

you can name it whatever you want, not just bar

Then initialize it with

bar.begin(0x70); // pass in the address

You can init with any address from 0x70 to 0x77, just make sure you solder in the

matching solder jumpers!

Finally, write to the bargraph with

©Adafruit Industries Page 119 of 139

bar.setBar(lednumber, ledcolor);

Where lednumber is 0 thru 23. ledcolor can be LED_RED, LED_YELLOW, LED_GREEN

or LED_OFF

The drawing routines only change the display memory kept by the Arduino. Don't

forget to call bar.writeDisplay() after drawing to 'save' the memory out to the matrix via

I2C.

There are also a few small routines that are special to the matrix:

setBrightness(brightness)- will let you change the overall brightness of the entire

display. 0 is least bright, 15 is brightest and is what is initialized by the display

when you start

blinkRate(rate) - You can blink the entire display. 0 is no blinking. 1, 2 or 3 is for

display blinking.

CircuitPython Wiring and Setup

Wiring

It's easy to use LED Matrices with CircuitPython and the Adafruit CircuitPython

HT16K33 (https://adafru.it/u1E) library. This module allows you to easily write

CircuitPython code to control the display.

You can use this sensor with any CircuitPython microcontroller board.

We'll cover how to wire the Bargraph to your CircuitPython microcontroller board.

First assemble your Bargraph.

Connect the Bargraph to your microcontroller board as shown below.

•

•

©Adafruit Industries Page 120 of 139

Microcontroller 3V to Bargraph VIN

Microcontroller GND to

Bargraph GND

Microcontroller SCL to

Bargraph SCL

Microcontroller SDA to

Bargraph SDA

Download Fritzing Object

https://adafru.it/IfA

Library Setup

To use the LED backpack with your Adafruit CircuitPython (https://adafru.it/BlM) board

you'll need to install the Adafruit_CircuitPython_HT16K33 (https://adafru.it/u1E) library

on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/tBa) for your board. Next you'll need to install the necessary libraries to use

the hardware--read below and carefully follow the referenced steps to find and install

these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx).

Bundle Install

For express boards that have extra flash storage, like the Feather/Metro M0 express

and Circuit Playground express, you can easily install the necessary libraries with Ad

afruit's CircuitPython bundle (https://adafru.it/zdx). This is an all-in-one package that

includes the necessary libraries to use the LED backpack display with CircuitPython.

For details on installing the bundle, read about CircuitPython Libraries (https://

adafru.it/ABU).

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries (https://adafru.it

/ABU) from the bundle:

adafruit_ht16k33

•

•

•

•

•

©Adafruit Industries Page 121 of 139

adafruit_bus_device

If your board supports USB mass storage, like the M0-based boards, then simply drag

the files to the board's file system. Note on boards without external SPI flash, like a

Feather M0 or Trinket/Gemma M0, you might run into issues on Mac OSX with hidden

files taking up too much space when drag and drop copying, see this page for a

workaround (https://adafru.it/u1d).

Before continuing make sure your board's lib folder or root filesystem has at least

the adafruit_ht16k33 and adafruit_bus_device folders/modules copied over.

Python Wiring and Setup

Wiring

It's easy to use LED Matrices with Python and the Adafruit CircuitPython HT16K33 (htt

ps://adafru.it/u1E) library. This library allows you to easily write Python code to control

the display.

We'll cover how to wire the Bargraph to your Raspberry Pi. First assemble your

Bargraph.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Connect the Bargraph as shown below to your Raspberry Pi.

•

©Adafruit Industries Page 122 of 139

Raspberry Pi 3.3V to Bargraph VIN

Raspberry Pi GND to Bargraph GND

Raspberry Pi SCL to Bargraph SCL

Raspberry Pi SDA to Bargraph SDA

Download Fritzing Object

https://adafru.it/IfB

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of HT16K33 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ht16k33

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

That's it. You should be ready to go.

•

•

•

•

•

•

©Adafruit Industries Page 123 of 139

CircuitPython and Python Usage

The following section will show how to control the LED backpack from the board's

Python prompt / REPL. You'll walk through how to control the LED display and learn

how to use the CircuitPython module built for the display.

First connect to the board's serial REPL (https://adafru.it/Awz)so you are at the

CircuitPython >>> prompt.

Initialization

First you'll need to initialize the I2C bus for your board. It's really easy, first import the

necessary modules. In this case, we'll use board and BiColor24 .

Then just use board.I2C() to create the I2C instance using the default SCL and

SDA pins (which will be marked on the boards pins if using a Feather or similar

Adafruit board).

Then to initialize the bargraph, you just pass i2c in.

import board

from adafruit_ht16k33.bargraph import Bicolor24

i2c = board.I2C()

bc24 = Bicolor24(i2c)

If you bridged the address pads on the back of the display, you could pass in the

address. The addresses for the HT16K33 can range between 0x70 and 0x77

depending on which pads you have bridged, with 0x70 being used if you haven't

bridged any of them. For instance, if you bridge only the a0 pad, you would use 0x71

like this:

bc24 = Bicolor24(i2c, address=0x71)

Setting the Brightness

You can set the brightness of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/16 increments betw

een 0 and 1.0 with 1.0 being the brightest. So to set the display to half brightness, you

would use the following:

©Adafruit Industries Page 124 of 139

display.brightness = 0.5

Setting the Blink Rate

You can set the blink rate of the display, but changing it will set the brightness of the

entire display and not individual segments. If can be adjusted in 1/4 increments betw

een 0 and 3 with 3 being the fastest blinking. So to set the display to blink at full

speed, you would use the following:

display.blink_rate = 3

Setting Individual Bars

To set individual bars to specific colors, you simply treat the bc24 object as a list and

set it to bc24.LED_RED , bc24.LED_GREEN , bc24.LED_YELLOW or bc24.LED_OFF .

bc24[0] = bc24.LED_RED

bc24[1] = bc24.LED_GREEN

bc24[2] = bc24.LED_YELLOW

bc24[3] = bc24.LED_OFF

Filling the Entire Bargraph

To fill the entire bargraph, just use the fill() function and pass in the color you want to

set it to. For instance, if you wanted to set everything to green, you would use:

bc24.fill(bc24.LED_GREEN)

Connecting Multiple Backpacks

The coolest part about the I2C backpacks is that you can connect more than one

using just the same 2 pins. This opens possibilities for all kinds of multi-display

projects (https://adafru.it/aQt).

For a project that shows this is practice, check out this page (https://adafru.it/aQF) on

animating multiple LED backpacks

©Adafruit Industries Page 125 of 139

Wire it Up

To connect another backpack to your project, just wire it in parallel with the first one

as in the diagram below.

©Adafruit Industries Page 126 of 139

Configure the Address

For each backpack you add, you need to configure a different I2C address. You can

keep adding backpacks in the same way until you run out of addresses. See the next

page for how to configure the address on your backpack.

Changing I2C Address

The HT16K33 driver chip on these LED backpacks has a default I2C address of 0x70.

Since each device on an I2C bus must have a unique address, its important to avoid

collisions or you'll get a lot of strange responses from your electronic devices!

Luckily, the HT16K33 has 2 or 3 address adjust pins, so that the address can be

changed! The mini 0.8" 8x8 matrix backpack has 2 address adjust pins. The 1.2" 8x8,

bi-color 8x8, bi-color bargraph and 4 x 7-segment backpacks have 3 address adjust

pins.

That means that you can set the backpacks to these addresses:

Mini 0.8" 8x8: 0x70, 0x71, 0x72, 0x73

Small 1.2" 8x8: 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77

4 x 7-segment: 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77

•

•

•

©Adafruit Industries Page 127 of 139

Bi-color 1.2" 8x8: 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77

Bi-color 24-bargraph: 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77

You can mix-and-match matrices, as long as each one has a unique address!

Changing Addresses

You can change the address of a backpack very easily. Look on the back to find the

two or three A0, A1 or A2 solder jumpers. Each one of these is used to hardcode in

the address. If a jumper is shorted with solder, that sets the address. A0 sets the

lowest bit with a value of 1, A1 sets the middle bit with a value of 2 and A2 sets the

high bit with a value of 4. The final address is 0x70 + A2 + A1 + A0. So for example if A

2 is shorted and A0 is shorted, the address is 0x70 + 4 + 1 = 0x75. If only A1 is

shorted, the address is 0x70 + 2 = 0x72

A2 does not appear on the mini 0.8" 8x8 matrix, so you cannot set the address higher

than 0x73

•

•

On the 1.2" 8x8 backpacks, the labels for A1 and A2 are swapped! Sorry about

that!

©Adafruit Industries Page 128 of 139

Changing the address in your code

Once you've adjusted the address on the backpack, you'll also want to adjust the

address in the code!

For the Arduino library we wrote, its simple. For example, lets say you want to have

two seven-segment matrices. One is set to address 0x70 and the other is set to 0x71.

Find this code in the example

Adafruit_7segment matrix = Adafruit_7segment();

void setup() {

 Serial.begin(9600);

 Serial.println("7 Segment Backpack Test");

 matrix.begin(0x70);

}

And change it to this:

Adafruit_7segment matrix1 = Adafruit_7segment();

Adafruit_7segment matrix2 = Adafruit_7segment();

void setup() {

 Serial.begin(9600);

 Serial.println("Double 7 Segment Backpack Test");

 matrix1.begin(0x70);

 matrix2.begin(0x71);

}

©Adafruit Industries Page 129 of 139

That is, instantiate two matrix objects. Then one is called with begin(0x70) and the

other is called with begin(0x71). Each one can be used individually. If you need more

matrices, just instantiate more objects at the top and begin() each one with the unique

i2c address.

F.A.Q.

I want to use these modules with other non-Arduino, how

can I port the code?

The best way to get up and running is to read the HT16K33 driver datasheet

available at http://learn.adafruit.com/adafruit-led-backpack/downloads (https://

adafru.it/aMx) - the backpacks all use this chip to do all the LED driving. You can

cross-reference this document with the Arduino library code to adapt it to your

platform. Any microcontroller that has I2C host support should be able to drive the

backpacks but we only provide Arduino example code at this time

I'd like to use these backpacks with Python / Linux (e.g. a

Raspberry Pi)

You're in luck! We have a full tutorial here that covers using the 7-segment and 8x8

matrices on a Pi with Python code -> http://learn.adafruit.com/matrix-7-segment-

led-backpack-with-the-raspberry-pi (https://adafru.it/aPj)

I am having strange problems when combining Adafruit

Motor Shield/Servo Shield (PCA9685 based) with the

Adafruit LED Matrix/7Seg Backpacks

We are not sure why this occurs but there is an address collision even though the

address are different! Set the backpacks to address 0x71 or anything other than the

default 0x70 to make the issue go away

What is the current draw of the backpacks?

It depends on how many LEDs you have lit at once!

But a rough estimation is 20 milliamps per segment. Note that segments are

multiplexed per row so that means

8x8 Mono Matrix (8 rows)= 8 x 20mA = 160mA max•

©Adafruit Industries Page 130 of 139

7-segment backpacks (7 segments + 1 dot) = 8 x 20mA = 160 mA

Alphanumeric (14 segments) = 14 x 20mA = 280mA

Bi-color 8x8 and 8x16 matrix (16 rows) = 8 x 16 = 320mA

But again, this is maximum and assumes all digits and all segments are lit up! Your

average use may be 1/10 to 1/2 of this amount

Downloads

Software

You'll need to install the following libraries to use any of the LED backpacks.

Open up the Arduino library manager:

Search for the Adafruit LED Backpack library and install it

Search for the Adafruit GFX library and install it

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

•

•

•

©Adafruit Industries Page 131 of 139

Files

Fritzing objects in Adafruit Fritzing library (https://adafru.it/aP3)

EagleCAD PCB files for all backpacks in GitHub (https://adafru.it/aLJ)

The backpacks all use the HT16K33 chip solely for LED driving (https://adafru.it/

aMy) - the mini 8x8's use the 24 pin version and the others use the 28 pin

vesion

HT16K33 8x16 LED Backpack Breakout

Schematic & fabrication print

•

•

•

©Adafruit Industries Page 132 of 139

8x8 0.8" LED Backpack

©Adafruit Industries Page 133 of 139

8x8 1.2" LED Backpack

©Adafruit Industries Page 134 of 139

8x8 1.2" Bi-Color LED Backpack

©Adafruit Industries Page 135 of 139

16x8 1.2" LED Backpacks

©Adafruit Industries Page 136 of 139

Quad 0.56" 7-Segment

Quad 0.54" 14-segment Alphanumeric

©Adafruit Industries Page 137 of 139

Quad 1.2" 7-Segment

©Adafruit Industries Page 138 of 139

Bicolor 24-Bargraph

©Adafruit Industries Page 139 of 139

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Development Tools category:

Click to view products by Adafruit manufacturer:

Other Similar products are found below :

KIT 60121-3 S5U13U11P00C100 MAX14521EEVKIT KIT 60145-3 S5U13748P00C100 DFR0413 3248 DLPLCR90EVM

MAX20069EVKIT# KIT95000-3 LCD-16396 PIM370 1109 MCIMX-LVDS1 MIKROE-2449 MIKROE-2453 131 DEV-13628 1590

MIKROE-2269 1601 1770 1947 1983 1987 2050 2218 2219 2260 2345 2418 2423 2454 2455 2478 2674 SK-220RD-PI FIT0477 333

1774 334 TE-M321-SDK DFR0428 cs-epapersk-03 338 DEV-14442 FIT0478 cs-paperino-01 OM-E-OLE ALTHSMCMIPILCD

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/optoelectronic-development-tools/display-development-tools
https://www.x-on.com.au/manufacturer/adafruit
https://www.x-on.com.au/mpn/digitalview/kit601213
https://www.x-on.com.au/mpn/epson/s5u13u11p00c100
https://www.x-on.com.au/mpn/maxim/max14521eevkit
https://www.x-on.com.au/mpn/digitalview/kit601453
https://www.x-on.com.au/mpn/epson/s5u13748p00c100
https://www.x-on.com.au/mpn/dfrobot/dfr0413
https://www.x-on.com.au/mpn/adafruit/3248
https://www.x-on.com.au/mpn/texasinstruments/dlplcr90evm
https://www.x-on.com.au/mpn/maxim/max20069evkit
https://www.x-on.com.au/mpn/digitalview/kit950003
https://www.x-on.com.au/mpn/sparkfun/lcd16396
https://www.x-on.com.au/mpn/pimoroni/pim370
https://www.x-on.com.au/mpn/adafruit/1109
https://www.x-on.com.au/mpn/nxp/mcimxlvds1
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2449
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2453
https://www.x-on.com.au/mpn/adafruit/131
https://www.x-on.com.au/mpn/sparkfun/dev13628
https://www.x-on.com.au/mpn/adafruit/1590
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2269
https://www.x-on.com.au/mpn/adafruit/1601
https://www.x-on.com.au/mpn/adafruit/1770
https://www.x-on.com.au/mpn/adafruit/1947
https://www.x-on.com.au/mpn/adafruit/1983
https://www.x-on.com.au/mpn/adafruit/1987
https://www.x-on.com.au/mpn/adafruit/2050
https://www.x-on.com.au/mpn/adafruit/2218
https://www.x-on.com.au/mpn/adafruit/2219
https://www.x-on.com.au/mpn/adafruit/2260
https://www.x-on.com.au/mpn/adafruit/2345
https://www.x-on.com.au/mpn/adafruit/2418
https://www.x-on.com.au/mpn/adafruit/2423
https://www.x-on.com.au/mpn/adafruit/2454
https://www.x-on.com.au/mpn/adafruit/2455
https://www.x-on.com.au/mpn/adafruit/2478
https://www.x-on.com.au/mpn/adafruit/2674
https://www.x-on.com.au/mpn/4dsystems/sk220rdpi
https://www.x-on.com.au/mpn/dfrobot/fit0477
https://www.x-on.com.au/mpn/adafruit/333
https://www.x-on.com.au/mpn/adafruit/1774
https://www.x-on.com.au/mpn/adafruit/334
https://www.x-on.com.au/mpn/grayhill/tem321sdk
https://www.x-on.com.au/mpn/dfrobot/dfr0428
https://www.x-on.com.au/mpn/crowdsupply/csepapersk03
https://www.x-on.com.au/mpn/adafruit/338
https://www.x-on.com.au/mpn/sparkfun/dev14442
https://www.x-on.com.au/mpn/dfrobot/fit0478
https://www.x-on.com.au/mpn/crowdsupply/cspaperino01
https://www.x-on.com.au/mpn/onion/omeole
https://www.x-on.com.au/mpn/mpression/althsmcmipilcd

