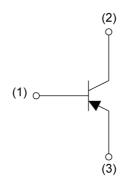


Midium Power Transistors (-30V / -3A)

Parameter	Value
V _{CEO}	-30V
I _C	-3A


Outline

Features

1)Low saturation voltage, typically V_{CE(sat)} =-0.4V (Max.) (I_C/I_B=-1A/-50mA)
2)High speed switching

•Inner circuit

- (1) Base
- (2) Collector
- (3) Emitter

Application

LOW FREQUENCY AMPLIFIER, HIGH SPEED SWITCHING

Packaging specifications

Part No.	Package	Package size	Taping code	Reel size (mm)	Tape width (mm)	Basic ordering unit.(pcs)	Marking
2SAR552P	MPT3	4540	T100	180	12	1000	MF

• Absolute maximum ratings $(T_a = 25^{\circ}C)$

Parameter	Symbol	Values	Unit
Collector-base voltage	V_{CBO}	-30	V
Collector-emitter voltage	V _{CEO}	-30	V
Emitter-base voltage	V_{EBO}	-6	V
Collector current	I _C	-3	Α
Collector current	I _{CP} *1	-6	Α
Dougr dissination	P _D *2	0.5	W
Power dissipation	P _D *3	2.0	W
Junction temperature	T _j	150	°C
Range of storage temperature	T _{stg}	-55 to +150	°C

• Electrical characteristics $(T_a = 25^{\circ}C)$

Dovometer	Cumbal	Canditions	Values			l limit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Collector-base breakdown voltage	BV _{CBO}	I _C = -100μA	-30	-	-	V
Collector-emitter breakdown voltage	BV _{CEO}	I _C = -1mA	-30	-	-	V
Emitter-base breakdown voltage	BV _{EBO}	I _E = -100μA	6	1	-	V
Collector cut-off current	I _{CBO}	V _{CB} = -30V	ı	1	-1.0	μA
Emitter cut-off current	I _{EBO}	V _{EB} = -4V	ı	1	-1.0	μA
Collector-emitter saturation voltage	V _{CE(sat)} *4	$I_C = -1A$, $I_B = -50 \text{mA}$	-	-200	-400	mV
DC current gain	h _{FE}	$V_{CE} = -2V, I_{C} = -500 \text{mA}$	200	-	500	-
Transition frequency	f _T *4	$V_{CE} = -10V, I_{E} = 100mA,$ f = 100MHz	-	330	-	MHz
Output capacitance	C _{ob}	$V_{CB} = -10V, I_{E} = 0A,$ f = 1MHz	-	25	-	pF
Turn-On time	t _{on}	I _C = -1.5A, I _{B1} = -150mA,	-	35	-	ns
Storage time	t _{stg}	$I_{B2} = 150 \text{mA},$ $V_{CC} \simeq -10 \text{V},$	-	210	-	ns
Fall time	t _f	$R_L = 6.7\Omega$ See test circuit	-	15	-	ns

^{*1} Pw=10ms, Single pulse

^{*2} Each terminal mounted on a reference land.

^{*3} Mounted on a ceramic board.(40×40×0.7mm)

^{*4} Pulsed

● Electrical characteristic curves(T_a = 25°C)

Fig.1 Ground Emitter Propagation Characteristics

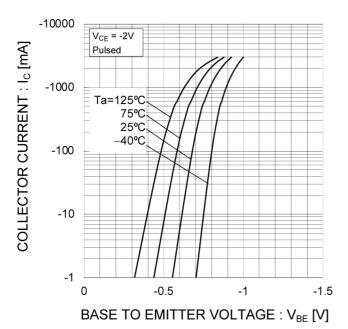
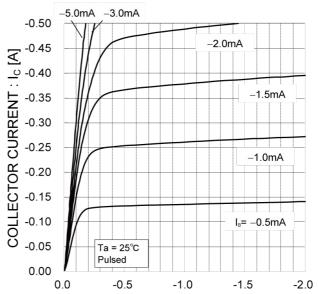



Fig.2 Typical Output Characteristics

COLLECTOR TO EMITTER VOLTAGE: V_{CE} [V]

Fig.3 DC Current Gain vs. Collector Current (I)

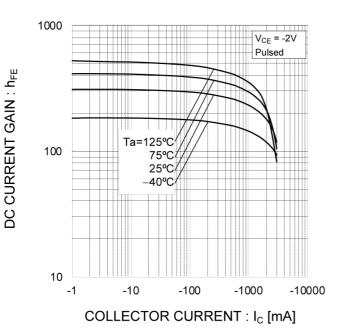
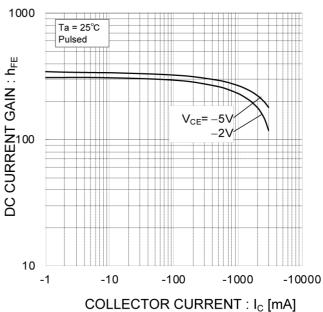



Fig.4 DC Current Gain vs. Collector Current (II)

● Electrical characteristic curves(T_a = 25°C)

Fig.5 Collector-Emitter Saturation Voltage vs. Collector Current (I)

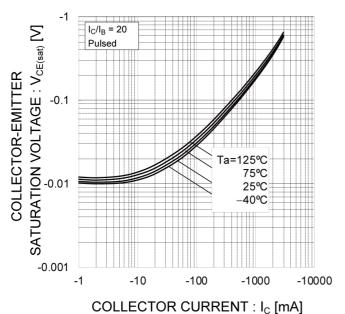


Fig.6 Collector-Emitter Saturation
Voltage vs. Collector Current (II)

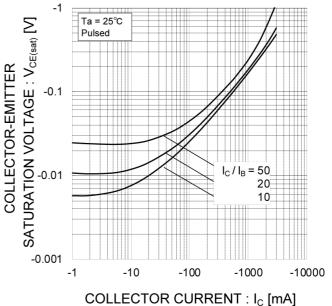


Fig.7 Base-Emitter Saturation Voltage vs. Collector Current

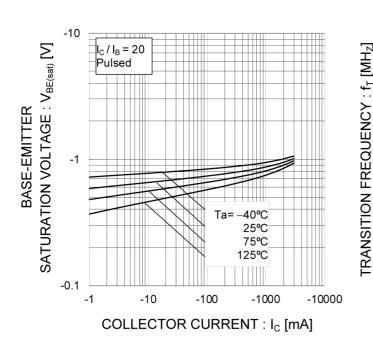
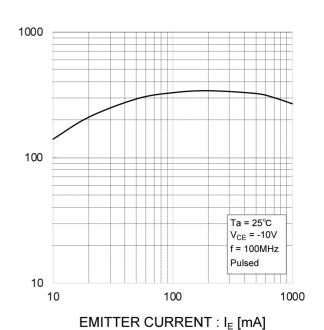



Fig.8 Gain Bandwidth Product vs. Emitter Current

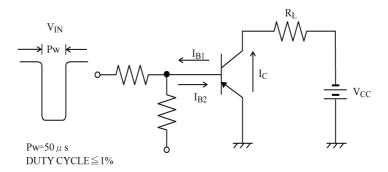
● Electrical characteristic curves(T_a = 25°C)

Fig.9 Emitter Input Capacitance vs.
Emitter-Base Voltage
Collector Output Capacitance vs.
Collector-Base Voltage

-10

Ims

10ms


100ms

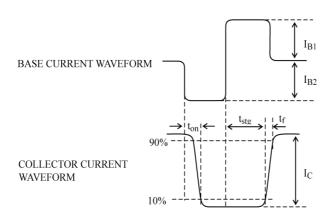
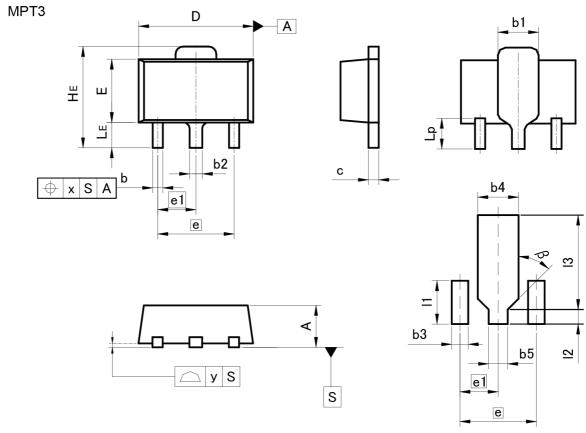

COLLECTOR TO EMITTER VOLTAGE: VCE [V]

Fig.10 Safe Operating Area


Ta=25°C f=1MHz l=0A lc=0A lc=0

SWITCHING TIME TEST CIRCUIT

Dimensions

Pattern of terminal position areas [Not a recommended pattern of soldering pads]

DIM	MILIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	1.40	1.50	0.055	0.059	
b	0.30	0.50	0.012	0.020	
b1	1.50	1.70	0.059	0.067	
b2	0.40	0.60	0.016	0.024	
С	0.35	0.50	0.014	0.020	
D	4.40	4.70	0.173	0.185	
E	2.40	2.70	0.094	0.106	
е	3.0	00	0.118		
e1	1.	50	59		
HE	3.70	4.30	0.146	0.169	
LE	0.80	1.20	0.031	0.047	
Lp	1.01	1.41	0.040	0.056	
х	-	0.15	- 0.006		
У	_	0.10	-	0.004	

DIM	MILIM	ETERS	INCHES		
	MIN	MAX	MIN	MAX	
b3	_	0.65	ı	0.026	
b4	_	1.70	ı	0.067	
b5	_	0.75	-	0.030	
l1	_	1.71	ı	0.067	
12	_	0.58	ı	0.023	
13	_	3.72	-	0.146	
β	45	0	45	0	

Dimension in mm/inches

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.

 Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ROHM manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B