MAXREFDES72#: Quick Start Guide

Required Equipment

* Device with a modern web browser and the
ability to write to an external USB drive

* Microcontroller board with Arduino® UNO
R3-compatible socket headers

* MAXREFDES72# board

* MAX3232PMB1 or other Pmod™-compatible
peripheral module, available here

maxim
integratedw

Overview

This Quick Start Guide explains how to configure the
MAXREFDES72# to map functions from Arduino
headers to a Pmod connector. The MAXREFDES72# is
capable of arbitrary pin mapping with a few
restrictions. In general, the board is configured by
writing to the MAX14661 multiplexer over the I°C bus.
As the Figure 2 shows, 8 Arduino digital GPIO are
connected to the Pmod connector through level
shifters and each of these 8 signals are also connected
to the multiplexer. The 8 digital signals were chosen so
that the Arduino Uno R3 SPI signals are connected for
the Pmod Type 2 and to avoid the I°C and UART signals
at the Arduino headers. For Type 1 (GPIO) and Type 2
(SPI), no configuration is necessary. To implement
Type 3, Type 4, I°C, or other custom pin mappings that
need access to I°C, UART, or other real time functions
such as PWM, configure the multiplexer to route the
signals to the appropriate pins.

Figure 1

maxim
integrated.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim
Integrated reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2014 Maxim Integrated Products, Inc. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

{:axlm

IOREF IOREF IOREF
T T
+
= - sCL
SDA
+3.3V IOREF
IOREF T
+3.3V D13
T D12
D11
D10
D9
D8
i D7
= D6
D5
D4
D3
D2
D1
DO
Figure 2

The MAX14661 is a 16:2 matrix multiplexer with all 16 of the Arduino digital IO connected to the 16 port side of the
matrix switch. The COM pins on the 2 port side of the matrix switch are used internally for routing, but are also
connected to test points and can be used for debug. To route the UART to the Pmod connector, turn on the A switch
connected to the RX (ABO1) and the A switch connected to the desired Pmod pin (AB12), then turn on the B switch
connected to TX (AB02) and the B switch connected to the desired Pmod pin (AB13). Any of the 8 pins that are not
connected to the Pmod connector directly can be connected to any of the 8 Pmod connector pins and the only limitation
is that only two independent signals can be routed like this at the same time. The multiplexer is programmable and the
two channels can be time multiplexed if necessary. An example demonstrating how to do this with the mbed platform is
described in the Included Files and Procedure sections.

In the included example, the microcontroller is only used to configure the MAX14661. The RS232 transceiver is actually
being connected to the UART that is the virtual com port on the USB interface. The UART inside the microcontroller
needs to be disabled. The flexibility of the MAXREFDES72# adapter allows the Rx and Tx to be swapped to connect the
Pmod to the UART inside the microcontroller or to the USB virtual com port. Be careful to check how these signals are
connected on the platform you have selected. See Appendix C: mbed Enabled Board Compatibility for some of the
known compatibility issues.

Included Files
* MAX14661.cpp
* MAX14661.h
* MAX3232_DEMO.cpp

Procedure

This is an example of how to configure the multiplexer using the mbed platform.

10.

11.

12.
13.
14.
15.
16.

Connect hardware as shown in Figure 1.

Select an mbed enabled board with Arduino headers. See Appendix C: mbed Enabled Board Compatibility for
known compatibility issues.

From the platform page for the selected platform, click Open mbed Compiler. You might need to click Add to
your mbed Compiler first if you have not already added it.

A dialogue box will open, asking you to create new program. Check the platform is the one you just selected,
choose Empty Program for the template, and pick a program name (MAX3232_DEMO).

With your new empty program selected in the compiler, click New >> New File and name the file main.cpp in
the dialogue box.

Cut and paste the MAX3232_DEMO code from Appendix D: MAX3232 Demonstration Code into the blank
main.cpp file.

Click the Import button at the top of the compiler.

Click to highlight the top item in the list of results (mbed), then click Import in the upper right of the compile
window, and click the Import button at the bottom of the dialogue box that pops up.

Click the Import button at the top of the compiler again.

Search for MAX14661, click to highlight it in the list of results, then click Import in the upper right of the compile
window, and click the Import button at the bottom of the dialogue box that pops up.

With your new program highlighted in the Program Workspace, click the Compile button at the top of the
compile window and save the file to your computer.

Plug the MAXREFDES72# board into your mbed enabled board.

Plug the MAX3232PMB1 into the top row of the Pmod connector on the MAXREFDES72# board.

Connect the mbed interface USB connector to your computer with a USB cable.

Drag and drop the .bin file to the mbed drive that appears when the board is plugged into USB.

Press the reset button and use your USB to RS232 adapter. Refer to the “Windows serial configuration” page to
download the driver needed by Windows®.

Appendix A: Multiplexer Connections

MAX14661 Arduino Pmod Arduino MAX14661 Pmod
SWo01 DO DO SWo01

SW02 D1 D1 SW02

SWo03 D2 D2 SWo03

SWo4 D3 D3 SWo04

SWO05 D4 PB1 D4 SWO05 PB1
SWo06 D5 PB2 D5 SWo06 PB2
SWo07 D6 PB3 D6 SWo07 PB3
SWo08 D7 PB4 D7 SWo08 PB4
SW09 D15 (SCL) D8 SW16

SW10 D14 (SDA) D9 SW15

SW11 D13 PA4 D10 SwW14 PA1
SW12 D12 PA3 D11 SW13 PA2
SW13 D11 PA2 D12 SW12 PA3
SwW14 D10 PA1 D13 SW11 PA4
SW15 D9 D14 (SDA) SW10

SW16 D8 D15 (SCL) SW09

Appendix B: Pmod Pin Mapping

_ Typel | Type2 | Type3 | Typed | Types | YPe®

Pin | PMOD | I'C (‘ilzlo ysppl JXRT JXRT H-:;?idge Dual H-
Bridge

Al 1 101 ss cTS cTS DIR DIR1
A2 2 102 MOSI RTS TXD EN EN1
A3 3 scL 103 MISO RXD RXD SA DIR2
A4 4 SDA 104 SCK TXD RTS SB EN2
A5 5 GND GND GND GND GND GND GND
A6 6 vce vce vce vce vce vce vce
B1 7 INT INT
B2 8 RESET RESET
B3 9 scL N/S N/S
B4 | 10 SDA N/S N/S
BS | 11 GND GND GND GND GND GND GND
B6 | 12 vce vce vce vce vce vce vce

Appendix C: mbed Enabled Board Compatibility

This is a summary of known compatibility issues with some of the mbed Enabled Boards. The MAXREFDES72# can work
with most boards that have Arduino Uno R3 compatible pin headers, but due to the variability of each implementation
the compatibility must be reviewed carefully. This is not an exhaustive list of compatibility issues, but is provided for
guidance.

Seeeduino Arch
¢ Revision 1.0 has the SPI SCK and MOSI pins swapped with respect to Arduino Uno. This has been corrected in
revision 1.1.

* This board does not have a dedicated mbed interface chip, but uses the USB bootloader in the LPC11U24 ROM.
The lack of a dedicated mbed interface chip means USBRX and USBTX are not present and the firmware update
procedure is different. This prevents the included MAX3232 demonstration code from functioning with this
board.

* PWM function is not available on D3.

Seeeduino Arch Pro
* PWM function is not available on D3.

FRDM-KLO5Z
e 1’C and D4 are shared with MMA8451(0011101).

FRDM-KL257Z
¢ D13 is pulled up by an LED.

FRDM-KL467Z
¢ D13 is pulled up by an LED.

FRDM-K64F
e 1’C and D4 are shared with FXOS8700 (0011101).
* mbed USB serial port does not connect to DO, D1. This prevents the included MAX3232 demonstration code
from functioning with this board.

STM32 Nucleo
* Pins DO and D1 are unconnected by default. Need to short missing solder bridges to connect. This modification is
required for the included MAX3232 demonstration code to function properly.
* D13 s pulled down by an LED. This makes it difficult to use the Pmod connector top row (A) for I°C.
* FO30R8 version does not have PWM function at D3.

Appendix D: MAX3232 Demonstration Code

#include "mbed.h"
#include "MAX14661.h"

MAX14661 mux (D14, D15);
DigitalOut pinRTS (D13);
DigitalIn pinRX(D0); // Set as input to remove load from mbedTX
DigitalIn pinTX(D1l); // Set as input to remove load from mbedRX

int main ()
{
pinRTS=0; // Not Ready to Send
// DO (mbedTX) + PA2 (TXD), D1 (mbedRX) + PA3 (RXD)
mux.setAB((MAX14661::SW01 | MAX14661::SWl13),
(MAX14661::SW02 | MAX14661l::SW1l2));
pinRTS=1; // Ready to Send

Appendix E: MAX14661 Library

MAX14661.h

#ifndef MAX14661 H
#define MAX14661 H

#include "mbed.h"

/** MAX14661 Library, Provides utilities for configuring the MAX14661
over I2C

* Example:

* @code

* // Enable only switch B3 and read back switch state.
*

* #include "MAX14661.h"

*

* MAX14661 mux(p28, p27);

*

* int main () {

* mux.setAB(0x0000, MAX14661::SWO03);

* printf ("mux = 0x%08X\n", mux.read());
* mux.clearAll () ;

* printf ("mux = 0x%08X\n", mux.read());
* }

* @endcode

*/

class MAX14661

{
public:

/** Create a MAX14661 interface
*
* @param sda I2C data line pin
* @param scl I2C clock line pin
* @param addr MAX14661 I2C address
*/
MAX14661 (PinName sda, PinName scl, int addr = 0x98);

~MAX14661 () ;

/** Name the register addresses
*/
enum MAX1466lregs {
REG DIR0 = 0x00, /**< 8A-1A Direct Access */

REG_DIRI1, /**< 16A-9A Direct Access */
REG_DIR2, /**< 8B-1B Direct Access */
REG_DIR3, /**< 16B-9B Direct Access */
REG_SHDWO = 0x10, /**< 8A-1A Shadow */
REG_SHDW1, /**< 16A-9A Shadow */
REG_SHDW2, /**< 8B-1B Shadow */
REG_SHSW3, /**< 16B-9B Shadow */

REG CMD A, /**< Command A */

REG CMD B /**< Command A */

/** Name the command codes
*/
enum MAX1466lcmds {

CMD _ENO1 = 0x00, /**< Enable switch 1 */
CMD_ENO2, /**< Enable switch 2 */
CMD_ENO3, /**< Enable switch 3 */
CMD_ENO04, /**< Enable switch 4 */
CMD_ENOS5, /**< Enable switch 5 */
CMD_ENOG6, /**< Enable switch 6 */
CMD_ENO7, /**< Enable switch 7 */
CMD_ENO8, /**< Enable switch 8 */
CMD_ENOY, /**< Enable switch 9 */
CMD_EN10, /**< Enable switch 10 */
CMD_EN11, /**< Enable switch 11 */
CMD_EN12, /**< Enable switch 12 */
CMD_EN13, /**< Enable switch 13 */
CMD_EN14, /**< Enable switch 14 */
CMD_EN15, /**< Enable switch 15 */
CMD_EN16, /**< Enable switch 16 */
CMD_DIS, /**< Disable switches */
CMD COPY, /**< Copy shadow registers to switches */

CMD NOOP = Ox1F /**< Keep current state, no changes */
i

/** Name the switch bits

*/

enum MAX14661lsws {
SW0l = (1 << 0), /**< Bit mask for switch 1 */
SW02 = (1 << 1), /**< Bit mask for switch 2 */
SW03 = (1 << 2), /**< Bit mask for switch 3 */
SW04 = (1 << 3), /**< Bit mask for switch 4 */
SW05 = (1 << 4), /**< Bit mask for switch 5 */
SW06 = (1 << 5), /**< Bit mask for switch 6 */
SWO07 = (1 << 6), /**< Bit mask for switch 7 */
SW08 = (1 << 7), /**< Bit mask for switch 8 */
SW09 = (1 << 8), /**< Bit mask for switch 9 */
SW10 = (1 << 9), /**< Bit mask for switch 10 */
SW1l = (1 << 10), /**< Bit mask for switch 11 */
SW12 = (1 << 11), /**< Bit mask for switch 12 */
SW13 = (1 << 12), /**< Bit mask for switch 13 */
SW1l4 = (1 << 13), /**< Bit mask for switch 14 */
SW15 = (1 << 14), /**< Bit mask for switch 15 */
SWle = (1 << 15) /**< Bit mask for switch 16 */

}s

/** Clears all bits to opens all 32 switches
*/
void clearAll () :;

/** Set all 32 switches simultaneously
*
* (@param swA the desired state of switches [Al6 - AQ01]
* (@param swB the desired state of switches [B16 - BO01]
*/

void setAB(int swA, int swB);

/** Read the status of all 32 switches concatenated into a single
int
*

* (@returns

* the switch states [B16-B01,Al16-Al]
*/
int read():;
private:
I2C i2c;
int addr;
b
#endif

MAX14661.cpp

#include "MAX14661.h"
#include "mbed.h"

MAX14661::MAX14661 (PinName sda, PinName scl, int addr) : i2c(sda,
scl)
{
_addr = addr;
}

MAX14661::~MAX14661 ()
{
}

void MAX14661::clearAll ()

{
char datal[3];

data[0] = REG CMD A;
data[l] = CMD DIS;
data[2] = CMD_DIS;

_i2c.write(addr, data, 3);

}

void MAX14661::setAB(int swA, int swB)

{
char datal[7]:

data[0] = REG_SHDWO;
data[l] = swA;
data[2] = swA >> 8;
data[3] = swB;
data[4] = swB >> 8;
data[5] = CMD COPY;
data[6] = CMD_COPY;

i2c.write(addr, data, 7);

}

int MAX14661::read()

{
char datal[4]:;
data[0] = REG _DIRO;

_i2c.write(addr, data, 1, true);

_i2c.read(addr, data, 4);

return ((data[3] << 24) | (data[2] << 16) | (datal[l] << 8) |
datal[0]):;
}

Appendix F: Arduino Variant Pin Mapping

Arduino UNO R3 Leonardo / YUN Arduino DUE Intel Galileo
ATmega328 ATmega32U4 SAM3X8E Quark SoC X1000

I

I

ARDUINO —1

®00GGe ©ORPEPOEGEe

Analog Analog
In In

(XN RN RN -N-N-NccR-NC-N-N-X-
XN X N N R -N-N-N-N NN X}
(XN R- N RN NI -N-N NN RN N XX
o000 OOOOOOGOO
o000 OO0 ODOOOOOOOOS
®P00GRR ©ORPPOEGEe
090G RGR POPOGCRGRRO

Analog
In
[RX_|

Seeeduino Arch Seeeduino Arch PRO NXP LPC800-MAX NXP LPCXpresso
LPC11U24 LPC1768 LPC812 LPC1549

Analog
I

Analog
In

[N RCRCN- NN -N-Nc NN R-N-N-N-X-
X RN N NN NI N-Nc NN RN N-N-X-
0000000 ODOOOOOOOOD
[N RCRCN- RN -N-Nc NN N-N-N-X-

®GRGRR® 0GR GEe
X N XN NN -N-N-N NN NN
o000 0O OOOGGOOO
®GRGRR® ©0POGEGRe

Analog
In

Freescale Freescale Freescale Freescale
FRDM-KL05Z FRDM-KL25Z FRDM-KL46Z FRDM-K64F

[RX]

{ Rx]

Analog
In

mbed ENABLED

[X-N-N-N- N -N-N-NcX-¥-X-¥-
[cRCR-N-N-N-N-N-N-Nc NN R-N-N-N-N-N-]
[X-N-N-N-N-X-N-N-X-N-X-¥-
[N N NN N-N-N-NC NN N N N-N-N-N-J
Ceeeee OO0GOCOOOD
OCCOOOO0 COCOCOOOOOOO
[X-N-N-N-N-N-N-NcX-¥-X-¥-
[cRCR-N-NoN-N-N-N-Nc RN N-N-N-N-N-]

Analog
In Analog Analog
In In

STM32 Nucleo STM32 Nucleo STM32 Nucleo STM32 Nucleo
FO30R8 F103RB L152RE F401RE

2
5
2
5
H
5
2
5

[Sk |
CED
[WS]

INT

Analog
In

[cRCN-N-N-N-N-N-RCRC RN N-N-N-N-NC]
[N N-N-N-N-N-N NN NN N N N-N-N-NC]
CCOOOOO0 COOOOOOOOO
[cRCN-N-N-N-N-N-NCRC RN N-N-N-NoN-NC]

®
®
-]
®
®
®
[
®
®
®
®
-]
®
®

[N X-N-N-N- BN N N-N-N-X-X-]
CeeOOee O0COCOOOOO
[X-N-N NN - NN X-N-N-X-

Analog Analog
In In

Trademarks

Arduino is a registered trademark of Arduino, LLC.

Digilent is a registered trademark and Pmod™ is a trademark of Digilent Inc.
Pmod is a trademark of Diligent Inc.

Windows is a registered trademark and registered service mark of Microsoft Corporation.

Revision History

REV NUMBER

DATE

DESCRIPTION

PAGES CHANGED

0

7/14

Initial release

