Ultra High-PSRR, Low-Noise, 300mA CMOS Linear Regulator #### **General Description** The EMP8130 features ultra-high power supply rejection ratio, low output voltage noise, low dropout voltage, low quiescent current and fast transient response. It guarantees delivery of 300mA output current and supports preset output voltages ranging from 0.8V to 4.0V with 0.1V increment. Based on its low quiescent current consumption and its less than 1uA shutdown mode of logical operation, the EMP8130 is ideal for battery-powered applications. The high power supply rejection ratio of the EMP8130 holds well for low input voltages typically encountered in battery-operated systems. The regulator is stable with small ceramic capacitive loads. The EMP8130 is available in miniature SOT-23-5, uDFN-4, SC-70-5, SC-82-4, TSOT-23-5, SOT-23-3 and TDFN-6 package. #### **Applications** - Wireless handsets - PCMCIA cards - DSP core power - Hand-held instruments - Battery-powered systems - Portable information appliances #### **Features** - 300mA guaranteed output current - 75dB typical PSRR at 1kHz - 260mV (V_{OUT}=3.3V) typical dropout at 300mA - 52µA typical quiescent current - Less than 1µA typical shutdown mode - Fast line and load transient response - 1.7V to 5.5V input range - Auto-discharge during chip disable - 0.8V to 4.0V output voltage range - Stable with small ceramic output capacitors - Fold-back over current protection - ±1% output voltage tolerance #### **Typical Application** Elite Semiconductor Memory Technology Inc. Publication Date: Apr. 2017 Revision: 1.6 1/23 ### **Connection Diagrams** #### **Order information** #### EMP8130-XXVN05NRR | XX | Output voltage | |------|--| | VN05 | SOT-23-5 Package | | NRR | RoHS & Halogen free package
Rating: -40 to 85°C
Package in Tape & Reel | #### EMP8130-XXFJ04NRR | XX | Output voltage | |------|--| | FJ04 | uDFN-4 Package | | NRR | RoHS & Halogen free package
Rating: -40 to 85°C
Package in Tape & Reel | #### EMP8130-XXVI05NRR | XX | Output voltage | |------|--| | VI05 | SC-70-5 Package | | NRR | RoHS & Halogen free package
Rating: -40 to 85°C
Package in Tape & Reel | #### EMP8130-XXVJ04NRR | XX | Output voltage | |------|--| | VJ04 | SC-82-4 Package | | NRR | RoHS & Halogen free package
Rating: -40 to 85°C
Package in Tape & Reel | | EMP8130-XXVU05NRR | | | | |-------------------|--|--|--| | XX | Output voltage | | | | VU05 | TSOT-23-5 Package | | | | NRR | RoHS & Halogen free package
Rating: -40 to 85°C
Package in Tape & Reel | | | | EMP8130 |)-XXVN03NRR | |---------|--| | XX | Output voltage | | VN03 | SOT-23-3 Package | | NRR | RoHS & Halogen free package
Rating: -40 to 85°C
Package in Tape & Reel | | VIN | 1 | 6 | EN | |------|---|---|------| | NC | 2 | 5 | GRND | | VOUT | 3 | 4 | NC | | | | | | | EMP8130-XXFK06NRR | | | | |-------------------|--|--|--| | XX | Output voltage | | | | FK06 | TDFN-6 Package | | | | NRR | RoHS & Halogen free package
Rating: -40 to 85°C
Package in Tape & Reel | | | ### Order, Marking & Packing Information | Package | Vout | Product ID. | Marking | Packing | |----------|------|-------------------|-----------------------|----------------------| | | 0.8V | EMP8130-08VN05NRR | | | | | 1.0V | EMP8130-10VN05NRR | | | | | 1.2V | EMP8130-12VN05NRR | 5 4 | | | 207.02.5 | 1.3V | EMP8130-13VN05NRR | 8130
Tracking Code | Tape & Reel
3Kpcs | | SOT-23-5 | 1.5V | EMP8130-15VN05NRR | | | | | 1.8V | EMP8130-18VN05NRR | | | | | 2.5V | EMP8130-25VN05NRR | | | | | 2.7V | EMP8130-27VN05NRR | | | Elite Semiconductor Memory Technology Inc. Publication Date: Apr. 2017 Revision: 1.6 3/23 | 2.8V | EMP8130-28VN05NRR | | |------|-------------------|--| | 3.0V | EMP8130-30VN05NRR | | | 3.3V | EMP8130-33VN05NRR | | | Package | Vout | Product ID. | Marking | Packing | |---------|------|-------------------|--|-------------| | | 0.8V | EMP8130-08FJ04NRR | $ \begin{array}{c c} X & X \\ \hline X & X \\ \end{array} $ X X = tracking code | | | | 1.0V | EMP8130-10FJ04NRR | $\begin{bmatrix} \bullet & - \\ X & X \end{bmatrix}$ $X X = \text{tracking code}$ | | | | 1.2V | EMP8130-12FJ04NRR | $ \begin{array}{c c} \hline & \bullet \\ \hline & X \\ \hline & X \end{array} $ X X = tracking code | | | | 1.3V | EMP8130-13FJ04NRR | $ \begin{array}{ c c } \hline X & X \\ \hline X & X = \text{tracking code} \end{array} $ | | | uDFN-4 | 1.5V | EMP8130-15FJ04NRR | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Tape & Reel | | | 1.8V | EMP8130-18FJ04NRR | $ \begin{array}{ c c } \hline \underline{X} & X \\ X & X = \text{tracking code} \end{array} $ | 8Kpcs | | | 2.5V | EMP8130-25FJ04NRR | $\begin{bmatrix} \overline{X} & \overline{X} \\ X & X \end{bmatrix}$ $X X = \text{tracking code}$ | | | | 2.8V | EMP8130-28FJ04NRR | $ \begin{array}{ c c } \hline X \overline{X} \\ \hline X X = \text{tracking code} \\ \end{array} $ | | | | 3.0V | EMP8130-30FJ04NRR | $ \begin{array}{ c c } \hline \overline{X} & X \\ X & X = \text{tracking code} \end{array} $ | | | | 3.3V | EMP8130-33FJ04NRR | X X = tracking code | | | Package | Vout | Product ID. | Marking | Packing | |---------|------|-------------------|------------------------------|----------------------| | | 0.8V | EMP8130-08VI05NRR | | Tape & Reel
3Kpcs | | | 1.0V | EMP8130-10VI05NRR | | | | | 1.2V | EMP8130-12VI05NRR | | | | | 1.3V | EMP8130-13VI05NRR | 8130
Tracking Code 1 2 3 | | | 50.70.5 | 1.5V | EMP8130-15VI05NRR | | | | SC-70-5 | 1.8V | EMP8130-18VI05NRR | | | | | 2.5V | EMP8130-25VI05NRR | | | | | 2.8V | EMP8130-28VI05NRR | | | | | 3.0V | EMP8130-30VI05NRR | | | | | 3.3V | EMP8130-33VI05NRR | | | | Package | Vout | Product ID. | Marking | Packing | |---------|------|-------------------|---------------|----------------------| | | 0.8V | EMP8130-08VJ04NRR | | | | | 1.0V | EMP8130-10VJ04NRR | | | | | 1.2V | EMP8130-12VJ04NRR | | | | | 1.3V | EMP8130-13VJ04NRR | | | | 00.00 | 1.5V | EMP8130-15VJ04NRR | 8130 | Tape & Reel
3Kpcs | | SC-82-4 | 1.8V | EMP8130-18VJ04NRR | Tracking Code | | | | 2.5V | EMP8130-25VJ04NRR | PINI DOT 1 2 | | | | 2.8V | EMP8130-28VJ04NRR | | | | | 3.0V | EMP8130-30VJ04NRR | | | | | 3.3V | EMP8130-33VJ04NRR | | | | Package | Vout | Product ID. | Marking | Packing | |-----------|------|-------------------|-----------------------|----------------------| | | 0.8V | EMP8130-08VU05NRR | | | | | 1.0V | EMP8130-10VU05NRR | | | | | 1.2V | EMP8130-12VU05NRR | | | | | 1.3V | EMP8130-13VU05NRR | 5 4 | | | T00T 02 F | 1.5V | EMP8130-15VU05NRR | 8130 | Tape & Reel
3Kpcs | | TSOT-23-5 | 1.8V | EMP8130-18VU05NRR | Tracking Code 1 2 3 | | | | 2.5V | EMP8130-25VU05NRR | PINI DOT | | | | 2.8V | EMP8130-28VU05NRR | | | | | 3.0V | EMP8130-30VU05NRR | | | | | 3.3V | EMP8130-33VU05NRR | | | | Package | Vout | Product ID. | Marking | Packing | |----------|------|-------------------|-----------------------|----------------------| | | 1.2V | EMP8130-12VN03NRR | | | | | 1.8V | EMP8130-18VN03NRR | 3 | | | SOT-23-3 | 2.8V | EMP8130-28VN03NRR | 8130
Tracking Code | Tape & Reel
3Kpcs | | | 3.0V | EMP8130-30VN03NRR | PIN1 DOT | | | | 3.3V | EMP8130-33VN03NRR | | | | Package | Vout | Product ID. | Marking | Packing | |---------|------|-------------------|-----------------------|----------------------| | | 1.2V | EMP8130-12FK06NRR | 6 5 4 | | | | 1.8V | EMP8130-18FK06NRR | 0120 | | | TDFN-6 | 2.8V | EMP8130-28FK06NRR | 8130
Tracking Code | Tape & Reel
3Kpcs | | | 3.0V | EMP8130-30FK06NRR | • 1 2 3 | | | | 3.3V | EMP8130-33FK06NRR | PINI DOT | | Publication Date: Apr. 2017 Revision: 1.6 6/23 #### **Pin Functions** | Name | SOT-23-5 | uDFN-4 | SC-70-5 | SC-82-4 | TSOT-23-5 | SOT-23-3 | TDFN-6 | Function | | | | | | | | | | | | | |---------|----------|--------|---------|---------|-----------|----------|--------|---|--|--|--|--|--|--|--|--|--|--|--|--| | | | | | | | | | Supply Voltage Input. | Require a minimum input capacitor | | | | | | | | | | | | | | IN | 1 | 4 | 1 | 4 | 1 | 3 | 1 | of close to 1µF ceramic capacitor | to ensure stability and sufficient | decoupling from the ground pin. | | | | | | | | | | | | | | GND | 2 | 2 | 2 | 2 | 2 | 1 | 5 | Ground Pin. | Enable Input. | Enable the regulator by pulling the | EN pin High. To keep the regulator | | | | | | | | | | | | | | EN | 3 | 3 | 3 | 1 | 3 | N/A | 6 | on during normal operation, | connect the EN pin to V _{IN} . The EN | | | | | | | | | | pin must not exceed V _{IN} under all | operating conditions. | | | | | | | | | | | | | | NC | 4 | N/A | 4 | N/A | 4 | N/A | 2,4 | No Connected. | Regulated Output Voltage Pin. | | | | | | | | | | | | | | OUT | 5 | 1 | 5 | 3 | 5 | 2 | 3 | A small 2.2µF ceramic capacitor is | | | | | | | | | | | | | | | | • | | | , | 2 | J | needed from this pin to ground to | assure stability. | The thermal pad with large thermal | | | | | | | | | | | | | | Thermal | N/A | YES | N/A | N/A | N/A | N/A | YES | land area on the PCB will helpful | | | | | | | | | | | | | | Pad | 11/4 | ILJ | 11/5 | 13/ 🔼 | 13/5 | N/A | ILJ | chip power dissipation, to connect | ļ | it to GND together normally. | | | | | | | | | | | | | # **Functional Block Diagram** FIG.1. Functional Block Diagram of EMP8130 Publication Date: Apr. 2017 Revision: 1.6 7/23 Absolute Maximum Ratings (Notes 1, 2) IN, EN, OUT -0.3V to 6.5V Lead Temperature (Soldering, 10 sec.) 260°C Power Dissipation (Note 6) ESD Rating Storage Temperature Range -65°C to 150°C Human Body Model 2KV Junction Temperature (T_J) 150°C Machine Model 200V Operating Ratings (Note 1, 2) Supply Voltage 1.7V to 5.5V Operating Temperature Range -40°C to 85°C #### Thermal Resistance: | Symbol | ΘJA (Note 3) | OJc(Note 4) | |-----------|---------------------|-------------| | SOT-23-5 | 152(℃/W) | 81(℃/W) | | uDFN-4 | 110(℃/W) | 23(℃/W) | | SC-70-5 | 331(℃/W) | 115(℃/W) | | SC-82-4 | 331(°C/W) | 115(℃/W) | | TSOT-23-5 | 152(℃/W) | 50(℃/W) | | SOT-23-3 | 250(℃/W) | 81(℃/W) | | TDFN-6 | 165(℃/W) | 20(℃/W) | #### **Electrical Characteristics** Unless otherwise specified, all limits guaranteed for $V_{IN} = V_{OUT} + 1V$ (Note 5), $V_{EN} = V_{IN}$, $C_{IN} = 1\mu F$, $C_{OUT} = 2.2\nu F$, $T_A = 25^{\circ}C$. **Boldface** limits apply for the operating temperature extremes: -40°C and 85°C. | Symbol | Parameter | Conditions | Min | Typ
(Note 7) | Max | Units | |--------------------------|-------------------------------|---|-------|-----------------|-------|-------| | V_{IN} | Input Voltage | | 1.7 | | 5.5 | V | | Vout | Output Voltage | | 0.8 | | 4.0 | V | | | | Vout>2.0V, T=25 | X0.99 | | X1.01 | V | | 4.17 | Outrout Valtaras Talaras as | Vout<=2.0V, T=25 | -20 | | +20 | mV | | $\Delta V_{ extsf{OTL}}$ | Output Voltage Tolerance | Vout>2V, -40~85C | X0.97 | | X1.03 | V | | | | Vout<=2V, -40~85C | -60 | | 60 | mV | | I _{ОИТ} | Maximum Output Current | Average DC Current Rating | 300 | | | mA | | I _{cl} | Current Limit | Vin=Vout+1V | | 420 | | mA | | Isc | Short Current Limit | | | 40 | | mA | | lα | Quiescent Current | I _{OUT} = 0mA | | 52 | 75 | μΑ | | I _{SD} | Shutdown Supply Current | V _{OUT} = 0V, EN = GND | | 0.2 | 1 | μΑ | | | | I _{OUT} = 300mA, Vout=0.8V | | 860 | | | | | | I _{OUT} = 300mA, Vout=1.2V | | 580 | | | | \/ | Dropout Voltage (Note 5) | I _{OUT} = 300mA, Vout=1.5V | | 440 | | no\/ | | V_{DO} | Dropout Voltage (Note 5) | I _{OUT} = 300mA, Vout=1.8V | | 380 | | mV | | | | I _{OUT} = 300mA, Vout=2.8V | | 290 | | | | | | I _{OUT} = 300mA, Vout=3.3V | | 260 | | | | ΔV_{OUT} | Line Regulation | $I_{OUT} = 1 \text{mA}, (V_{OUT} + 1 \text{V}) \le V_{IN} \le 5.5 \text{V}$ | | 0.02 | 0.1 | %/V | | △ V OUT | Load Regulation | 1mA ≤ I _{OUT} ≤ 300mA | | 10 | 30 | mV | | PSRR | Power supply rejection ratio | f = 1kHz, Ripple 0.2 Vp-p, | | 75 | | dB | | I JIXIX | i ower supply rejection ratio | Vin=Set Vout +1V, lout = 30mA | | /3 | | UВ | Publication Date: Apr. 2017 Revision: 1.6 8/23 | en | Output Voltage Noise | V_{OUT} =0.8V, I_{OUT} =30mA, 10 Hz \leq f \leq 100kHz | | 40 | | μV _{RMS} | |-----------------|-----------------------|--|-----|-----|-----|-------------------| | V _{EN} | EN Input Throshold | | 1.0 | | | | | V EN | EN Input Threshold | | | | 0.4 | ٧ | | I _{EN} | EN Input Bias Current | EN=GND or VIN | | 0.1 | 1 | μΑ | - **Note 1:** Absolute Maximum ratings indicate limits beyond which damage may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions. - Note 2: All voltages are with respect to the potential at the ground pin. - **Note 3:** θ JA is measured in the natural convection at TA=25°C on a high effective thermal conductivity test board (2 layers, 2SOP). - **Note 4:** θ JC represents the resistance to the heat flows the chip to package top case. - Note 5: Dropout voltage is measured by reducing V_{IN} until V_{OUT} drops 100mV from its nominal value at V_{IN} -V_{OUT} = 1V. - Note 6: Maximum Power dissipation for the device is calculated using the following equations: $$P_D = \frac{T_J(MAX) - T_A}{\theta_{JA}}$$ Where $T_J(MAX)$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance. E.g. for the SOT-23-5 package $\theta_{JA} = 152^{\circ}\text{C/W}$, $T_J(MAX) = 150^{\circ}\text{C}$ and using $T_A = 25^{\circ}\text{C}$, the maximum power dissipation is found to be 0.82W. The derating factor $(-1/\theta_{JA}) = -6.6\text{mW/°C}$, thus below 25°C the power dissipation figure can be increased by 6.6mW per degree, and similarity decreased by this factor for temperatures above 25°C. **Note 7:** Typical values represent the most likely parametric norm. Publication Date: Apr. 2017 Revision: 1.6 9/23 ### **Typical Performance Characteristics** Unless otherwise specified, $V_{IN} = V_{OUT\ [NOM]} + 1V$, $V_{EN} = V_{IN}$, $C_{IN} = 1\mu F$, $C_{OUT} = 2.2\nu F$, $T_A = 25^{\circ}C$ #### Typical Performance Characteristics (cont.) Unless otherwise specified, $V_{IN} = V_{OUT (NOM)} + 1V$, $V_{EN} = V_{IN}$, $C_{IN} = 1 \mu F$, $C_{OUT} = 2.2 u F$, $T_A = 25 ^{\circ} C$ #### **Application Information** #### **General Description** Referring to Fig.1 as shown in the Functional Block Diagram section, the EMP8130 adopts the classical regulator topology in which negative feedback control is used to perform the desired voltage regulating function. The sub Vout-select form the feedback circuit which samples the output voltage for the error amplifier's non-inverting input. The inverting input is set to the bandgap reference voltage. Due to its high open-loop gain, the error amplifier ensures that the sampled output feedback voltage at its non-inverting input is virtually equal to the preset voltage reference voltage. The error amplifier compares the voltage difference at its inputs and produces an appropriate driving voltage to the P-channel MOS pass transistor, which controls the amount of current reaching the output. If there are changes in the output voltage due to load changes, the feedback resistors register these changes to the non-inverting input of the error amplifier. The error amplifier then adjusts its driving voltage to maintain virtual short between its two input nodes under all loading conditions. The regulation of the output voltage is achieved as a direct result of the error amplifier keeping its input voltages equal. This negative feedback control topology is further augmented by the shutdown, the temperature and current protection circuitry. #### **Output Capacitor** The EMP8130 is specially designed for use with ceramic output capacitors of as low as $2.2\mu\text{F}$ to take advantage of the savings in cost and space, as well as the superior filtering of high frequency noise. Capacitors of higher value or other types may be used, but it is important to make sure its equivalent series resistance (ESR) be restricted to less than 0.5Ω . The use of larger capacitors with smaller ESR values is desirable for applications involving large and fast input or output transients, as well as situations where the application systems are not physically located immediately adjacent to the battery power source. Typical ceramic capacitors suitable for use with the EMP8130 are X5R and X7R. The X5R and the X7R capacitors are able to maintain their capacitance values to within $\pm 20\%$ and $\pm 10\%$, respectively, as the temperature increases. #### **No-Load Stability** The EMP8130 is capable of stable operation during no-load conditions, a mandatory feature for some applications such as CMOS RAM keep-alive operations. #### **Input Capacitor** A minimum input capacitance of $1\mu F$ is required for EMP8130. The capacitor value may be increased without limit. Improper workbench set-ups may have adverse effects on the normal operation of the regulator. A case in point is the instability that may result from long supply lead inductance coupling to the output through the gate capacitance of the pass transistor. This will establish a pseudo LCR network, and is likely to happen under high current conditions or near dropout. A $10\mu F$ tantalum input capacitor will dampen the parasitic LCR action thanks to its high ESR. However, cautions should be exercised to avoid regulator short-circuit damage when tantalum capacitors are used, for they are prone to fail in short-circuit operating conditions. Publication Date: Apr. 2017 Revision: 1.6 12/23 #### **Power Dissipation** Thermal overload results from excessive power dissipation that causes the IC junction temperature to increase beyond a safe operating level. The concept of thermal resistance θ_{JA} (°C/W) is often used to describe an IC junction's relative readiness in allowing its thermal energy to dissipate to its ambient air. An IC junction with a low thermal resistance is preferred because it is relatively effective in dissipating its thermal energy to its ambient, thus resulting in a relatively low and desirable junction temperature. The relationship between θ_{JA} and T_J is as follows: $T_J = \Theta_{JA} \times (P_D) + T_A$ T_A is the ambient temperature, and P_D is the power generated by the IC and can be written as: $P_D = I_{OUT} (V_{IN} - V_{OUT})$ As the above equations show, it is desirable to work with Ics whose θ_{JA} values are small such that T_J does not increase strongly with P_D . To avoid thermally overloading the EMP8130, refrain from exceeding the absolute maximum junction temperature rating of 150°C under continuous operating conditions. Overstressing the regulator with high loading currents and elevated input-to-output differential voltages can increase the IC die temperature significantly. #### Shutdown The EMP8130 enters sleep mode when the EN pin is low. When this occurs, the pass transistor, the error amplifier, and the biasing circuits, including the bandgap reference, are turned off, thus reducing the supply current to typically < 1uA. The low supply current makes the EMP8130 best suited for battery-powered applications. The maximum guaranteed voltage at the EN pin to enter sleep mode is 0.4V. A minimum guaranteed voltage of 1.0V at the EN pin will activate the EMP8130. To constantly keep the regulator on, direct connection of the EN pin to the VIN pin is allowed. Publication Date: Apr. 2017 Revision: 1.6 13/23 # Package Outline Drawing SOT-23-5 **TOP VIEW** **SIDE VIEW** **DETAIL A** | Crusale of | Dimension in mm | | | | |------------|-----------------|------|--|--| | Symbol | Min. | Max. | | | | А | 0.90 | 1.45 | | | | A1 | 0.00 | 0.15 | | | | b | 0.30 | 0.50 | | | | С | 0.08 | 0.25 | | | | D | 2.70 | 3.10 | | | | Е | 1.40 | 1.80 | | | | E1 | 2.60 | 3.00 | | | | е | 0.95 BSC | | | | | L | 0.30 | 0.60 | | | ### **Package Outline Drawing** uDFN-4L (1mmx1 mm) **TOP VIEW** **BOTTOM VIEW** **SIDE VIEW** | Cryssals of | Dimension in mm | | | | |-------------|-----------------|-------|--|--| | Symbol | Min | Max | | | | А | 0.5 | 0.6 | | | | A1 | 0 | 0.05 | | | | A3 | 0.150 REF. | | | | | b | 0.175 | 0.275 | | | | D | 1.00 | BSC | | | | Е | 1.00 | BSC | | | | е | 0.625 BSC | | | | | L | 0.2 | 0.5 | | | | K | 0.2 | - | | | Exposed pad | | Dimension in mm | | | |----|-----------------|-----|--| | | Min | Max | | | D2 | 0.4 | 0.6 | | | E2 | 0.4 | 0.6 | | # Package Outline Drawing SC-70-5 | Carreele of | Dimension in mm | | | | |-------------|-----------------|------|--|--| | Symbol | Min. | Max. | | | | А | 0.80 | 1.10 | | | | A1 | 0.00 | 0.10 | | | | Ъ | 0.15 | 0.30 | | | | С | 0.08 | 0.22 | | | | D | 1.85 | 2.15 | | | | Е | 1.10 | 1.40 | | | | E1 | 1.80 | 2.40 | | | | е | 0.65 BSC | | | | | L | 0.26 | 0.46 | | | * This drawing includes SC70 5&6 lead. For 5 lead packages, the No.5 was removed. # Package Outline Drawing SC-82-4 D A A1 **BOTTOM VIEW** Dimension in mm Symbol Min. Max. 0.80 1.10 0.00 0.10 A1 0.15 0.30 b b1 0.30 0.60 0.22 0.08 С 1.85 D 2.15 Е 1.10 1.40 E1 1.80 2.40 1.30 BSC е 1.1875 BSC e1 0.26 0.46 Publication Date: Apr. 2017 Revision: 1.6 17/23 # Package Outline Drawing TSOT-23-5 **TOP VIEW** **SIDE VIEW** **DETAIL A** | Symbol | Dimension in mm | | | |--------|-----------------|------|--| | | Min. | Max. | | | А | 0.70 | 0.90 | | | A1 | 0.00 | 0.15 | | | ь | 0.30 | 0.50 | | | С | 0.08 | 0.25 | | | D | 2.70 | 3.10 | | | Е | 1.40 | 1.80 | | | E1 | 2.60 | 3.00 | | | е | 0.95 BSC | | | | L | 0.30 | 0.60 | | Package Outline Drawing SOT-23-3 **TOP VIEW** **SIDE VIEW** **DETAIL A** | Symbol | Dimension in mm | | |--------|-----------------|------| | | Min. | Max. | | А | 0.90 | 1.45 | | A1 | 0.00 | 0.15 | | Ъ | 0.30 | 0.50 | | С | 0.08 | 0.25 | | D | 2.70 | 3.10 | | Е | 1.40 | 1.80 | | E1 | 2.60 | 3.00 | | е | 1.90 BSC | | | L | 0.30 | 0.60 | # Package Outline Drawing TDFN-6L (2x2 mm) **TOP VIEW** **BOTTOM VIEW** | Symbol | Dimension in mm | | | |--------|-----------------|------|--| | | Min | Max | | | А | 0.70 | 0.80 | | | A1 | 0.00 | 0.05 | | | A3 | 0.18 | 0.25 | | | ь | 0.25 | 0.35 | | | D | 1.90 | 2.10 | | | Е | 1.90 | 2.10 | | | е | 0.65 BSC | | | | L | 0.20 | 0.45 | | Exposed pad option | | Dimension in mm | | |----|-----------------|------| | | Min | Max | | D2 | 1.35 | 1.45 | | E2 | 0.55 | 0.65 | # Old Order, Marking & Packing Information | Package | Vout | Product ID. | Marking | Packing | |---------|------|-------------------|--|-------------| | | 0.8V | EMP8130-08FJ04NRR | $\begin{bmatrix} X & X \\ \bullet & \bullet \end{bmatrix}$ $X X = \text{tracking code}$ | | | | 1.0V | EMP8130-10FJ04NRR | $\begin{bmatrix} \bullet & \overline{X} \\ \overline{X} & \overline{X} \end{bmatrix}$ $X X = \text{tracking code}$ | | | | 1.2V | EMP8130-12FJ04NRR | $ \begin{array}{ c c } \hline X & X \\ \hline X & X \end{array} $ X X = tracking code | | | uDFN-4 | 1.3V | EMP8130-13FJ04NRR | $ \begin{array}{ c c } \hline \underline{X} & \underline{X} \\ \hline \bullet & \underline{} \\ X & = \text{tracking code} \end{array} $ | | | | 1.5V | EMP8130-15FJ04NRR | $ \begin{array}{ c c } \hline X & X \\ \bullet & \\ \hline X & X = \text{tracking code} \end{array} $ | Tape & Reel | | | 1.8V | EMP8130-18FJ04NRR | $ \begin{array}{ c c } \hline \underline{X} & X \\ \bullet & \\ \hline X & X = \text{tracking code} \end{array} $ | 8Kpcs | | | 2.5V | EMP8130-25FJ04NRR | $ \begin{array}{ c c } \hline \overline{X} & \overline{X} \\ \hline \bullet & \\ X & X = \text{tracking code} \end{array} $ | | | | 2.8V | EMP8130-28FJ04NRR | $\begin{bmatrix} X & \overline{X} \\ \bullet & \\ X & X = \text{tracking code} \end{bmatrix}$ | | | | 3.0V | EMP8130-30FJ04NRR | $\begin{bmatrix} \overline{X} & X \\ \bullet & X \end{bmatrix}$ $X X = \text{tracking code}$ | | | | 3.3V | EMP8130-33FJ04NRR | $\begin{bmatrix} X & X \\ \bullet & & \\ X & X = \text{tracking code} \end{bmatrix}$ | | # **Revision History** | Revision | Date | Description | |----------|------------|---| | 0.1 | 2014.02.11 | Initial version. | | 0.2 | 2014.05.12 | Add uDFN package information | | 0.3 | 2014.06.13 | Add electrical Characteristics for Icl | | 0.4 | 2014.08.22 | Add uDFN Thermal Resistance | | 0.5 | 2015.01.16 | Add uDFN PIN number Electrical characteristics format corrected. Add package information SC70 and SC82. | | 1.0 | 2015.03.11 | Revise version to 1.0 & remove preliminary word | | 1.1 | 2015.05.21 | Modify connection diagrams and pin functions for uDFN-4 | | 1.2 | 2015.10.01 | Modify application for Output Capacitor(2.2uF) | | 1.3 | 2015.11.02 | Add TSOT23-5 package information | | 1.4 | 2015.11.09 | Cancel pin1 dot for uDFN-4 marking | | 1.5 | 2016.12.14 | Add SOT23-3/TDFN-6 package information | | 1.6 | 2017.04.26 | Add 2.7V voltage option for SOT23-5 package (page 3) | ### Important Notice All rights reserved. No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT. The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice. The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others. Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs. ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications. ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Linear Voltage Regulators category: Click to view products by Elite manufacturer: Other Similar products are found below: LV56831P-E LV5684PVD-XH MAX202ECWE-LF MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R 636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G MC78M12CDTT5G L9468N