

1W White High Power LED Technical Data Sheet

Part No.: LL-HP60NW6EB

Features:

- \diamond Small package with high efficiency
- \diamond Long operating life.
- \diamond Available in white, warm white.
- \diamond Typical color temperature:3000 K.
- \diamond View angle: 135°.
- \diamond Low voltage DC operated.
- \diamond The product can be used under 350mA and 700mA electric current condition
- \diamond The product itself will remain within RoHS compliant Version.

Applications:

- \diamond Reading lights (car, bus, aircraft).
- \diamond Portable (flashlight, bicycle).
- \diamond Mini_accent/Uplighters/Downlighters/Orientation.
- \diamond Bollards/Security/Garden.
- \diamond Cove/Undershelf/Task.
- \diamond Automotive rear combination lamps.
- \diamond Traffic signaling/Beacons/ Rail crossing and Wayside.
- $\diamond\,$ Indoor/Outdoor Commercial and Residential Architectural.
- \diamond Edge_lit signs (Exit, point of sale).
- \diamond LCD Backlights/Light Guides.

	(0.29) 7.4 (0.13) 3.20 7.5±0.01) .00±0.20	6-R1.6(0.06	(0.27±0.02) 6.90±0.50 (0.06±0.01)					
	Part No.	Chip Material	Source Color					
	LL-HP60NW6EB	InGaN	Warm White					
Notes:								
2. Tolerance is ± 0.25 mm (.010") unless otherwise noted.								

Absolute Maximum Ratings at Ta=25℃

Parameters	Symbol	Rating	Units
Forward Current	I F	350 700	mA
Peak Pulse Current (tp≤100µs, Duty cycle=0.25)	I pulse	1000	mA
Reverse Voltage	V R	5	V
LED Junction Temperature	T j	125	°C
Operating Temperature Range	T opr	-40 to +80	°C
Storage Temperature Range	T stg	-40 to +100	°C
Soldering Time at 260 $^{\circ}\!\!\!\!\!^{\circ}$ (Max.)	T sol	5	Seconds

Notes:

1. Proper current derating must be observed to maintain junction temperature below the maximum.

2. LEDs are not designed to be driven in reserve bias.

Electrical Optical Characteristics at Ta=25°C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Viewing Angle [1]	2 θ _{1/2}		135		Deg	IF=350mA
Forward Voltage [2]	V _F	2.8	3.3	3.8	V	IF=350mA
Reverse Current	I _R			10	μA	V _R =5V
Color Temperature [3]	ССТ	2600	3000	4000	К	IF=350mA
Luminous Flux	Φν	85	100		lm	IF=350mA
		110	140			IF=700mA

Notes:

1. $2\theta 1/2$ is the off axis angle from lamp centerline where the luminous intensity is 1/2 of the peak value.

2. Forward Voltage measurement tolerance : $\pm 0.1 V$

3. X, Ycoordination for white light bin areas refer to EHP-A08 series White and Warm White Binning (DSE-A08-001).

Date: Jul /13/2009 Page: 5 OF 8 Drawn: YAO http://www.luckylightled.com

Date: Jul /13/2009 Page: 6 OF 8 Drawn: YAO http://www.luckylightled.com

Precautions For Use:

1. Over-current-proof

Though HP60N has conducted ESD protection mechanism, customer must not use the device in reverse and should apply resistors for extra protection. Otherwise slight voltage shift may cause enormou current change and burn out failure would happen. When HP60N working under 700mA electric current condition, it needs more heat dissipation than 350mA.

2. Storage

- $(\ensuremath{\underline{1}})$ Do not open moisture proof bag before the products are ready to use.
- @ Before opening the package, the LEDs should be kept at 30 $^\circ\!\!\mathbb{C}$ or less and 90%RH or less.
- ③ The LEDs should be used within a year.
- 4 After opening the package, the LEDs should be kept at 30 $^\circ\!C$ or less and 70%RH or less.
- 5 The LEDs should be used within 168 hours (7 days) after opening the package.
- ⑥ If the moisture absorbent material (silicone gel) has faded away or the LEDs have exceeded the storag time, baking treatment should be performed using the following conditions.
- O Pre-curing treatment: 60±5°C for 24 hours.

3. Thermal Management

- ① Because HP60N LED is a high power dissipation device, special and sufficient consideration in thermal management design must be made to optimize the thermal performance.
- ② Heat sink design is implemented in the device for an additional thermal connection. Since the device is capable of SMT process, tin must be spread both heat sink and solder pads areas to dissipate the heat.
- ③ A high thermal conductivity substrate, such as Aluminum or Copper plate etc, must be applied for external thermal management. It is strongly recommended that the outer heat sink or PCB dimension per LED can not be less than 25 x 25 x 1 (L x W x H) mm. The materials for outer heat sink can be FR4 on Aluminum, MCPCB, or FPC on Aluminum.
- ④ Special thermal designs are also recommended to take in outer heat sink design, such as FR4 PCB on Aluminum with thermal vias or FPC on Aluminum with thermal conductive adhesive, etc.
- ⑤ Sufficient thermal management must be conducted, or the die junction temperature will be over the limit under large electronic driving and LED lifetime will decrease critically.

4. Soldering Condition

- 1 3 Soldering should not be done more than two times.
- ② While soldering, do not put stress on the LEDs during heating.
- $\ensuremath{\textcircled{3}}$ $\ensuremath{\textcircled{3}}$ After soldering, do not warp the circuit board.

5. Soldering Iron

① For prototype builds or small series production runs it is possible to place and solder the LED by hand.

@ It is recommended to hand solder the leads with a solder tip temperature of 280°C for less than 3 seconds within once

- in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal.
- $\ensuremath{\textcircled{3}}$ Be careful because the damage of the product is often started at the time of the hand solder.

6. Handling Indications

During processing, mechanical stress on the surface should be minimized as much as possible.

Sharp objects of all types should not be used to pierce the sealing compound.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Power LEDs - White category:

Click to view products by Lucky Light manufacturer:

Other Similar products are found below :

G42180-08 B42180-08 STW8Q2PA-R5-HA SZ5-M1-W0-00-V3/W2-AA LTPL-P00DWS57 LZP-D0WW00-0000 CLM-9-30-90-36-AC32-F4-3 SZ5-M1-WW-C8-V1/V3-FA BXRC-27E2000-D-73 BXRC-27G2000-D-73 BXRC-30E1000-D-73 BXRC-30G2000-D-73 BXRC-40E1000-D-73 BXRE-30G2000-B-73 BXRE-30G2000-C-73 BXRE-50C2001-C-74 CXM-22-27-80-54-AC30-F4-3 XHP50B-00-0000-0D0UH245G XHP50B-00-0000-0D0UH240G XHP50B-00-0000-0D0UG227H XHP50B-00-0000-0D0HJ245G MP-5050-8100-27-80 MP-5050-6100-65-80 MP-5050-6100-50-80 MP-5050-6100-40-80 MP-5050-6100-30-80 CXM-22-30-80-54-AC30-F4-3 LTW-2835SZK57 BXEM-50C0000-0-000 WW-WNA30TS-U1(M1) KW CSLPM2.CC-8L8M-4L8N KW CSLPM2.CC-8L8M-409Q KW DPLS32.SB-6H6J-E5P7-EG-Z264 L1V1-507003V500000 CXM-22-35-80-36-AC10-F3-3 KW3 CGLNM1.TG-Z6QF6-EBVFFCBB46-DFGA JB5630AWT-H-H65EA0000-NZ000001 XHP50B-00-0000-0D0UG430H CXM-22-35-90-54-AC40-F5-3 CXM-22-35-80-54-AC40-F5-3 OSM51206E1N-0.8T OSW43020C1C MP161611032290 MP-1616-2103-50-90 KW CULPM1.TG-Z6RF7-ebvFfcbB46-65G5 KW DMLS33.SG-Z6M7-EBVFFCBB46-8E8G-700-5 XPGDWT-B1-0000-00EEA XHP70B-00-0000-0D0BP450E KW DMLN33.SG-7J7K-EBVFFCBB46-8E8G-200-S ASMT-MW05-NMNS1