

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

Series/Type: B32674 ... **B32678**Date: February 2017

© EPCOS AG 2017. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Metallized polypropylene film capacitors (MKP)

B32674 ... B32678

MKP DC link - high power series

Recommended applications

- Frequency converters
- Industrial and high-end power supplies
- Solar inverters

Climatic

- Max. operating temperature: 105 °C (case)
- Climatic category (IEC 60068-1): 40/105/56

Construction

- Dielectric: Polypropylene (MKP)
- Plastic case (UL 94 V-0)
- Epoxy resin sealing (UL 94 V-0)

Features

- Capacitance value up to 270 µF
- High CV product, compact
- Good self-healing properties
- Over-voltage capability
- Low losses with high current capability
- High reliability
- Long useful life

Terminals

- Parallel wire leads, lead-free tinned
- 2-pin, 4-pin and 12-pin versions
- Standard lead lengths: 6 -1 mm

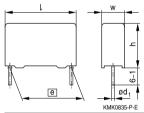
Marking

Manufacturer's logo and lot number, date code, rated capacitance (coded), capacitance tolerance (code letter), rated DC voltage

Delivery mode

Bulk (untaped, lead length 6-1 mm)

MKP DC link - high power series

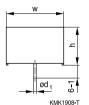

Dimensional drawings

Dimensions in mm

Number of wires	Lead spacing e ±0.4	Lead diameter d ₁ ±0.05	Туре
2-pin	27.5	0.8	B32674D
2-pin	37.5	1.0	B32676T
4-pin	37.5	1.2	B32676G
4-pin	37.5	1.2	B32676T
4-pin	52.5	1.2	B32678G
4-pin	52.5	1.2	B32678T
12-pin	52.5	1.2	B32678J

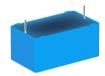
Dimensional drawings 2-pin versions

B32674D



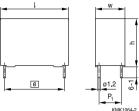
Lead spacing e ±0.4: 2	27.5
Lead diameter d₁:	0.8

(Dimensions in mm)


B32676T (low profile)

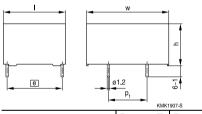
	TUNITION
Lead spacing @ ±0.4:	37.5
Lead diameter d₁:	1.0

(Dimensions in mm)



MKP DC link - high power series

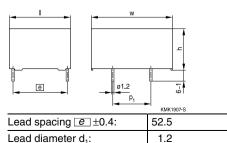
Dimensional drawings 4-pin versions


B32676G, B32678G

KMK1064-2									
	B32676G	B32678G							
Lead spacing e ±0.4:	37.5	52.5							
Lead diameter d₁:	1.2	1.2							

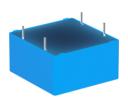
(Dimensions in mm)

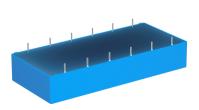
B32676T, B32678T (low profile)

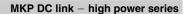


	B32676T	B32678T
Lead spacing <u>@</u> ±0.4: Lead diameter d ₁ :	37.5 1.2	52.5 1.2
Lead diameter u ₁ .	1.2	1.2

(Dimensions in mm)


Dimensional drawing 12-pin version


B32678J


(Dimensions in mm)

Overview of available types

	1									
Lead spacing						37.5 mm				
Туре	B3267	' 4				B3267	6			
Page	7					9				
V _R (V DC)	300	450	630	750	875	300	450	630	750	875
C _R (μF)										
0.47										
0.68										
1.0										
1.5										
2.0										
2.2										
2.7										
3.0										
3.3										
3.5										
4.0										
4.7										
5.0										
5.6										
6.0										
6.2										
6.8										
7.5										
8.0										
8.2										
9.0										
10										
12										
13										
14										
15										
20										
22										
25										
30										
35								1		
	1				_1					

MKP DC link - high power series

Lead spacing	52.5 mm				
Туре	B32678				
Page	11				
V _R (V DC)	300	450	630	750	875
C _R (μF)					
7.0					
9.0					
13					
15					
20					
22					
24					
25					
28					
30					
35					
38					
40					
45					
47					
60					
65					
80					
85					
100					
120					
180					
270					

MKP DC link - high power series

Ordering codes and packing units (lead spacing 27.5 mm)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _R ¹⁾	Max. dimensions	P ₁	Ordering code	I _{RMS,max} ²⁾	ESR _{typ}	ESL _{typ} ³⁾	tan δ	tan δ	MOQ
		$w \times h \times l$		(composition see	70 °C	70 °C				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				below)	10 kHz	10 kHz		1 kHz	10 kHz	
2.2 11.0 × 19.0 × 31.5 — B32674D3225+000 5.0 18.1 16.0 0.7 4.1 1280 3.3 12.5 × 21.5 × 31.5 — B32674D3335+000 7.0 12.2 19.0 0.7 4.1 1120 4.7 14.0 × 24.5 × 31.5 — B32674D3475+000 8.5 8.9 21.0 0.7 4.2 1040 5.0 15.0 × 24.5 × 31.5 — B32674D3505+000 9.0 8.4 21.0 0.7 4.2 960 6.8 18.0 × 27.5 × 31.5 — B32674D3685+000 11.5 6.3 24.0 0.7 4.4 800 8.0 16.0 × 32.0 × 31.5 — B32674D3805+000 12.5 5.6 27.0 0.7 4.5 880 8.2 18.0 × 33.0 × 31.5 — B32674D3825+000 13.0 5.5 27.0 0.7 4.5 800 10.0 21.0 × 31.0 × 31.5 — B32674D3106+000 14.5 4.6 27.0 0.8 4.6 720 12.0 × 36.5 × 31.5 — B32674D3126+000 17.0 4.0 31.0 0.8 4.9 640 4.5 4.5 4.6 27.0 0.6 3.3 1120 4.7 18.0 × 24.5 × 31.5 — B32674D4155+000 4.5 22.1 16.0 0.6 3.3 1120 3.3 15.0 × 24.5 × 31.5 — B32674D4355+000 8.0 10.3 22.0 0.6 3.4 960 4.7 18.0 × 27.5 × 31.5 — B32674D43505+000 11.0 7.1 29.0 0.6 3.5 800 5.0 16.0 × 32.0 × 31.5 — B32674D4505+000 11.0 7.1 29.0 0.7 3.6 880 6.0 21.0 × 31.0 × 31.5 — B32674D4605+000 12.0 6.3 29.0 0.7 3.6 880 6.0 21.0 × 31.0 × 31.5 — B32674D4605+000 13.0 5.9 28.0 0.7 3.6 800 6.0 21.0 × 31.0 × 31.5 — B32674D4605+000 14.5 5.4 29.0 0.7 3.6 800 6.8 22.0 × 36.5 × 31.5 — B32674D4605+000 15.0 5.0 32.0 0.7 3.8 640 V _{R,85} °c = 630 V DC, V _{op,70} °c = 800 V DC 1.0 11.0 × 19.0 × 31.5 — B32674D6105+000 15.0 5.0 32.0 0.7 3.8 640 V _{R,85} °c = 630 V DC, V _{op,70} °c = 800 V DC 1.0 11.0 × 19.0 × 31.5 — B32674D6105+000 5.5 17.9 19.0 0.6 2.7 1280 12.5 × 21.5 × 31.5 — B32674D6105+000 5.5 17.9 19.0 0.6 2.7 1280 12.5 × 21.5 × 31.5 — B32674D6105+000 5.5 17.9 19.0 0.6 2.7 1280 12.5 × 21.5 × 31.5 — B32674D6105+000 7.5 12.4 21.0 0.6 2.7 1280 12.5 × 2	μF	mm	mm		Α	mΩ	nH	10 ⁻³	10 ⁻³	pcs.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{R,85} °($_{\rm C} = 300 \text{ V DC}, V_{\rm op,70}$	°c =	450 V DC						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2	$11.0 \times 19.0 \times 31.5$	_	B32674D3225+000	5.0	18.1	16.0	0.7	4.1	1280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3	$12.5 \times 21.5 \times 31.5$	_	B32674D3335+000	7.0	12.2	19.0	0.7	4.1	1120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.7	$14.0\times24.5\times31.5$	_	B32674D3475+000	8.5	8.9	21.0	0.7	4.2	1040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0	$15.0 \times 24.5 \times 31.5$	_	B32674D3505+000	9.0	8.4	21.0	0.7	4.2	960
8.2 $18.0 \times 33.0 \times 31.5$ - B32674D3825+000 13.0 5.5 27.0 0.7 4.5 800 10.0 21.0 \times 31.0 \times 31.5 - B32674D3106+000 14.5 4.6 27.0 0.8 4.6 720 12.0 22.0 \times 36.5 \times 31.5 - B32674D3126+000 17.0 4.0 31.0 0.8 4.9 640 \times 4.0 17.0 \times 4.0 31.0 0.8 4.9 640 \times 6.0 \times 7.0 \times	6.8	$18.0 \times 27.5 \times 31.5$	_	B32674D3685+000	11.5	6.3	24.0	0.7	4.4	800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.0	$16.0 \times 32.0 \times 31.5$	_	B32674D3805+000	12.5	5.6	27.0	0.7	4.5	880
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.2	$18.0 \times 33.0 \times 31.5$	_	B32674D3825+000	13.0	5.5	27.0	0.7	4.5	800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.0	$21.0 \times 31.0 \times 31.5$	_	B32674D3106+000	14.5	4.6	27.0	0.8	4.6	720
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.0	$22.0\times36.5\times31.5$	_	B32674D3126+000	17.0	4.0	31.0	8.0	4.9	640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V _{R,85} °c	$_{c} = 450 \text{ V DC}, V_{op,70}$	°c =	630 V DC						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5	$11.0 \times 19.0 \times 31.5$	_	B32674D4155+000	4.5	22.1	16.0	0.6	3.3	1280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	$12.5 \times 21.5 \times 31.5$	_	B32674D4225+000	6.0	14.9	19.0	0.6	3.3	1120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3	$15.0 \times 24.5 \times 31.5$	_	B32674D4335+000	8.0	10.3	22.0	0.6	3.4	960
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.7	$18.0 \times 27.5 \times 31.5$	_	B32674D4475+000	10.5	7.5	24.0	0.6	3.5	800
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.0	$16.0 \times 32.0 \times 31.5$	_	B32674D4505+000	11.0	7.1	28.0	0.7	3.6	880
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.6	$18.0 \times 33.0 \times 31.5$	_	B32674D4565+000	12.0	6.3	29.0	0.7	3.6	800
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.0	$21.0 \times 31.0 \times 31.5$	-	B32674D4605+000	13.0	5.9	28.0	0.7	3.6	720
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.8	$22.0 \times 36.5 \times 31.5$	-	B32674D4685+000	14.5	5.4	29.0	0.7	3.7	640
1.0 11.0 × 19.0 × 31.5 - B32674D6105+000 4.0 26.1 17.0 0.6 2.7 1280 1.5 12.5 × 21.5 × 31.5 - B32674D6155+000 5.5 17.9 19.0 0.6 2.7 1120 2.2 15.0 × 24.5 × 31.5 - B32674D6225+000 7.5 12.4 21.0 0.6 2.7 960	7.5	$22.0\times36.5\times31.5$	_	B32674D4755+000	15.0	5.0	32.0	0.7	3.8	640
1.5 12.5 × 21.5 × 31.5 - B32674D6155+000 5.5 17.9 19.0 0.6 2.7 1120 2.2 15.0 × 24.5 × 31.5 - B32674D6225+000 7.5 12.4 21.0 0.6 2.7 960	V _{R,85} °c	$_{c} = 630 \text{ V DC}, V_{op,70}$	°c =	800 V DC						
2.2 15.0 × 24.5 × 31.5 - B32674D6225+000 7.5 12.4 21.0 0.6 2.7 960	1.0	$11.0 \times 19.0 \times 31.5$	_	B32674D6105+000	4.0	26.1	17.0	0.6	2.7	1280
	1.5	$12.5 \times 21.5 \times 31.5$	_	B32674D6155+000	5.5	17.9	19.0	0.6	2.7	1120
	2.2	$15.0 \times 24.5 \times 31.5$	_	B32674D6225+000	7.5	12.4	21.0	0.6	2.7	960
3.3 16.0 × 32.0 × 31.5 - B32674D6335+000 10.0 8.5 28.0 0.6 2.8 880	3.3	$16.0 \times 32.0 \times 31.5$	_	B32674D6335+000	10.0	8.5	28.0	0.6	2.8	880
4.7 22.0 × 36.5 × 31.5 - B32674D6475+000 13.5 6.0 31.0 0.6 3.0 640	4.7	$22.0\times36.5\times31.5$	-	B32674D6475+000	13.5	6.0	31.0	0.6	3.0	640
5.0 22.0 × 36.5 × 31.5 - B32674D6505+000 14.5 5.8 31.0 0.6 3.0 640	5.0	$22.0\times36.5\times31.5$	_	B32674D6505+000	14.5	5.8	31.0	0.6	3.0	640

MOQ = Minimum Order Quantity, consisting of 4 packing units. Intermediate capacitance values are available on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$ $J = \pm 5\%$

¹⁾ Capacitance value measured at 1 kHz

²⁾ Max. ripple current I_{RMS} at 70 °C at 10 kHz for a $\Delta T \leq 20$ °C when $\Delta ESR_{typ} \leq \pm 5\%$

³⁾ ESL value measured at resonance frequency (see specific graphs of Z vs freq)

MKP DC link - high power series

Ordering codes and packing units (lead spacing 27.5 mm)

C _R ⁴⁾	Max. dimensions	P ₁	Ordering code	I _{RMS,max} 5)	ESR_{typ}	ESL _{typ} ⁶⁾	$tan \ \delta$	tan δ	MOQ
	$w \times h \times l$		(composition see	70 °C	70 °C				
			below)	10 kHz	10 kHz		1 kHz	10 kHz	
μF	mm	mm		Α	mΩ	nH	10 ⁻³	10 ⁻³	pcs.
V _{R,85} °	$_{\rm C} = 750 \text{ V DC}, V_{\rm op,70}$	°c =	900 V DC						
0.68	$11.0 \times 19.0 \times 31.5$	_	B32674D1684+000	3.5	34.7	17.0	0.5	2.4	1280
1.0	$12.5 \times 21.5 \times 31.5$	_	B32674D1105+000	4.5	24.2	18.0	0.5	2.5	1120
1.5	$14.0 \times 24.5 \times 31.5$	_	B32674D1155+000	6.5	16.3	22.0	0.6	2.5	1040
2.2	$18.0 \times 27.5 \times 31.5$	_	B32674D1225+000	8.5	11.3	24.0	0.6	2.5	800
3.3	$21.0 \times 31.0 \times 31.5$	_	B32674D1335+000	11.0	7.9	28.0	0.6	2.6	720
4.0	$22.0 \times 36.5 \times 31.5$	_	B32674D1405+000	13.0	6.7	32.0	0.6	2.7	640
V _{R,85} °	$_{\rm C} = 875 \text{ V DC}, V_{\rm op,70}$	_{°c} = 1	050 V DC						
0.47	$11.0 \times 19.0 \times 31.5$	_	B32674D8474+000	3.0	45.2	16.0	0.5	2.2	1280
0.68	$11.0 \times 21.0 \times 31.5$	_	B32674D8684+000	4.0	31.5	19.0	0.5	2.2	1280
1.0	$13.5 \times 23.0 \times 31.5$	_	B32674D8105+000	5.0	22.2	20.0	0.5	2.2	1040
1.5	$18.0 \times 27.5 \times 31.5$	_	B32674D8155+000	7.5	14.7	23.0	0.5	2.2	800
2.2	$18.0 \times 33.0 \times 31.5$	_	B32674D8225+000	9.5	10.3	29.0	0.5	2.3	800
3.0	$22.0 \times 36.5 \times 31.5$	_	B32674D8305+000	12.0	7.8	31.0	0.5	2.4	640

MOQ = Minimum Order Quantity, consisting of 4 packing units. Intermediate capacitance values are available on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

⁴⁾ Capacitance value measured at 1 kHz

⁵⁾ Max. ripple current I_{RMS} at 70 °C at 10 kHz for a $\Delta T \le 20$ °C when $\Delta ESR_{typ} \le \pm 5\%$

⁶⁾ ESL value measured at resonance frequency (see specific graphs of Z vs freq)

MKP DC link - high power series

Ordering codes and packing units (lead spacing 37.5 mm)

C _R ¹⁾	Max. dimensions	P ₁	Ordering code	I _{RMS,max} ²⁾	ESR_{typ}	ESL _{typ} ³⁾	$tan \ \delta$	tan δ	MOQ
	$w \times h \times l$		(composition see	70 °C	70 °C				
			below)	10 kHz	10 kHz		1 kHz	10 kHz	
μF	mm	mm	,	Α	mΩ	nH	10 ⁻³	10 ⁻³	pcs.
$V_{R,85}$	_C = 300 V DC, V _{op,70}	o°c =	450 V DC		,				
6.2	$24.0 \times 15.0 \times 41.5$	_	B32676T3625+000	8.0	12.6	18.0	1.1	8.2	1040
9.0	$24.0 \times 19.0 \times 41.5$	_	B32676T3905+000	10.0	9.1	19.0	1.1	8.3	780
15.0	$20.0 \times 39.5 \times 42.0$	10.2	B32676G3156+000	16.0	5.4	10.0	1.1	8.3	640
20.0	$28.0 \times 37.0 \times 42.0$	10.2	B32676G3206+000	20.0	4.0	11.0	1.1	8.4	440
20.0	$43.0\times22.0\times41.5$	20.3	B32676T3206K000	19.5	4.0	13.0	1.1	8.3	280
22.0	$28.0\times42.5\times42.0$	10.2	B32676G3226+000	21.5	3.8	11.0	1.2	8.5	440
25.0	$28.0\times42.5\times42.0$	10.2	B32676G3256+000	22.5	3.4	12.0	1.2	8.6	440
30.0	$30.0\times45.0\times42.0$	20.3	B32676G3306+000	26.0	2.8	12.0	1.2	8.7	400
35.0	$33.0\times48.0\times42.0$	20.3	B32676G3356+000	29.5	2.5	13.0	1.2	8.8	180
$V_{R,85}$	$_{\rm C}$ = 450 V DC, $V_{\rm op,70}$	o°c =	630 V DC						
4.0	$24.0 \times 15.0 \times 41.5$	_	B32676T4405+000	7.0	15.5	19.0	1.0	6.6	1040
4.7	$24.0 \times 19.0 \times 41.5$	_	B32676T4475+000	8.0	13.2	18.0	1.0	6.6	780
8.2	$20.0 \times 39.5 \times 42.0$	10.2	B32676G4825+000	13.5	7.8	9.0	1.0	6.7	640
10.0	$20.0\times39.5\times42.0$	10.2	B32676G4106+000	14.5	6.4	11.0	1.0	6.7	640
13.0	$43.0\times22.0\times41.5$	20.3	B32676T4136K000	17.5	5.0	13.0	1.0	6.6	280
15.0	$28.0\times42.5\times42.0$	10.2	B32676G4156+000	20.0	4.4	11.0	1.0	6.8	440
20.0	$30.0\times45.0\times42.0$	20.3	B32676G4206K000	24.0	3.3	13.0	1.0	6.9	400
25.0	$33.0\times48.0\times42.0$	20.3	B32676G4256K000	28.0	2.8	14.0	1.0	7.1	180
V _{R,85}	° _C = 630 V DC, V _{op,70}	o °c =	800 V DC						
2.7	$24.0 \times 15.0 \times 41.5$	_	B32676T6275+000	7.0	17.7	20.0	0.8	5.1	1040
3.5	$24.0 \times 19.0 \times 41.5$	_	B32676T6355+000	8.0	14.1	19.0	8.0	5.1	780
6.8	$20.0 \times 39.5 \times 42.0$	10.2	B32676G6685+000	13.5	7.4	10.0	0.8	5.2	640
7.5	$20.0\times39.5\times42.0$	10.2	B32676G6755+000	14.5	6.6	12.0	8.0	5.2	640
8.2	$28.0 \times 37.0 \times 42.0$	10.2	B32676G6825+000	16.0	6.1	11.0	0.8	5.2	440
9.0	$43.0\times22.0\times41.5$	20.3	B32676T6905K000	16.5	5.7	13.0	8.0	5.1	280
10.0	$28.0\times42.5\times42.0$	10.2	B32676G6106+000	18.5	5.1	11.0	8.0	5.2	440
12.0	$28.0\times42.5\times42.0$	10.2	B32676G6126+000	20.0	4.4	12.0	8.0	5.3	440
14.0	$30.0\times45.0\times42.0$	20.3	B32676G6146+000	23.0	3.7	14.0	8.0	5.3	400
15.0	$33.0\times48.0\times42.0$	20.3	B32676G6156+000	25.0	3.5	14.0	8.0	5.4	180

MOQ = Minimum Order Quantity, consisting of 4 packing units. Intermediate capacitance values are available on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$ $J = \pm 5\%$

- 1) Capacitance value measured at 1 kHz
- 2) Max. ripple current I_{RMS} at 70 °C at 10 kHz for a $\Delta T \leq 20$ °C when $\Delta ESR_{typ} \leq \pm 5\%$
- 3) ESL value measured at resonance frequency (see specific graphs of Z vs freq)

MKP DC link - high power series

Ordering codes and packing units (lead spacing 37.5 mm)

$C_R^{4)}$	Max. dimensions	P ₁	Ordering code	I _{RMS,max} ⁵⁾	ESR_{typ}	ESL _{typ} ⁶⁾	tan δ	$tan \ \delta$	MOQ
	$w \times h \times l$		(composition see	70 °C	70 °C				
			below)	10 kHz	10 kHz		1 kHz	10 kHz	
μF	mm	mm	·	Α	mΩ	nH	10 ⁻³	10 ⁻³	pcs.
$V_{R,85}$	° _C = 750 V DC, V _{op,70}	o°c =	900 V DC						
2.0	$24.0\times15.0\times41.5$	-	B32676T1205+000	6.0	22.7	18.0	8.0	4.6	1040
2.7	$24.0 \times 19.0 \times 41.5$	_	B32676T1275+000	7.5	16.7	19.0	8.0	4.6	780
4.7	$20.0\times39.5\times42.0$	10.2	B32676G1475+000	12.0	9.5	10.0	8.0	4.6	640
5.6	$20.0\times39.5\times42.0$	10.2	B32676G1565+000	13.0	8.2	11.0	8.0	4.7	640
6.8	$28.0\times37.0\times42.0$	10.2	B32676G1685+000	15.5	6.7	11.0	8.0	4.7	440
9.0	$30.0\times45.0\times42.0$	20.3	B32676G1905+000	19.5	5.1	12.0	8.0	4.7	440
10.0	$30.0\times45.0\times42.0$	20.3	B32676G1106+000	20.5	4.7	13.0	8.0	4.8	400
12.0	$33.0\times48.0\times42.0$	20.3	B32676G1126+000	23.0	4.0	14.0	8.0	4.8	180
$V_{R,85}$	°C = 875 V DC, V _{op,70}	o°c = 1	050 V DC						
1.5	$24.0\times15.0\times41.5$	-	B32676T8155+000	5.5	26.2	18.0	0.7	4.1	1040
2.0	$24.0 \times 19.0 \times 41.5$	_	B32676T8205+000	7.0	19.6	19.0	0.7	4.1	780
3.3	$20.0\times39.5\times42.0$	10.2	B32676G8335+000	10.5	12.0	9.0	0.7	4.1	640
4.0	$20.0\times39.5\times42.0$	10.2	B32676G8405+000	12.0	9.9	11.0	0.7	4.1	640
4.7	$28.0\times37.0\times42.0$	10.2	B32676G8475+000	13.5	8.6	10.0	0.7	4.1	440
6.8	$28.0 \times 42.5 \times 42.0$	10.2	B32676G8685+000	17.0	6.0	12.0	0.7	4.2	440
7.5	$30.0\times45.0\times42.0$	20.3	B32676G8755+000	19.0	5.4	13.0	0.7	4.2	400
10.0	$33.0\times48.0\times42.0$	20.3	B32676G8106K000	22.5	4.3	14.0	0.7	4.3	180

MOQ = Minimum Order Quantity, consisting of 4 packing units. Intermediate capacitance values are available on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

⁴⁾ Capacitance value measured at 1 kHz

⁵⁾ Max. ripple current I_{RMS} at 70 °C at 10 kHz for a $\Delta T \le 20$ °C when $\Delta ESR_{typ} \le \pm 5\%$

⁶⁾ ESL value measured at resonance frequency (see specific graphs of Z vs freq)

MKP DC link - high power series

Ordering codes and packing units (lead spacing 52.5 mm)

C _R ¹⁾	Max. dimensions	P ₁	Ordering code	I _{RMS,max} ²⁾	ESR_{typ}	ESL _{typ} ³⁾	tan δ	tan δ	MOQ
	$w \times h \times l$		(composition see	70 °C	70 °C				
			below)	10 kHz	10 kHz		1 kHz	10 kHz	
μF	mm	mm		Α	mΩ	nH	10 ⁻³	10-3	pcs.
V _{R,85} °c	= 300 V DC, V _{op,70} °c	= 4	50 V DC						
30.0	$43.0 \times 24.0 \times 57.5$	20.3	B32678T3306K000	22.5	3.9	13.0	1.5	11.8	420
40.0	$30.0 \times 45.0 \times 57.5$	20.3	B32678G3406+000	28.0	3.0	12.0	1.5	12.3	280
47.0	$35.0\times50.0\times57.5$	20.3	B32678G3476+000	33.0	2.6	13.0	1.5	12.5	108
60.0	$35.0\times50.0\times57.5$	20.3	B32678G3606K000	37.0	2.1	15.0	1.6	12.9	108
80.0	$45.0 \times 57.0 \times 57.5$	20.3	B32678G3806+000	47.0	1.6	18.0	1.6	13.5	140
80.0	$130.0 \times 24.0 \times 57.5$	20.3	B32678J3806K000	51.0	1.4	4.0	1.5	11.7	80
100.0	$60.0 \times 45.0 \times 57.5$	20.3	B32678G3107+000	48.0	1.4	19.0	1.6	13.5	200
270.0	$130.0\times58.0\times57.5$	20.3	B32678J3277K000	108.0	0.5	6.0	1.6	13.8	40
V _{R,85} °c	$_{\rm c}$ = 450 V DC, $V_{\rm op,70} ^{\circ}{\rm C}$	= 6	30 V DC						
20.0	$43.0 \times 24.0 \times 57.5$	20.3	B32678T4206K000	20.0	4.9	13.0	1.3	9.8	420
30.0	$35.0\times50.0\times57.5$	20.3	B32678G4306+000	28.0	3.2	14.0	1.3	9.9	108
35.0	$35.0\times50.0\times57.5$	20.3	B32678G4356+000	31.5	2.8	14.0	1.3	10.0	108
40.0	$35.0\times50.0\times57.5$	20.3	B32678G4406K000	34.0	2.5	15.0	1.3	10.2	108
60.0	$45.0 \times 57.0 \times 57.5$	20.3	B32678G4606+000	45.0	1.8	18.0	1.4	11.2	140
60.0	$130.0 \times 24.0 \times 57.5$	20.3	B32678J4606K000	49.5	1.6	4.0	1.2	9.5	80
65.0	$60.0 \times 45.0 \times 57.5$	20.3	B32678G4656+000	48.0	1.6	19.0	1.3	10.6	200
180.0	$130.0\times58.0\times57.5$	20.3	B32678J4187K000	97.5	0.6	6.0	1.4	11.2	40
V _{R,85} °c	$_{\rm C}$ = 630 V DC, $V_{\rm op,70} ^{\circ}{\rm C}$; = 80	00 V DC						
13.0	$43.0\times24.0\times57.5$	20.3	B32678T6136K000	18.0	5.9	13.0	1.1	7.9	420
20.0	$35.0\times50.0\times57.5$	20.3	B32678G6206+000	26.5	4.0	13.0	1.1	8.2	108
25.0	$35.0\times50.0\times57.5$	20.3	B32678G6256+000	29.5	3.3	15.0	1.1	8.3	108
38.0	$130.0\times24.0\times57.5$	20.3	B32678J6386K000	43.5	2.1	4.0	1.1	7.9	80
40.0	$45.0 \times 57.0 \times 57.5$	20.3	B32678G6406+000	41.0	2.1	18.0	1.2	8.8	140
45.0				43.0	1.9	19.0	1.2	8.7	200
120.0	$130.0\times58.0\times57.5$	20.3	B32678J6127K000	90.0	0.7	6.0	1.2	8.8	40

MOQ = Minimum Order Quantity, consisting of 4 packing units. Intermediate capacitance values are available on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$ $J = \pm 5\%$

¹⁾ Capacitance value measured at 1 kHz

²⁾ Max. ripple current I_{RMS} at 70 °C at 10 kHz for a $\Delta T \leq 20$ °C when $\Delta ESR_{typ} \leq \pm 5\%$

³⁾ ESL value measured at resonance frequency (see specific graphs of Z vs freq)

MKP DC link - high power series

Ordering codes and packing units (lead spacing 52.5 mm)

C _R ⁴⁾	Max. dimensions	P ₁	Ordering code	I _{RMS,max} 5)	ESR_{typ}	ESL _{typ} ⁶⁾	tan δ	tan δ	MOQ
	$w \times h \times I$		(composition see	70 °C	70 °C				
			below)	10 kHz	10 kHz		1 kHz	10 kHz	
μF	mm	mm		Α	$m\Omega$	nH	10-3	10 ⁻³	pcs.
V _{R,85} °c	$_{\rm c}$ = 750 V DC, $V_{\rm op,70} ^{\circ}{\rm C}$	= 90	00 V DC						
9.0	$43.0\times24.0\times57.5$	20.3	B32678T1905K000	16.5	7.2	13.0	1.0	6.8	420
15.0	$30.0 \times 45.0 \times 57.5$	20.3	B32678G1156K000	23.0	4.5	14.0	1.0	7.0	280
20.0	$35.0\times50.0\times57.5$	20.3	B32678G1206K000	28.0	3.5	15.0	1.0	7.2	108
28.0	$45.0 \times 57.0 \times 57.5$	20.3	B32678G1286+000	37.5	2.5	18.0	1.0	7.4	140
30.0	$60.0 \times 45.0 \times 57.5$	20.3	B32678G1306+000	39.5	2.4	19.0	1.0	7.3	200
30.0	$130.0\times24.0\times57.5$	20.3	B32678J1306K000	40.5	2.3	4.0	1.0	6.8	80
85.0	$130.0\times58.0\times57.5$	20.3	B32678J1856K000	82.5	0.9	6.0	1.0	7.4	40
V _{R,85} °c	$_{\rm c}$ = 875 V DC, $V_{\rm op,70} ^{\circ}{\rm C}$	= 10	50 V DC						
7.0	$43.0\times24.0\times57.5$	20.3	B32678T8705K000	15.5	8.2	13.0	0.9	6.0	420
15.0	$35.0\times50.0\times57.5$	20.3	B32678G8156K000	26.5	4.0	15.0	0.9	6.3	108
22.0	$45.0 \times 57.0 \times 57.5$	20.3	B32678G8226+000	35.0	2.9	17.0	1.0	6.5	140
22.0	$130.0\times24.0\times57.5$	20.3	B32678J8226K000	39.0	2.6	5.0	0.9	6.0	80
24.0	$60.0 \times 45.0 \times 57.5$	20.3	B32678G8246+000	38.0	2.6	19.0	0.9	6.4	200
65.0	$130.0\times58.0\times57.5$	20.3	B32678J8656K000	78.0	1.0	6.0	1.0	6.5	40

MOQ = Minimum Order Quantity, consisting of 4 packing units. Intermediate capacitance values are available on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

⁴⁾ Capacitance value measured at 1 kHz

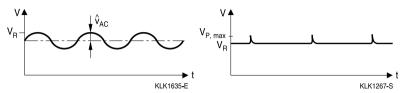
⁵⁾ Max. ripple current I_{RMS} at 70 °C at 10 kHz for a $\Delta T \le 20$ °C when $\Delta ESR_{typ} \le \pm 5\%$

⁶⁾ ESL value measured at resonance frequency (see specific graphs of Z vs freq)

MKP DC link - high power series

Technical data

Reference standard: IEC 61071. All data given at T = 20 $^{\circ}$ C, unless otherwise specified.


Operating temperatur	e range (case)	Max. oper	ating tempe	erature, T _{op,m}	_{ax} +10	5 °C
		Upper cate	egory temp	erature T _{max}	+10	5 °C
		Lower cate	egory temp	erature T _{min}	-4	0 °C
Insulation Resistance	R _{ins}	τ > 10000	s (after 1 n	nin)		
given as time constar	nt	For V _R ≥ 5	00 V meas	ured at 500 \	/	
$\tau = C_R \cdot R_{ins}$, rel. hum	idity ≤ 65%	For V _R < 5	00 V meas	ured at V _R		
(minimum as-delivere	ed values)					
DC voltage test between	een terminals (10 s)	$1.5 \cdot V_R$				
Voltage test terminal	to case (10 s)	2110 V AC	C, 50 Hz			
Pulse Handling Capa	bility (V/μs)	I _P (A) / C (μF)			
Damp heat test		56 days/40	0 °C/93% r	elative humic	lity	
Limit values after damp heat test		Capacitance change I∆C/CI			≤ 5%	
		Dissipation	n factor cha	ange ∆tan δ	≤ 0.005	(at 1 kHz)
		Insulation	resistance	R _{ins}	≥ 50%	of minimum
		Insulation	resistance	R _{ins}		of minimum vered values
Reliability:	Failure rate λ			R _{ins} .5 ⋅ V _R , 40 °C	as-deliv	
Reliability:	Failure rate λ Service life t_{SI}	1 fit (≤ 1 ·		.5 · V _R , 40 °(as-deliv	
Reliability:		1 fit (≤ 1 · 200 000 h	10 ⁻⁹ /h) at 0 at V _R , 85 °	.5 · V _R , 40 °(as-deliv	vered values
Reliability:		1 fit (≤ 1 · 200 000 h For conve	10 ⁻⁹ /h) at 0 at V _R , 85 ° rsion to oth	.5 · V _R , 40 °(as-deliv	vered values
Reliability:		1 fit (≤ 1 · 200 000 h For conve	10 ⁻⁹ /h) at 0 at V _R , 85 ° rsion to oth	.5 · V _R , 40 °(C er operating	as-deliv	vered values
	Service life t _{SL}	1 fit (≤ 1 · 200 000 h For conve temperatu	10 ⁻⁹ /h) at 0 at V _R , 85 ° rsion to oth res, refer to	.5 · V _R , 40 °(C er operating o chapter "Qu	as-deliv C conditio uality, 2	vered values ns and Reliability".
V _R (V DC)	Service life t _{SL}	1 fit (≤ 1 · 200 000 h For conve temperatu	10 ⁻⁹ /h) at 0 at V _R , 85 ° rsion to oth res, refer to	.5 · V _R , 40 °(C er operating o chapter "Qu	as-deliv C conditio uality, 2	vered values ns and Reliability".
V _R (V DC) Continuous operation V _{op} (V DC) at 70 °C Continuous operation	Service life t _{SL}	1 fit (≤ 1 · 200 000 h For conve temperatu 300	10 ⁻⁹ /h) at 0 at V _R , 85 ° rsion to oth res, refer to 450	.5 · V _R , 40 ° 0 C er operating o chapter "Qu 630	as-delive conditionuality, 2 1	ns and Reliability".
V _R (V DC) Continuous operation V _{op} (V DC) at 70 °C	Service life t _{SL}	1 fit (≤ 1 · 200 000 h For conve temperatu 300	10 ⁻⁹ /h) at 0 at V _R , 85 ° rsion to oth res, refer to 450	.5 · V _R , 40 ° 0 C er operating o chapter "Qu 630	as-delive conditionuality, 2 1	ns and Reliability".
V _R (V DC) Continuous operation V _{op} (V DC) at 70 °C Continuous operation	Service life t _{SL} voltage	1 fit (≤ 1 · 200 000 h For conve temperatu 300 450 300	10°9/h) at 0 at V _R , 85° rsion to oth res, refer to 450	.5 · V _R , 40 °(C er operating o chapter "Qu 630	as-delivic conditionality, 2 1 750 900	ns and Reliability". 875 1050

MKP DC link - high power series

Typical waveforms

Restrictions:

V_R: Maximum operating peak voltage of either polarity but of a non-reversing waveform, for which the capacitor has been designed for continuous operation.

 $\hat{u}_{AC} \leq 0.2 \cdot V_{R}$

 $V_{p, max}$:

Overvoltage	Maximum duration within one day	Observation
1.1 · V _R	30% of on-load duration	System regulation
1.15 ⋅ V _R	30 min.	System regulation
1.2 · V _R	5 min.	System regulation
1.3 ⋅ V _R	1 min.	System regulation

NOTE 1 An overvoltage equal to $1.5 \cdot V_R$ for 30 ms is permitted 1000 times during the life of the capacitor.

The amplitudes of the overvoltages that may be tolerated without significant reduction in the life time of the capacitor depend on their duration, the number of application and the capacitor temperature.

In addition these values assume that the overvoltages may appear when the internal temperature of the capacitor is less than 0 $^{\circ}$ C but within the temperature category.

NOTE 2 The average applied voltage must not be higher than the specified voltage.

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

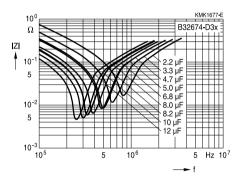
Note:

The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor. These parameters are given for isolated pulses in such a way that the heat generated by one pulse will be completely dissipated before applying the next pulse. For a train of pulses, please refer to the curves of permissible AC voltage-current versus frequency.

dV/dt values

Lead spacing	27.5	mm				37.5	mm				52.5	mm			
Туре	B326	674				B326	676				B326	678			
V _R (V DC)	300	450	630	750	875	300	450	630	750	875	300	450	630	750	875
dV/dt in V/μs	40	75	100	125	150	22	54	73	85	100	15	35	50	60	70

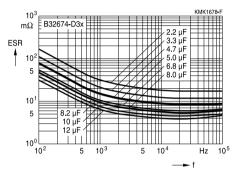
MKP DC link - high power series


Characteristics curves

Additional technical information can be found under "Design support" on www.epcos.com

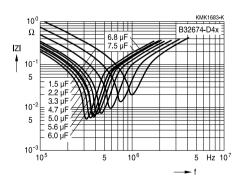
Impedance Z versus frequency f

(typical values)


Lead spacing 27.5 mm / B32674D3x / 300 V DC

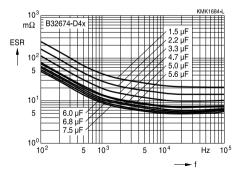
ESR versus frequency f

(typical values)


Lead spacing 27.5 mm / B32674D3x / 300 V DC

Impedance Z versus frequency f

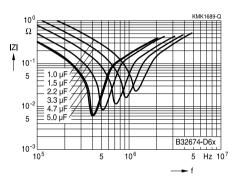
(typical values)


Lead spacing 27.5 mm / B32674D4x / 450 V DC

ESR versus frequency f

(typical values)

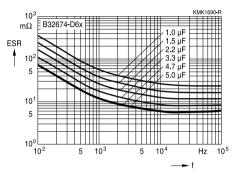
Lead spacing 27.5 mm / B32674D4x / 450 V DC



MKP DC link - high power series

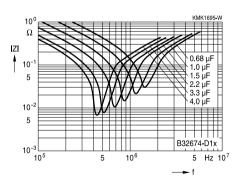
Characteristics curves

Impedance Z versus frequency f (typical values)


Lead spacing 27.5 mm / B32674D6x / 630 V DC

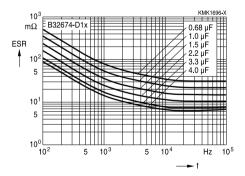
ESR versus frequency f

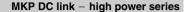
(typical values)


Lead spacing 27.5 mm / B32674D6x / 630 V DC

Impedance Z versus frequency f

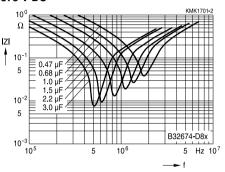
(typical values)


Lead spacing 27.5 mm / B32674D1x / 750 V DC


ESR versus frequency f

(typical values)

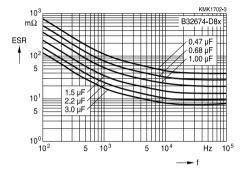
Lead spacing 27.5 mm / B32674D1x / 750 V DC



Characteristics curves

Impedance Z versus frequency f

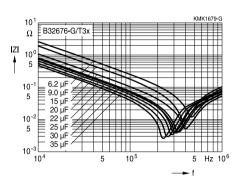
(typical values)


Lead spacing 27.5 mm / B32674D8x / 875 V DC

ESR versus frequency f

(typical values)

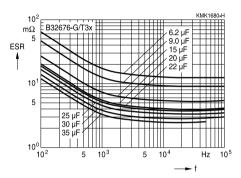
Lead spacing 27.5 mm / B32674D8x / 875 VDC


MKP DC link - high power series

Characteristics curves

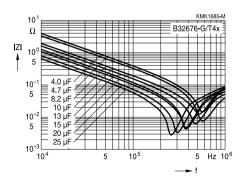
Impedance Z versus frequency f

(typical values)


Lead spacing 37.5 mm / B32676G/T3x / 300 V DC

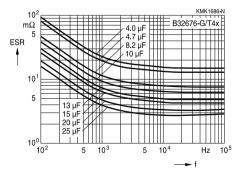
ESR versus frequency f

(typical values)


Lead spacing 37.5 mm / B32676G/T3x / 300 V DC

Impedance Z versus frequency f

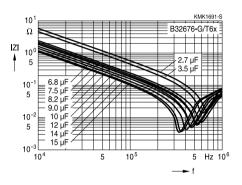
(typical values)


Lead spacing 37.5 mm / B32676G/T4x / 450 V DC

ESR versus frequency f

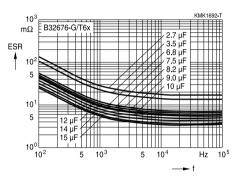
(typical values)

Lead spacing 37.5 mm / B32676G/T4x / 450 V DC


MKP DC link - high power series

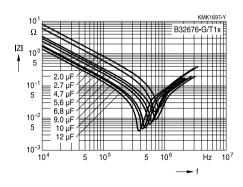
Characteristics curves

Impedance Z versus frequency f (typical values)


Lead spacing 37.5 mm / B32676G/T6x / 630 V DC

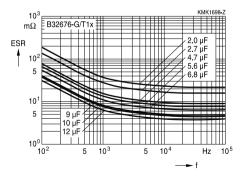
ESR versus frequency f

(typical values)


Lead spacing 37.5 mm / B32676G/T6x / 630 V DC

Impedance Z versus frequency f

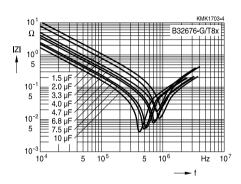
(typical values)


Lead spacing 37.5 mm / B32676G/T1x / 750 V DC

ESR versus frequency f

(typical values)

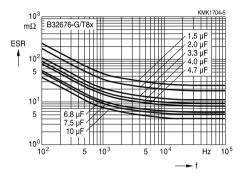
Lead spacing 37.5 mm / B32676G/T1x / 750 V DC


MKP DC link - high power series

Characteristics curves

Impedance Z versus frequency f

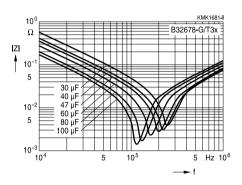
(typical values)


Lead spacing 37.5 mm / B32676G/T8x / 875 V DC

ESR versus frequency f

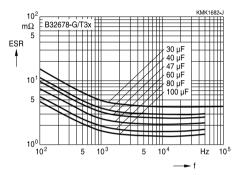
(typical values)

Lead spacing 37.5 mm / B32676G/T8x / 875 V DC

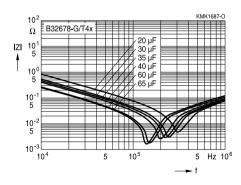

MKP DC link - high power series

Characteristics curves

Impedance Z versus frequency f (typical values)

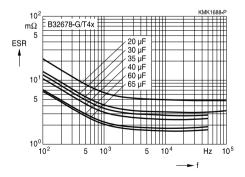

Lead spacing 52.5 mm / B32678G/T3x / 300 V DC

ESR versus frequency f


(typical values)

Lead spacing 52.5 mm / B32678G/T3x / 300 V DC

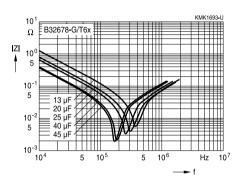
Impedance Z versus frequency f (typical values)


Lead spacing 52.5 mm / B32678G/T4x / 450 V DC

ESR versus frequency f

(typical values)

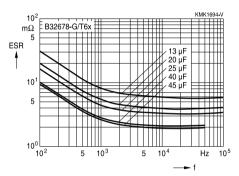
Lead spacing 52.5 mm / B32678G/T4x / 450 V DC


MKP DC link - high power series

Characteristics curves

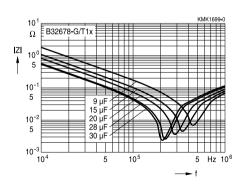
Impedance Z versus frequency f

(typical values)


Lead spacing 52.5 mm / B32678G/T6x / 630 V DC

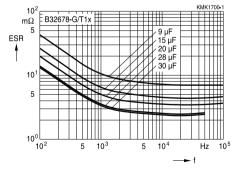
ESR versus frequency f

(typical values)


Lead spacing 52.5 mm / B32678G/T6x / 630 V DC

Impedance Z versus frequency f

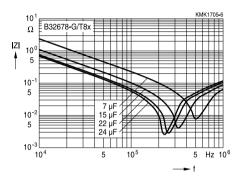
(typical values)


Lead spacing 52.5 mm / B32678G/T1x / 750 V DC

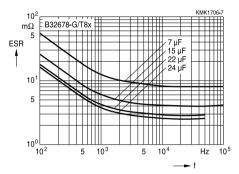
ESR versus frequency f

(typical values)

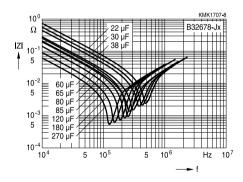
Lead spacing 52.5 mm / B32678G/T1x / 750 V DC


MKP DC link - high power series

Characteristics curves

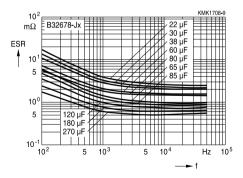

Impedance Z versus frequency f (typical values)

Lead spacing 52.5 mm / B32678G/T8x / 875 V DC


ESR versus frequency f (typical values)

Lead spacing 52.5 mm / B32678G/T8x / 875 V DC

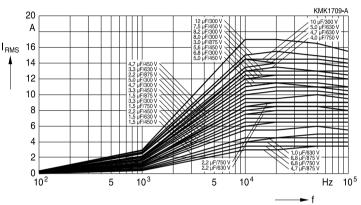
Impedance Z versus frequency f (typical values)


Lead spacing 52.5 mm / B32678Jx / 300 V DC, 450 V DC, 630 V DC, 750 V DC, 875 V DC

ESR versus frequency f

(typical values)

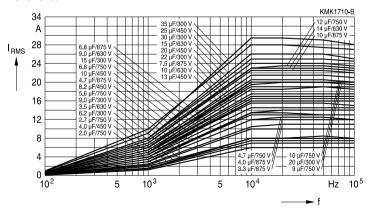
Lead spacing 52.5 mm / B32678Jx / 300 V DC, 450 V DC, 630 V DC, 750 V DC, 875 V DC

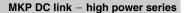

MKP DC link - high power series

Characteristics curves

Permissible current I_{RMS} versus frequency f at 70 $^{\circ}\text{C}$

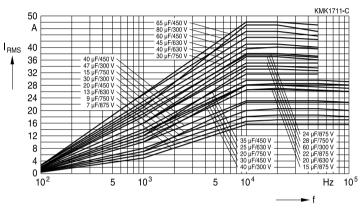
Lead spacing 27.5 mm


B32674-Dx


Permissible current I_{RMS} versus frequency f at 70 °C

Lead spacing 37.5 mm

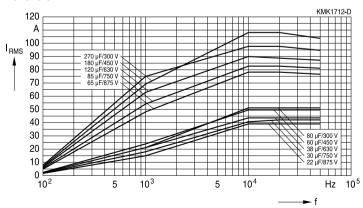
B32676-G/Tx



Characteristics curves

Permissible current I_{RMS} versus frequency f at 70 °C

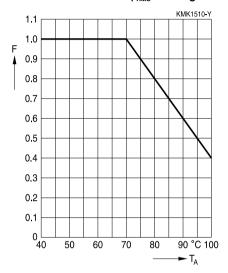
Lead spacing 52.5 mm


B32678-G/Tx

Permissible current I_{RMS} versus frequency f at 70 °C

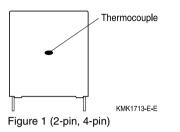
Lead spacing 52.5 mm

B32678-Jx



MKP DC link - high power series

Curves Characteristics (I_{RMS} derating vs temperature)


Maximum I_{RMS} current as function of the ambient temperature: I_{RMS} (T_A) = Factor \times I_{RMS} (70 °C)

MKP DC link - high power series

Heat transference for self heating calculation

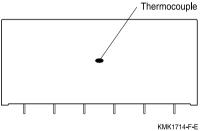


Figure 2 (12-pin)

Box dime	ensions	Equivalent heat coefficient	
w (mm)	h (mm)	I (mm)	G (mW/°C)
11.0	19.0	31.5	25
11.0	21.0	31.5	28
12.5	21.5	31.5	30
13.5	23.0	31.5	32
14.0	24.5	31.5	35
15.0	24.5	31.5	36
16.0	32.0	31.5	45
18.0	27.5	31.5	44
18.0	33.0	31.5	48
19.0	30.0	31.5	48
20.0	11.0	31.5	65
21.0	31.0	31.5	51
22.0	36.5	31.5	58
12.0	22.0	41.5	70
14.0	25.0	41.5	43
16.0	28.5	41.5	50
18.0	32.5	41.5	59
20.0	39.5	42.0	72
24.0	19.0	41.5	50
24.0	15.0	41.5	44
28.0	37.0	42.0	83
28.0	42.5	42.0	90
30.0	45.0	42.0	100
33.0	48.0	42.0	110
43.0	22.0	41.5	80
30.0	45.0	57.5	125
35.0	50.0	57.5	145
43.0	24.0	57.5	103
45.0	57.0	57.5	185
60.0	45.0	57.5	192
130.0	24.0	57.5	200
130.0	58.0	57.5	300

The equivalent heat coefficient "G (mW/PC)" is given for measuring the temperature on the lateral surface of the plastic box as figure1 shows. By using a thermocouple and avoiding effect of radiation and convection the temperature measured during operation conditions should be a result of the dissipated power divided by the equivalent heat coefficient.

MKP DC link - high power series

Self Heating by power dissipation and equivalent heat coefficient

The I_{RMS} and consequently the power dissipation must be limited during operation in order to not exceed the maximum limit of ΔT allowed for this series. ΔT_{max} given for this series is equal or lower than 20 °C at rated temperature (70 °C), for higher ambient temperatures ΔT_{max} (T) will have the same derating factor than I_{RMS} vs temperature and then an equivalent derating as per:

$$\Delta T_{\text{max}}$$
 (T) = (Factor)² × ΔT (70 °C).

For any particular I_{BMS} the ΔT may be calculated by:

$$\Delta T$$
 (°C) = P_{dis} (mW) / G(mW/°C).

Where ΔT (°C) is the difference between the temperature measured on the box (see figure 1) and the ambient temperature when capacitor is working during normal operation;

$$\Delta T$$
 (°C) = T_{op} (°C) - T_{A} (°C).

It represents the increasing of temperature provoked by the I_{RMS} during operation.

G (mW/°C) is the equivalent heat coefficient described above and P_{dis} (mW) is the dissipated power defined by: $P_{\text{dis}} \text{ (mW)} = \text{ESR}_{\text{tvo}} \text{ (m}\Omega) \times I_{\text{RMS}}^2 \text{ (A}_{\text{RMS}}).$

Example for thermal calculation:

We will take as reference B32678G8156K (15 μ F/875 V) type for thermal calculation. Considering the following load and capacitor characteristics:

 I_{RMS} : 15 A_{RMS} at 20 kHz

T_A: 85 °C

 $35 \times 50 \times 57.5 \text{ box}$ G (mW/ ${}^{\circ}$ C): 145

Then we have to find the ESR_{tvp} at 20 kHz what is approximately 4.0 m Ω .

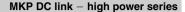
So according to $P_{\text{dis}} \; (mW) = ESR_{\text{typ}} \; (m\Omega) \times I_{\text{RMS}} \; ^2 \; (A_{\text{RMS}})$

we have the following: P_{dis} (mW) = 4.0 m $\Omega \times 15$ A_{RMS}^2 = 900 mW.

And as per ΔT (°C) = P_{dis} (mW) / G (mW/°C)

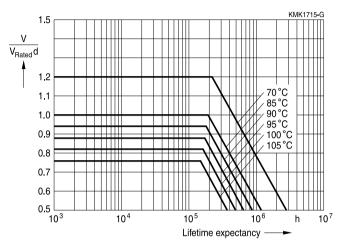
we have the following: ΔT (°C) = 900 (mW) / 145 (mW/°C) = 6.2 °C.

What is below of the ΔT_{max} (85 °C) = (Factor)² × ΔT (70 °C) = (0.7)² × 20 °C = 9.8 °C.


On the other hand we may confirm that max I_{BMS} at 20 kHz at 70 °C = 26.5 A_{BMS} .

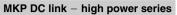
And then max I_{BMS} for 85 °C of ambient temperature is defined as follows:

$$I_{RMS}$$
 (85 °C) = Factor × I_{RMS} (70 °C) = 0.7 × 26.5 A_{RMS} = 18.55 A_{RMS} .


What confirms once again that I_{RMS} (15 A_{RMS} at 20 kHz at 85 °C) is below the max specified for such frequency and ambient temperature.

Life time expectancy - typical curve (300 V DC / 450 V DC / 630 V DC / 750 V DC / 875 V DC / B3267X-3/4/6/1/8)

Note: Confidence level of 98%



MKP DC link - high power series

Testing and Standards

Test	Reference	Conditions of test		Performance requirements
Electrical Parameters (Routine test)	IEC 61071-11	Voltage between term $1.5~V_{\rm R}$, during 10 s Insulation resistance $V_{\rm R} < 500~V$ or 500 V Capacitance, C at 1 (room temperature) Dissipation factor, ta $1/10~{\rm kHz}$ (room temp	Within specified limits	
Robustness of terminations (Type test)	IEC 60068-2-21	Tensile strength (tes Wire diameter $0.5 < d_1 \le 0.8 \text{ mm}$ $0.8 < d_1 \le 1.25 \text{ mm}$	t Ua1) Tensile force 10 N 20 N	Capacitance and tan δ within specified limits
Resistance to soldering heat (Type test)	IEC 60068-2-20, test Tb, method 1A	Solder bath tempera 260 ± 5 °C, immersio 10 seconds	$ \Delta C/C_0 \le 2\%$ $ \Delta \tan \delta \le 0.002$	
Rapid change of temperature (Type test)	IEC 60384-16	T_A = lower category T_B = upper category Five cycles, duration	$\begin{split} & I\Delta C/C_0 \ I \leq 2\% \\ & I\Delta \ tan \ \delta \ I \leq 0.002 \\ & R_{INS} \geq 50\% \ of \ initial \ limit \end{split}$	
Vibration (Type test)	IEC 60384-16	Test F _c : vibration sin Displacement: 0.75 i Accleration: 98 m/s ² Frequency: 10 Hz Test duration: 3 orth 2 hours each axe	No visible damage	
Bump (Type test)	IEC 60384-16	Test Eb: Total 4000 bumps with 390 m/s² mounted on PCB 6 ms duration		No visible damage $\begin{split} &I\Delta C/C_0I \leq 2\% \\ &I\Delta\tan\deltaI \leq 0.002 \\ &R_{\text{INS}} \geq 50\% \text{ of initial limit} \end{split}$
Climatic sequence (Type test)	IEC 60384-16	Dry heat Tb / 16 h. Damp heat cyclic, 1s + 55 °C / 24h / 95% Cold Ta / 2h Damp heat cyclic, 5 + 55 °C / 24h / 95%	No visible damage $\begin{split} & \Delta C/C_0 \leq 3\% \\ & \Delta \ \text{tan } \delta \ \text{l} \leq 0.001 \\ & R_{\text{INS}} \geq 50\% \ \text{of initial limit} \end{split}$	
Damp Heat Steady State (Type test)	IEC 60384-16	Test Ca 40 °C / 93% RH / 56	days	No visible damage $\begin{split} &I\Delta C/C_0I \le 5\% \\ &I\Delta \ tan \ \delta \ I \le 0.005 \\ &R_{\text{INS}} \ge 50\% \ of \ initial \ limit \end{split}$

Test	Reference	Conditions of test	Performance
			requirements
Endurance	IEC 61071-11	70 °C / 1.4 V _R / 250 hours or	No visible damage
(Type test)		T _{op} / 1.4 V _{op} / 250 hours	I∆C/C₀ I ≤ 3% at 1 kHz
		+ 1000 discharges at 1.4 I _R	I∆ tan δ I ≤ 0.015 at
		+ 70 °C / 1.4 V _R / 250 hours or	10 kHz
		T _{op} / 1.4 V _{op} / 250 hours	
Endurance	IEC 60384-16	70 °C / 1.25 V _R / 1000 hours or	No visible damage
(Type test)		85 °C / 1.25 V _{op} / 1000 hours or	I∆C/C₀ I ≤ 5% at 1 kHz
		100 °C / 1.25 V _{op} / 1000 hours	I∆ tan δ I ≤ 0.005
			$R_{INS} \ge 50\%$ of initial limit

Mounting guidelines

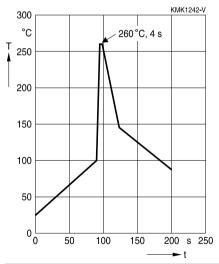
1 Soldering

1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 +0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder ≥90%, free-flowing solder



MKP DC link - high power series

1.2 Resistance to soldering heat

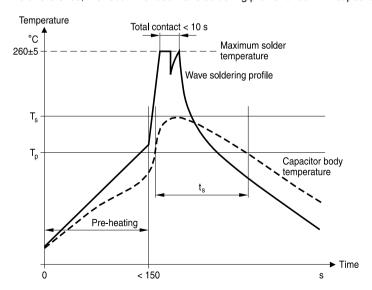
Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A. Conditions:

Serie	s	Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm) coated	260 ±5 °C	10 ±1 s
	uncoated (lead spacing > 10 mm)		
MFP			
MKP	(lead spacing > 7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5 ±1 s
MKP	(lead spacing ≤ 7.5 mm)		< 4 s
MKT	uncoated (lead spacing ≤ 10 mm) insulated (B32559)		recommended soldering profile for MKT uncoated (lead spacing ≤ 10 mm) and insulated (B32559)

Immersion depth	2.0 +0/-0.5 mm from capacitor body or seating plane
Shield	Heat-absorbing board, (1.5 \pm 0.5) mm thick, between capacitor body and liquid solder
Evaluation criteria:	
Visual inspection	No visible damage
$\Delta C/C_0$	2% for MKT/MKP/MFP 5% for EMI suppression capacitors
$tan \delta$	As specified in sectional specification

MKP DC link - high power series

1.3 General notes on soldering


Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

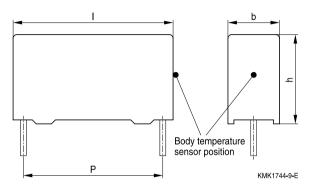
- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics: diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings

The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.

EPCOS recommendations

As a reference, the recommended wave soldering profile for our film capacitors is as follows:

T_s: Capacitor body maximum temperature at wave soldering


KMK1745-A-E

T_n: Capacitor body maximum temperature at pre-heating

MKP DC link - high power series

Body temperature should follow the description below:

■ MKP capacitor

During pre-heating: $T_p \le 110 \, ^{\circ}\text{C}$ During soldering: $T_s \le 120 \, ^{\circ}\text{C}$, $t_s \le 45 \, \text{s}$

■ MKT capacitor

During pre-heating: $T_p \le 125$ °C During soldering: $T_s \le 160$ °C, $t_s \le 45$ s

When SMD components are used together with leaded ones, the film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.

Leaded film capacitors are not suitable for reflow soldering.

In order to ensure proper conditions for manual or selective soldering, the body temperature of the capacitor (T_s) must be \leq 120 °C.

One recommended condition for manual soldering is that the tip of the soldering iron should be < 360 °C and the soldering contact time should be no longer than 3 seconds.

For uncoated MKT capacitors with lead spacings \leq 10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

Please refer to EPCOS Film Capacitor Data Book in case more details are needed.

MKP DC link - high power series

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Topic	Safety information	Reference chapter
		"General technical
		information"
Storage	Make sure that capacitors are stored within the specified	4.5
conditions	range of time, temperature and humidity conditions.	"Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive	5.3
	flammability), avoid overload of the capacitors (active	"Flammability"
	flammability) and consider the flammability of materials.	
Resistance to	Do not exceed the tested ability to withstand vibration.	5.2
vibration	The capacitors are tested to IEC 60068-2-6.	"Resistance to
	EPCOS offers film capacitors specially designed for	vibration"
	operation under more severe vibration regimes such as	
	those found in automotive applications. Consult our	
	catalog "Film Capacitors for Automotive Electronics".	

Topic	Safety information	Reference chapter "Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits during soldering.	1 "Soldering"
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"
Embedding of capacitors in finished assemblies	When embedding finished circuit assemblies in plastic resins, chemical and thermal influences must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types!	3 "Embedding of capacitors in finished assemblies"

MKP DC link - high power series

Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.

Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

MKP DC link - high power series

Symbols and terms

Symbol	English	German
α	Heat transfer coefficient	Wärmeübergangszahl
$lpha_{ extsf{C}}$	Temperature coefficient of capacitance	Temperaturkoeffizient der Kapazität
Α	Capacitor surface area	Kondensatoroberfläche
β_{C}	Humidity coefficient of capacitance	Feuchtekoeffizient der Kapazität
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
ΔC	Absolute capacitance change	Absolute Kapazitätsänderung
ΔC/C	Relative capacitance change (relative	Relative Kapazitätsänderung (relative
	deviation of actual value)	Abweichung vom Ist-Wert)
$\Delta C/C_R$	Capacitance tolerance (relative deviation	
	from rated capacitance)	vom Nennwert)
dt	Time differential	Differentielle Zeit
Δt	Time interval	Zeitintervall
ΔT	Absolute temperature change	Absolute Temperaturänderung
	(self-heating)	(Selbsterwärmung)
∆tan δ	Absolute change of dissipation factor	Absolute Änderung des Verlustfaktors
ΔV	Absolute voltage change	Absolute Spannungsänderung
dV/dt	Time differential of voltage function (rate	Differentielle Spannungsänderung
	of voltage rise)	(Spannungsflankensteilheit)
ΔV/Δt	Voltage change per time interval	Spannungsänderung pro Zeitintervall
E	Activation energy for diffusion	Aktivierungsenergie zur Diffusion
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatz-Serienwiderstand
f	Frequency	Frequenz
f ₁	Frequency limit for reducing permissible	Grenzfrequenz für thermisch bedingte
	AC voltage due to thermal limits	Reduzierung der zulässigen
	Fragues Visit for radicing permissible	Wechselspannung
f ₂	Frequency limit for reducing permissible AC voltage due to current limit	Grenzfrequenz für strombedingte Reduzierung der zulässigen
	Ao voltage due to current innit	Wechselspannung
f _r	Resonant frequency	Resonanzfrequenz
F _D	Thermal acceleration factor for diffusion	Therm. Beschleunigungsfaktor zur
. ט		Diffusion
F_T	Derating factor	Deratingfaktor
i	Current (peak)	Stromspitze
I _C	Category current (max. continuous current)	Kategoriestrom (max. Dauerstrom)

MKP DC link - high power series

Symbol	English	German
I_{RMS}	(Sinusoidal) alternating current,	(Sinusförmiger) Wechselstrom
	root-mean-square value	
i _z	Capacitance drift	Inkonstanz der Kapazität
k_0	Pulse characteristic	Impulskennwert
Ls	Series inductance	Serieninduktivität
λ	Failure rate	Ausfallrate
λ_0	Constant failure rate during useful	Konstante Ausfallrate in der
	service life	Nutzungsphase
λ_{test}	Failure rate, determined by tests	Experimentell ermittelte Ausfallrate
P_{diss}	Dissipated power	Abgegebene Verlustleistung
P_{gen}	Generated power	Erzeugte Verlustleistung
Q	Heat energy	Wärmeenergie
ρ	Density of water vapor in air	Dichte von Wasserdampf in Luft
R	Universal molar constant for gases	Allg. Molarkonstante für Gas
R	Ohmic resistance of discharge circuit	Ohmscher Widerstand des
		Entladekreises
R_{i}	Internal resistance	Innenwiderstand
R_{ins}	Insulation resistance	Isolationswiderstand
R_P	Parallel resistance	Parallelwiderstand
R_{S}	Series resistance	Serienwiderstand
S	severity (humidity test)	Schärfegrad (Feuchtetest)
t	Time	Zeit
T	Temperature	Temperatur
τ	Time constant	Zeitkonstante
$tan \ \delta$	Dissipation factor	Verlustfaktor
$tan \; \delta_{\scriptscriptstyle D}$	Dielectric component of dissipation factor	Dielektrischer Anteil des Verlustfaktors
$tan \; \delta_{\scriptscriptstyle P}$	Parallel component of dissipation factor	Parallelanteil des Verlfustfaktors
$tan \; \delta_{\text{S}}$	Series component of dissipation factor	Serienanteil des Verlustfaktors
T_A	Temperature of the air surrounding the	Temperatur der Luft, die das Bauteil
	component	umgibt
T_{max}	Upper category temperature	Obere Kategorietemperatur
T_{min}	Lower category temperature	Untere Kategorietemperatur
t_{OL}	Operating life at operating temperature	Betriebszeit bei Betriebstemperatur und
	and voltage	-spannung
T_{op}	Operating temperature, $T_A + \Delta T$	Beriebstemperatur, $T_A + \Delta T$
T_R	Rated temperature	Nenntemperatur
T_{ref}	Reference temperature	Referenztemperatur
t_{SL}	Reference service life	Referenz-Lebensdauer

MKP DC link - high power series

Symbol	English	German
V_{AC}	AC voltage	Wechselspannung
V_{c}	Category voltage	Kategoriespannung
$V_{\text{C,RMS}}$	Category AC voltage	(Sinusförmige)
		Kategorie-Wechselspannung
V_{CD}	Corona-discharge onset voltage	Teilentlade-Einsatzspannung
V_{ch}	Charging voltage	Ladespannung
V_{DC}	DC voltage	Gleichspannung
V_{FB}	Fly-back capacitor voltage	Spannung (Flyback)
V_{i}	Input voltage	Eingangsspannung
V_{\circ}	Output voltage	Ausgangssspannung
V_{op}	Operating voltage	Betriebsspannung
V_p	Peak pulse voltage	Impuls-Spitzenspannung
V_{pp}	Peak-to-peak voltage Impedance	Spannungshub
V_R	Rated voltage	Nennspannung
Ŷ _R	Amplitude of rated AC voltage	Amplitude der Nenn-Wechselspannung
V_{RMS}	(Sinusoidal) alternating voltage,	(Sinusförmige) Wechselspannung
	root-mean-square value	
V_{SC}	S-correction voltage	Spannung bei Anwendung "S-correction"
V_{sn}	Snubber capacitor voltage	Spannung bei Anwendung
		"Beschaltung"
Z	Impedance	Scheinwiderstand
е	Lead spacing	Rastermaß

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed guestions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).

Important notes

7. The trade names EPCOS, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.